1
|
Torres P, Rico-Rios S, Ceron-Codorniu M, Santacreu-Vilaseca M, Seoane-Miraz D, Jad Y, Ayala V, Mariño G, Beltran M, Miralles MP, Andrés-Benito P, Fernandez-Irigoyen J, Santamaria E, López-Otín C, Soler RM, Povedano M, Ferrer I, Pamplona R, Wood MJA, Varela MA, Portero-Otin M. TDP-43 regulates LC3ylation in neural tissue through ATG4B cryptic splicing inhibition. Acta Neuropathol 2024; 148:45. [PMID: 39305312 PMCID: PMC11416411 DOI: 10.1007/s00401-024-02780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease with a mean survival time of three years. The 97% of the cases have TDP-43 nuclear depletion and cytoplasmic aggregation in motor neurons. TDP-43 prevents non-conserved cryptic exon splicing in certain genes, maintaining transcript stability, including ATG4B, which is crucial for autophagosome maturation and Microtubule-associated proteins 1A/1B light chain 3B (LC3B) homeostasis. In ALS mice (G93A), Atg4b depletion worsens survival rates and autophagy function. For the first time, we observed an elevation of LC3ylation in the CNS of both ALS patients and atg4b-/- mouse spinal cords. Furthermore, LC3ylation modulates the distribution of ATG3 across membrane compartments. Antisense oligonucleotides (ASOs) targeting cryptic exon restore ATG4B mRNA in TARDBP knockdown cells. We further developed multi-target ASOs targeting TDP-43 binding sequences for a broader effect. Importantly, our ASO based in peptide-PMO conjugates show brain distribution post-IV administration, offering a non-invasive ASO-based treatment avenue for neurodegenerative diseases.
Collapse
Affiliation(s)
- Pascual Torres
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Santiago Rico-Rios
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Miriam Ceron-Codorniu
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Marta Santacreu-Vilaseca
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - David Seoane-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Victòria Ayala
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Guillermo Mariño
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Maria Beltran
- Neuronal Signaling Unit, Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain
| | - Maria P Miralles
- Neuronal Signaling Unit, Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain
| | - Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907, L'Hospitalet de Llobregat, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquin Fernandez-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008, Pamplona, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008, Pamplona, Spain
| | - Carlos López-Otín
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), 33006, Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Rosa M Soler
- Neuronal Signaling Unit, Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain
| | - Monica Povedano
- Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907, L'Hospitalet de Llobregat, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007, Barcelona, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Matthew J A Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Miguel A Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain.
| |
Collapse
|
2
|
Tang G, Wang X, Huang H, Xu M, Ma X, Miao F, Lu X, Zhang CJ, Gao L, Zhang ZM, Yao SQ. Small Molecule-Induced Post-Translational Acetylation of Catalytic Lysine of Kinases in Mammalian Cells. J Am Chem Soc 2024; 146:23978-23988. [PMID: 39162335 DOI: 10.1021/jacs.4c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable. Small-molecule strategies that enable post-translational acetylation of the catalytic lysine on kinases in a target-selective manner therefore provide tremendous potential in kinase biology. Herein, we report the first small molecule-induced chemical strategy capable of global acetylation of the catalytic lysine on kinases from mammalian cells. By surveying various lysine-acetylating agents installed on a promiscuous kinase-binding scaffold, Ac4 was identified and shown to effectively acetylate the catalytic lysine of >100 different protein kinases from live Jurkat/K562 cells. In order to demonstrate that this strategy was capable of target-selective and reversible chemical acetylation of protein kinases, we further developed six acetylating compounds on the basis of VX-680 (a noncovalent inhibitor of AURKA). Among them, Ac13/Ac14, while displaying excellent in vitro potency and sustained cellular activity against AURKA, showed robust acetylation of its catalytic lysine (K162) in a target-selective manner, leading to irreversible inhibition of endogenous kinase activity. The reversibility of this chemical acetylation was confirmed on Ac14-treated recombinant AURKA protein, followed by deacetylation with SIRT3 (a lysine deacetylase). Finally, the reversible Ac13-induced acetylation of endogenous AURKA was demonstrated in SIRT3-transfected HCT116 cells. By disclosing the first cell-active acetylating compounds capable of both global and target-selective post-translational acetylation of the catalytic lysine on kinases, our strategy could provide a useful chemical tool in kinase biology and drug discovery.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xuan Wang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fengfei Miao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
3
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Ye Y, Tyndall ER, Bui V, Bewley MC, Wang G, Hong X, Shen Y, Flanagan JM, Wang HG, Tian F. Multifaceted membrane interactions of human Atg3 promote LC3-phosphatidylethanolamine conjugation during autophagy. Nat Commun 2023; 14:5503. [PMID: 37679347 PMCID: PMC10485044 DOI: 10.1038/s41467-023-41243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Autophagosome formation, a crucial step in macroautophagy (autophagy), requires the covalent conjugation of LC3 proteins to the amino headgroup of phosphatidylethanolamine (PE) lipids. Atg3, an E2-like enzyme, catalyzes the transfer of LC3 from LC3-Atg3 to PEs in targeted membranes. Here we show that the catalytically important C-terminal regions of human Atg3 (hAtg3) are conformationally dynamic and directly interact with the membrane, in collaboration with its N-terminal membrane curvature-sensitive helix. The functional relevance of these interactions was confirmed by in vitro conjugation and in vivo cellular assays. Therefore, highly curved phagophoric rims not only serve as a geometric cue for hAtg3 recruitment, but also their interaction with hAtg3 promotes LC3-PE conjugation by targeting its catalytic center to the membrane surface and bringing substrates into proximity. Our studies advance the notion that autophagosome biogenesis is directly guided by the spatial interactions of Atg3 with highly curved phagophoric rims.
