1
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Malarat N, Soleh A, Saisahas K, Samoson K, Promsuwan K, Saichanapan J, Wangchuk S, Meng L, Limbut W. Electropolymerization of poly(phenol red) on laser-induced graphene electrode enhanced adsorption of zinc for electrochemical detection. Talanta 2024; 272:125751. [PMID: 38377665 DOI: 10.1016/j.talanta.2024.125751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
We present a highly sensitive and selective electrode of laser-induced graphene modified with poly(phenol red) (P(PhR)@LIG) for measuring zinc nutrition in rice grains using square wave anodic stripping voltammetry (SWASV). The physicochemical properties of P(PhR)@LIG were investigated with scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Fourier infrared spectroscopy (FT-IR) and Raman spectroscopy. The modified electrode demonstrated an amplified anodic stripping response of Zn2+ due to the electropolymerization of P(PhR), which enhanced analyte adsorption during the accumulation step of SWASV. Under optimized parameters, the developed sensor provided a linear range from 30 to 3000 μg L-1 with a detection limit of 14.5 μg L-1. The proposed electrode demonstrated good reproducibility and good anti-interference properties. The sensor detected zinc nutrition in rice grain samples with good accuracy and the results were consistent with the standard ICP-OES method.
Collapse
Affiliation(s)
- Natchaya Malarat
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kasrin Saisahas
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krisada Samoson
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sangay Wangchuk
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lingyin Meng
- Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Situ B, Zhang Z, Zhao L, Tu Y. Graphene oxide-based large-area dynamic covalent interfaces. NANOSCALE 2023; 15:17739-17750. [PMID: 37916524 DOI: 10.1039/d3nr04239a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Dynamic materials, being capable of reversible structural adaptation in response to the variation of external surroundings, have experienced significant advancements in the past several decades. In particular, dynamic covalent materials (DCMs), where the dynamic covalent bonds (DCBs) can reversibly break and reform under defined conditions, present superior dynamic characteristics, such as self-adaptivity, self-healing and shape memory. However, the dynamic characteristics of DCBs are mainly limited within the length scale of covalent bonds, due to the local position exchange or the inter-distance variation between the chemical compositions involved in the reversible covalent reactions. In this minireview, a discussion regarding the realization of long-range migration of chemical compositions along the interfaces of graphene oxide (GO)-based materials via the spatially connected and consecutive occurrence of DCB-based reversible covalent reactions is presented, and the interfaces are termed "large-area dynamic covalent interfaces (LDCIs)". The effective strategies, including water adsorption, interfacial curvature and metal-substrate support, as well as the potential applications of LDCIs in water dissociation and humidity sensing are summarized. Additionally, we also give an outlook on potential strategies to realize LDCIs on other 2D carbon-based materials, including the interfacial morphology and periodic element doping. This minireview provides insights into the realization of LDCIs on a wider range of 2D materials, and offers a theoretical perspective for advancing materials with long-range dynamic characteristics and improved performance, including controlled drug delivery/release and high-efficiency (bio)sensing.
Collapse
Affiliation(s)
- Boyi Situ
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| | - Zhe Zhang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| | - Liang Zhao
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| | - Yusong Tu
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Jiangsu 225009, China.
| |
Collapse
|
4
|
Li X, Shi JQ, Page AJ. Discovery of Graphene Growth Alloy Catalysts Using High-Throughput Machine Learning. NANO LETTERS 2023; 23:9796-9802. [PMID: 37890870 PMCID: PMC10636790 DOI: 10.1021/acs.nanolett.3c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Despite today's commercial-scale graphene production using chemical vapor deposition (CVD), the growth of high-quality single-layer graphene with controlled morphology and crystallinity remains challenging. Considerable effort is still spent on designing improved CVD catalysts for producing high-quality graphene. Conventionally, however, catalyst design has been pursued using empirical intuition or trial-and-error approaches. Here, we combine high-throughput density functional theory and machine learning to identify new prospective transition metal alloy catalysts that exhibit performance comparable to that of established graphene catalysts, such as Ni(111) and Cu(111). The alloys identified through this process generally consist of combinations of early- and late-transition metals, and a majority are alloys of Ni or Cu. Nevertheless, in many cases, these conventional catalyst metals are combined with unconventional partners, such as Zr, Hf, and Nb. The approach presented here therefore highlights an important new approach for identifying novel catalyst materials for the CVD growth of low-dimensional nanomaterials.
Collapse
Affiliation(s)
- Xinyu Li
- School
of Information and Physical Sciences, The
University of Newcastle, Callaghan, New South Wales 2308, Australia
- Australian
Institute for Machine Learning, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Javen Qinfeng Shi
- Australian
Institute for Machine Learning, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Alister J. Page
- Discipline
of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
5
|
Geng T, Wang J, Meng W, Zhang J, Feng Q, Hou Y, Lu Y, Lu Q. Positioning and atomic imaging of micron-size graphene sheets by a scanning tunneling microscope. Ultramicroscopy 2023; 253:113817. [PMID: 37536124 DOI: 10.1016/j.ultramic.2023.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
We present a mechanism for directly positioning the tip over a micron-size sample by tracking the trajectory of the tip and tip shadow. A bilayer graphene sheet identified by Raman spectroscopy with a lateral size of 20 μm × 50 μm was transferred on the surface of shaped gold electrodes, on which it will be rapidly captured by a homebuilt scanning tunneling microscopy (STM) with the help of an optical microscope. Using the improved line-based imaging mode, atomic-resolution images featuring a hexagonal lattice structure on the bilayer graphene sheet were obtained by our positioning-capable STM. We have also observed a unique O-ring superstructure on graphene surface that caused by the collective interference near the boundaries or defects. Furthermore, we successfully captured a graphene sheet of size as small as 1.3 nm by a rapid and large-area searching operation; this is the first time that such a small graphene sheet has been observed with atomic resolution. The STM images of a micron-size graphene sheet illustrate the significant positioning ability and imaging precision of our homebuilt STM. Our results contribute to further STM studies on samples with ultra-small size.
Collapse
Affiliation(s)
- Tao Geng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Jihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China.
| | - Wenjie Meng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Qiyuan Feng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Yubin Hou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Yalin Lu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingyou Lu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Hefei Science Center, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
6
|
Huang Z, Sun W, Sun Z, Ding R, Wang X. Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4449. [PMID: 37374632 DOI: 10.3390/ma16124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
With the escalating demand for electrochemical energy storage, commercial lithium-ion and metal battery systems have been increasingly developed. As an indispensable component of batteries, the separator plays a crucial role in determining their electrochemical performance. Conventional polymer separators have been extensively investigated over the past few decades. Nevertheless, their inadequate mechanical strength, deficient thermal stability, and constrained porosity constitute serious impediments to the development of electric vehicle power batteries and the progress of energy storage devices. Advanced graphene-based materials have emerged as an adaptable solution to these challenges, owing to their exceptional electrical conductivity, large specific surface area, and outstanding mechanical properties. Incorporating advanced graphene-based materials into the separator of lithium-ion and metal batteries has been identified as an effective strategy to overcome the aforementioned issues and enhance the specific capacity, cycle stability, and safety of batteries. This review paper provides an overview of the preparation of advanced graphene-based materials and their applications in lithium-ion, lithium-metal, and lithium-sulfur batteries. It systematically elaborates on the advantages of advanced graphene-based materials as novel separator materials and outlines future research directions in this field.
