1
|
Clarke DN, Miller PW, Martin AC. EGFR-dependent actomyosin patterning coordinates morphogenetic movements between tissues in Drosophila melanogaster. Dev Cell 2024:S1534-5807(24)00602-6. [PMID: 39461341 DOI: 10.1016/j.devcel.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/19/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The movements that give rise to the body's structure are powered by cell shape changes and rearrangements that are coordinated at supracellular scales. How such cellular coordination arises and integrates different morphogenetic programs is unclear. Using quantitative imaging, we found a complex pattern of adherens junction (AJ) levels in the ectoderm prior to gastrulation onset in Drosophila. AJ intensity exhibited a double-sided gradient, with peaks at the dorsal midline and ventral neuroectoderm. We show that this dorsal-ventral AJ pattern is regulated by epidermal growth factor (EGF) signaling and that this signal is required for ectoderm cell movement during mesoderm invagination and axis extension. We identify AJ levels and junctional actomyosin as downstream effectors of EGFR signaling. Overall, our study demonstrates an EGF-patterned mechanical feedback mechanism that coordinates tissue folding and convergent extension to facilitate embryo-wide gastrulation movements.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pearson W Miller
- Department of Mathematics, University of California, San Diego, La Jolla, CA, USA.
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Inter-plane feedback coordinates cell morphogenesis and maintains 3D tissue organization in the Drosophila pupal retina. Development 2024; 151:dev201757. [PMID: 38533736 PMCID: PMC11006395 DOI: 10.1242/dev.201757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/12/2024] [Indexed: 03/28/2024]
Abstract
How complex organs coordinate cellular morphogenetic events to achieve three-dimensional (3D) form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina, where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells (IOPCs) organize tissue pattern to support retinal integrity. Our experiments show that photoreceptor and IOPC terminal differentiation is unexpectedly interdependent, connected by an intercellular feedback mechanism that coordinates and promotes morphogenetic change across orthogonal tissue planes to ensure correct 3D retinal pattern. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
Affiliation(s)
- Xiao Sun
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Decker
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Matsuda M, Rozman J, Ostvar S, Kasza KE, Sokol SY. Mechanical control of neural plate folding by apical domain alteration. Nat Commun 2023; 14:8475. [PMID: 38123550 PMCID: PMC10733383 DOI: 10.1038/s41467-023-43973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. At the onset of Xenopus neural tube folding, we observed alternation of apically constricted and apically expanded cells. This apical domain heterogeneity was accompanied by biased cell orientation along the anteroposterior axis, especially at neural plate hinges, and required planar cell polarity signaling. Vertex models suggested that dispersed isotropically constricting cells can cause the elongation of adjacent cells. Consistently, in ectoderm, cell-autonomous apical constriction was accompanied by neighbor expansion. Thus, a subset of isotropically constricting cells may initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the body axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that apical domain changes reflect planar polarity-dependent mechanical forces operating during neural folding.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Rozman
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Sassan Ostvar
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Burda I, Martin AC, Roeder AHK, Collins MA. The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis. Dev Cell 2023; 58:2850-2866. [PMID: 38113851 PMCID: PMC10752614 DOI: 10.1016/j.devcel.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The emergence of tissue form in multicellular organisms results from the complex interplay between genetics and physics. In both plants and animals, cells must act in concert to pattern their behaviors. Our understanding of the factors sculpting multicellular form has increased dramatically in the past few decades. From this work, common themes have emerged that connect plant and animal morphogenesis-an exciting connection that solidifies our understanding of the developmental basis of multicellular life. In this review, we will discuss the themes and the underlying principles that connect plant and animal morphogenesis, including the coordination of gene expression, signaling, growth, contraction, and mechanical and geometric feedback.
Collapse
Affiliation(s)
- Isabella Burda
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA
| | - Adam C Martin
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Genetic Genomics and Development Program, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, Ithaca, NY 14850, USA.
| | - Mary Ann Collins
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. E-cadherin adhesion dynamics as revealed by an accelerated force ramp are dependent upon the presence of α-catenin. Biochem Biophys Res Commun 2023; 682:308-315. [PMID: 37837751 PMCID: PMC10615569 DOI: 10.1016/j.bbrc.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA; Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
6
|
Anjum S, Turner L, Atieh Y, Eisenhoffer GT, Davidson L. Assessing mechanical agency during apical apoptotic cell extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564227. [PMID: 37961593 PMCID: PMC10634859 DOI: 10.1101/2023.10.26.564227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Epithelial tissues maintain homeostasis through the continual addition and removal of cells. Homeostasis is necessary for epithelia to maintain barrier function and prevent the accumulation of defective cells. Unfit, excess, and dying cells can be removed from epithelia by the process of extrusion. Controlled cell death and extrusion in the epithelium of the larval zebrafish tail fin coincides with oscillation of cell area, both in the extruding cell and its neighbors. Both cell-autonomous and non-autonomous factors have been proposed to contribute to extrusion but have been challenging to test by experimental approaches. Here we develop a dynamic cell-based biophysical model that recapitulates the process of oscillatory cell extrusion to test and compare the relative contributions of these factors. Our model incorporates the mechanical properties of individual epithelial cells in a two-dimensional simulation as repelling active particles. The area of cells destined to extrude oscillates with varying durations or amplitudes, decreasing their mechanical contribution to the epithelium and surrendering their space to surrounding cells. Quantitative variations in cell shape and size during extrusion are visualized by a hybrid weighted Voronoi tessellation technique that renders individual cell mechanical properties directly into an epithelial sheet. To explore the role of autonomous and non-autonomous mechanics, we vary the biophysical properties and behaviors of extruding cells and neighbors such as the period and amplitude of repulsive forces, cell density, and tissue viscosity. Our data suggest that cell autonomous processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment providing a less pronounced contribution. Our computational model based on in vivo data serves as a tool to provide insights into the cellular dynamics and localized changes in mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue maintenance.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Llaran Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Youmna Atieh
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George T. Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Lance Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Zhu H, O’Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. RESEARCH SQUARE 2023:rs.3.rs-2948564. [PMID: 37886516 PMCID: PMC10602173 DOI: 10.21203/rs.3.rs-2948564/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A muchstudied example is ventral furrow formation in Drosophila, marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principal resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos this disastrous outcome is averted by pulsatile myosin time-dependence, which rescues furrowing by eliminating high frequencies in the fluctuation power spectrum. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
Affiliation(s)
- Hongkang Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| | - Ben O’Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Niloy RA, Holcomb MC, Thomas JH, Blawzdziewicz J. The mechanics of cephalic furrow formation in the Drosophila embryo. Biophys J 2023; 122:3843-3859. [PMID: 37571824 PMCID: PMC10560681 DOI: 10.1016/j.bpj.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Cephalic furrow formation (CFF) is a major morphogenetic movement during gastrulation in Drosophila melanogaster embryos that gives rise to a deep, transitory epithelial invagination. Recent studies have identified the individual cell shape changes that drive the initiation and progression phases of CFF; however, the underlying mechanics are not yet well understood. During the progression phase, the furrow deepens as columnar cells from both the anterior and posterior directions fold inwards rotating by 90°. To analyze the mechanics of this process, we have developed an advanced two-dimensional lateral vertex model that includes multinode representation of cellular membranes and allows us to capture the membrane curvature associated with pressure variation. Our investigations reveal some key potential mechanical features of CFF, as follows. When cells begin to roll over the cephalic furrow cleft, they become wedge shaped as their apical cortices and overlying membranes expand, lateral cortices and overlying membranes release tension, internal pressures drop, and basal cortices and membranes contract. Then, cells reverse this process by shortening apical cortices and membranes, increasing lateral tension, and causing internal pressures to rise. Since the basal membranes expand, the cells recover their rotated columnar shape once in the furrow. Interestingly, our findings indicate that the basal membranes may be passively reactive throughout the progression phase. We also find that the smooth rolling of cells over the cephalic furrow cleft necessitates that internalized cells provide a solid base through high levels of membrane tension and internal pressure, which allows the transmission of tensile force that pulls new cells into the furrow. These results lead us to suggest that CFF helps to establish a baseline tension across the apical surface of the embryo to facilitate cellular coordination of other morphogenetic movements via mechanical stress feedback mechanisms.
