1
|
Ghorbanzadeh Neghab M, Jalili-Nik M, Soltani A, Afshari AR, Hassanian SM, Rafatpanah H, Rezaee SA, Sadeghnia HR, Ataei Azimi S, Mashkani B. Rigosertib is more potent than wortmannin and rapamycin against adult T-cell leukemia-lymphoma. Biofactors 2023; 49:1174-1188. [PMID: 37345860 DOI: 10.1002/biof.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Human T lymphotropic virus type 1 (HTLV-1) infection can cause adult T-cell lymphoblastic leukemia (ATLL), an incurable, chemotherapy-resistant malignancy. In a quest for new therapeutic targets, our study sought to determine the levels of AKT, mTOR, and PI3K in ATLL MT-2 cells, HTLV-1 infected NIH/3T3 cells (Inf-3T3), and HTLV-1 infected patients (Carrier, HAM/TSP, and ATLL). Furthermore, the effects of rigosertib, wortmannin, and rapamycin on the PI3K/Akt/mTOR pathway to inhibit the proliferation of ATLL cells were examined. The results showed that mRNA expression of Akt/PI3K/mTOR was down-regulated in carrier, HAM/TSP, and ATLL patients, as well as MT-2, and Inf-3T3 cells, compared to the healthy individuals and untreated MT-2 and Inf-3T3 as controls. However, western blotting revealed an increase in the phosphorylated and activated forms of AKT and mTOR. Treating the cells with rapamycin, wortmannin, and rigosertib decreased the phosphorylated forms of Akt and mTOR and restored their mRNA expression levels. Using these inhibitors also significantly boosted the expression of the pro-apoptotic genes, Bax/Bcl-2 ratio as well as the expression of the tumor suppressor gene p53 in the MT-2 and Inf-3T3cells. Rigosertib was more potent than wortmannin and rapamycin in inducing sub-G1 and G2-M cell cycle arrest, as well as late apoptosis in the Inf-3T3 and MT-2 cells. It also synergized the cytotoxic effects of vincristine. These findings demonstrate that HTLV-1 downregulation of the mRNA level may occur as a negative feedback response to increased PI3K-Akt-mTOR phosphorylation by HTLV-1. Therefore, using rigosertib alone or in combination with common chemotherapy drugs may be beneficial in ATLL patients.
Collapse
Affiliation(s)
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Ataei Azimi
- Department of Hematology Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Wang Y, Iha H. The Novel Link between Gene Expression Profiles of Adult T-Cell Leukemia/Lymphoma Patients' Peripheral Blood Lymphocytes and Ferroptosis Susceptibility. Genes (Basel) 2023; 14:2005. [PMID: 38002949 PMCID: PMC10671613 DOI: 10.3390/genes14112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Ferroptosis, a regulated cell death dependent on iron, has garnered attention as a potential broad-spectrum anticancer approach in leukemia research. However, there has been limited ferroptosis research on ATL, an aggressive T-cell malignancy caused by HTLV-1 infection. Our study employs bioinformatic analysis, utilizing dataset GSE33615, to identify 46 ferroptosis-related DEGs and 26 autophagy-related DEGs in ATL cells. These DEGs are associated with various cellular responses, chemical stress, and iron-related pathways. Autophagy-related DEGs are linked to autophagy, apoptosis, NOD-like receptor signaling, TNF signaling, and the insulin resistance pathway. PPI network analysis revealed 10 hub genes and related biomolecules. Moreover, we predicted crucial miRNAs, transcription factors, and potential pharmacological compounds. We also screened the top 20 medications based on upregulated DEGs. In summary, our study establishes an innovative link between ATL treatment and ferroptosis, offering promising avenues for novel therapeutic strategies in ATL.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu 879-5593, Oita, Japan
| |
Collapse
|
3
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
4
|