Collapse
Affiliation(s)
- Zongle Huang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing 210093, China
| | - Wenting Sun
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing 210093, China
| | - Zhipeng Sun
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing 210093, China
| | - Rui Ding
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing 210093, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University (NJU), Nanjing 210093, China
| |
Collapse
|
7
|
Xin X, Chen J, Ma L, Ma T, Xin W, Xu H, Ren W, Liu Y. Grain Size Engineering of CVD-Grown Large-Area Graphene Films. SMALL METHODS 2023:e2300156. [PMID: 37075746 DOI: 10.1002/smtd.202300156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Graphene, a single atomic layer of graphitic carbon, has attracted much attention because of its outstanding properties hold great promise for a wide range of technological applications. Large-area graphene films (GFs) grown by chemical vapor deposition (CVD) are highly desirable for both investigating their intrinsic properties and realizing their practical applications. However, the presence of grain boundaries (GBs) has significant impacts on their properties and related applications. According to the different grain sizes, GFs can be divided into polycrystalline, single-crystal, and nanocrystalline films. In the past decade, considerable progress has been made in engineering the grain sizes of GFs by modifying the CVD processes or developing some new growth approaches. The key strategies involve controlling the nucleation density, growth rate, and grain orientation. This review aims to provide a comprehensive description of grain size engineering research of GFs. The main strategies and underlying growth mechanisms of CVD-grown large-area GFs with nanocrystalline, polycrystalline, and single-crystal structures are summarized, in which the advantages and limitations are highlighted. In addition, the scaling law of physical properties in electricity, mechanics, and thermology as a function of grain sizes are briefly discussed. Finally, the perspectives for challenges and future development in this area are also presented.
Collapse
Affiliation(s)
- Xing Xin
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jiamei Chen
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Laipeng Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Teng Ma
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Wei Xin
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Material Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
| |
Collapse
|
8
|
Jiang C, Chen L, Wang H, Chen C, Wang X, Kong Z, Wang Y, Wang H, Xie X. Increasing coverage of mono-layer graphene grown on hexagonal boron nitride. NANOTECHNOLOGY 2023; 34:165601. [PMID: 36669199 DOI: 10.1088/1361-6528/acb4f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Graphene sitting on hexagonal boron nitride (h-BN) always exhibits excellent electrical properties. And the properties of graphene onh-BN are often dominated by its domain size and boundaries. Chemical vapor deposition (CVD) is a promising approach to achieve large size graphene crystal. However, the CVD growth of graphene onh-BN still faces challenges in increasing coverage of monolayer graphene because of a weak control on nucleation and vertical growth. Here, an auxiliary source strategy is adapted to increase the nucleation density of graphene onh-BN and synthesis continuous graphene films. It is found that both silicon carbide and organic polymer e.g. methyl methacrylate can assist the nucleation of graphene, and then increases the coverage of graphene onh-BN. By optimizing the growth temperature, vertical accumulation of graphitic materials can be greatly suppressed. This work provides an effective approach for preparing continuous graphene film onh-BN, and may bring a new sight for the growth of high quality graphene.
Collapse
Affiliation(s)
- Chengxin Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lingxiu Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Huishan Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chen Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiujun Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziqiang Kong
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yibo Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haomin Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, People's Republic of China
| |
Collapse
|
9
|
Memisoglu G, Murugesan RC, Zubia J, Rozhin AG. Graphene Nanocomposite Membranes: Fabrication and Water Treatment Applications. MEMBRANES 2023; 13:145. [PMID: 36837648 PMCID: PMC9965488 DOI: 10.3390/membranes13020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
Graphene, a two-dimensional hexagonal honeycomb carbon structure, is widely used in membrane technologies thanks to its unique optical, electrical, mechanical, thermal, chemical and photoelectric properties. The light weight, mechanical strength, anti-bacterial effect, and pollution-adsorption properties of graphene membranes are valuable in water treatment studies. Incorporation of nanoparticles like carbon nanotubes (CNTs) and metal oxide into the graphene filtering nanocomposite membrane structure can provide an improved photocatalysis process in a water treatment system. With the rapid development of graphene nanocomposites and graphene nanocomposite membrane-based acoustically supported filtering systems, including CNTs and visible-light active metal oxide photocatalyst, it is necessary to develop the researches of sustainable and environmentally friendly applications that can lead to new and groundbreaking water treatment systems. In this review, characteristic properties of graphene and graphene nanocomposites are examined, various methods for the synthesis and dispersion processes of graphene, CNTs, metal oxide and polymer nanocomposites and membrane fabrication and characterization techniques are discussed in details with using literature reports and our laboratory experimental results. Recent membrane developments in water treatment applications and graphene-based membranes are reviewed, and the current challenges and future prospects of membrane technology are discussed.
Collapse
Affiliation(s)
- Gorkem Memisoglu
- Department of Communications Engineering, Escuela de Ingeniería de Bilbao, University of the Basque Country (UPV/EHU), E-48013 Bilbao, Spain
- Department of Electronics Technology, Istiklal University, Kahramanmaras 46300, Türkiye
| | | | - Joseba Zubia
- Department of Communications Engineering, Escuela de Ingeniería de Bilbao, University of the Basque Country (UPV/EHU), E-48013 Bilbao, Spain
| | - Aleksey G. Rozhin
- Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
10
|
Jorudas J, Pashnev D, Kašalynas I, Ignatjev I, Niaura G, Selskis A, Astachov V, Alexeeva N. Green Removal of DUV-Polarity-Modified PMMA for Wet Transfer of CVD Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4017. [PMID: 36432303 PMCID: PMC9697087 DOI: 10.3390/nano12224017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
To fabricate graphene-based high-frequency electronic and optoelectronic devices, there is a high demand for scalable low-contaminated graphene with high mobility. Graphene synthesized via chemical vapor deposition (CVD) on copper foil appears promising for this purpose, but residues from the polymethyl methacrylate (PMMA) layer, used for the wet transfer of CVD graphene, drastically affect the electrical properties of graphene. Here, we demonstrate a scalable and green PMMA removal technique that yields high-mobility graphene on the most common technologically relevant silicon (Si) substrate. As the first step, the polarity of the PMMA was modified under deep-UV irradiation at λ = 254 nm, due to the formation of ketones and aldehydes of higher polarity, which simplifies hydrogen bonding in the step of its dissolution. Modification of PMMA polarity was confirmed by UV and FTIR spectrometry and contact angle measurements. Consecutive dissolution of DUV-exposed PMMA in an environmentally friendly, binary, high-polarity mixture of isopropyl alcohol/water (more commonly alcohol/water) resulted in the rapid and complete removal of DUV-exposed polymers without the degradation of graphene properties, as low-energy exposure does not form free radicals, and thus the released graphene remained intact. The high quality of graphene after PMMA removal was confirmed by SEM, AFM, Raman spectrometry, and by contact and non-contact electrical conductivity measurements. The removal of PMMA from graphene was also performed via other common methods for comparison. The charge carrier mobility in graphene films was found to be up to 6900 cm2/(V·s), demonstrating a high potential of the proposed PMMA removal method in the scalable fabrication of high-performance electronic devices based on CVD graphene.