Collapse
Affiliation(s)
- Yansheng Ye
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Erin R Tyndall
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Van Bui
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maria C Bewley
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Guifang Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xupeng Hong
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Chu T, Shang J, Jian H, Song C, Yang R, Bao D, Tan Q, Tang L. Potential Role of Lysine Acetylation and Autophagy in Brown Film Formation and Postripening of Lentinula edodes Mycelium. Microbiol Spectr 2023; 11:e0282322. [PMID: 37347174 PMCID: PMC10434168 DOI: 10.1128/spectrum.02823-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Lentinula edodes is one of the most widely cultivated edible mushrooms in the world. When cultivated in sawdust, the surface mycelium of L. edodes needs a long postripening stage wherein it forms a brown film (BF) by secreting and accumulating pigments. BF formation is critical for the high quality and yield of fruiting bodies. Protein lysine acetylation (KAC) is an important post-translational modification that regulates growth and development. Previous studies have shown that deacetylase levels are significantly increased during BF formation in the postripening stage of L. edodes. The aim of this study was to assess the role of protein acetylation during BF formation. To this end, we compared the acetylome of L. edodes mycelia before and after BF formation using anti-acetyl antibody-based label-free quantitative proteomics. We identified 5,613 acetylation sites in 1,991 proteins, and quantitative information was available for 4,848 of these sites in 1,815 proteins. Comparative acetylome analysis showed that the modification of 699 sites increased and that of 562 sites decreased during BF formation. Bioinformatics analysis of the differentially acetylated proteins showed significant enrichment in the tricarboxylic acid (TCA) cycle and proteasome pathways. Furthermore, functional assays showed that BF formation is associated with significant changes in the activities of proteasome, citrate synthase, and isocitrate dehydrogenase. Consistent with this hypothesis, the lysine deacetylase inhibitor trichostatin (TSA) delayed autophagy and BF formation in L. edodes. Taken together, KAC and autophagy play important roles in the mycelial BF formation and postripening stage of L. edodes. IMPORTANCE Mycelial BF formation and postripening of L. edodes affects the quality and quantity of its edible fruiting bodies. In this study, we explored the role of protein KAC in this biological process, with the aim of optimizing the cultivation and yield of L. edodes.
Collapse
Affiliation(s)
- Ting Chu
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Junjun Shang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Song
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruiheng Yang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dapeng Bao
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lihua Tang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
Farnung J, Muhar M, Liang JR, Tolmachova KA, Benoit RM, Corn JE, Bode JW. Semisynthetic LC3 Probes for Autophagy Pathways Reveal a Noncanonical LC3 Interacting Region Motif Crucial for the Enzymatic Activity of Human ATG3. ACS CENTRAL SCIENCE 2023; 9:1025-1034. [PMID: 37252361 PMCID: PMC10214526 DOI: 10.1021/acscentsci.3c00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 05/31/2023]
Abstract
Macroautophagy is one of two major degradation systems in eukaryotic cells. Regulation and control of autophagy are often achieved through the presence of short peptide sequences called LC3 interacting regions (LIR) in autophagy-involved proteins. Using a combination of new protein-derived activity-based probes prepared from recombinant LC3 proteins, along with protein modeling and X-ray crystallography of the ATG3-LIR peptide complex, we identified a noncanonical LIR motif in the human E2 enzyme responsible for LC3 lipidation, ATG3. The LIR motif is present in the flexible region of ATG3 and adopts an uncommon β-sheet structure binding to the backside of LC3. We show that the β-sheet conformation is crucial for its interaction with LC3 and used this insight to design synthetic macrocyclic peptide-binders to ATG3. CRISPR-enabled in cellulo studies provide evidence that LIRATG3 is required for LC3 lipidation and ATG3∼LC3 thioester formation. Removal of LIRATG3 negatively impacts the rate of thioester transfer from ATG7 to ATG3.
Collapse
Affiliation(s)
- Jakob Farnung
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zürich, CH-8093 Zürich, Switzerland
| | - Matthias Muhar
- Institute
of Molecular Health Sciences, Department of Biology ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jin Rui Liang
- Institute
of Molecular Health Sciences, Department of Biology ETH Zürich, CH-8093 Zürich, Switzerland
| | - Kateryna A. Tolmachova
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zürich, CH-8093 Zürich, Switzerland
| | - Roger M. Benoit
- Laboratory
of Nanoscale Biology, Division of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jacob E. Corn
- Institute
of Molecular Health Sciences, Department of Biology ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratory
for Organic Chemistry, Department of Chemistry and Applied Biosciences ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
7
|
Structure of the NuA4 acetyltransferase complex bound to the nucleosome. Nature 2022; 610:569-574. [PMID: 36198799 DOI: 10.1038/s41586-022-05303-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes1, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing2-4. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair5-10. Here we report the cryo-electron microscopy structure of NuA4 from Saccharomyces cerevisiae bound to the nucleosome. NuA4 comprises two major modules: the catalytic histone acetyltransferase (HAT) module and the transcription activator-binding (TRA) module. The nucleosome is mainly bound by the HAT module and is positioned close to a polybasic surface of the TRA module, which is important for the optimal activity of NuA4. The nucleosomal linker DNA carrying the upstream activation sequence is oriented towards the conserved, transcription activator-binding surface of the Tra1 subunit, which suggests a potential mechanism of NuA4 to act as a transcription co-activator. The HAT module recognizes the disk face of the nucleosome through the H2A-H2B acidic patch and nucleosomal DNA, projecting the catalytic pocket of Esa1 to the N-terminal tail of H4 and supporting its function in selective acetylation of H4. Together, our findings illustrate how NuA4 is assembled and provide mechanistic insights into nucleosome recognition and transcription co-activation by a HAT.