Zheng M, Fan P, Yang P, Zheng J, Zhao D. Respiratory Syncytial Virus Nonstructural Protein 1 Promotes 5-Lipoxygenase via miR-19a-3p. J Immunol Res 2022; 2022:4086710. [PMID: 35637792 PMCID: PMC9146443 DOI: 10.1155/2022/4086710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/23/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) infection can regulate the expression of a wide range of noncoding microRNAs (miRNAs), in which mir-19a-3p can participate in airway inflammatory response by regulating 5-lipoxygenase (5-LO) pathway. RSV nonstructural protein (NS) 1 is involved in the airway hyperresponsiveness during RSV infection. Methods The expression levels of miR-19a-3p and inflammatory signaling-related indicators were detected using quantitative real-time PCR and western blot analyses on the A549 cells transfected with NS1 expression plasmids (pNS1). The 5-LO-mediated inflammatory signaling pathway was assessed when the miR-19a-3p or 5-LO was inhibited. Results The immunofluorescence analysis showed that the plasmid-mediated NS1 protein was observed in both the cytoplasm and nucleus. The expression level of miR-19a-3p was significantly upregulated in the pNS1 or RSV-treated cells, which was reversed by the NS1 small interfering RNA. In addition, pNS1 also upregulated the expression of 5-LO, interleukin-5 (IL-5), and leukotriene B4 (LTB4), which was also significantly inhibited by the miR-19a-3p antagonists. The 5-LO inhibitor MK886 prevented the increase in the expression level of IL-5 induced by pNS1. Conclusions These results suggested that the RSV NS1 might play an important role in the pathogenesis of RSV by activating the 5-LO and subsequent inflammatory cytokines through miR-19a-3p.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Panpan Fan
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pu Yang
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongchi Zhao
- Department of Pediatrics, Children's Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Gutowska A, McKinnon K, Sarkis S, Doster MN, Bissa M, Moles R, Stamos JD, Rahman MA, Washington-Parks R, Davis D, Yarchoan R, Franchini G, Pise-Masison CA. Transient Viral Activation in Human T Cell Leukemia Virus Type 1-Infected Macaques Treated With Pomalidomide. Front Med (Lausanne) 2022; 9:897264. [PMID: 35602479 PMCID: PMC9119179 DOI: 10.3389/fmed.2022.897264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) persists in the host despite a vigorous immune response that includes cytotoxic T cells (CTL) and natural killer (NK) cells, suggesting the virus has developed effective mechanisms to counteract host immune surveillance. We recently showed that in vitro treatment of HTLV-1-infected cells with the drug pomalidomide (Pom) increases surface expression of MHC-I, ICAM-1, and B7-2, and significantly increases the susceptibility of HTLV-1-infected cells to NK and CTL killing, which is dependent on viral orf-I expression. We reasoned that by restoring cell surface expression of these molecules, Pom treatment has the potential to reduce virus burden by rendering infected cells susceptible to NK and CTL killing. We used the rhesus macaque model to determine if Pom treatment of infected individuals activates the host immune system and allows recognition and clearance of HTLV-1-infected cells. We administered Pom (0.2 mg/kg) orally to four HTLV-1-infected macaques over a 24 day period and collected blood, urine, and bone marrow samples throughout the study. Pom treatment caused immune activation in all four animals and a marked increase in proliferating CD4+, CD8+, and NK cells as measured by Ki-67+ cells. Activation markers HLA-DR, CD11b, and CD69 also increased during treatment. While we detected an increased frequency of cells with a memory CD8+ phenotype, we also found an increased frequency of cells with a Treg-like phenotype. Concomitant with immune activation, the frequency of detection of viral DNA and the HTLV-1-specific humoral response increased as well. In 3 of 4 animals, Pom treatment resulted in increased antibodies to HTLV-1 antigens as measured by western blot and p24Gag ELISA. Consistent with Pom inducing immune and HTLV-1 activation, we measured elevated leukotrienes LTB4 and LTE4 in the urine of all animals. Despite an increase in plasma LTB4, no significant changes in plasma cytokine/chemokine levels were detected. In all cases, however, cellular populations, LTB4, and LTE4 decreased to baseline or lower levels 2 weeks after cessation of treatment. These results indicated that Pom treatment induces a transient HTLV-1-specific immune activation in infected individuals, but also suggest Pom may not be effective as a single-agent therapeutic.