Collapse
Affiliation(s)
- Justinas Jorudas
- THz Photonics Laboratory of Optoelectronics Department, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| | - Daniil Pashnev
- THz Photonics Laboratory of Optoelectronics Department, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| | - Irmantas Kašalynas
- THz Photonics Laboratory of Optoelectronics Department, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| | - Ilja Ignatjev
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Organic Chemistry, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| | - Algirdas Selskis
- Department of Structural Analysis of Materials, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| | - Vladimir Astachov
- Department of Physical Technologies, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| | - Natalia Alexeeva
- THz Photonics Laboratory of Optoelectronics Department, Center for Physical Sciences and Technology (FTMC), Saulėtekis Ave. 3, LT 10257 Vilnius, Lithuania
| |
Collapse
|
11
|
Cai Y, Shen J, Fu JH, Qaiser N, Chen C, Tseng CC, Hakami M, Yang Z, Yen HJ, Dong X, Li LJ, Han Y, Tung V. Graphdiyne-Based Nanofilms for Compliant On-Skin Sensing. ACS NANO 2022; 16:16677-16689. [PMID: 36125976 DOI: 10.1021/acsnano.2c06169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thin-film electronics pliably laminated onto the epidermis for noninvasive, specific, and multifunctional sensing are ideal wearable systems for health monitoring and information technologies. However, it remains a critical challenge to fabricate ultrathin and compliant skin-like sensors with high imperceptibility and sensitivities. Here we report a design of conductive hydrogen-substituted graphdiyne (HsGDY) nanofilms with conjugated porous structure and inherent softness for on-skin sensors that allow minimization of stress and discomfort with wear. Dominated by the subtle deformation-induced changes in the interdomain tunneling conductance, the engineered HsGDY sensors show continuous and accurate results. Real-time noninvasive spatial mapping of dynamic/static strains in both tensile/compressive directions monitors various body motions with high sensitivity (GF ∼22.6, under 2% strain), fast response (∼60 ms), and long-term durability (∼5000 cycles). Moreover, such devices can dynamically distinguish between the temperature difference and frequency of air inhaled and exhaled through the nostril, revealing a quantitative assessment of the movement/health of the human body. The proof-of-concept strategy provides an alternative route for the design of next-generation wearable organic bioelectronics with multiple electronic functionalities.
Collapse
Affiliation(s)
- Yichen Cai
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jie Shen
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jui-Han Fu
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Nadeem Qaiser
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cailing Chen
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Chien-Chih Tseng
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Mariam Hakami
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Zheng Yang
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hung-Ju Yen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lain-Jong Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yu Han
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Tung
- Physical Science and Engineering Division, Material Science and Engineering Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Chemical System Engineering, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
12
|
Arjmandi-Tash H, Schneider GF. Growth of Graphene on a Liquified Copper Skin at Submelting Temperatures. ACS MATERIALS AU 2022; 2:79-84. [PMID: 35295622 PMCID: PMC8915255 DOI: 10.1021/acsmaterialsau.1c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
![]()
In chemical vapor
deposition of graphene, crossing over the melting
temperature of the bulk catalyst is an effective approach to heal
the defects and thus improve the crystallinity of the lattice. Here,
electromagnetic absorption (the capability of metals to absorb radiated
thermal energy) yields a thin skin of liquid metal catalyst at submelting
temperatures, allowing the growth of high quality graphene. In fact,
a chromium film initially deposited on one side of a copper foil absorbs
the thermal energy radiated from a heating stage several times more
effectively than a plain copper foil. The resulting migration of the
chromium grains to the other side of the foil locally melts the copper,
improving the crystalline quality of the growing graphene, confirmed
by Raman spectroscopy. The process duration is therefore dramatically
minimized, and the crystallinity of the graphene is maximized. Remarkably,
the usual annealing step is no more necessary prior to the growth
which together with unlocking the direct healing of defects in the
growing graphene, will unify growth strategies between a range of
catalysts.
Collapse
Affiliation(s)
- Hadi Arjmandi-Tash
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Grégory F. Schneider
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
13
|
Zhang R, Li M, Li L, Fan Y, Zhang Q, Yu G, Geng D, Hu W. The way towards for ultraflat and superclean graphene. NANO SELECT 2021. [DOI: 10.1002/nano.202100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ruijie Zhang
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin P. R. China
| | - Menghan Li
- Institute of Molecular Plus Tianjin University Tianjin P. R. China
| | - Lin Li
- Institute of Molecular Plus Tianjin University Tianjin P. R. China
| | - Yixuan Fan
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin P. R. China
| | - Qing Zhang
- Faculty of Science Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing P. R. China
| | - Dechao Geng
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin P. R. China
| | - Wenping Hu
- Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin P. R. China
| |
Collapse
|
14
|
Yang X, Zhao X, Liu T, Yang F. Precise Synthesis of Carbon Nanotubes and
One‐Dimensional
Hybrids from Templates
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xusheng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Tianhui Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
15
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
16
|
|
17
|
Rational Design of Binary Alloys for Catalytic Growth of Graphene via Chemical Vapor Deposition. Catalysts 2020. [DOI: 10.3390/catal10111305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical vapor deposition is the most promising technique for the mass production of high-quality graphene, in which the metal substrate plays a crucial role in the catalytic decomposition of the carbon source, assisting the attachment of the active carbon species, and regulating the structure of the graphene film. Due to some drawbacks of single metal substrates, alloy substrates have gradually attracted attention owing to their complementarity in the catalytic growth of graphene. In this review, we focus on the rational design of binary alloys, such as Cu/Ni, Ni/Mo, and Cu/Si, to control the layer numbers and growth rate of graphene. By analyzing the elementary steps of graphene growth, general principles are summarized in terms of the catalytic activity, metal–carbon interactions, carbon solubility, and mutual miscibility. Several challenges in this field are also put forward to inspire the novel design of alloy catalysts and the synthesis of graphene films bearing desirable properties.
Collapse
|
18
|
Lee U, Woo YS, Han Y, Gutiérrez HR, Kim UJ, Son H. Facile Morphological Qualification of Transferred Graphene by Phase-Shifting Interferometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002854. [PMID: 32797695 DOI: 10.1002/adma.202002854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Post-growth graphene transfer to a variety of host substrates for circuitry fabrication has been among the most popular subjects since its successful development via chemical vapor deposition in the past decade. Fast and reliable evaluation tools for its morphological characteristics are essential for the development of defect-free transfer protocols. The implementation of conventional techniques, such as Raman spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy in production quality control at an industrial scale is difficult because they are limited to local areas, are time consuming, and their operation is complex. However, through a one-shot measurement within a few seconds, phase-shifting interferometry (PSI) successfully scans ≈1 mm2 of transferred graphene with a vertical resolution of ≈0.1 nm. This provides crucial morphological information, such as the surface roughness derived from polymer residues, the thickness of the graphene, and its adhesive strength with respect to the target substrates. Graphene samples transferred via four different methods are evaluated using PSI, Raman spectroscopy, and AFM. Although the thickness of the nanomaterials measured by PSI can be highly sensitive to their refractive indices, PSI is successfully demonstrated to be a powerful tool for investigating the morphological characteristics of the transferred graphene for industrial and research purposes.