Collapse
Affiliation(s)
- Redowan A Niloy
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas
| | - Michael C Holcomb
- Department of Physics and Geosciences, Angelo State University, San Angelo, Texas
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas; Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
9
|
Colin A, Orhant-Prioux M, Guérin C, Savinov M, Cao W, Vianay B, Scarfone I, Roux A, De La Cruz EM, Mogilner A, Théry M, Blanchoin L. Friction patterns guide actin network contraction. Proc Natl Acad Sci U S A 2023; 120:e2300416120. [PMID: 37725653 PMCID: PMC10523593 DOI: 10.1073/pnas.2300416120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
The shape of cells is the outcome of the balance of inner forces produced by the actomyosin network and the resistive forces produced by cell adhesion to their environment. The specific contributions of contractile, anchoring and friction forces to network deformation rate and orientation are difficult to disentangle in living cells where they influence each other. Here, we reconstituted contractile actomyosin networks in vitro to study specifically the role of the friction forces between the network and its anchoring substrate. To modulate the magnitude and spatial distribution of friction forces, we used glass or lipids surface micropatterning to control the initial shape of the network. We adapted the concentration of Nucleating Promoting Factor on each surface to induce the assembly of actin networks of similar densities and compare the deformation of the network toward the centroid of the pattern shape upon myosin-induced contraction. We found that actin network deformation was faster and more coordinated on lipid bilayers than on glass, showing the resistance of friction to network contraction. To further study the role of the spatial distribution of these friction forces, we designed heterogeneous micropatterns made of glass and lipids. The deformation upon contraction was no longer symmetric but biased toward the region of higher friction. Furthermore, we showed that the pattern of friction could robustly drive network contraction and dominate the contribution of asymmetric distributions of myosins. Therefore, we demonstrate that during contraction, both the active and resistive forces are essential to direct the actin network deformation.
Collapse
Affiliation(s)
- Alexandra Colin
- Université Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, Grenoble38054, France
| | - Magali Orhant-Prioux
- Université Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, Grenoble38054, France
| | - Christophe Guérin
- Université Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, Grenoble38054, France
| | - Mariya Savinov
- Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520-8114
| | - Benoit Vianay
- University of Paris, INSERM, Commissariat à l'énergie atomique et aux énergies alternatives, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris75010, France
| | - Ilaria Scarfone
- Université Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, Grenoble38054, France
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211Geneva, Switzerland
| | - Enrique M. De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520-8114
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Manuel Théry
- Université Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, Grenoble38054, France
- University of Paris, INSERM, Commissariat à l'énergie atomique et aux énergies alternatives, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris75010, France
| | - Laurent Blanchoin
- Université Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, Grenoble38054, France
- University of Paris, INSERM, Commissariat à l'énergie atomique et aux énergies alternatives, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris75010, France
| |
Collapse
|
10
|
Wu Y, Sun SX. Mechanics of cell-cell junctions. Biophys J 2023; 122:3354-3368. [PMID: 37475215 PMCID: PMC10465726 DOI: 10.1016/j.bpj.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Tissue cells in epithelial or endothelial monolayers are connected through cell-cell junctions, which are stabilized by transmembrane E-cadherin bonds and intracellular actin filaments. These bonds and junctions play a crucial role in maintaining the barrier function of epithelia and endothelia and are believed to transmit forces between cells. Additionally, E-cadherin bonds can impact the shape of cell-cell junctions. In this study, we develop a continuum mechanical model of the cell-cell junction by explicitly incorporating the cell membrane, distributions of E-cadherin bonds, cytoplasmic fluid pressure, and F-actin dynamics. The static force-balanced version of the model is able to analyze the influences of cell cortical tension, actin dynamics, and cytoplasmic pressure on the junction shape and E-cadherin bonds. Furthermore, an extended model that incorporates fluid flow, across the cell boundary as well as around the cell, is also examined. This model can couple cell-shape changes with cell cortical tension and fluid flow, and predicts the additional effect of fluid motion on cell-cell junction mechanics. Taken together, our models serve as an intermediate link between molecular-scale models of cell-junction molecules and cell-scale models of tissue and epithelia.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. α-Catenin Dependent E-cadherin Adhesion Dynamics as Revealed by an Accelerated Force Ramp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550975. [PMID: 37645773 PMCID: PMC10461907 DOI: 10.1101/2023.07.28.550975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
- Bioengineering, George Mason University, Fairfax, VA 22030
| | - Jolene I. Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
12
|
Bao M, Xie J. Geometric Confinement-Mediated Mechanical Tension Directs Patterned Differentiation of Mouse ESCs into Organized Germ Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34397-34406. [PMID: 37458389 DOI: 10.1021/acsami.3c03798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The self-organization of embryonic stem cells (ESCs) into organized tissues with three distinct germ layers is critical to morphogenesis and early development. While the regulation of this self-organization by soluble signals is well established, the involvement of mechanical force gradients in this process remains unclear due to the lack of a suitable platform to study this process. In this study, we developed a 3D microenvironment to examine the influence of mechanical tension gradients on ESC-patterned differentiation during morphogenesis by controlling the geometrical signals (shape and size) of ESC colonies. We found that changes in colony geometry impacted the germ layer pattern, with Cdx2-positive cells being more abundant at edges and in areas with high curvatures. The differentiation patterns were determined by geometry-mediated cell tension gradients, with an extraembryonic mesoderm-like layer forming in high-tension regions and ectodermal-like lineages at low-tension regions in the center. Suppression of cytoskeletal tension hindered ESC self-organization. These results indicate that geometric confinement-mediated mechanical tension plays a crucial role in linking multicellular organization to cell differentiation and impacting tissue patterning.
Collapse
Affiliation(s)
- Min Bao
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325001, Zhejiang, China
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
13
|
Shellard A, Mayor R. Sculpting with stiffness: rigidity as a regulator of morphogenesis. Biochem Soc Trans 2023; 51:1009-1021. [PMID: 37114613 PMCID: PMC10317161 DOI: 10.1042/bst20220826] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
From a physical perspective, morphogenesis of tissues results from interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognised, whereas the importance of tissue material properties in vivo, like stiffness, has only begun to receive attention in recent years. In this mini-review, we highlight key themes and concepts that have emerged related to how tissue stiffness, a fundamental material property, guides various morphogenetic processes in living organisms.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
14
|
Baldwin A, Popov IK, Keller R, Wallingford J, Chang C. The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during Xenopus gastrulation. Mol Biol Cell 2023; 34:ar64. [PMID: 37043306 PMCID: PMC10295481 DOI: 10.1091/mbc.e22-09-0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Apical constriction results in apical surface reduction in epithelial cells and is a widely used mechanism for epithelial morphogenesis. Both medioapical and junctional actomyosin remodeling are involved in apical constriction, but the deployment of medial versus junctional actomyosin and their genetic regulation in vertebrate embryonic development have not been fully described. In this study, we investigate actomyosin dynamics and their regulation by the RhoGEF protein Plekhg5 in Xenopus bottle cells. Using live imaging and quantitative image analysis, we show that bottle cells assume different shapes, with rounding bottle cells constricting earlier in small clusters followed by fusiform bottle cells forming between the clusters. Both medioapical and junctional actomyosin signals increase as surface area decreases, though correlation of apical constriction with medioapical actomyosin localization appears to be stronger. F-actin bundles perpendicular to the apical surface form in constricted cells, which may correspond to microvilli previously observed in the apical membrane. Knockdown of plekhg5 disrupts medioapical and junctional actomyosin activity and apical constriction but does not affect initial F-actin dynamics. Taking the results together, our study reveals distinct cell morphologies, uncovers actomyosin behaviors, and demonstrates the crucial role of a RhoGEF protein in controlling actomyosin dynamics during apical constriction of bottle cells in Xenopus gastrulation.