Collapse
Affiliation(s)
- Anna Gutowska
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Białystok, Białystok, Poland
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Ramona Moles
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - James D. Stamos
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - David Davis
- HIV and AIDS Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert Yarchoan
- HIV and AIDS Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccine Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- *Correspondence: Cynthia A. Pise-Masison,
| |
Collapse
|
6
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
7
|
Hiyoshi M, Takahashi N, Eltalkhawy YM, Noyori O, Lotfi S, Panaampon J, Okada S, Tanaka Y, Ueno T, Fujisawa JI, Sato Y, Suzuki T, Hasegawa H, Tokunaga M, Satou Y, Yasunaga JI, Matsuoka M, Utsunomiya A, Suzu S. M-Sec induced by HTLV-1 mediates an efficient viral transmission. PLoS Pathog 2021; 17:e1010126. [PMID: 34843591 PMCID: PMC8659635 DOI: 10.1371/journal.ppat.1010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/09/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects target cells primarily through cell-to-cell routes. Here, we provide evidence that cellular protein M-Sec plays a critical role in this process. When purified and briefly cultured, CD4+ T cells of HTLV-1 carriers, but not of HTLV-1- individuals, expressed M-Sec. The viral protein Tax was revealed to mediate M-Sec induction. Knockdown or pharmacological inhibition of M-Sec reduced viral infection in multiple co-culture conditions. Furthermore, M-Sec knockdown reduced the number of proviral copies in the tissues of a mouse model of HTLV-1 infection. Phenotypically, M-Sec knockdown or inhibition reduced not only plasma membrane protrusions and migratory activity of cells, but also large clusters of Gag, a viral structural protein required for the formation of viral particles. Taken together, these results suggest that M-Sec induced by Tax mediates an efficient cell-to-cell viral infection, which is likely due to enhanced membrane protrusions, cell migration, and the clustering of Gag. In the present study, we identified the cellular protein M-Sec as a host factor necessary for de novo infection of human T-cell leukemia virus type 1 (HTLV-1), the causative retrovirus of an aggressive blood cancer known as adult T-cell leukemia/lymphoma. The inhibition or knockdown of M-Sec in infected cells resulted in a reduced viral infection in several culture models and a mouse model. We recently demonstrated a similar role of M-Sec in macrophages infected with another human retrovirus HIV-1, but it has been generally thought that M-Sec is not related to HTLV-1 infection because of the lack of its expression in CD4+ T cells, the major target of HTLV-1. In this study, we revealed that CD4+ T cells of HTLV-1 asymptomatic carriers, but not those of HTLV-1- individuals, expressed M-Sec, and that the viral protein Tax mediated the induction of M-Sec. Thus, M-Sec is a new and useful tool for further understanding the process of HTLV-1 transmission.
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (MH); (SS)
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Youssef M. Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Osamu Noyori
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sameh Lotfi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jutatip Panaampon
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yuetsu Tanaka
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- * E-mail: (MH); (SS)
| |
Collapse
|
8
|
Espíndola ODM, Siteur-van Rijnstra E, Frankin E, Weijer K, van der Velden YU, Berkhout B, Blom B, Villaudy J. Early Effects of HTLV-1 Infection on the Activation, Exhaustion, and Differentiation of T-Cells in Humanized NSG Mice. Cells 2021; 10:2514. [PMID: 34685494 PMCID: PMC8534134 DOI: 10.3390/cells10102514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T-cells associated with HTLV-1 infection. In this study, we used the model of immunodeficient NSG mice reconstituted with a functional human immune system (HIS) to investigate early events in HTLV-1 pathogenesis. Upon infection, human T-cells rapidly increased in the blood and lymphoid tissues, particularly CD4+CD25+ T-cells. Proliferation of CD4+ T-cells in the spleen and mesenteric lymph nodes (MLN) correlated with HTLV-1 proviral load and CD25 expression. In addition, splenomegaly, a common feature of ATLL in humans, was also observed. CD4+ and CD8+ T-cells predominantly displayed an effector memory phenotype (CD45RA-CCR7-) and expressed CXCR3 and CCR5 chemokine receptors, suggesting the polarization into a Th1 phenotype. Activated CD8+ T-cells expressed granzyme B and perforin; however, the interferon-γ response by these cells was limited, possibly due to elevated PD-1 expression and increased frequency of CD4+FoxP3+ regulatory T-cells in MLN. Thus, HTLV-1-infected HIS-NSG mice reproduced several characteristics of infection in humans, and it may be helpful to investigate ATLL-related events and to perform preclinical studies. Moreover, aspects of chronic infection were already present at early stages in this experimental model. Collectively, we suggest that HTLV-1 infection modulates host immune responses to favor viral persistence.