Collapse
Affiliation(s)
- Ukjae Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yun Sung Woo
- Department of Materials Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yoojoong Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Nano Technology Division, NANOBASE Inc., Seoul, 08502, Republic of Korea
| | | | - Un Jeong Kim
- Imaging Device Laboratory, Samsung Advanced Institute of Technology, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
19
|
Liu F, Zhang H, Huang H, Yan Y. Synthesis of graphene with different layers on paper-like sintered stainless steel fibers and its application as a metal-free catalyst for catalytic wet peroxide oxidation of phenol. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121246. [PMID: 31585277 DOI: 10.1016/j.jhazmat.2019.121246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Different layers of graphene (Gr) films are prepared on the paper-like sintered stainless steel fibers (PSSF) support with three-dimensional structure by CVD method. The effects of acetylene flow rate, deposition time, and deposition temperature on the properties of PSSF-Gr are investigated by EDS, AFM, SEM, TEM, and Raman spectroscopy, respectively. Then, the catalytic performances of PSSF-Gr with different layers of Gr films as metal-free catalysts for catalytic wet peroxide oxidation (CWPO) of phenol are assessed in the continuous fixed-bed reactor. The catalytic results demonstrate that the PSSF-Gr catalyst with single layer graphene film achieves the best catalytic performance (phenol and TOC removal efficiency reach 99% and 73%, respectively) after continuously operating for 6 h. Under the treatment of the PSSF-Gr catalyst with single-layer graphene, total phenol oxidation and excellent TOC removal (maintain about 71%) have been achieved for the long-term operation (38 h). Moreover, the phenol conversion of blank experiment (without catalyst) and PSSF are around 40%, which are caused by thermal degradation and thus, the excellent catalytic activity of PSSF-Gr is ascribed to graphene. Like other Fenton's catalysts, the catalytic mechanism of PSSF-Gr catalyst in phenol degradation is also a ·OH mechanism.
Collapse
Affiliation(s)
- Feiyan Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Huiping Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Haoxin Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Ying Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
20
|
Liu F, Zhang H, Yan Y, Huang H. Graphene as efficient and robust catalysts for catalytic wet peroxide oxidation of phenol in a continuous fixed-bed reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134772. [PMID: 31731204 DOI: 10.1016/j.scitotenv.2019.134772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Monolayer graphene film (Gr) as a metal-free catalyst was synthesized on the paper-like sintered stainless steel fibers (PSSF) with three-dimensional net structure by chemical vapor deposition (CVD) technique. The prepared PSSF-Gr was characterized by SEM, EDS, XRD, AFM, TEM, and Raman spectroscopy. Then, the optimum reaction conditions for catalytic wet peroxide oxidation (CWPO) of phenol in a continuous reactor using PSSF-Gr catalysts were explored by analyzing the effects of reaction temperature, feed flow rate, and catalyst bed height on catalytic performance. Moreover, the long-term stability of PSSF-Gr catalyst was investigated and demonstrated complete phenol oxidation and dramatic TOC removal (values ranging between 80.7% and 91.0%) after continuously operating for 72 h under optimum condition. Finally, a reasonable reaction mechanism for CWPO of phenol was proposed by analyzing the HPLC results and evolution of aromatic intermediates content. From these results, seldom toxic aromatic intermediates were observed on account of the production of short-chain organic acids by opening of aromatic ring, which subsequently mineralized to CO2 and H2O. The simple preparation method, unique structure, extraordinary catalytic activity and stability of the graphene-based material would provide a new potential catalyst for environmental catalysis.
Collapse
Affiliation(s)
- Feiyan Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Huiping Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Ying Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| | - Haoxin Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
21
|
Li L, Gao M, Baltrusaitis J, Shi D. The shape-dependent surface oxidation of 2D ultrathin Mo 2C crystals. NANOSCALE ADVANCES 2019; 1:4692-4696. [PMID: 36133110 PMCID: PMC9419211 DOI: 10.1039/c9na00504h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/08/2019] [Indexed: 06/16/2023]
Abstract
2D atomic crystals have been widely explored, usually owing to their numerous shapes, of which the typical hexagon has drawn the most interest. However, the relationship between shape and properties has not been fully probed, owing to the lack of a proper system. Here, we demonstrate for the first time the shape-dependent surface oxidation of 2D Mo2C crystals, where the elongated flakes are preferentially oxidized under ambient conditions when compared with regular ones, showing higher chemical activity. The gradual surface oxidation of elongated Mo2C crystals as a function of time is clearly observable. Structural determinations reveal that a discrepancy in the arrangement of Mo and C atoms between elongated and regular crystals accounts for the selective oxidation behavior. The identification of the shape-dependent surface oxidization of Mo2C crystals provides significant possibilities for tuning the properties of 2D materials via shape-control.
Collapse
Affiliation(s)
- Lin Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Min Gao
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 610054 China
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University 111 Research drive Bethlehem PA 18015 USA
| | - Dong Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 610054 P. R. China
| |
Collapse
|
22
|
Functionalization of Carbon Nanomaterials for Biomedical Applications. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past decade, carbon nanostructures (CNSs) have been widely used in a variety of biomedical applications. Examples are the use of CNSs for drug and protein delivery or in tools to locally dispense nucleic acids to fight tumor affections. CNSs were successfully utilized in diagnostics and in noninvasive and highly sensitive imaging devices thanks to their optical properties in the near infrared region. However, biomedical applications require a complete biocompatibility to avoid adverse reactions of the immune system and CNSs potentials for biodegradability. Water is one of the main constituents of the living matter. Unfortunately, one of the disadvantages of CNSs is their poor solubility. Surface functionalization of CNSs is commonly utilized as an efficient solution to both tune the surface wettability of CNSs and impart biocompatible properties. Grafting functional groups onto the CNSs surface consists in bonding the desired chemical species on the carbon nanoparticles via wet or dry processes leading to the formation of a stable interaction. This latter may be of different nature as the van Der Waals, the electrostatic or the covalent, the π-π interaction, the hydrogen bond etc. depending on the process and on the functional molecule at play. Grafting is utilized for multiple purposes including bonding mimetic agents such as polyethylene glycol, drug/protein adsorption, attaching nanostructures to increase the CNSs opacity to selected wavelengths or provide magnetic properties. This makes the CNSs a very versatile tool for a broad selection of applications as medicinal biochips, new high-performance platforms for magnetic resonance (MR), photothermal therapy, molecular imaging, tissue engineering, and neuroscience. The scope of this work is to highlight up-to-date using of the functionalized carbon materials such as graphene, carbon fibers, carbon nanotubes, fullerene and nanodiamonds in biomedical applications.
Collapse
|
23
|
Zhao S, Wang L, Fu L. Precise Vapor-Phase Synthesis of Two-Dimensional Atomic Single Crystals. iScience 2019; 20:527-545. [PMID: 31655063 PMCID: PMC6818371 DOI: 10.1016/j.isci.2019.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional atomic single crystals (2DASCs) have drawn immense attention because of their potential for fundamental research and new technologies. Novel properties of 2DASCs are closely related to their atomic structures, and effective modulation of the structures allows for exploring various practical applications. Precise vapor-phase synthesis of 2DASCs with tunable thickness, selectable phase, and controllable chemical composition can be realized to adjust their band structures and electronic properties. This review highlights the latest advances in the precise vapor-phase synthesis of 2DASCs. We thoroughly elaborate on strategies toward the accurate control of layer number, phase, chemical composition of layered 2DASCs, and thickness of non-layered 2DASCs. Finally, we suggest forward-looking solutions to the challenges and directions of future developments in this emerging field.