Collapse
Affiliation(s)
- Austin Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Ivan K. Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903
| | - John Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
15
|
Sunadome K, Erickson AG, Kah D, Fabry B, Adori C, Kameneva P, Faure L, Kanatani S, Kaucka M, Dehnisch Ellström I, Tesarova M, Zikmund T, Kaiser J, Edwards S, Maki K, Adachi T, Yamamoto T, Fried K, Adameyko I. Directionality of developing skeletal muscles is set by mechanical forces. Nat Commun 2023; 14:3060. [PMID: 37244931 PMCID: PMC10224984 DOI: 10.1038/s41467-023-38647-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
Collapse
Affiliation(s)
- Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alek G Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Delf Kah
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91052, Erlangen, Germany
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Molecular Biosciences, Wenner Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Polina Kameneva
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Plön, Germany
| | | | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Steven Edwards
- KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, 606-8501, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Sousa-Ortega A, Vázquez-Marín J, Sanabria-Reinoso E, Corbacho J, Polvillo R, Campoy-López A, Buono L, Loosli F, Almuedo-Castillo M, Martínez-Morales JR. A Yap-dependent mechanoregulatory program sustains cell migration for embryo axis assembly. Nat Commun 2023; 14:2804. [PMID: 37193708 DOI: 10.1038/s41467-023-38482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
The assembly of the embryo's primary axis is a fundamental landmark for the establishment of the vertebrate body plan. Although the morphogenetic movements directing cell convergence towards the midline have been described extensively, little is known on how gastrulating cells interpret mechanical cues. Yap proteins are well-known transcriptional mechanotransducers, yet their role in gastrulation remains elusive. Here we show that the double knockout of yap and its paralog yap1b in medaka results in an axis assembly failure, due to reduced displacement and migratory persistence in mutant cells. Accordingly, we identified genes involved in cytoskeletal organization and cell-ECM adhesion as potentially direct Yap targets. Dynamic analysis of live sensors and downstream targets reveal that Yap is acting in migratory cells, promoting cortical actin and focal adhesions recruitment. Our results indicate that Yap coordinates a mechanoregulatory program to sustain intracellular tension and maintain the directed cell migration for embryo axis development.
Collapse
Affiliation(s)
- Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | | | - Jorge Corbacho
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Rocío Polvillo
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | | | - Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013, Sevilla, Spain
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | | |
Collapse
|
17
|
Rosa C, Malin J, Hatini V. Medioapical contractile pulses coordinated between cells regulate Drosophila eye morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.529936. [PMID: 36993651 PMCID: PMC10055172 DOI: 10.1101/2023.03.17.529936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lattice cells (LCs) in the developing Drosophila retina constantly move and change shape before attaining final forms. Previously we showed that repeated contraction and expansion of apical cell contacts affect these dynamics. Here we describe a second contributing factor, the assembly of a medioapical actomyosin ring composed of nodes linked by filaments that attract each other, fuse, and contract the LCs' apical area. This medioapical actomyosin network is dependent on Rho1 and its known effectors. Apical cell area contraction alternates with relaxation, generating pulsatile changes in apical cell area. Strikingly, cycles of contraction and relaxation of cell area are reciprocally synchronized between adjacent LCs. Further, in a genetic screen, we identified RhoGEF2 as an activator of these Rho1 functions and RhoGAP71E/C-GAP as an inhibitor. Thus, Rho1 signaling regulates pulsatile medioapical actomyosin contraction exerting force on neighboring cells, coordinating cell behavior across the epithelium. This ultimately serves to control cell shape and maintain tissue integrity during epithelial morphogenesis of the retina.
Collapse
|
18
|
Yokoyama Y, Kameo Y, Adachi T. Development of continuum-based particle models of cell growth and proliferation for simulating tissue morphogenesis. J Mech Behav Biomed Mater 2023; 142:105828. [PMID: 37104898 DOI: 10.1016/j.jmbbm.2023.105828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023]
Abstract
Biological tissues acquire various characteristic shapes through morphogenesis. Tissue shapes result from the spatiotemporally heterogeneous cellular activities influenced by mechanical and biochemical environments. To investigate multicellular tissue morphogenesis, this study aimed to develop a novel multiscale method that can connect each cellular activity to the mechanical behaviors of the whole tissue by constructing continuum-based particle models of cellular activities. This study proposed mechanical models of cell growth and proliferation that are expressed as volume expansion and cell division by extending the material point method. By simulating cell hypertrophy and proliferation under both free and constraint conditions, the proposed models demonstrated potential for evaluating the mechanical state and tracing cells throughout tissue morphogenesis. Moreover, the effect of a cell size checkpoint was incorporated into the cell proliferation model to investigate the mechanical behaviors of the whole tissue depending on the condition of cellular activities. Consequently, the accumulation of strain energy density was suppressed because of the influence of the checkpoint. In addition, the whole tissues acquired different shapes depending on the influence of the checkpoint. Thus, the models constructed herein enabled us to investigate the change in the mechanical behaviors of the whole tissue according to each cellular activity depending on the mechanical state of the cells during morphogenesis.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
19
|
Nishizawa K, Lin SZ, Chardès C, Rupprecht JF, Lenne PF. Two-point optical manipulation reveals mechanosensitive remodeling of cell-cell contacts in vivo. Proc Natl Acad Sci U S A 2023; 120:e2212389120. [PMID: 36947511 PMCID: PMC10068846 DOI: 10.1073/pnas.2212389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/17/2023] [Indexed: 03/23/2023] Open
Abstract
Biological tissues acquire reproducible shapes during development through dynamic cell behaviors. Most of these behaviors involve the remodeling of cell-cell contacts. During epithelial morphogenesis, contractile actomyosin networks remodel cell-cell contacts by shrinking and extending junctions between lateral cell surfaces. However, actomyosin networks not only generate mechanical stresses but also respond to them, confounding our understanding of how mechanical stresses remodel cell-cell contacts. Here, we develop a two-point optical manipulation method to impose different stress patterns on cell-cell contacts in the early epithelium of the Drosophila embryo. The technique allows us to produce junction extension and shrinkage through different push and pull manipulations at the edges of junctions. We use these observations to expand classical vertex-based models of tissue mechanics, incorporating negative and positive mechanosensitive feedback depending on the type of remodeling. In particular, we show that Myosin-II activity responds to junction strain rate and facilitates full junction shrinkage. Altogether our work provides insight into how stress produces efficient deformation of cell-cell contacts in vivo and identifies unanticipated mechanosensitive features of their remodeling.
Collapse
Affiliation(s)
- Kenji Nishizawa
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| | - Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living systems, Marseille UMR 7332, France
| | - Claire Chardès
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Turing Centre for Living systems, Marseille UMR 7332, France
| | - Pierre-François Lenne
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living systems, Marseille UMR 7288, France
| |
Collapse
|
20
|
Zhu H, Oâ Shaughnessy B. Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533016. [PMID: 36993262 PMCID: PMC10055118 DOI: 10.1101/2023.03.16.533016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During early development, myosin II mechanically reshapes and folds embryo tissue. A much-studied example is ventral furrow formation in Drosophila , marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principle resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos, this catastrophic outcome is averted by pulsatile myosin time-dependence, a time-averaging effect that rescues furrowing. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.
Collapse
|
21
|
Sun X, Decker J, Sanchez-Luege N, Rebay I. Orthogonal coupling of a 3D cytoskeletal scaffold coordinates cell morphogenesis and maintains tissue organization in the Drosophila pupal retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531386. [PMID: 36945525 PMCID: PMC10028844 DOI: 10.1101/2023.03.06.531386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How complex three-dimensional (3D) organs coordinate cellular morphogenetic events to achieve the correct final form is a central question in development. The question is uniquely tractable in the late Drosophila pupal retina where cells maintain stereotyped contacts as they elaborate the specialized cytoskeletal structures that pattern the apical, basal and longitudinal planes of the epithelium. In this study, we combined cell type-specific genetic manipulation of the cytoskeletal regulator Abelson (Abl) with 3D imaging to explore how the distinct cellular morphogenetic programs of photoreceptors and interommatidial pigment cells coordinately organize tissue pattern to support retinal integrity. Our experiments revealed an unanticipated intercellular feedback mechanism whereby correct cellular differentiation of either cell type can non-autonomously induce cytoskeletal remodeling in the other Abl mutant cell type, restoring retinal pattern and integrity. We propose that genetic regulation of specialized cellular differentiation programs combined with inter-plane mechanical feedback confers spatial coordination to achieve robust 3D tissue morphogenesis.