Collapse
|
8
|
Huang X, Yao J, Liu L, Luo Y, Yang A. Atg8-PE protein-based in vitro biochemical approaches to autophagy studies. Autophagy 2022; 18:2020-2035. [PMID: 35072587 PMCID: PMC9397461 DOI: 10.1080/15548627.2022.2025572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved intracellular degradation pathway that maintains cellular homeostasis. Over the past two decades, a series of scientific breakthroughs have helped explain autophagy-related molecular mechanisms and physiological functions. This tremendous progress continues to depend largely on powerful research methods, specifically, various autophagy marker Atg8-PE protein-based methods for studying membrane dynamics and monitoring autophagic activity. Recently, several biochemical approaches have been successfully developed to produce the lipidated protein Atg8-PE or its mimics in vitro, including enzyme-mediated reconstitution systems, chemically defined reconstitution systems, cell-free lipidation systems and protein chemical synthesis. These approaches have contributed important insights into the mechanisms underlying Atg8-mediated membrane dynamics and protein-protein interactions, creating a new perspective in autophagy studies. In this review, we comprehensively summarize Atg8-PE protein-based in vitro biochemical approaches and recent advances to facilitate a better understanding of autophagy mechanisms. In addition, we highlight the advantages and disadvantages of various Atg8-PE protein-based approaches to provide general guidance for their use in studying autophagy.Abbreviations: ATG: autophagy related; ATP: adenosine triphosphate; COPII: coat protein complex II; DGS-NTA: 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] (nickel salt); DPPE: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine; DSPE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; E. coli: Escherichia coli; EPL: expressed protein ligation; ERGIC: ER-Golgi intermediate compartment; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; GUVs: giant unilamellar vesicles; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MBP: maltose binding protein; MEFs: mouse embryonic fibroblasts; MESNa: 2-mercaptoethanesulfonic acid sodium salt; NCL: native chemical ligation; NTA: nitrilotriacetic acid; PE: phosphatidylethanolamine; PS: phosphatidylserine; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SPPS: solid-phase peptide synthesis; TEV: tobacco etch virus; WT: wild-type.
Collapse
Affiliation(s)
- Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China,CONTACT Aimin Yang School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
9
|
Neusius D, Kleinknecht L, Teh JT, Ostermeier M, Kelterborn S, Eirich J, Hegemann P, Finkemeier I, Bohne AV, Nickelsen J. Lysine acetylation regulates moonlighting activity of the E2 subunit of the chloroplast pyruvate dehydrogenase complex in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1780-1800. [PMID: 35899410 DOI: 10.1111/tpj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The dihydrolipoamide acetyltransferase subunit DLA2 of the chloroplast pyruvate dehydrogenase complex (cpPDC) in the green alga Chlamydomonas reinhardtii has previously been shown to possess moonlighting activity in chloroplast gene expression. Under mixotrophic growth conditions, DLA2 forms part of a ribonucleoprotein particle (RNP) with the psbA mRNA that encodes the D1 protein of the photosystem II (PSII) reaction center. Here, we report on the characterization of the molecular switch that regulates shuttling of DLA2 between its functions in carbon metabolism and D1 synthesis. Determination of RNA-binding affinities by microscale thermophoresis demonstrated that the E3-binding domain (E3BD) of DLA2 mediates psbA-specific RNA recognition. Analyses of cpPDC formation and activity, as well as RNP complex formation, showed that acetylation of a single lysine residue (K197) in E3BD induces the release of DLA2 from the cpPDC, and its functional shift towards RNA binding. Moreover, Förster resonance energy transfer microscopy revealed that psbA mRNA/DLA2 complexes localize around the chloroplast's pyrenoid. Pulse labeling and D1 re-accumulation after induced PSII degradation strongly suggest that DLA2 is important for D1 synthesis during de novo PSII biogenesis.
Collapse
Affiliation(s)
- Daniel Neusius
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Laura Kleinknecht
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jing Tsong Teh
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Matthias Ostermeier
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Simon Kelterborn
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Peter Hegemann
- Experimental Biophysics, Institute of Biology, Humboldt University of Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, 48149, Münster, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| | - Jörg Nickelsen
- Molecular Plant Sciences, Faculty of Biology, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-, Martinsried, Germany
| |
Collapse
|
10
|
Characterization of Protein-Membrane Interactions in Yeast Autophagy. Cells 2022; 11:cells11121876. [PMID: 35741004 PMCID: PMC9221364 DOI: 10.3390/cells11121876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Cells rely on autophagy to degrade cytosolic material and maintain homeostasis. During autophagy, content to be degraded is encapsulated in double membrane vesicles, termed autophagosomes, which fuse with the yeast vacuole for degradation. This conserved cellular process requires the dynamic rearrangement of membranes. As such, the process of autophagy requires many soluble proteins that bind to membranes to restructure, tether, or facilitate lipid transfer between membranes. Here, we review the methods that have been used to investigate membrane binding by the core autophagy machinery and additional accessory proteins involved in autophagy in yeast. We also review the key experiments demonstrating how each autophagy protein was shown to interact with membranes.