Collapse
Affiliation(s)
- Shasha Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
24
|
Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat Chem 2019; 11:730-736. [PMID: 31308494 DOI: 10.1038/s41557-019-0290-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
Two-dimensional materials show a variety of promising properties, and controlling their growth is an important aspect for practical applications. To this end, active species such as hydrogen and oxygen are commonly introduced into reactors to promote the synthesis of two-dimensional materials with specific characteristics. Here, we demonstrate that fluorine can play a crucial role in tuning the growth kinetics of three representative two-dimensional materials (graphene, hexagonal boron nitride and WS2). When growing graphene by chemical vapour deposition on a copper foil, fluorine released from the decomposition of a metal fluoride placed near the copper foil greatly accelerates the growth of the graphene (up to a rate of ~200 μm s-1). Theoretical calculations show that it does so by promoting decomposition of the methane feedstock, which converts the endothermic growth process to an exothermic one. We further show that the presence of fluorine also accelerates the growth of two-dimensional hexagonal boron nitride and WS2.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China.,State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaozhi Xu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China.,School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China
| | - Lu Qiu
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan, Republic of Korea.,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Muhong Wu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Ruixi Qiao
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China
| | - Li Wang
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jinhuan Wang
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China
| | - Jingjing Niu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China
| | - Jing Liang
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China
| | - Xu Zhou
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China.,State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhihong Zhang
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, China
| | - Peng Gao
- International Centre for Quantum Materials, Peking University, Beijing, China.,Collaborative Innovation Centre of Quantum Matter, Beijing, China
| | - Wenlong Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, China
| | - Ying Jiang
- International Centre for Quantum Materials, Peking University, Beijing, China
| | - Xiaosong Wu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China
| | - Dapeng Yu
- Institute for Quantum Science and Engineering and Department of Physics, South University of Science and Technology of China, Shenzhen, China.,Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen, China
| | - Enge Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China.,International Centre for Quantum Materials, Peking University, Beijing, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, China.
| | - Feng Ding
- Centre for Multidimensional Carbon Materials, Institute for Basic Science, Ulsan, Republic of Korea. .,School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing, China. .,Collaborative Innovation Centre of Quantum Matter, Beijing, China.
| |
Collapse
|
25
|
Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y, Qiu Z, Yu G, Li A, Qiao S, Wang H, Yu Q, Xie X. Epitaxial Growth of 6 in. Single-Crystalline Graphene on a Cu/Ni (111) Film at 750 °C via Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805395. [PMID: 30942946 DOI: 10.1002/smll.201805395] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/24/2019] [Indexed: 06/09/2023]
Abstract
The future electronic application of graphene highly relies on the production of large-area high-quality single-crystal graphene. However, the growth of single-crystal graphene on different substrates via either single nucleation or seamless stitching is carried out at a temperature of 1000 °C or higher. The usage of this high temperature generates a variety of problems, including complexity of operation, higher contamination, metal evaporation, and wrinkles owing to the mismatch of thermal expansion coefficients between the substrate and graphene. Here, a new approach for the fabrication of ultraflat single-crystal graphene using Cu/Ni (111)/sapphire wafers at lower temperature is reported. It is found that the temperature of epitaxial growth of graphene using Cu/Ni (111) can be reduced to 750 °C, much lower than that of earlier reports on catalytic surfaces. Devices made of graphene grown at 750 °C have a carrier mobility up to ≈9700 cm2 V-1 s-1 at room temperature. This work shines light on a way toward a much lower temperature growth of high-quality graphene in single crystallinity, which could benefit future electronic applications.
Collapse
Affiliation(s)
- Xuefu Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianru Wu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Qi Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huishan Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Hailong Zhu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiying Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Ren Jiang
- Department of Physics, East China Normal University, Shanghai, 200241, China
| | - Tianchao Niu
- Herbert Gleiter Institute of Nanoscience, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhuojun Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Youwei Zhang
- State Key Laboratory of ASIC and System School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhijun Qiu
- State Key Laboratory of ASIC and System School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Guanghui Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Ang Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Shan Qiao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Haomin Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Qingkai Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
| | - Xiaoming Xie
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Chinese Academy of Sciences, Center for Excellence in Superconducting Electronics (CENSE), 865 Chang Ning Road, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200031, China
| |
Collapse
|
26
|
Yang F, Zhao H, Wang X, Liu X, Liu Q, Liu X, Jin C, Wang R, Li Y. Atomic Scale Stability of Tungsten–Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. J Am Chem Soc 2019; 141:5871-5879. [DOI: 10.1021/jacs.9b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haofei Zhao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaowei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xu Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qidong Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiyan Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Liu J, Fu L. Controllable Growth of Graphene on Liquid Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800690. [PMID: 30536644 DOI: 10.1002/adma.201800690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/29/2018] [Indexed: 06/09/2023]
Abstract
Controllable fabrication of graphene is necessary for its practical application. Chemical vapor deposition (CVD) approaches based on solid metal substrates with morphology-rich surfaces, such as copper (Cu) and nickel (Ni), suffer from the drawbacks of inhomogeneous nucleation and uncontrollable carbon precipitation. Liquid substrates offer a quasiatomically smooth surface, which enables the growth of uniform graphene layers. The fast surface diffusion rates also lead to unique growth and etching kinetics for achieving graphene grains with novel morphologies. The rheological surface endows the graphene grains with self-adjusted rotation, alignment, and movement that are driven by specific interactions. The intermediary-free transfer or the direct growth of graphene on insulated substrates is demonstrated using liquid metals. Here, the controllable growth process of graphene on a liquid surface to promote the development of attractive liquid CVD strategies is in focus. The exciting progress in controlled growth, etching, self-assembly, and delivery of graphene on a liquid surface is presented and discussed in depth. In addition, prospects and further developments in these exciting fields of graphene growth on a liquid surface are discussed.
Collapse
Affiliation(s)
- Jinxin Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
28
|
Deng B, Liu Z, Peng H. Toward Mass Production of CVD Graphene Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1800996. [PMID: 30277604 DOI: 10.1002/adma.201800996] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/14/2018] [Indexed: 05/09/2023]
Abstract
Chemical vapor deposition (CVD) is considered to be an efficient method for fabricating large-area and high-quality graphene films due to its excellent controllability and scalability. Great efforts have been made to control the growth of graphene to achieve large domain sizes, uniform layers, fast growth, and low synthesis temperatures. Some attempts have been made by both the scientific community and startup companies to mass produce graphene films; however, there is a large difference in the quality of graphene synthesized on a laboratory scale and an industrial scale. Here, recent progress toward the mass production of CVD graphene films is summarized, including the manufacturing process, equipment, and critical process parameters. Moreover, the large-scale homogeneity of graphene films and fast characterization methods are also discussed, which are crucial for quality control in mass production.