Collapse
|
22
|
Matsuda M, Rozman J, Ostvar S, Kasza KE, Sokol SY. Mechanical control of neural plate folding by apical domain alteration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528047. [PMID: 36798359 PMCID: PMC9934705 DOI: 10.1101/2023.02.10.528047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. In this study, we evaluated morphology of the superficial cell layer in the Xenopus neural plate. At the stages corresponding to the onset of tissue folding, we observed the alternation of cells with apically constricting and apically expanding apical domains. The cells had a biased orientation along the anteroposterior (AP) axis. This apical domain heterogeneity required planar cell polarity (PCP) signaling and was especially pronounced at neural plate hinges. Vertex model simulations suggested that spatially dispersed isotropically constricting cells cause the elongation of their non-constricting counterparts along the AP axis. Consistent with this hypothesis, cell-autonomous induction of apical constriction in Xenopus ectoderm cells was accompanied by the expansion of adjacent non-constricting cells. Our observations indicate that a subset of isotropically constricting cells can initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the AP axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that neural folding relies on PCP-dependent transduction of mechanical signals between neuroepithelial cells.
Collapse
|
23
|
Villedieu A, Alpar L, Gaugué I, Joudat A, Graner F, Bosveld F, Bellaïche Y. Homeotic compartment curvature and tension control spatiotemporal folding dynamics. Nat Commun 2023; 14:594. [PMID: 36737611 PMCID: PMC9898526 DOI: 10.1038/s41467-023-36305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Shape is a conspicuous and fundamental property of biological systems entailing the function of organs and tissues. While much emphasis has been put on how tissue tension and mechanical properties drive shape changes, whether and how a given tissue geometry influences subsequent morphogenesis remains poorly characterized. Here, we explored how curvature, a key descriptor of tissue geometry, impinges on the dynamics of epithelial tissue invagination. We found that the morphogenesis of the fold separating the adult Drosophila head and thorax segments is driven by the invagination of the Deformed (Dfd) homeotic compartment. Dfd controls invagination by modulating actomyosin organization and in-plane epithelial tension via the Tollo and Dystroglycan receptors. By experimentally introducing curvature heterogeneity within the homeotic compartment, we established that a curved tissue geometry converts the Dfd-dependent in-plane tension into an inward force driving folding. Accordingly, the interplay between in-plane tension and tissue curvature quantitatively explains the spatiotemporal folding dynamics. Collectively, our work highlights how genetic patterning and tissue geometry provide a simple design principle driving folding morphogenesis during development.
Collapse
Affiliation(s)
- Aurélien Villedieu
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Lale Alpar
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Isabelle Gaugué
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Amina Joudat
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - François Graner
- Université Paris Cité, CNRS, Matière et Systèmes Complexes, F-75006, Paris, France
| | - Floris Bosveld
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France.
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France.
| |
Collapse
|
24
|
Lefebvre MF, Claussen NH, Mitchell NP, Gustafson HJ, Streichan SJ. Geometric control of myosin II orientation during axis elongation. eLife 2023; 12:78787. [PMID: 36715100 PMCID: PMC9940909 DOI: 10.7554/elife.78787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
The actomyosin cytoskeleton is a crucial driver of morphogenesis. Yet how the behavior of large-scale cytoskeletal patterns in deforming tissues emerges from the interplay of geometry, genetics, and mechanics remains incompletely understood. Convergent extension in Drosophila melanogaster embryos provides the opportunity to establish a quantitative understanding of the dynamics of anisotropic non-muscle myosin II. Cell-scale analysis of protein localization in fixed embryos suggests that gene expression patterns govern myosin anisotropy via complex rules. However, technical limitations have impeded quantitative and dynamic studies of this process at the whole embryo level, leaving the role of geometry open. Here, we combine in toto live imaging with quantitative analysis of molecular dynamics to characterize the distribution of myosin anisotropy and the corresponding genetic patterning. We found pair rule gene expression continuously deformed, flowing with the tissue frame. In contrast, myosin anisotropy orientation remained approximately static and was only weakly deflected from the stationary dorsal-ventral axis of the embryo. We propose that myosin is recruited by a geometrically defined static source, potentially related to the embryo-scale epithelial tension, and account for transient deflections by cytoskeletal turnover and junction reorientation by flow. With only one parameter, this model quantitatively accounts for the time course of myosin anisotropy orientation in wild-type, twist, and even-skipped embryos, as well as embryos with perturbed egg geometry. Geometric patterning of the cytoskeleton suggests a simple physical strategy to ensure a robust flow and formation of shape.
Collapse
Affiliation(s)
- Matthew F Lefebvre
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Nikolas H Claussen
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Noah P Mitchell
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Kavli Institute for Theoretical Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Hannah J Gustafson
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
- Biomolecular Science and Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Sebastian J Streichan
- Department of Physics, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
25
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
26
|
Erlich A, Étienne J, Fouchard J, Wyatt T. How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale. Interface Focus 2022; 12:20220038. [PMID: 36330322 PMCID: PMC9560792 DOI: 10.1098/rsfs.2022.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 10/16/2023] Open
Abstract
Cells and tissues change shape both to carry out their function and during pathology. In most cases, these deformations are driven from within the systems themselves. This is permitted by a range of molecular actors, such as active crosslinkers and ion pumps, whose activity is biologically controlled in space and time. The resulting stresses are propagated within complex and dynamical architectures like networks or cell aggregates. From a mechanical point of view, these effects can be seen as the generation of prestress or prestrain, resulting from either a contractile or growth activity. In this review, we present this concept of prestress and the theoretical tools available to conceptualize the statics and dynamics of living systems. We then describe a range of phenomena where prestress controls shape changes in biopolymer networks (especially the actomyosin cytoskeleton and fibrous tissues) and cellularized tissues. Despite the diversity of scale and organization, we demonstrate that these phenomena stem from a limited number of spatial distributions of prestress, which can be categorized as heterogeneous, anisotropic or differential. We suggest that in addition to growth and contraction, a third type of prestress-topological prestress-can result from active processes altering the microstructure of tissue.
Collapse
Affiliation(s)
| | - Jocelyn Étienne
- Université Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France
| | - Jonathan Fouchard
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS (UMR 7622), INSERM (URL 1156), 7 quai Saint Bernard, 75005 Paris, France
| | - Tom Wyatt
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
27
|
Gustafson HJ, Claussen N, De Renzis S, Streichan SJ. Patterned mechanical feedback establishes a global myosin gradient. Nat Commun 2022; 13:7050. [PMID: 36396633 PMCID: PMC9672098 DOI: 10.1038/s41467-022-34518-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Morphogenesis, the coordinated execution of developmental programs that shape embryos, raises many fundamental questions at the interface between physics and biology. In particular, how the dynamics of active cytoskeletal processes are coordinated across the surface of entire embryos to generate global cell flows is poorly understood. Two distinct regulatory principles have been identified: genetic programs and dynamic response to mechanical stimuli. Despite progress, disentangling these two contributions remains challenging. Here, we combine in toto light sheet microscopy with genetic and optogenetic perturbations of tissue mechanics to examine theoretically predicted dynamic recruitment of non-muscle myosin II to cell junctions during Drosophila embryogenesis. We find dynamic recruitment has a long-range impact on global myosin configuration, and the rate of junction deformation sets the rate of myosin recruitment. Mathematical modeling and high frequency analysis reveal myosin fluctuations on junctions around a mean value set by mechanical feedback. Our model accounts for the early establishment of the global myosin pattern at 80% fidelity. Taken together our results indicate spatially modulated mechanical feedback as a key regulatory input in the establishment of long-range gradients of cytoskeletal configurations and global tissue flow patterns.