Collapse
|
11
|
Wan C, Yang D, Qin X, Xue Z, Guo X, Hou Z, Jiang C, Yin F, Wang R, Li Z. Flavin catalyzed desulfurization of peptides and proteins in aqueous media. Org Biomol Chem 2022; 20:4105-4109. [PMID: 35546316 DOI: 10.1039/d2ob00641c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic method has been established for the chemo-selective desulfurization of cysteinyl peptides and proteins in aqueous media. The derivatives of biocatalytic cofactors, flavins, were found to be efficient photosensitizers in a thiyl-radical-mediated desulfurization of Cys. The reaction was conducted in an ultrafast manner with both polypeptides and proteins.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Ziyi Xue
- College of chemistry & chemical engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
| | - Chenran Jiang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Feng Yin
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Rui Wang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China. .,Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| |
Collapse
|
12
|
Benjamin DN, O'Donovan TR, Laursen KB, Orfali N, Cahill MR, Mongan NP, Gudas LJ, McKenna SL. All- Trans-Retinoic Acid Combined With Valproic Acid Can Promote Differentiation in Myeloid Leukemia Cells by an Autophagy Dependent Mechanism. Front Oncol 2022; 12:848517. [PMID: 35280824 PMCID: PMC8907478 DOI: 10.3389/fonc.2022.848517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with an overall survival of 30%. One form of AML, acute promyelocytic leukemia (APL) has become more than 90% curable with differentiation therapy, consisting of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO). Application of differentiation therapy to other AML subtypes would be a major treatment advance. Recent studies have indicated that autophagy plays a key role in the differentiation of ATRA-responsive APL cells. In this study, we have investigated whether differentiation could be enhanced in ATRA resistant cells by promoting autophagy induction with valproic acid (VPA). ATRA sensitive (NB4) and resistant leukemia cells (NB4R and THP-1) were co-treated with ATRA and valproic acid, followed by assessment of autophagy and differentiation. The combination of VPA and ATRA induced autophagic flux and promoted differentiation in ATRA-sensitive and -resistant cell lines. shRNA knockdown of ATG7 and TFEB autophagy regulators impaired both autophagy and differentiation, demonstrating the importance of autophagy in the combination treatment. These data suggest that ATRA combined with valproic acid can promote differentiation in myeloid leukemia cells by mechanism involving autophagy.
Collapse
Affiliation(s)
- Dalyia N Benjamin
- Cancer Research, University College Cork, Cork, Ireland.,Department of Haematology, Tallaght University Hospital, Dublin, Ireland.,Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | | | - Kristian B Laursen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | - Nina Orfali
- Department of Haematology, St James's Hospital, Dublin, Ireland
| | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Cork, Ireland
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States.,Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, United States
| | | |
Collapse
|
13
|
Shen T, Jiang L, Wang X, Xu Q, Han L, Liu S, Huang T, Li H, Dai L, Li H, Lu K. Function and molecular mechanism of N-terminal acetylation in autophagy. Cell Rep 2021; 37:109937. [PMID: 34788606 DOI: 10.1016/j.celrep.2021.109937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023] Open
Abstract
Acetyl ligation to the amino acids in a protein is an important posttranslational modification. However, in contrast to lysine acetylation, N-terminal acetylation is elusive in terms of its cellular functions. Here, we identify Nat3 as an N-terminal acetyltransferase essential for autophagy, a catabolic pathway for bulk transport and degradation of cytoplasmic components. We identify the actin cytoskeleton constituent Act1 and dynamin-like GTPase Vps1 (vacuolar protein sorting 1) as substrates for Nat3-mediated N-terminal acetylation of the first methionine. Acetylated Act1 forms actin filaments and therefore promotes the transport of Atg9 vesicles for autophagosome formation; acetylated Vps1 recruits and facilitates bundling of the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complex for autophagosome fusion with vacuoles. Abolishment of the N-terminal acetylation of Act1 and Vps1 is associated with blockage of upstream and downstream steps of the autophagy process. Therefore, our work shows that protein N-terminal acetylation plays a critical role in controlling autophagy by fine-tuning multiple steps in the process.
Collapse
Affiliation(s)
- Tianyun Shen
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lan Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xinyuan Wang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qingjia Xu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Lu Han
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| | - Huihui Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China; West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
14
|
Lysine acetylation regulates the interaction between proteins and membranes. Nat Commun 2021; 12:6466. [PMID: 34753925 PMCID: PMC8578602 DOI: 10.1038/s41467-021-26657-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes. Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates the function of membrane proteins. Here, the authors map lysine acetylation predominantly in membrane-interaction regions in peripheral membrane proteins and show with three candidate proteins how lysine acetylation is a regulator of membrane protein function.
Collapse
|
15
|
Fang D, Xie H, Hu T, Shan H, Li M. Binding Features and Functions of ATG3. Front Cell Dev Biol 2021; 9:685625. [PMID: 34235149 PMCID: PMC8255673 DOI: 10.3389/fcell.2021.685625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that is essential for maintaining cellular, tissue, and organismal homeostasis. Autophagy-related (ATG) genes are indispensable for autophagosome formation. ATG3 is one of the key genes involved in autophagy, and its homologs are common in eukaryotes. During autophagy, ATG3 acts as an E2 ubiquitin-like conjugating enzyme in the ATG8 conjugation system, contributing to phagophore elongation. ATG3 has also been found to participate in many physiological and pathological processes in an autophagy-dependent manner, such as tumor occurrence and progression, ischemia-reperfusion injury, clearance of pathogens, and maintenance of organelle homeostasis. Intriguingly, a few studies have recently discovered the autophagy-independent functions of ATG3, including cell differentiation and mitosis. Here, we summarize the current knowledge of ATG3 in autophagosome formation, highlight its binding partners and binding sites, review its autophagy-dependent functions, and provide a brief introduction into its autophagy-independent functions.
Collapse
Affiliation(s)
- Dongmei Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huazhong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Jacomin AC, Petridi S, Di Monaco M, Bhujabal Z, Jain A, Mulakkal NC, Palara A, Powell EL, Chung B, Zampronio C, Jones A, Cameron A, Johansen T, Nezis IP. Regulation of Expression of Autophagy Genes by Atg8a-Interacting Partners Sequoia, YL-1, and Sir2 in Drosophila. Cell Rep 2021; 31:107695. [PMID: 32460019 PMCID: PMC7262597 DOI: 10.1016/j.celrep.2020.107695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/07/2020] [Accepted: 05/06/2020] [Indexed: 01/09/2023] Open
Abstract
Autophagy is the degradation of cytoplasmic material through the lysosomal pathway. One of the most studied autophagy-related proteins is LC3. Despite growing evidence that LC3 is enriched in the nucleus, its nuclear role is poorly understood. Here, we show that Drosophila Atg8a protein, homologous to mammalian LC3, interacts with the transcription factor Sequoia in a LIR motif-dependent manner. We show that Sequoia depletion induces autophagy in nutrient-rich conditions through the enhanced expression of autophagy genes. We show that Atg8a interacts with YL-1, a component of a nuclear acetyltransferase complex, and that it is acetylated in nutrient-rich conditions. We also show that Atg8a interacts with the deacetylase Sir2, which deacetylates Atg8a during starvation to activate autophagy. Our results suggest a mechanism of regulation of the expression of autophagy genes by Atg8a, which is linked to its acetylation status and its interaction with Sequoia, YL-1, and Sir2. Transcription factor Sequoia is a negative regulator of autophagy Sequoia interacts with Atg8a via a LIR motif Atg8a interacts with YL-1, a subunit of a nuclear acetyltransferase complex Sir2 interacts with and deacetylates Atg8a during starvation
Collapse
Affiliation(s)
| | - Stavroula Petridi
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Marisa Di Monaco
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Zambarlal Bhujabal
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Nitha C Mulakkal
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Anthimi Palara
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK; Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Emma L Powell
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Bonita Chung
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | | | - Alexandra Jones
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Alexander Cameron
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK.