Collapse
Affiliation(s)
- Otávio de Melo Espíndola
- Laboratory for Clinical Research in Neuroinfections, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esther Siteur-van Rijnstra
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Esmay Frankin
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Kees Weijer
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Yme Ubeles van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (E.S.-v.R.); (E.F.); (K.W.); (B.B.)
| | - Julien Villaudy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.U.v.d.V.); (B.B.); (J.V.)
- J&S Preclinical Solutions, 5345 RR Oss, The Netherlands
| |
Collapse
|
9
|
Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 2021; 45:fuaa066. [PMID: 33512504 PMCID: PMC8371277 DOI: 10.1093/femsre/fuaa066] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Lipid droplets (LDs) contribute to key pathways important for the physiology and pathophysiology of cells. In a homeostatic view, LDs regulate the storage of neutral lipids, protein sequestration, removal of toxic lipids and cellular communication; however, recent advancements in the field show these organelles as essential for various cellular stress response mechanisms, including inflammation and immunity, with LDs acting as hubs that integrate metabolic and inflammatory processes. The accumulation of LDs has become a hallmark of infection, and is often thought to be virally driven; however, recent evidence is pointing to a role for the upregulation of LDs in the production of a successful immune response to viral infection. The fatty acids housed in LDs are also gaining interest due to the role that these lipid species play during viral infection, and their link to the synthesis of bioactive lipid mediators that have been found to have a very complex role in viral infection. This review explores the role of LDs and their subsequent lipid mediators during viral infections and poses a paradigm shift in thinking in the field, whereby LDs may play pivotal roles in protecting the host against viral infection.
Collapse
Affiliation(s)
- Ebony A Monson
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Alice M Trenerry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Jay L Laws
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia, 3000
| | - Karla J Helbig
- School of Life Sciences, La Trobe University, Melbourne, Australia, 3083
| |
Collapse
|
10
|
Ahmadi Ghezeldasht S, Shamsian SAA, Gholizadeh Navashenaq J, Miri R, Ashrafi F, Mosavat A, Rezaee SA. HTLV-1 oncovirus-host interactions: From entry to the manifestation of associated diseases. Rev Med Virol 2021; 31:e2235. [PMID: 33742509 DOI: 10.1002/rmv.2235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
Human T lymphotropic virus type-1 (HTLV-1) is a well-known human oncovirus, associated with two life-threatening diseases, adult T cell leukaemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The study of this oncogenic virus is significant from two different aspects. First, HTLV-1 can be considered as a neglected public health problem, which may spread slowly worldwide. Second, the incidence of HTLV-1 associated diseases due to oncogenic effects and deterioration of the immune system towards autoimmune diseases are not fully understood. Furthermore, knowledge about viral routes of transmission is important for considering potential interventions, treatments or vaccines in endemic regions. In this review, novel characteristics of HTLV-1, such as the unusual infectivity of virions through the virological synapse, are discussed in the context of the HTLV-1 associated diseases (ATL and HAM/TSP).