Collapse
Affiliation(s)
- Hannah J. Gustafson
- grid.133342.40000 0004 1936 9676Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| | - Nikolas Claussen
- grid.133342.40000 0004 1936 9676Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| | - Stefano De Renzis
- grid.4709.a0000 0004 0495 846XEMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian J. Streichan
- grid.133342.40000 0004 1936 9676Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
28
|
Baldwin AT, Kim JH, Wallingford JB. In vivo high-content imaging and regression analysis reveal non-cell autonomous functions of Shroom3 during neural tube closure. Dev Biol 2022; 491:105-112. [PMID: 36113571 PMCID: PMC10118288 DOI: 10.1016/j.ydbio.2022.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022]
Abstract
During neural tube closure, neural ectoderm cells constrict their apical surfaces to bend and fold the tissue into a tube that will become the central nervous system. Recent data from mice and humans with neural tube defects suggest that key genes required for neural tube closure can exert non-cell autonomous effects on cell behavior, but the nature of these effects remains obscure. Here, we coupled tissue-scale, high-resolution time-lapse imaging of the closing neural tube of Xenopus to multivariate regression modeling, and we show that medial actin accumulation drives apical constriction non-autonomously in neighborhoods of cells, rather than solely in individual cells. To further explore this effect, we examined mosaic crispant embryos and identified both autonomous and non-autonomous effects of the apical constriction protein Shroom3.
Collapse
Affiliation(s)
- Austin T Baldwin
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - Juliana H Kim
- Dept. of Molecular Biosciences, University of Texas at Austin, United States
| | - John B Wallingford
- Dept. of Molecular Biosciences, University of Texas at Austin, United States.
| |
Collapse
|
29
|
Moisdon É, Seez P, Molino F, Marcq P, Gay C. Mapping cell cortex rheology to tissue rheology and vice versa. Phys Rev E 2022; 106:034403. [PMID: 36266852 DOI: 10.1103/physreve.106.034403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The mechanics of biological tissues mainly proceeds from the cell cortex rheology. A direct, explicit link between cortex rheology and tissue rheology remains lacking, yet would be instrumental in understanding how modulations of cortical mechanics may impact tissue mechanical behavior. Using an ordered geometry built on 3D hexagonal, incompressible cells, we build a mapping relating the cortical rheology to the monolayer tissue rheology. Our approach shows that the tissue low-frequency elastic modulus is proportional to the rest tension of the cortex, as expected from the physics of liquid foams as well as of tensegrity structures. A fractional visco-contractile cortex rheology is predicted to yield a high-frequency fractional visco-elastic monolayer rheology, where such a fractional behavior has been recently observed experimentally at each scale separately. In particular cases, the mapping may be inverted, allowing to derive from a given tissue rheology the underlying cortex rheology. Interestingly, applying the same approach to a 2D hexagonal tiling fails, which suggests that the 2D character of planar cell cortex-based models may be unsuitable to account for realistic monolayer rheologies. We provide quantitative predictions, amenable to experimental tests through standard perturbation assays of cortex constituents, and hope to foster new, challenging mechanical experiments on cell monolayers.
Collapse
Affiliation(s)
- Étienne Moisdon
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| | - Pierre Seez
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| | - François Molino
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Philippe Marcq
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| | - Cyprien Gay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université Paris Cité, 75205 Paris cedex 13, France
| |
Collapse
|
30
|
Patil LS, Varner VD. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Ann Biomed Eng 2022; 50:1143-1157. [PMID: 35718813 PMCID: PMC9590229 DOI: 10.1007/s10439-022-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Numerous organs in the bodies of animals, including the lung, kidney, and mammary gland, contain ramified networks of epithelial tubes. These structures arise during development via a process known as branching morphogenesis. Previous studies have shown that mechanical forces directly impact this process, but the patterns of mechanical stress exerted by branching embryonic epithelia are not well understood. This is, in part, owing to a lack of experimental tools. Traditional traction force microscopy assays rely on the use of compliant hydrogels with well-defined mechanical properties. Isolated embryonic epithelial explants, however, have only been shown to branch in three-dimensional matrices of reconstituted basement membrane protein, or Matrigel, a biomaterial with poorly characterized mechanical behavior, especially in the regime of large deformations. Here, to compute the traction stresses generated by branching epithelial explants, we quantified the finite-deformation constitutive behavior of gels of reconstituted basement membrane protein subjected to multi-axial mechanical loads. We then modified the mesenchyme-free assay for the ex vivo culture of isolated embryonic airway epithelial explants by suspending fluorescent microspheres within the surrounding gel and tracking their motion during culture. Surprisingly, the tracked bead motion was non-zero in regions of the gel far away from the explants, suggestive of passive swelling deformations within the matrix. To compute accurate traction stresses, these swelling deformations must be decomposed from those generated by the branching explants. We thus tracked the motion of beads suspended within cell-free matrices and quantified spatiotemporal patterns of gel swelling. Taken together, these passive swelling data can be combined with the measured mechanical properties of the gel to compute the traction forces exerted by intact embryonic epithelial explants.
Collapse
Affiliation(s)
- Lokesh S Patil
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Najafabadi FR, Leaver M, Grill SW. Orchestrating nonmuscle myosin II filament assembly at the onset of cytokinesis. Mol Biol Cell 2022; 33:ar74. [PMID: 35544301 PMCID: PMC9635286 DOI: 10.1091/mbc.e21-12-0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Contractile forces in the actomyosin cortex are required for cellular morphogenesis. This includes the invagination of the cell membrane during division, where filaments of nonmuscle myosin II (NMII) are responsible for generating contractile forces in the cortex. However, how NMII heterohexamers form filaments in vivo is not well understood. To quantify NMII filament assembly dynamics, we imaged the cortex of Caenorhabditis elegans embryos at high spatial resolution around the time of the first division. We show that during the assembly of the cytokinetic ring, the number of NMII filaments in the cortex increases and more NMII motors are assembled into each filament. These dynamics are influenced by two proteins in the RhoA GTPase pathway, the RhoA-dependent kinase LET-502 and the myosin phosphatase MEL-11. We find that these two proteins differentially regulate NMII activity at the anterior and at the division site. We show that the coordinated action of these regulators generates a gradient of free NMII in the cytoplasm driving a net diffusive flux of NMII motors toward the cytokinetic ring. Our work highlights how NMII filament assembly and disassembly dynamics are orchestrated over space and time to facilitate the up-regulation of cortical contractility during cytokinesis.
Collapse
Affiliation(s)
- Fereshteh R. Najafabadi
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
| | - Mark Leaver
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
- Biotechnology Centre, Technische Universität Dresden, Tatzberg 47/49, Dresden 01307
- Excellence Cluster Physics of Life, Technische Universität, Dresden 01307, Germany
| |
Collapse
|
32
|
Fierling J, John A, Delorme B, Torzynski A, Blanchard GB, Lye CM, Popkova A, Malandain G, Sanson B, Étienne J, Marmottant P, Quilliet C, Rauzi M. Embryo-scale epithelial buckling forms a propagating furrow that initiates gastrulation. Nat Commun 2022; 13:3348. [PMID: 35688832 PMCID: PMC9187723 DOI: 10.1038/s41467-022-30493-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cell apical constriction driven by actomyosin contraction forces is a conserved mechanism during tissue folding in embryo development. While much is now understood of the molecular mechanism responsible for apical constriction and of the tissue-scale integration of the ensuing in-plane deformations, it is still not clear if apical actomyosin contraction forces are necessary or sufficient per se to drive tissue folding. To tackle this question, we use the Drosophila embryo model system that forms a furrow on the ventral side, initiating mesoderm internalization. Past computational models support the idea that cell apical contraction forces may not be sufficient and that active or passive cell apico-basal forces may be necessary to drive cell wedging leading to tissue furrowing. By using 3D computational modelling and in toto embryo image analysis and manipulation, we now challenge this idea and show that embryo-scale force balance at the tissue surface, rather than cell-autonomous shape changes, is necessary and sufficient to drive a buckling of the epithelial surface forming a furrow which propagates and initiates embryo gastrulation. Drosophila mesoderm invagination begins with the formation of a furrow. Here they show that a long-range mechanism, powered by actomyosin contraction between the embryo polar caps, works like a ‘cheese-cutter wire’ indenting the tissue surface and folding it into a propagating furrow.