Collapse
Affiliation(s)
- Bing Deng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100094, China
| | - Hailin Peng
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100094, China
| |
Collapse
|
29
|
Hairpin-structured probe conjugated nano-graphene oxide for the cellular detection of connective tissue growth factor mRNA. Anal Chim Acta 2018; 1038:140-147. [DOI: 10.1016/j.aca.2018.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 11/22/2022]
|
30
|
Zeng M, Fu L. Controllable Fabrication of Graphene and Related Two-Dimensional Materials on Liquid Metals via Chemical Vapor Deposition. Acc Chem Res 2018; 51:2839-2847. [PMID: 30222313 DOI: 10.1021/acs.accounts.8b00293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Due to the confinement of the charge, spin, and heat transport in the plane, graphene and related two-dimensional (2D) materials have been demonstrated to own many unique and excellent properties and witnessed many breakthroughs in physics. They show great application potential in many fields, especially for electronics and optoelectronics. However, a bottleneck to widespread applications is precise and reliable fabrication, in which the control of the layer number and domain assembly is the most basic and important since they directly determine the qualities and properties of 2D materials. The chemical vapor deposition (CVD) strategy was regarded as the frontrunner to achieve this target, and the design of the catalytic substrate is of great significance since it has the most direct influence on the catalysis and mass transfer, which can be the most essential elemental steps. In recent years, as compared to traditional solid metal catalysts, the emergence of liquid metal catalysts has brought a brand-new perspective and contributes to a huge change and optimization in the fabrication of 2D materials. On one hand, strictly self-limited growth behavior is discovered and is robust to the variation of the growth parameters. The atoms in the liquid metal tend to move intensely and arrange in an amorphous and isotropic way. The liquid surface is smooth and isotropic, and the vacancies in the fluidic liquid phase enable the embedding of heteroatoms. The phase transition from liquid to solid will facilitate the unique control of the mass-transfer path, which can trigger new growth mechanisms. On the other hand, the excellent rheological properties of liquid metals allow us to explore self-assembly of the 2D materials grown on the surface, which can activate new applications based on the derived collective properties, such as the integrated devices. Indeed, liquid metals show many unique behaviors in the catalytic growth and assembly of 2D materials. Thus, this Account aims to highlight the controllable fabrication of graphene and related 2D materials on liquid metals. By utilizing the phase transition of liquid metals, the segregation of precursors in the bulk can be controlled, leading to self-limited growth. By utilizing the fluidity of the liquid metals, 2D material crystals can achieve self-assembly on their surface, including oriented stitching, ordered assembly, and heterostacking, which enables the creation of new multilevel or hybrid structures, leading to property and function extension and even the emergence of new physics. Finally, the unique liquid characteristic of liquid metals can also offer us new ideas about the transfer process. By utilizing the shear transformation of liquid metals, the direct sliding transfer of 2D materials onto arbitrary substrates can be realized. The research concerning the self-limited growth, self-assembly, and sliding transfer of 2D materials on liquid metals is just raising the curtain on the behavioral study of 2D materials on liquid metals. We believe these primary technology developments revealed by liquid metals will establish a solid foundation for both fundamental research and practical application of 2D materials.
Collapse
Affiliation(s)
- Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| |
Collapse
|
31
|
Surface potential and thin film quality of low work function metals on epitaxial graphene. Sci Rep 2018; 8:16487. [PMID: 30405192 PMCID: PMC6220296 DOI: 10.1038/s41598-018-34595-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
Metal films deposited on graphene are known to influence its electronic properties, but little is known about graphene's interactions with very low work function rare earth metals. Here we report on the work functions of a wide range of metals deposited on n-type epitaxial graphene (EG) as measured by Kelvin Probe Force Microscopy (KPFM). We compare the behaviors of rare earth metals (Pr, Eu, Er, Yb, and Y) with commonly used noble metals (Cr, Cu, Rh, Ni, Au, and Pt). The rare earth films oxidize rapidly, and exhibit unique behaviors when on graphene. We find that the measured work function of the low work function group is consistently higher than predicted, unlike the noble metals, which is likely due to rapid oxidation during measurement. Some of the low work function metals interact with graphene; for example, Eu exhibits bonding anomalies along the metal-graphene perimeter. We observe no correlation between metal work function and photovoltage, implying the metal-graphene interface properties are a more determinant factor. Yb emerges as the best choice for future applications requiring a low-work function electrical contact on graphene. Yb films have the strongest photovoltage response and maintains a relatively low surface roughness, ~5 nm, despite sensitivity to oxidation.
Collapse
|
32
|
Khan A, Islam SM, Ahmed S, Kumar RR, Habib MR, Huang K, Hu M, Yu X, Yang D. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800050. [PMID: 30479910 PMCID: PMC6247071 DOI: 10.1002/advs.201800050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/22/2018] [Indexed: 05/12/2023]
Abstract
To fabricate graphene based electronic and optoelectronic devices, it is highly desirable to develop a variety of metal-catalyst free chemical vapor deposition (CVD) techniques for direct synthesis of graphene on dielectric and semiconducting substrates. This will help to avoid metallic impurities, high costs, time consuming processes, and defect-inducing graphene transfer processes. Direct CVD growth of graphene on dielectric substrates is usually difficult to accomplish due to their low surface energy. However, a low-temperature plasma enhanced CVD technique could help to solve this problem. Here, the recent progress of metal-catalyst free direct CVD growth of graphene on technologically important dielectric (SiO2, ZrO2, HfO2, h-BN, Al2O3, Si3N4, quartz, MgO, SrTiO3, TiO2, etc.) and semiconducting (Si, Ge, GaN, and SiC) substrates is reviewed. High and low temperature direct CVD growth of graphene on these substrates including growth mechanism and morphology is discussed. Detailed discussions are also presented for Si and Ge substrates, which are necessary for next generation graphene/Si/Ge based hybrid electronic devices. Finally, the technology development of the metal-catalyst free direct CVD growth of graphene on these substrates is concluded, with future outlooks.
Collapse
Affiliation(s)
- Afzal Khan
- State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Sk Masiul Islam
- Optoelectronics and MOEMS GroupCouncil of Scientific and Industrial Research‐Central Electronics Engineering Research InstitutePilani333031RajasthanIndia
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002Uttar PradeshIndia
| | - Shahzad Ahmed
- Centre for Nanoscience and NanotechnologyJamia Millia Islamia (Central University)New Delhi110025India
| | - Rishi R. Kumar
- Centre for Nanoscience and NanotechnologyJamia Millia Islamia (Central University)New Delhi110025India
| | - Mohammad R. Habib
- State Key Laboratory of Silicon Materials and College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Kun Huang
- State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Ming Hu
- State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Xuegong Yu
- State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| | - Deren Yang
- State Key Laboratory of Silicon Materials and School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
33
|
Gao J, Xu Z, Chen S, Bharathi MS, Zhang YW. Computational Understanding of the Growth of 2D Materials. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Junfeng Gao
- Institute of High Performance Computing; A*STAR Singapore 138632 Singapore
| | - Ziwei Xu
- School of Materials Science & Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Shuai Chen
- Institute of High Performance Computing; A*STAR Singapore 138632 Singapore
| | | | - Yong-Wei Zhang
- Institute of High Performance Computing; A*STAR Singapore 138632 Singapore
| |
Collapse
|
34
|
Realization of Graphene on the Surface of Electroless Ni–P Coating for Short-Term Corrosion Prevention. COATINGS 2018. [DOI: 10.3390/coatings8040130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Zeng M, Xiao Y, Liu J, Yang K, Fu L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem Rev 2018; 118:6236-6296. [DOI: 10.1021/acs.chemrev.7b00633] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yao Xiao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| | - Jinxin Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kena Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Cabrero-Vilatela A, Alexander-Webber JA, Sagade AA, Aria AI, Braeuninger-Weimer P, Martin MB, Weatherup RS, Hofmann S. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. NANOTECHNOLOGY 2017; 28:485201. [PMID: 29039352 DOI: 10.1088/1361-6528/aa940c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.