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Akbar Shamsian
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | | | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Fereshteh Ashrafi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Rosewick N, Hahaut V, Durkin K, Artesi M, Karpe S, Wayet J, Griebel P, Arsic N, Marçais A, Hermine O, Burny A, Georges M, Van den Broeke A. An Improved Sequencing-Based Bioinformatics Pipeline to Track the Distribution and Clonal Architecture of Proviral Integration Sites. Front Microbiol 2020; 11:587306. [PMID: 33193242 PMCID: PMC7606357 DOI: 10.3389/fmicb.2020.587306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
The combined application of linear amplification-mediated PCR (LAM-PCR) protocols with next-generation sequencing (NGS) has had a large impact on our understanding of retroviral pathogenesis. Previously, considerable effort has been expended to optimize NGS methods to explore the genome-wide distribution of proviral integration sites and the clonal architecture of clinically important retroviruses like human T-cell leukemia virus type-1 (HTLV-1). Once sequencing data are generated, the application of rigorous bioinformatics analysis is central to the biological interpretation of the data. To better exploit the potential information available through these methods, we developed an optimized bioinformatics pipeline to analyze NGS clonality datasets. We found that short-read aligners, specifically designed to manage NGS datasets, provide increased speed, significantly reducing processing time and decreasing the computational burden. This is achieved while also accounting for sequencing base quality. We demonstrate the utility of an additional trimming step in the workflow, which adjusts for the number of reads supporting each insertion site. In addition, we developed a recall procedure to reduce bias associated with proviral integration within low complexity regions of the genome, providing a more accurate estimation of clone abundance. Finally, we recommend the application of a “clean-and-recover” step to clonality datasets generated from large cohorts and longitudinal studies. In summary, we report an optimized bioinformatics workflow for NGS clonality analysis and describe a new set of steps to guide the computational process. We demonstrate that the application of this protocol to the analysis of HTLV-1 and bovine leukemia virus (BLV) clonality datasets improves the quality of data processing and provides a more accurate definition of the clonal landscape in infected individuals. The optimized workflow and analysis recommendations can be implemented in the majority of bioinformatics pipelines developed to analyze LAM-PCR-based NGS clonality datasets.
Collapse
Affiliation(s)
- Nicolas Rosewick
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Keith Durkin
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Maria Artesi
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Snehal Karpe
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Jérôme Wayet
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Philip Griebel
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natasa Arsic
- VIDO-Intervac, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ambroise Marçais
- Service d'hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance publique hôpitaux de Paris, Paris, France
| | - Olivier Hermine
- Service d'hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance publique hôpitaux de Paris, Paris, France.,Institut Imagine, INSERM U1163, CNRS ERL8654, Paris, France
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| |
Collapse
|
12
|
He R, Chen Y, Cai Q. The role of the LTB4-BLT1 axis in health and disease. Pharmacol Res 2020; 158:104857. [PMID: 32439596 DOI: 10.1016/j.phrs.2020.104857] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Leukotriene B4 (LTB4) is a major type of lipid mediator that is rapidly generated from arachidonic acid through sequential action of 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTA4 hydrolase (LTA4H) in response to various stimuli. LTB4 is well known to be a chemoattractant for leukocytes, particularly neutrophils, via interaction with its high-affinity receptor BLT1. Extensive attention has been paid to the role of the LTB4-BLT1 axis in acute and chronic inflammatory diseases, such as infectious diseases, allergy, autoimmune diseases, and metabolic disease via mediating recruitment and/or activation of different types of inflammatory cells depending on different stages or the nature of inflammatory response. Recent studies also demonstrated that LTB4 acts on non-immune cells via BLT1 to initiate and/or amplify pathological inflammation in various tissues. In addition, emerging evidence reveals a complex role of the LTB4-BLT1 axis in cancer, either tumor-inhibitory or tumor-promoting, depending on the different target cells. In this review, we summarize both established understanding and the most recent progress in our knowledge about the LTB4-BLT1 axis in host defense, inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Zargari R, Mahdifar M, Mohammadi A, Vahidi Z, Hassanshahi G, Rafatpanah H. The Role of Chemokines in the Pathogenesis of HTLV-1. Front Microbiol 2020; 11:421. [PMID: 32231656 PMCID: PMC7083101 DOI: 10.3389/fmicb.2020.00421] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a human retrovirus that is associated with two main diseases: HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma (ATL). Chemokines are highly specialized groups of cytokines that play important roles in organizing, trafficking, homing, and in the migration of immune cells to the bone marrow, lymphoid organs and sites of infection and inflammation. Aberrant expression or function of chemokines, or their receptors, has been linked to the protection against or susceptibility to specific infectious diseases, as well as increased the risk of autoimmune diseases and malignancy. Chemokines and their receptors participate in pathogenesis of HTLV-1 associated diseases from inflammation in the central nervous system (CNS) which occurs in cases of HAM/TSP to T cell immortalization and tissue infiltration observed in ATL patients. Chemokines represent viable effective prognostic biomarkers for HTLV-1-associated diseases which provide the early identification of high-risk, treatment possibilities and high-yielding clinical trials. This review focuses on the emerging roles of these molecules in the outcome of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Razieh Zargari
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zohreh Vahidi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Voelkel NF, Peters-Golden M. A new treatment for severe pulmonary arterial hypertension based on an old idea: inhibition of 5-lipoxygenase. Pulm Circ 2020; 10:2045894019882635. [PMID: 32257113 PMCID: PMC7103594 DOI: 10.1177/2045894019882635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
It has been generally accepted that severe forms of pulmonary arterial hypertension are associated with inflammation. Plasma levels in patients with severe pulmonary arterial hypertension show elevated levels of interleukins and mediators of inflammation and histologically the diseased small pulmonary arterioles show infiltrates of inflammatory and immune cells. Here, we review the literature that connects pulmonary hypertension with the arachidonic acid/5-lipoxygenase-derived leukotriens. This mostly preclinical background data together with the availability of 5-lipoxygenase inhibitors and leukotriene receptor blockers provide the rationale for testing the hypothesis that 5-lipoxygenase products contribute to the pathobiology of severe pulmonary arterial hypertension in a subgroup of patients.