Collapse
Affiliation(s)
| | - Alphy John
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | - Claire M Lye
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | - Anna Popkova
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Great-Britain, England
| | | | | | | | - Matteo Rauzi
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
33
|
Chen W, He B. Actomyosin activity-dependent apical targeting of Rab11 vesicles reinforces apical constriction. J Cell Biol 2022; 221:213118. [DOI: 10.1083/jcb.202103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/23/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
During tissue morphogenesis, the changes in cell shape, resulting from cell-generated forces, often require active regulation of intracellular trafficking. How mechanical stimuli influence intracellular trafficking and how such regulation impacts tissue mechanics are not fully understood. In this study, we identify an actomyosin-dependent mechanism involving Rab11-mediated trafficking in regulating apical constriction in the Drosophila embryo. During Drosophila mesoderm invagination, apical actin and Myosin II (actomyosin) contractility induces apical accumulation of Rab11-marked vesicle-like structures (“Rab11 vesicles”) by promoting a directional bias in dynein-mediated vesicle transport. At the apical domain, Rab11 vesicles are enriched near the adherens junctions (AJs). The apical accumulation of Rab11 vesicles is essential to prevent fragmented apical AJs, breaks in the supracellular actomyosin network, and a reduction in the apical constriction rate. This Rab11 function is separate from its role in promoting apical Myosin II accumulation. These findings suggest a feedback mechanism between actomyosin activity and Rab11-mediated intracellular trafficking that regulates the force generation machinery during tissue folding.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| |
Collapse
|
34
|
Abstract
Biological systems display a rich phenomenology of states that resemble the physical states of matter - solid, liquid and gas. These phases result from the interactions between the microscopic constituent components - the cells - that manifest in macroscopic properties such as fluidity, rigidity and resistance to changes in shape and volume. Looked at from such a perspective, phase transitions from a rigid to a flowing state or vice versa define much of what happens in many biological processes especially during early development and diseases such as cancer. Additionally, collectively moving confluent cells can also lead to kinematic phase transitions in biological systems similar to multi-particle systems where the particles can interact and show sub-populations characterised by specific velocities. In this Perspective we discuss the similarities and limitations of the analogy between biological and inert physical systems both from theoretical perspective as well as experimental evidence in biological systems. In understanding such transitions, it is crucial to acknowledge that the macroscopic properties of biological materials and their modifications result from the complex interplay between the microscopic properties of cells including growth or death, neighbour interactions and secretion of matrix, phenomena unique to biological systems. Detecting phase transitions in vivo is technically difficult. We present emerging approaches that address this challenge and may guide our understanding of the organization and macroscopic behaviour of biological tissues.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix Marseille Univ, CNRS, UMR 7288, IBDM, Turing Center for Living Systems, Marseille, France.
| | - Vikas Trivedi
- European Molecular Biology Laboratory (EMBL), Barcelona, 08003, Spain.
- EMBL Heidelberg, Developmental Biology Unit, Heidelberg, 69117, Germany.
| |
Collapse
|
35
|
Sutlive J, Xiu H, Chen Y, Gou K, Xiong F, Guo M, Chen Z. Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103466. [PMID: 34837328 PMCID: PMC8831476 DOI: 10.1002/smll.202103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Indexed: 05/02/2023]
Abstract
Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.
Collapse
Affiliation(s)
- Joseph Sutlive
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Haning Xiu
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Fengzhu Xiong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zi Chen
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
36
|
Carmon S, Jonas F, Barkai N, Schejter ED, Shilo BZ. Generation and timing of graded responses to morphogen gradients. Development 2021; 148:273784. [PMID: 34918740 PMCID: PMC8722393 DOI: 10.1242/dev.199991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022]
Abstract
Morphogen gradients are known to subdivide a naive cell field into distinct zones of gene expression. Here, we examine whether morphogens can also induce a graded response within such domains. To this end, we explore the role of the Dorsal protein nuclear gradient along the dorsoventral axis in defining the graded pattern of actomyosin constriction that initiates gastrulation in early Drosophila embryos. Two complementary mechanisms for graded accumulation of mRNAs of crucial zygotic Dorsal target genes were identified. First, activation of target-gene expression expands over time from the ventral-most region of high nuclear Dorsal to lateral regions, where the levels are lower, as a result of a Dorsal-dependent activation probability of transcription sites. Thus, sites that are activated earlier will exhibit more mRNA accumulation. Second, once the sites are activated, the rate of RNA Polymerase II loading is also dependent on Dorsal levels. Morphological restrictions require that translation of the graded mRNA be delayed until completion of embryonic cell formation. Such timing is achieved by large introns, which provide a delay in production of the mature mRNAs. Spatio-temporal regulation of key zygotic genes therefore shapes the pattern of gastrulation.
Collapse
Affiliation(s)
- Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
37
|
Paci G, Mao Y. Forced into shape: Mechanical forces in Drosophila development and homeostasis. Semin Cell Dev Biol 2021; 120:160-170. [PMID: 34092509 PMCID: PMC8681862 DOI: 10.1016/j.semcdb.2021.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022]
Abstract
Mechanical forces play a central role in shaping tissues during development and maintaining epithelial integrity in homeostasis. In this review, we discuss the roles of mechanical forces in Drosophila development and homeostasis, starting from the interplay of mechanics with cell growth and division. We then discuss several examples of morphogenetic processes where complex 3D structures are shaped by mechanical forces, followed by a closer look at patterning processes. We also review the role of forces in homeostatic processes, including cell elimination and wound healing. Finally, we look at the interplay of mechanics and developmental robustness and discuss open questions in the field, as well as novel approaches that will help tackle them in the future.
Collapse
Affiliation(s)
- Giulia Paci
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Yanlan Mao
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
38
|
Sánchez-Corrales YE, Blanchard GB, Röper K. Correct regionalization of a tissue primordium is essential for coordinated morphogenesis. eLife 2021; 10:e72369. [PMID: 34723792 PMCID: PMC8612734 DOI: 10.7554/elife.72369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022] Open
Abstract
During organ development, tubular organs often form from flat epithelial primordia. In the placodes of the forming tubes of the salivary glands in the Drosophila embryo, we previously identified spatially defined cell behaviors of cell wedging, tilting, and cell intercalation that are key to the initial stages of tube formation. Here, we address what the requirements are that ensure the continuous formation of a narrow symmetrical tube from an initially asymmetrical primordium whilst overall tissue geometry is constantly changing. We are using live-imaging and quantitative methods to compare wild-type placodes and mutants that either show disrupted cell behaviors or an initial symmetrical placode organization, with both resulting in severe impairment of the invagination. We find that early transcriptional patterning of key morphogenetic transcription factors drives the selective activation of downstream morphogenetic modules, such as GPCR signaling that activates apical-medial actomyosin activity to drive cell wedging at the future asymmetrically placed invagination point. Over time, transcription of key factors expands across the rest of the placode and cells switch their behavior from predominantly intercalating to predominantly apically constricting as their position approaches the invagination pit. Misplacement or enlargement of the initial invagination pit leads to early problems in cell behaviors that eventually result in a defective organ shape. Our work illustrates that the dynamic patterning of the expression of transcription factors and downstream morphogenetic effectors ensures positionally fixed areas of cell behavior with regards to the invagination point. This patterning in combination with the asymmetric geometrical setup ensures functional organ formation.