Collapse
Affiliation(s)
- A Cabrero-Vilatela
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu Z, Zhan L, Wan W, Zhao Z, Shih TM, Cai W. Capabilities of transition metals in retarding the bonding of carbon atoms to minimize dendritic graphene. NANOSCALE 2017; 9:14804-14808. [PMID: 28956047 DOI: 10.1039/c7nr05253g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The avoidance of growing dendritic graphene on the copper substrate during the chemical vapor deposition process is greatly desired. Here we have identified a mechanism, in which (1) transition metal plates placed inside the copper pockets reduce the majority of active carbon atoms to eventually suppress the graphene growth rate, and (2) transition metals etch graphene C-C bonds along defective edges to grow into zigzag-edge ending domains with higher priorities. Via isotopic labeling of the methane method, we have observed bright-dark-alternating hexagonal-shaped rings, which are shown in Raman mapping images. Under a hydrogen atmosphere, we are capable of acquiring hexagonal openings within graphene domains by means of transition-metal-driven catalytic etching. This methodology may work as a simple and convenient way to determine graphene size and crystal orientation, and may enable the etching of graphene into smooth and ordered zigzag edge nanoribbons without compromising the quality of graphene.
Collapse
Affiliation(s)
- Zhenwei Zhu
- Department of Physics, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, 361005, China.
| | | | | | | | | | | |
Collapse
|
38
|
Sugime H, D'Arsié L, Esconjauregui S, Zhong G, Wu X, Hildebrandt E, Sezen H, Amati M, Gregoratti L, Weatherup RS, Robertson J. Low temperature growth of fully covered single-layer graphene using a CoCu catalyst. NANOSCALE 2017; 9:14467-14475. [PMID: 28926077 DOI: 10.1039/c7nr02553j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A bimetallic CoCu alloy thin-film catalyst is developed that enables the growth of uniform, high-quality graphene at 750 °C in 3 min by chemical vapour deposition. The growth outcome is found to vary significantly as the Cu concentration is varied, with ∼1 at% Cu added to Co yielding complete coverage single-layer graphene growth for the conditions used. The suppression of multilayer formation is attributable to Cu decoration of high reactivity sites on the Co surface which otherwise serve as preferential nucleation sites for multilayer graphene. X-ray photoemission spectroscopy shows that Co and Cu form an alloy at high temperatures, which has a drastically lower carbon solubility, as determined by using the calculated Co-Cu-C ternary phase diagram. Raman spectroscopy confirms the high quality (ID/IG < 0.05) and spatial uniformity of the single-layer graphene. The rational design of a bimetallic catalyst highlights the potential of catalyst alloying for producing two-dimensional materials with tailored properties.
Collapse
Affiliation(s)
- Hisashi Sugime
- Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050, Japan. and Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Lorenzo D'Arsié
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | | | - Guofang Zhong
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Xingyi Wu
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Eugen Hildebrandt
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Hikmet Sezen
- Elettra-Sincrotrone Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149, Trieste, Italy
| | - Matteo Amati
- Elettra-Sincrotrone Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149, Trieste, Italy
| | - Luca Gregoratti
- Elettra-Sincrotrone Trieste S.C.p.A., AREA Science Park, S.S. 14 km 163.5, 34149, Trieste, Italy
| | - Robert S Weatherup
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - John Robertson
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| |
Collapse
|
39
|
Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci Bull (Beijing) 2017; 62:1074-1080. [PMID: 36659334 DOI: 10.1016/j.scib.2017.07.005] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 01/21/2023]
Abstract
A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of single-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20min, of a graphene film of (5×50)cm2 dimension with >99% ultra-highly oriented grains. This growth was achieved by: (1) synthesis of metre-sized single-crystal Cu(111) foil as substrate; (2) epitaxial growth of graphene islands on the Cu(111) surface; (3) seamless merging of such graphene islands into a graphene film with high single crystallinity and (4) the ultrafast growth of graphene film. These achievements were realized by a temperature-gradient-driven annealing technique to produce single-crystal Cu(111) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains (if any), has a mobility up to ∼23,000cm2V-1s-1 at 4K and room temperature sheet resistance of ∼230Ω/□. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.
Collapse
|
40
|
Affiliation(s)
- Hui-Ming Cheng
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
41
|
Abstract
AbstractDue to the unique properties of graphene, single layer, bilayer or even few layer graphene peeled off from bulk graphite cannot meet the need of practical applications. Large size graphene with quality comparable to mechanically exfoliated graphene has been synthesized by chemical vapor deposition (CVD). The main development and the key issues in controllable chemical vapor deposition of graphene has been briefly discussed in this chapter. Various strategies for graphene layer number and stacking control, large size single crystal graphene domains on copper, graphene direct growth on dielectric substrates, and doping of graphene have been demonstrated. The methods summarized here will provide guidance on how to synthesize other two-dimensional materials beyond graphene.
Collapse
|
42
|
Transfer free graphene growth on SiO 2 substrate at 250 °C. Sci Rep 2017; 7:43756. [PMID: 28251997 PMCID: PMC5333118 DOI: 10.1038/srep43756] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/26/2017] [Indexed: 11/18/2022] Open
Abstract
Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.
Collapse
|
43
|
Gan W, Han N, Yang C, Wu P, Liu Q, Zhu W, Chen S, Wu C, Habib M, Sang Y, Muhammad Z, Zhao J, Song L. A Ternary Alloy Substrate to Synthesize Monolayer Graphene with Liquid Carbon Precursor. ACS NANO 2017; 11:1371-1379. [PMID: 28085266 DOI: 10.1021/acsnano.6b06144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we demonstrate a ternary Cu2NiZn alloy substrate for controllably synthesizing monolayer graphene using a liquid carbon precursor cyclohexane via a facile CVD route. In contrast with elemental metal or bimetal substrates, the alloy-induced synergistic effects that provide an ideal metallic platform for much easier dehydrogenation of hydrocarbon molecules, more reasonable strength of adsorption energy of carbon monomer on surface and lower formation energies of carbon chains, largely renders the success growth of monolayer graphene with higher electrical mobility and lower defects. The growth mechanism is systemically investigated by our DFT calculations. This study provides a selective route for realizing high-quality graphene monolayer via a scalable synthetic method by using economic liquid carbon supplies and multialloy metal substrates.
Collapse
Affiliation(s)
- Wei Gan
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Nannan Han
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology , Ministry of Education, Dalian 116024, PR China
| | - Chao Yang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Peng Wu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Qin Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Wen Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Chuanqiang Wu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Muhammad Habib
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Yuan Sang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Zahir Muhammad
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology , Ministry of Education, Dalian 116024, PR China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China , Hefei, Anhui 230029, PR China
| |
Collapse
|
44
|
Lee HC, Liu WW, Chai SP, Mohamed AR, Aziz A, Khe CS, Hidayah NS, Hashim U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv 2017. [DOI: 10.1039/c7ra00392g] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Graphene has emerged as the most popular topic in the active research field since graphene's discovery in 2004 by Andrei Geim and Kostya Novoselov.