Collapse
Affiliation(s)
- Norbert F. Voelkel
- Department of Pulmonary Medicine,
University of Amsterdam Medical Centers, Amsterdam, the Netherlands
| | - Marc Peters-Golden
- Pulmonary and Critical Care Medicine
Division,
University
of Michigan Medical School, Ann Arbor, MI,
USA
| |
Collapse
|
15
|
Essential Role of Human T Cell Leukemia Virus Type 1 orf-I in Lethal Proliferation of CD4 + Cells in Humanized Mice. J Virol 2019; 93:JVI.00565-19. [PMID: 31315992 DOI: 10.1128/jvi.00565-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1 orf-I encodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, the in vivo requirements for orf-I expression vary in different animal models. In macaques, the ablation of orf-I expression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO In rabbits, HTLV-1p12KO is infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO We found that NOD/SCID/γC -/- c-kit+ mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+ CD25+ T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cells in vivo HTLV-1p12KO infection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of the orf-I initiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+ CD25+ T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCE Humanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+ T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+ T cell proliferation.
Collapse
|
16
|
Perrier-Groult E, Pérès E, Pasdeloup M, Gazzolo L, Duc Dodon M, Mallein-Gerin F. Evaluation of the biocompatibility and stability of allogeneic tissue-engineered cartilage in humanized mice. PLoS One 2019; 14:e0217183. [PMID: 31107916 PMCID: PMC6527235 DOI: 10.1371/journal.pone.0217183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage (AC) has poor capacities of regeneration and lesions often lead to osteoarthritis. Current AC reconstruction implies autologous chondrocyte implantation which requires tissue sampling and grafting. An alternative approach would be to use scaffolds containing off-the-shelf allogeneic human articular chondrocytes (HACs). To investigate tolerance of allogeneic HACs by the human immune system, we developed a humanized mouse model implanted with allogeneic cartilage constructs generated in vitro. A prerequisite of the study was to identify a scaffold that would not provoke inflammatory reaction in host. Therefore, we first compared the response of hu-mice to two biomaterials used in regenerative medicine, collagen sponge and agarose hydrogel. Four weeks after implantation in hu-mice, acellular collagen sponges, but not acellular agarose hydrogels, showed positive staining for CD3 (T lymphocytes) and CD68 (macrophages), suggesting that collagen scaffold elicits weak inflammatory reaction. These data led us to deepen our evaluation of the biocompatibility of allogeneic tissue-engineered cartilage by using agarose as scaffold. Agarose hydrogels were combined with allogeneic HACs to reconstruct cartilage in vitro. Particular attention was paid to HLA-A2 compatibility between HACs to be grafted and immune human cells of hu-mice: HLA-A2+ or HLA-A2- HACs agarose hydrogels were cultured in the presence of a chondrogenic cocktail and implanted in HLA-A2+ hu-mice. After four weeks implantation and regardless of the HLA-A2 phenotype, chondrocytes were well-differentiated and produced cartilage matrix in agarose. In addition, no sign of T-cell or macrophage infiltration was seen in the cartilaginous constructs and no significant increase in subpopulations of T lymphocytes and monocytes was detected in peripheral blood and spleen. We show for the first time that humanized mouse represents a useful model to investigate human immune responsiveness to tissue-engineered cartilage and our data together indicate that allogeneic cartilage constructs can be suitable for cartilage engineering.