| |
Collapse
|
17
|
Peptide Hydrazides as Thioester Equivalents for the Chemical Synthesis of Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2133:119-140. [PMID: 32144665 DOI: 10.1007/978-1-0716-0434-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chemical synthesis of proteins allows for the precise control of structural information at the atomic level, overcoming the limits of protein expression. Peptide hydrazides are widely used as thioester equivalents in the total chemical synthesis and semisynthesis of proteins as they can be easily prepared using standard solid phase peptide synthesis (SPPS) and recombinant peptide techniques. Via treatment with NaNO2 and subsequent thiolysis, peptide hydrazides can be rapidly converted to peptide thioesters, which then selectively react with recombinant protein containing an N-terminal cysteine (Cys) to form a native peptide bond, thereby linking the two peptide segments without isolating any intermediates.
Collapse
|
18
|
Liu H, Zhao X, Yu M, Meng L, Zhou T, Shan Y, Liu X, Xia Z, An M, Wu Y. Transcriptomic and Functional Analyses Indicate Novel Anti-viral Mode of Actions on Tobacco Mosaic Virus of a Microbial Natural Product ε-Poly-l-lysine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2076-2086. [PMID: 33586965 DOI: 10.1021/acs.jafc.0c07357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel anti-viral natural product ε-poly-l-lysine (ε-PL) produced by Streptomyces is a homopolymer of l-lysine, of which the underlying molecular mode of action remains to be further elucidated. In this study, ε-PL induced significant fragmentation of tobacco mosaic virus (TMV) virions and delayed the systemic infection of TMV-GFP as well as wild-type TMV in plants. ε-PL treatment also markedly inhibited RNA accumulation of TMV in tobacco BY-2 protoplasts. The results of RNA-seq indicated that the agent induced significantly differential expression of genes that are associated with defense response, stress response, autophagy, and ubiquitination. Among them, 15 critical differential expressed genes were selected for real-time quantitative PCR validation. We further demonstrated that ε-PL can induce host defense responses by assessing the activity of several defense-related enzymes in plants. Our results provided valuable insights into molecular anti-viral mode of action for ε-PL, which is expected to be applied as a novel microbial natural product against plant virus diseases.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Miao Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Lingxue Meng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuhang Shan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiaoying Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| |
Collapse
|
19
|
Xu L, Zhang Y, Li YM, Lu XF. Total chemical synthesis of the phosphorylated p62 UBA domain reveals that Ser 407Pi but not Ser 403Pi enhances ubiquitin binding. Org Biomol Chem 2020; 18:8709-8715. [PMID: 33084718 DOI: 10.1039/d0ob01906b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As an autophagic adaptor, p62 specifically targets ubiquitinated proteins to an autophagosome for lysosomal degradation through a critical ubiquitin-associated (UBA) domain. Recent research studies reported that the Ser403 and Ser407 sites on the UBA domain were modified by phosphorylation, increasing the binding affinity between p62 and ubiquitin (Ub). However, the exact role of each phosphorylation site in the regulation of the UBA domain and Ub binding remains unclear. In this text, we applied total chemical synthesis to prepare four types of phosphorylated UBAs, among which the bisphosphorylated UBA was successfully synthesized via the pseudo-dipeptide unit and auxiliary-mediated hydrazide-based native chemical ligation (NCL). Isothermal titration calorimetry (ITC) assays showed that the phosphorylation at S407 enhanced the binding affinity between UBA and Ub, while that at S403 did not. It was suggested that phosphorylation at S407 might be important for promoting the interplay between the UBA domain and Ub, whereas phosphorylation at S403 was not directly involved in this interaction.
Collapse
Affiliation(s)
- Ling Xu
- Department of Anesthesiology (High-Tech Branch), the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yan Zhang
- Department of Anesthesiology (High-Tech Branch), the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xian-Fu Lu
- Department of Anesthesiology (High-Tech Branch), the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230027, China
| |
Collapse
|
20
|
Song Q, Liu H, Zhen H, Zhao B. Autophagy and its role in regeneration and remodeling within invertebrate. Cell Biosci 2020; 10:111. [PMID: 32974004 PMCID: PMC7507827 DOI: 10.1186/s13578-020-00467-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Acting as a cellular cleaner by packaging and transporting defective proteins and organelles to lysosomes for breakdown, autophagic process is involved in the regulation of cell remodeling after cell damage or cell death in both vertebrate and invertebrate. In human, limitations on the regenerative capacity of specific tissues and organs make it difficult to recover from diseases. Comprehensive understanding on its mechanism within invertebrate have strong potential provide helpful information for challenging these diseases. Method In this study, recent findings on the autophagy function in three invertebrates including planarian, hydra and leech with remarkable regenerative ability were summarized. Furthermore, molecular phylogenetic analyses of DjATGs and HvATGs were performed on these three invertebrates compared to that of Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Homo sapiens. Results In comparison with Scerevisiae, C elegans, D melanogaster, M musculus and human, our analysis exhibits the following characteristics of autophagy and its function in regeneration within invertebrate. Phylogenetical analysis of ATGs revealed that most autophagy-related genes (ATGs) were highly similar to their homologs in other species, which indicates that autophagy is a highly conservative biological function in both vertebrate and invertebrate. Structurally, almost all the core amino acids necessary for the function of ATG8 in mammal were observed in invertebrate HvATG8s and DjATG8s. For instance, ubiquitin-like domain as a signature structure in each ATG8, was observed in all ATG8s in three invertebrates. Basically, autophagy plays a key role in the regulation of regeneration in planarian. DjATG8-2 and DjATG8-3 associated with mTOR signaling pathway are sophisticated in the invertebrate tissue/organ regeneration. Furthermore, autophagy is involved in the pathway of neutralization of toxic molecules input from blood digestion in the leech. Conclusions The recent investigations on autophagy in invertebrate including planarian, hydra and leech suggest that autophagy is evolutionally conserved from yeast to mammals. The fundamental role of its biological function in the invertebrate contributing to the regeneration and maintenance of cellular homeostasis in these three organisms could make tremendous information to confront life threatening diseases in human including cancers and cardiac disorders.