Collapse
Affiliation(s)
- H. Cheun Lee
- Institute of Nano Electronic Engineering
- Universiti Malaysia Perlis
- 01000 Kangar
- Malaysia
| | - Wei-Wen Liu
- Institute of Nano Electronic Engineering
- Universiti Malaysia Perlis
- 01000 Kangar
- Malaysia
| | | | - Abdul Rahman Mohamed
- School of Chemical Engineering
- Engineering Campus
- Universiti Sains Malaysia
- 14300 Nibong Tebal
- Malaysia
| | - Azizan Aziz
- School of Material and Mineral Resources Engineering
- Engineering Campus
- Universiti Sains Malaysia
- 14300 Nibong Tebal
- Malaysia
| | - Cheng-Seong Khe
- Department of Fundamental and Applied Sciences
- Universiti Teknologi PETRONAS
- Bandar Seri Iskandar
- Malaysia
| | - N. M. S. Hidayah
- Institute of Nano Electronic Engineering
- Universiti Malaysia Perlis
- 01000 Kangar
- Malaysia
| | - U. Hashim
- Institute of Nano Electronic Engineering
- Universiti Malaysia Perlis
- 01000 Kangar
- Malaysia
| |
Collapse
|
45
|
Zhao G, Li X, Huang M, Zhen Z, Zhong Y, Chen Q, Zhao X, He Y, Hu R, Yang T, Zhang R, Li C, Kong J, Xu JB, Ruoff RS, Zhu H. The physics and chemistry of graphene-on-surfaces. Chem Soc Rev 2017; 46:4417-4449. [DOI: 10.1039/c7cs00256d] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review describes the major “graphene-on-surface” structures and examines the roles of their properties in governing the overall performance for specific applications.
Collapse
Affiliation(s)
- Guoke Zhao
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Xinming Li
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Meirong Huang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Zhen Zhen
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Yujia Zhong
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Qiao Chen
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Xuanliang Zhao
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Yijia He
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Ruirui Hu
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Tingting Yang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Rujing Zhang
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Changli Li
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| | - Jing Kong
- Department of Electrical Engineering and Computer Sciences
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Jian-Bin Xu
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- China
| | - Rodney S. Ruoff
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), and Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan
- Republic of Korea
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing
- School of Materials Science and Engineering, and Center for Nano and Micro Mechanics
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
46
|
Araby MI, Rosmi MS, Vishwakarma R, Sharma S, Wakamatsu Y, Takahashi K, Kalita G, Kitazawa M, Tanemura M. Graphene formation at 150 °C using indium as catalyst. RSC Adv 2017. [DOI: 10.1039/c7ra07892g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene was synthesized at 150 °C. Carbon foils were irradiated with Ar+ions with a simultaneous supply of indium to synthesize conical structures with nanofibers giving new insight into the catalytic activity of indium in graphene synthesis.
Collapse
Affiliation(s)
- Mona Ibrahim Araby
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Mohamad Saufi Rosmi
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Riteshkumar Vishwakarma
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Subash Sharma
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Yuji Wakamatsu
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Kazunari Takahashi
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | - Golap Kalita
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| | | | - Masaki Tanemura
- Department of Physical Science and Engineering
- Nagoya Institute of Technology
- Nagoya 466-8555
- Japan
| |
Collapse
|
47
|
Sun J, Chen Y, Priydarshi MK, Gao T, Song X, Zhang Y, Liu Z. Graphene Glass from Direct CVD Routes: Production and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10333-10339. [PMID: 27677254 DOI: 10.1002/adma.201602247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/14/2016] [Indexed: 05/05/2023]
Abstract
Recently, direct chemical vapor deposition (CVD) growth of graphene on various types of glasses has emerged as a promising route to produce graphene glass, with advantages such as tunable quality, excellent film uniformity and potential scalability. Crucial to the performance of this graphene-coated glass is that the outstanding properties of graphene are fully retained for endowing glass with new surface characteristics, making direct-CVD-derived graphene glass versatile enough for developing various applications for daily life. Herein, recent advances in the synthesis of graphene glass, particularly via direct CVD approaches, are presented. Key applications of such graphene materials in transparent conductors, smart windows, simple heating devices, solar-cell electrodes, cell culture medium, and water harvesters are also highlighted.
Collapse
Affiliation(s)
- Jingyu Sun
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yubin Chen
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Manish Kr Priydarshi
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Teng Gao
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiuju Song
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
48
|
Zhang Q, Tan L, Chen Y, Zhang T, Wang W, Liu Z, Fu L. Human-Like Sensing and Reflexes of Graphene-Based Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600130. [PMID: 27981005 PMCID: PMC5157176 DOI: 10.1002/advs.201600130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/26/2016] [Indexed: 05/07/2023]
Abstract
Humans have numerous senses, wherein vision, hearing, smell, taste, and touch are considered as the five conventionally acknowledged senses. Triggered by light, sound, or other physical stimulations, the sensory organs of human body are excited, leading to the transformation of the afferent energy into neural activity. Also converting other signals into electronical signals, graphene-based film shows its inherent advantages in responding to the tiny stimulations. In this review, the human-like senses and reflexes of graphene-based films are presented. The review starts with the brief discussions about the preparation and optimization of graphene-based film, as where as its new progress in synthesis method, transfer operation, film-formation technologies and optimization techniques. Various human-like senses of graphene-based film and their recent advancements are then summarized, including light-sensitive devices, acoustic devices, gas sensors, biomolecules and wearable devices. Similar to the reflex action of humans, graphene-based film also exhibits reflex when under thermal radiation and light actuation. Finally, the current challenges associated with human-like applications are discussed to help guide the future research on graphene films. At last, the future opportunities lie in the new applicable human-like senses and the integration of multiple senses that can raise a revolution in bionic devices.
Collapse
Affiliation(s)
- Qin Zhang
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072P. R. China
| | - Lifang Tan
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072P. R. China
| | - Yunxu Chen
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072P. R. China
| | - Tao Zhang
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072P. R. China
| | - Wenjie Wang
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072P. R. China
| | - Zhongfan Liu
- Center for NanochemistryCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| | - Lei Fu
- College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
49
|
Yang Y, Fu Q, Wei W, Bao X. Segregation growth of epitaxial graphene overlayers on Ni(111). Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1169-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Abstract
The inertness of graphene toward reaction with ambient molecules is essential for realizing durable devices with stable performance. Many device applications require graphene to contact with substrates, but whose impact on the chemical property of graphene has been largely overlooked. Here, we combine comprehensive first-principles analyses with experiments to show that graphene oxidation is highly sensitive to substrates. Graphene remains inert on SiO2 and hexagonal boron nitride but becomes increasingly weak against oxidation on metal substrates because of enhanced charge transfer and chemical interaction between them. In particular, Ni and Co substrates lead to spontaneous oxidation of graphene, while a Cu substrate maximally promotes the oxygen diffusion on graphene, with an estimated diffusivity 13 orders of magnitude higher than that on freestanding graphene. Bilayer graphene is revealed to have high oxidation resistance independent of substrate and thus is a better choice for high-performance nanoelectronics. Our findings should be extendable to a wide spectrum of chemical functionalizations of two-dimensional materials mediated by substrates.
Collapse
Affiliation(s)
- Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China
| | - Jun Yin
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China
| | - Xiaofei Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China
| | - Jidong Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China
| | - Jiahuan Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics , Nanjing 210016, China
| |
Collapse
|