Collapse
Affiliation(s)
- Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
- * E-mail:
| | - Eléonore Pérès
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| | - Louis Gazzolo
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Madeleine Duc Dodon
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| |
Collapse
|
17
|
Metabolome-based signature of disease pathology in MS. Mult Scler Relat Disord 2019; 31:12-21. [PMID: 30877925 DOI: 10.1016/j.msard.2019.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Diagnostic delays are common for multiple sclerosis (MS) since diagnosis typically depends on the presentation of nonspecific clinical symptoms together with radiologically-determined central nervous system (CNS) lesions. It is important to reduce diagnostic delays as earlier initiation of disease modifying therapies mitigates long-term disability. Developing a metabolomic blood-based MS biomarker is attractive, but prior efforts have largely focused on specific subsets of metabolite classes or analytical platforms. Thus, there are opportunities to interrogate metabolite profiles using more expansive and comprehensive approaches for developing MS biomarkers and for advancing our understanding of MS pathogenesis. METHODS To identify putative blood-based MS biomarkers, we comprehensively interrogated the metabolite profiles in 12 non-Hispanic white, non-smoking, male MS cases who were drug naïve for 3 months prior to biospecimen collection and 13 non-Hispanic white, non-smoking male controls who were frequency matched to cases by age and body mass index. We performed untargeted two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS) and targeted lipidomic and amino acid analysis on serum. 325 metabolites met quality control and supervised machine learning was used to identify metabolites most informative for MS status. The discrimination potential of these select metabolites were assessed using receiver operator characteristic curves based on logistic models; top candidate metabolites were defined as having area under the curves (AUC) >80%. The associations between whole-genome expression data and the top candidate metabolites were examined, followed by pathway enrichment analyses. Similar associations were examined for 175 putative MS risk variants and the top candidate metabolites. RESULTS 12 metabolites were determined to be informative for MS status, of which 6 had AUCs >80%: pyroglutamate, laurate, acylcarnitine C14:1, N-methylmaleimide, and 2 phosphatidylcholines (PC ae 40:5, PC ae 42:5). These metabolites participate in glutathione metabolism, fatty acid metabolism/oxidation, cellular membrane composition, and transient receptor potential channel signaling. Pathway analyses based on the gene expression association for each metabolite suggested enrichment for pathways associated with apoptosis and mitochondrial dysfunction. Interestingly, the predominant MS genetic risk allele HLA-DRB1×15:01 was associated with one of the 6 top metabolites. CONCLUSION Our analysis represents the most comprehensive description of metabolic changes associated with MS in serum, to date, with the inclusion of genomic and genetic information. We identified atypical metabolic processes that differed between MS patients and controls, which may enable the development of biological targets for diagnosis and treatment.
Collapse
|
18
|
Wei J, Gronert K. Eicosanoid and Specialized Proresolving Mediator Regulation of Lymphoid Cells. Trends Biochem Sci 2018; 44:214-225. [PMID: 30477730 DOI: 10.1016/j.tibs.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
Eicosanoids and specialized proresolving mediators (SPMs) regulate leukocyte function and inflammation. They are ideally positioned at the interface of the innate and adaptive immune responses when lymphocytes interact with leukocytes. Receptors for leukotriene B4 (LTB4), prostaglandin E2 (PGE2), and SPMs are expressed on lymphocytes. Evidence points toward an essential role of these lipid mediators (LMs) in direct regulation of lymphocyte functions. SPMs, which include lipoxins, demonstrate comprehensive protective actions with lymphocytes. LTB4 and PGE2 regulation of lymphocytes is diverse and depends on the interaction of lymphocytes with other cells. Importantly, both LTB4 and PGE2 are essential regulators of T cell antitumor activity. These LMs are attractive therapeutic targets to control dysregulated innate and adaptive immune responses, promote lymphocyte antitumor activity, and prevent tumor immune evasion.