Collapse
Affiliation(s)
- Qian Song
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo, 255049 Shandong China
| | - Hongjin Liu
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo, 255049 Shandong China
| | - Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo, 255049 Shandong China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, Shandong University of Technology, Zibo, 255049 Shandong China
| |
Collapse
|
21
|
Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat Commun 2020; 11:3148. [PMID: 32561715 PMCID: PMC7305105 DOI: 10.1038/s41467-020-16886-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (“autophagy”) is the main lysosomal catabolic process that becomes activated under nutrient-depleted conditions, like amino acid (AA) starvation. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-conserved negative regulator of autophagy. While leucine (Leu) is a critical mTORC1 regulator under AA-starved conditions, how Leu regulates autophagy is poorly understood. Here, we describe that in most cell types, including neurons, Leu negatively regulates autophagosome biogenesis via its metabolite, acetyl-coenzyme A (AcCoA). AcCoA inhibits autophagy by enhancing EP300-dependent acetylation of the mTORC1 component raptor, with consequent activation of mTORC1. Interestingly, in Leu deprivation conditions, the dominant effects on autophagy are mediated by decreased raptor acetylation causing mTORC1 inhibition, rather than by altered acetylation of other autophagy regulators. Thus, in most cell types we examined, Leu regulates autophagy via the impact of its metabolite AcCoA on mTORC1, suggesting that AcCoA and EP300 play pivotal roles in cell anabolism and catabolism. Leucine is a critical amino acid that inhibits autophagy. Here, the authors show that the leucine inhibits autophagy in most cell types, predominantly via its catabolite acetyl CoA, which drives acetylation of raptor, which activates mTORC1, a negative regulator of this catabolic process.
Collapse
|
22
|
Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov 2020; 6:32. [PMID: 32509328 PMCID: PMC7248066 DOI: 10.1038/s41421-020-0161-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagosome biogenesis is a dynamic membrane event, which is executed by the sequential function of autophagy-related (ATG) proteins. Upon autophagy induction, a cup-shaped membrane structure appears in the cytoplasm, then elongates sequestering cytoplasmic materials, and finally forms a closed double membrane autophagosome. However, how this complex vesicle formation event is strictly controlled and achieved is still enigmatic. Recently, there is accumulating evidence showing that some ATG proteins have the ability to directly interact with membranes, transfer lipids between membranes and regulate lipid metabolism. A novel role for various membrane lipids in autophagosome formation is also emerging. Here, we highlight past and recent key findings on the function of ATG proteins related to autophagosome biogenesis and consider how ATG proteins control this dynamic membrane formation event to organize the autophagosome by collaborating with membrane lipids.
Collapse
|
23
|
Wang S, Li Y, Ma C. Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement. Protein Sci 2020; 29:1511-1523. [PMID: 32277540 DOI: 10.1002/pro.3866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Atg3-catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N-terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Luo Y, Jiang C, Yu L, Yang A. Chemical Biology of Autophagy-Related Proteins With Posttranslational Modifications: From Chemical Synthesis to Biological Applications. Front Chem 2020; 8:233. [PMID: 32309274 PMCID: PMC7145982 DOI: 10.3389/fchem.2020.00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/11/2020] [Indexed: 02/03/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved lysosomal degradation pathway in all eukaryotic cells, which is critical for maintaining cell homeostasis. A series of autophagy-related (ATG) proteins are involved in the regulation of autophagy. The activities of ATG proteins are mainly modulated by posttranslational modifications (PTMs), such as phosphorylation, lipidation, acetylation, ubiquitination, and sumoylation. To tackle molecular mechanisms of autophagy, more and more researches are focusing on the roles of PTMs in regulation of the activity of ATG proteins and autophagy process. The protein ligation techniques have emerged as powerful tools for the chemical engineering of proteins with PTMs, and provided effective methods to elucidate the molecular mechanism and physiological significance of PTMs. Recently, several ATG proteins with PTM were prepared by protein ligation techniques such as native chemical ligation (NCL), expressed protein ligation (EPL), peptide hydrazide-based NCL, and Sortase A-mediated ligation (SML). More importantly, the synthesized ATG proteins are successfully used to probe the mechanism of autophagy. In this review, we summarize protein ligation techniques for the preparation of ATG proteins with PTMs. In addition, we highlight the biological applications of synthetic ATG proteins to probe the autophagy mechanism.