Collapse
Affiliation(s)
- Yara E Sánchez-Corrales
- MRC Laboratory of Molecular Biology,Cambridge Biomedical CampusCambridgeUnited Kingdom
- Genetics and Genomic Medicine Programme, Institute of Child Health, University College LondonLondonUnited Kingdom
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Katja Röper
- MRC Laboratory of Molecular Biology,Cambridge Biomedical CampusCambridgeUnited Kingdom
| |
Collapse
|
39
|
Bhide S, Gombalova D, Mönke G, Stegmaier J, Zinchenko V, Kreshuk A, Belmonte JM, Leptin M. Mechanical competition alters the cellular interpretation of an endogenous genetic program. J Cell Biol 2021; 220:212605. [PMID: 34449835 PMCID: PMC8406609 DOI: 10.1083/jcb.202104107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
The intrinsic genetic program of a cell is not sufficient to explain all of the cell's activities. External mechanical stimuli are increasingly recognized as determinants of cell behavior. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic program of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells and thereby tissue folding. However, some cells do not constrict but instead stretch, even though they share the same genetic program as their constricting neighbors. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress-strain responses do not reproduce experimental observations, but simulations in which cells behave as ductile materials with nonlinear mechanical properties do. Our models show that this behavior is a general emergent property of actomyosin networks in a supracellular context, in accordance with our experimental observations of actin reorganization within stretching cells.
Collapse
Affiliation(s)
- Sourabh Bhide
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Denisa Gombalova
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gregor Mönke
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Valentyna Zinchenko
- Collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julio M Belmonte
- Department of Physics, North Carolina State University, Raleigh, NC.,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC
| | - Maria Leptin
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,European Molecular Biology Organization, Heidelberg, Germany
| |
Collapse
|
40
|
Losick VP, Duhaime LG. The endocycle restores tissue tension in the Drosophila abdomen post wound repair. Cell Rep 2021; 37:109827. [PMID: 34644579 PMCID: PMC8567445 DOI: 10.1016/j.celrep.2021.109827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
Polyploidy frequently arises in response to injury, aging, and disease. Despite its prevalence, major gaps exist in our understanding of how polyploid cells alter tissue function. In the adult Drosophila epithelium, wound healing is dependent on the generation of multinucleated polyploid cells resulting in a permanent change in the epithelial architecture. Here, we study how the wound-induced polyploid cells affect tissue function by altering epithelial mechanics. The mechanosensor nonmuscle myosin II is activated and upregulated in wound-induced polyploid cells and persists after healing completes. Polyploidy enhances relative epithelial tension, which is dependent on the endocycle and not cell fusion post injury. Remarkably, the enhanced epithelial tension mimics the relative tension of the lateral muscle fibers, which are permanently severed by the injury. As a result, we found that the wound-induced polyploid cells remodel the epithelium to maintain fly abdominal movements, which may help compensate for lost tissue tension. Losick and Duhaime show that the generation of polyploid cells by the endocycle induces myosin expression resulting in enhanced epithelial tension after wound repair. This change in epithelial mechanics appears to compensate for the permanent loss of muscle fibers, which is necessary for efficient abdominal bending in the fruit fly.
Collapse
Affiliation(s)
- Vicki P Losick
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | - Levi G Duhaime
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
41
|
Aakhte M, Müller HAJ. Multiview tiling light sheet microscopy for 3D high-resolution live imaging. Development 2021; 148:272173. [PMID: 34409448 DOI: 10.1242/dev.199725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022]
Abstract
Light-sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.
Collapse
Affiliation(s)
- Mostafa Aakhte
- Developmental Genetics Group, Institute of Biology, University of Kassel, Heinrich-Plett Strasse 40, 34132 Kassel, Germany
| | - Hans-Arno J Müller
- Developmental Genetics Group, Institute of Biology, University of Kassel, Heinrich-Plett Strasse 40, 34132 Kassel, Germany
| |
Collapse
|
42
|
Herrera-Perez RM, Cupo C, Allan C, Lin A, Kasza KE. Using optogenetics to link myosin patterns to contractile cell behaviors during convergent extension. Biophys J 2021; 120:4214-4229. [PMID: 34293302 DOI: 10.1016/j.bpj.2021.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/03/2021] [Accepted: 06/02/2021] [Indexed: 10/24/2022] Open
Abstract
Distinct patterns of actomyosin contractility are often associated with particular epithelial tissue shape changes during development. For example, a planar-polarized pattern of myosin II localization regulated by Rho1 signaling during Drosophila body axis elongation is thought to drive cell behaviors that contribute to convergent extension. However, it is not well understood how specific aspects of a myosin pattern influence the multiple cell behaviors, including cell intercalation, cell shape changes, and apical cell area fluctuations, that simultaneously occur during morphogenesis. Here, we developed two optogenetic tools, optoGEF and optoGAP, to activate or deactivate Rho1 signaling, respectively. We used these tools to manipulate myosin patterns at the apical side of the germband epithelium during Drosophila axis elongation and analyzed the effects on contractile cell behaviors. We show that uniform activation or inactivation of Rho1 signaling across the apical surface of the germband is sufficient to disrupt the planar-polarized pattern of myosin at cell junctions on the timescale of 3-5 min, leading to distinct changes in junctional and medial myosin patterns in optoGEF and optoGAP embryos. These two perturbations to Rho1 activity both disrupt axis elongation and cell intercalation but have distinct effects on cell area fluctuations and cell packings that are linked with changes in the medial and junctional myosin pools. These studies demonstrate that acute optogenetic perturbations to Rho1 activity are sufficient to rapidly override the endogenous planar-polarized myosin pattern in the germband during axis elongation. Moreover, our results reveal that the levels of Rho1 activity and the balance between medial and junctional myosin play key roles not only in organizing the cell rearrangements that are known to directly contribute to axis elongation but also in regulating cell area fluctuations and cell packings, which have been proposed to be important factors influencing the mechanics of tissue deformation and flow.
Collapse
Affiliation(s)
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Cole Allan
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Annie Lin
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York.
| |
Collapse
|
43
|
Inman A, Smutny M. Feeling the force: Multiscale force sensing and transduction at the cell-cell interface. Semin Cell Dev Biol 2021; 120:53-65. [PMID: 34238674 DOI: 10.1016/j.semcdb.2021.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
A universal principle of all living cells is the ability to sense and respond to mechanical stimuli which is essential for many biological processes. Recent efforts have identified critical mechanosensitive molecules and response pathways involved in mechanotransduction during development and tissue homeostasis. Tissue-wide force transmission and local force sensing need to be spatiotemporally coordinated to precisely regulate essential processes during development such as tissue morphogenesis, patterning, cell migration and organogenesis. Understanding how cells identify and interpret extrinsic forces and integrate a specific response on cell and tissue level remains a major challenge. In this review we consider important cellular and physical factors in control of cell-cell mechanotransduction and discuss their significance for cell and developmental processes. We further highlight mechanosensitive macromolecules that are known to respond to external forces and present examples of how force responses can be integrated into cell and developmental programs.
Collapse
Affiliation(s)
- Angus Inman
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - Michael Smutny
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK.
| |
Collapse
|
44
|
Holcomb MC, Gao GJJ, Servati M, Schneider D, McNeely PK, Thomas JH, Blawzdziewicz J. Mechanical feedback and robustness of apical constrictions in Drosophila embryo ventral furrow formation. PLoS Comput Biol 2021; 17:e1009173. [PMID: 34228708 PMCID: PMC8284804 DOI: 10.1371/journal.pcbi.1009173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/16/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Formation of the ventral furrow in the Drosophila embryo relies on the apical constriction of cells in the ventral region to produce bending forces that drive tissue invagination. In our recent paper we observed that apical constrictions during the initial phase of ventral furrow formation produce elongated patterns of cellular constriction chains prior to invagination and argued that these are indicative of tensile stress feedback. Here, we quantitatively analyze the constriction patterns preceding ventral furrow formation and find that they are consistent with the predictions of our active-granular-fluid model of a monolayer of mechanically coupled stress-sensitive constricting particles. Our model shows that tensile feedback causes constriction chains to develop along underlying precursor tensile stress chains that gradually strengthen with subsequent cellular constrictions. As seen in both our model and available optogenetic experiments, this mechanism allows constriction chains to penetrate or circumvent zones of reduced cell contractility, thus increasing the robustness of ventral furrow formation to spatial variation of cell contractility by rescuing cellular constrictions in the disrupted regions.