Collapse
Affiliation(s)
- Yu Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
26
|
The crosstalk of NAD, ROS and autophagy in cellular health and ageing. Biogerontology 2020; 21:381-397. [PMID: 32124104 PMCID: PMC7196094 DOI: 10.1007/s10522-020-09864-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Cellular adaptation to various types of stress requires a complex network of steps that altogether lead to reconstitution of redox balance, degradation of damaged macromolecules and restoration of cellular metabolism. Advances in our understanding of the interplay between cellular signalling and signal translation paint a complex picture of multi-layered paths of regulation. In this review we explore the link between cellular adaptation to metabolic and oxidative stresses by activation of autophagy, a crucial cellular catabolic pathway. Metabolic stress can lead to changes in the redox state of nicotinamide adenine dinucleotide (NAD), a co-factor in a variety of enzymatic reactions and thus trigger autophagy that acts to sequester intracellular components for recycling to support cellular growth. Likewise, autophagy is activated by oxidative stress to selectively recycle damaged macromolecules and organelles and thus maintain cellular viability. Multiple proteins that help regulate or execute autophagy are targets of post-translational modifications (PTMs) that have an effect on their localization, binding affinity or enzymatic activity. These PTMs include acetylation, a reversible enzymatic modification of a protein’s lysine residues, and oxidation, a set of reversible and irreversible modifications by free radicals. Here we highlight the latest findings and outstanding questions on the interplay of autophagy with metabolic stress, presenting as changes in NAD levels, and oxidative stress, with a focus on autophagy proteins that are regulated by both, oxidation and acetylation. We further explore the relevance of this multi-layered signalling to healthy human ageing and their potential role in human disease.
Collapse
|
27
|
Inactivity of YGL082W in vitro due to impairment of conformational change in the catalytic center loop. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9623-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci 2019; 43:313-336. [PMID: 31631532 DOI: 10.1002/jssc.201900804] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.
Collapse
Affiliation(s)
- Luisa Pieroni
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Martelli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
29
|
Wang S, Thopate YA, Zhou Q, Wang P. Chemical Protein Synthesis by Native Chemical Ligation and Variations Thereof. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Yogesh Abaso Thopate
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| |
Collapse
|
30
|
Lystad AH, Simonsen A. Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery. Cells 2019; 8:E973. [PMID: 31450711 PMCID: PMC6769624 DOI: 10.3390/cells8090973] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Since their initial discovery around two decades ago, the yeast autophagy-related (Atg)8 protein and its mammalian homologues of the light chain 3 (LC3) and γ-aminobutyric acid receptor associated proteins (GABARAP) families have been key for the tremendous expansion of our knowledge about autophagy, a process in which cytoplasmic material become targeted for lysosomal degradation. These proteins are ubiquitin-like proteins that become directly conjugated to a lipid in the autophagy membrane upon induction of autophagy, thus providing a marker of the pathway, allowing studies of autophagosome biogenesis and maturation. Moreover, the ATG8 proteins function to recruit components of the core autophagy machinery as well as cargo for selective degradation. Importantly, comprehensive structural and biochemical in vitro studies of the machinery required for ATG8 protein lipidation, as well as their genetic manipulation in various model organisms, have provided novel insight into the molecular mechanisms and pathophysiological roles of the mATG8 proteins. Recently, it has become evident that the ATG8 proteins and their conjugation machinery are also involved in intracellular pathways and processes not related to autophagy. This review focuses on the molecular functions of ATG8 proteins and their conjugation machinery in autophagy and other pathways, as well as their links to disease.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
31
|
Yin Z, Chen C, Yang J, Feng W, Liu X, Zuo R, Wang J, Yang L, Zhong K, Gao C, Zhang H, Zheng X, Wang P, Zhang Z. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate functional appressorium formation and pathogenicity in Magnaporthe oryzae. Autophagy 2019; 15:1234-1257. [PMID: 30776962 DOI: 10.1080/15548627.2019.1580104] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macroautophagy/autophagy is critical for normal appressorium formation and pathogenicity of the rice blast fungus Magnaporthe oryzae, but the molecular base of autophagy linked to pathogenicity remains elusive in this or other pathogenic fungi. We found that MoHat1, a histone acetyltransferase (HAT) homolog, had a role in the regulation of autophagy through the acetylation of autophagy related proteins MoAtg3 and MoAtg9. We also found that MoHat1 was subject to regulation by the protein kinase MoGsk1 that modulated the translocation of MoHat1 from the nucleus to the cytoplasm with the assistance of MoSsb1, a protein chaperone. The alternation of intracellular location affected MoHat1 in the modification of cytosolic autophagy proteins that maintained normal autophagy. Furthermore, we provided evidence linking acetylation of MoAtg3 and MoAtg9 by MoHat1 to functional appressorium development and pathogenicity. Together with the first report of MoAtg9 being subject to acetylation regulation by MoHat1, our studies depicted how MoHat1 regulated autophagy in conjunction with MoGsk1 and how normal autophagy was linked to appressorium formation and function and pathogenicity of M. oryzae. Abbreviations: A/Ala: alanine; AP: autophagosome; Atg genes/proteins: autophagy-related genes/proteins; BiFC: bimolecular fluorescence complementation; co-IP: co-immunoprecipitation; DAPI: 4', 6-diamidino-2-phenylindole; D/Asp: aspartic acid; GFP: green fluorescent protein; GSK3: glycogen synthase kinase 3; HAT: histone acetyltransferase; Hsp70: heat-shock protein 70; IH: invasive hyphae; K/Lys: lysine; MMS: methyl methanesulfonate; Mo: Magnaporthe oryzae; PAS: phagophore assembly site; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; R/Arg: arginine; S/Ser: serine; T/Thr: threonine; TOR: target of rapamycin; WT: wild type; YFP: yellow fluorescent protein.