Collapse
Affiliation(s)
- Michael C. Holcomb
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Guo-Jie Jason Gao
- Department of Mathematical and Systems Engineering, Shizuoka University, Hamamatsu, Japan
| | - Mahsa Servati
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Dylan Schneider
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| | - Presley K. McNeely
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
| | - Jeffrey H. Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Jerzy Blawzdziewicz
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, United States of America
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
45
|
Denk-Lobnig M, Totz JF, Heer NC, Dunkel J, Martin AC. Combinatorial patterns of graded RhoA activation and uniform F-actin depletion promote tissue curvature. Development 2021; 148:dev199232. [PMID: 34124762 PMCID: PMC8254875 DOI: 10.1242/dev.199232] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/04/2021] [Indexed: 01/03/2023]
Abstract
During development, gene expression regulates cell mechanics and shape to sculpt tissues. Epithelial folding proceeds through distinct cell shape changes that occur simultaneously in different regions of a tissue. Here, using quantitative imaging in Drosophila melanogaster, we investigate how patterned cell shape changes promote tissue bending during early embryogenesis. We find that the transcription factors Twist and Snail combinatorially regulate a multicellular pattern of lateral F-actin density that differs from the previously described Myosin-2 gradient. This F-actin pattern correlates with whether cells apically constrict, stretch or maintain their shape. We show that the Myosin-2 gradient and F-actin depletion do not depend on force transmission, suggesting that transcriptional activity is required to create these patterns. The Myosin-2 gradient width results from a gradient in RhoA activation that is refined through the balance between RhoGEF2 and the RhoGAP C-GAP. Our experimental results and simulations of a 3D elastic shell model show that tuning gradient width regulates tissue curvature.
Collapse
Affiliation(s)
- Marlis Denk-Lobnig
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jan F. Totz
- Mathematics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Natalie C. Heer
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jörn Dunkel
- Mathematics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Adam C. Martin
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
46
|
The origin and the mechanism of mechanical polarity during epithelial folding. Semin Cell Dev Biol 2021; 120:94-107. [PMID: 34059419 DOI: 10.1016/j.semcdb.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Epithelial tissues are sheet-like tissue structures that line the inner and outer surfaces of animal bodies and organs. Their remarkable ability to actively produce, or passively adapt to, complex surface geometries has fascinated physicists and biologists alike for centuries. The most simple and yet versatile process of epithelial deformation is epithelial folding, through which curved shapes, tissue convolutions and internal structures are produced. The advent of quantitative live imaging, combined with experimental manipulation and computational modeling, has rapidly advanced our understanding of epithelial folding. In particular, a set of mechanical principles has emerged to illustrate how forces are generated and dissipated to instigate curvature transitions in a variety of developmental contexts. Folding a tissue requires that mechanical loads or geometric changes be non-uniform. Given that polarity is the most distinct and fundamental feature of epithelia, understanding epithelial folding mechanics hinges crucially on how forces become polarized and how polarized differential deformation arises, for which I coin the term 'mechanical polarity'. In this review, five typical modules of mechanical processes are distilled from a diverse array of epithelial folding events. Their mechanical underpinnings with regard to how forces and polarity intersect are analyzed to accentuate the importance of mechanical polarity in the understanding of epithelial folding.
Collapse
|
47
|
Golovkova I, Montel L, Pan F, Wandersman E, Prevost AM, Bertrand T, Pontani LL. Adhesion as a trigger of droplet polarization in flowing emulsions. SOFT MATTER 2021; 17:3820-3828. [PMID: 33725054 DOI: 10.1039/d1sm00097g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tissues are subjected to large external forces and undergo global deformations during morphogenesis. We use synthetic analogues of tissues to study the impact of cell-cell adhesion on the response of cohesive cellular assemblies under such stresses. In particular, we use biomimetic emulsions in which the droplets are functionalized in order to exhibit specific droplet-droplet adhesion. We flow these emulsions in microfluidic constrictions and study their response to this forced deformation via confocal microscopy. We find that the distributions of avalanche sizes are conserved between repulsive and adhesive droplets. However, adhesion locally impairs the rupture of droplet-droplet contacts, which in turn pulls on the rearranging droplets. As a result, adhesive droplets are a lot more deformed along the axis of elongation in the constriction. This finding could shed light on the origin of polarization processes during morphogenesis.
Collapse
Affiliation(s)
- Iaroslava Golovkova
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Popkova A, Rauzi M, Wang X. Cellular and Supracellular Planar Polarity: A Multiscale Cue to Elongate the Drosophila Egg Chamber. Front Cell Dev Biol 2021; 9:645235. [PMID: 33738289 PMCID: PMC7961075 DOI: 10.3389/fcell.2021.645235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Tissue elongation is known to be controlled by oriented cell division, elongation, migration and rearrangement. While these cellular processes have been extensively studied, new emerging supracellular mechanisms driving tissue extension have recently been unveiled. Tissue rotation and actomyosin contractions have been shown to be key processes driving Drosophila egg chamber elongation. First, egg chamber rotation facilitates the dorsal-ventral alignment of the extracellular matrix and of the cell basal actin fibers. Both fiber-like structures form supracellular networks constraining the egg growth in a polarized fashion thus working as 'molecular corsets'. Second, the supracellular actin fiber network, powered by myosin periodic oscillation, contracts anisotropically driving tissue extension along the egg anterior-posterior axis. During both processes, cellular and supracellular planar polarity provide a critical cue to control Drosophila egg chamber elongation. Here we review how different planar polarized networks are built, maintained and function at both cellular and supracellular levels in the Drosophila ovarian epithelium.
Collapse
Affiliation(s)
- Anna Popkova
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Matteo Rauzi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, iBV, Nice, France
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
49
|
Mondrinos MJ, Alisafaei F, Yi AY, Ahmadzadeh H, Lee I, Blundell C, Seo J, Osborn M, Jeon TJ, Kim SM, Shenoy VB, Huh D. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. SCIENCE ADVANCES 2021; 7:7/11/eabe9446. [PMID: 33712463 PMCID: PMC7954445 DOI: 10.1126/sciadv.abe9446] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 05/11/2023]
Abstract
Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.
Collapse
Affiliation(s)
- Mark J Mondrinos
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Farid Alisafaei
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Y Yi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Insu Lee
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Cassidy Blundell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeongyun Seo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Osborn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae-Joon Jeon
- Department of Biological Engineering, Inha University, Incheon, Korea
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, Incheon, Korea
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Thanuthanakhun N, Kino-Oka M, Borwornpinyo S, Ito Y, Kim MH. The impact of culture dimensionality on behavioral epigenetic memory contributing to pluripotent state of iPS cells. J Cell Physiol 2020; 236:4985-4996. [PMID: 33305410 DOI: 10.1002/jcp.30211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) culture platforms have been explored to establish physiologically relevant cell culture environment and permit expansion scalability; however, little is known about the mechanisms underlying the regulation of pluripotency of human induced pluripotent stem cells (hiPSCs). This study elucidated epigenetic modifications contributing to pluripotency of hiPSCs in response to 3D culture. Unlike two-dimensional (2D) monolayer cultures, 3D cultured cells aggregated with each other to form ball-like aggregates. 2D cultured cells expressed elevated levels of Rac1 and RhoA; however, Rac1 level was significantly lower while RhoA level was persisted in 3D aggregates. Compared with 2D monolayers, the 3D aggregates also exhibited significantly lower myosin phosphorylation. Histone methylation analysis revealed remarkable H3K4me3 upregulation and H3K27me3 maintenance throughout the duration of 3D culture; in addition, we observed the existence of naïve pluripotency signatures in cells grown in 3D culture. These results demonstrated that hiPSCs adapted to 3D culture through alteration of the Rho-Rho kinase-phospho-myosin pathway, influencing the epigenetic modifications and transcriptional expression of pluripotency-associated factors. These results may help design culture environments for stable and high-quality hiPSCs.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|