Collapse
Affiliation(s)
- Ziyi Yin
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Chen Chen
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Jie Yang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Wanzhen Feng
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Xinyu Liu
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Rongfang Zuo
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Jingzhen Wang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Lina Yang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Kaili Zhong
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Chuyun Gao
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Haifeng Zhang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Xiaobo Zheng
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| | - Ping Wang
- c Departments of Pediatrics, and Microbiology, Immunology, and Parasitology , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| | - Zhengguang Zhang
- a Department of Plant Pathology, College of Plant Protection , Nanjing Agricultural University , Nanjing , China.,b Key Laboratory of Integrated Management of Crop Diseases and Pests , Ministry of Education , Nanjing , China
| |
Collapse
|
32
|
Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9401-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Osawa T, Alam JM, Noda NN. Membrane-binding domains in autophagy. Chem Phys Lipids 2019; 218:1-9. [DOI: 10.1016/j.chemphyslip.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
|
34
|
Total synthesis of snake toxin α-bungarotoxin and its analogues by hydrazide-based native chemical ligation. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Chen C, Gao S, Qu Q, Mi P, Tao A, Li YM. Chemical synthesis and structural analysis of guanylate cyclase C agonist linaclotide. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Qi YK, Ai HS, Li YM, Yan B. Total Chemical Synthesis of Modified Histones. Front Chem 2018; 6:19. [PMID: 29473034 PMCID: PMC5810247 DOI: 10.3389/fchem.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 01/04/2023] Open
Abstract
In the post-genome era, epigenetics has received increasing attentions in recent years. The post-translational modifications (PTMs) of four core histones play central roles in epigenetic regulation of eukaryotic genome by either directly altering the biophysical properties of nucleosomes or by recruiting other effector proteins. In order to study the biological functions and structural mechanisms of these histone PTMs, an obligatory step is to prepare a sufficient amount of homogeneously modified histones. This task cannot be fully accomplished either by recombinant technology or enzymatic modification. In this context, synthetic chemists have developed novel protein synthetic tools and state-of-the-art chemical ligation strategies for the preparation of homologous modified histones. In this review, we summarize the recent advances in the preparation of modified histones, focusing on the total chemical synthesis strategies. The importance and potential of synthetic chemistry for the study of histone code will be also discussed.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hua-Song Ai
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yi-Ming Li
- Department of Pharmacy, School of Biological and Medical Engineering, Hefei University of Technology, Hefei, China
| | - Baihui Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
37
|
Racemic X-ray structure of L-type calcium channel antagonist Calciseptine prepared by total chemical synthesis. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9198-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Conibear AC, Watson EE, Payne RJ, Becker CFW. Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 2018; 47:9046-9068. [DOI: 10.1039/c8cs00573g] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining modern synthetic and molecular biology toolkits, native chemical ligation and expressed protein ligation enables robust access to modified proteins.
Collapse
Affiliation(s)
- Anne C. Conibear
- Faculty of Chemistry
- Institute of Biological Chemistry
- University of Vienna
- Vienna
- Austria
| | - Emma E. Watson
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | | | | |
Collapse
|
39
|
Human ATG3 binding to lipid bilayers: role of lipid geometry, and electric charge. Sci Rep 2017; 7:15614. [PMID: 29142222 PMCID: PMC5688168 DOI: 10.1038/s41598-017-15057-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Specific protein-lipid interactions lead to a gradual recruitment of AuTophaGy-related (ATG) proteins to the nascent membrane during autophagosome (AP) formation. ATG3, a key protein in the movement of LC3 towards the isolation membrane, has been proposed to facilitate LC3/GABARAP lipidation in highly curved membranes. In this work we have performed a biophysical study of human ATG3 interaction with membranes containing phosphatidylethanolamine, phosphatidylcholine and anionic phospholipids. We have found that ATG3 interacts more strongly with negatively-charged phospholipid vesicles or nanotubes than with electrically neutral model membranes, cone-shaped anionic phospholipids (cardiolipin and phosphatidic acid) being particularly active in promoting binding. Moreover, an increase in membrane curvature facilitates ATG3 recruitment to membranes although addition of anionic lipid molecules makes the curvature factor relatively less important. The predicted N-terminus amphipathic α-helix of ATG3 would be responsible for membrane curvature detection, the positive residues Lys 9 and 11 being essential in the recognition of phospholipid negative moieties. We have also observed membrane aggregation induced by ATG3 in vitro, which could point to a more complex function of this protein in AP biogenesis. Moreover, in vitro GABARAP lipidation assays suggest that ATG3-membrane interaction could facilitate the lipidation of ATG8 homologues.
Collapse
|
40
|
Tan XL, Pan M, Zheng Y, Gao S, Liang LJ, Li YM. Sortase-mediated chemical protein synthesis reveals the bidentate binding of bisphosphorylated p62 with K63 diubiquitin. Chem Sci 2017; 8:6881-6887. [PMID: 29147513 PMCID: PMC5636944 DOI: 10.1039/c7sc02937c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation of S403 or S407 of the autophagic receptor protein p62 has recently been discovered to enhance the binding of p62 with ubiquitinated protein substrates to upregulate selective autophagy. To elucidate the molecular mechanism of how phosphorylation regulates the recruitment of ubiquitinated proteins, we report the first chemical synthesis of homogeneously phosphorylated p62, which enables the setting up of accurate in vitro systems for biochemical studies. Our synthesis employs the technology of sortase A-mediated protein hydrazide ligation, which successfully affords three types of phosphorylated p62 at the multi-milligram scale. Quantitative biochemical measurements show that the binding affinity of S403/S407-bisphosphorylated p62 to K63 diubiquitin is significantly higher than that of mono-phosphorylated p62. This finding suggests that phosphorylated S403 and S407 sites should bind to different epitopes on the ubiquitin chain. Furthermore, glutamate mutation is found to give a significantly impaired binding affinity, implying the necessity of using chemically synthesized phosphorylated p62 for the biochemical study of selective autophagy.
Collapse
Affiliation(s)
- Xiang-Long Tan
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China.,School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China .
| | - Man Pan
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yong Zheng
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China . .,High Magnetic Field Laboratory , Chinese Academy of Sciences , Hefei 230031 , China
| | - Shuai Gao
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences , Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology , Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yi-Ming Li
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China .
| |
Collapse
|