Collapse
Affiliation(s)
- Jessica Wei
- Vision Science Program, School of Optometry, Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Karsten Gronert
- Vision Science Program, School of Optometry, Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Robust mucosal and systemic responses against HTLV-1 by delivery of multi-epitope vaccine in PLGA nanoparticles. Eur J Pharm Biopharm 2018; 133:321-330. [PMID: 30408519 DOI: 10.1016/j.ejpb.2018.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
In this investigation, the immunogenicity of HTLV-1 fusion epitope-loaded PLGA nanoparticles (NPs) was assessed in the absence or presence of co-encapsulated CpG ODN adjuvant, in a mice model. For this purpose, the multi-epitope chimera including Tax, env, and gag immunodominant HTLV-1 epitopes was encapsulated in biodegradable PLGA NPs with or without CpG adjuvant. PLGA nanospheres produced by a double emulsion method had a size of <200 nm, and encapsulation efficiency of chimera antigen was 85%. The release profile of radiolabeled chimera indicated that only 17.4% and 20.1% of chimera were released from PLGA NPs without or with co-encapsulated CPG ODN during one month, respectively. The PLGA formulations significantly elevated titers of IgG1, IgG2a, and sIgA antibodies, as well as IL-10, and IFN-γ cytokines and also reduced the amount of TGF-β1 production relative to the other vaccines. Additionally, co-delivery of chimera and CpG ODN in PLGA NPs significantly promoted cellular and mucosal responses compared to the incorporation of CpG and chimera antigen. In summary, these results revealed that the sustained release of chimera from PLGA as an efficient polymeric system elicited potent cell-mediated and mucosal immunity without inflammatory responses against HTLV-1. Therefore, the proper design of vaccine formulation and immunization strategy are crucial factors to construct an efficient vaccine.
Collapse
|
20
|
The novel immunogenic chimeric peptide vaccine to elicit potent cellular and mucosal immune responses against HTLV-1. Int J Pharm 2018; 549:404-414. [PMID: 30075250 DOI: 10.1016/j.ijpharm.2018.07.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
This study reports on the immunogenicity assessment of a novel chimeric peptide vaccine including Tax, gp21, gp46, and gag immunodominant epitopes of human T-cell lymphotropic virus type 1 (HTLV-1) to induce immunity against HTLV-1 after subcutaneous (SC) or intranasal administration in a mice model. Additionally, to elevate the efficacy of the HTLV-1 vaccine, the chimera was physically mixed with monophosphoryl lipid A (MPLA) or ISCOMATRIX (IMX) adjuvants. For this purpose, the ISCOMATRIX with a size range of 40-60 nm were prepared using lipid film hydration method. Our investigation revealed that the mixture of IMX and chimera could significantly increase antibody titers containing IgG2a, and mucosal IgA, as well as IFN-γ and IL-10 cytokines and decrease the level of TGF-β1, compared to other vaccine formulations. The intranasal delivery of chimera vaccine in the absence or presence adjuvants stimulated potent mucosal sIgA titer relative to subcutaneous immunization. Furthermore, the SC or nasal delivery of various vaccine formulations could shift the immunity toward cell-mediated responses, as evident by higher IgG2a and IFN-γ, as well as suppressed TGF-β1 level. Our findings suggest that proper design, construction, and immunization of multi-epitope vaccine are essential for developing an effective HTLV-1 vaccine.
Collapse
|
21
|
Pérès E, Blin J, Ricci EP, Artesi M, Hahaut V, Van den Broeke A, Corbin A, Gazzolo L, Ratner L, Jalinot P, Duc Dodon M. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice. PLoS Pathog 2018; 14:e1006933. [PMID: 29566098 PMCID: PMC5882172 DOI: 10.1371/journal.ppat.1006933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/03/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. The viral Tax oncoprotein is a critical contributor to the development of adult T-cell leukemia/lymphoma, an aggressive malignant proliferation of T lymphocytes. Tax contains a PDZ domain-binding motif (PBM) that favors the interaction with several cellular PDZ proteins. Here, we compare the in vivo involvement of the Tax PBM in humanized mice infected with either a full-length provirus or a Tax PBM-deleted provirus. We observe that the establishment of the sustained lymphoproliferation in the peripheral blood of infected mice is dependent on the Tax PBM. Furthermore, binding of the Tax PBM to the PDZ Scribble protein correlated with perturbations of cytoskeletal organization and cell polarity. In addition, genome-wide transcriptomic analyses strongly suggest that the association of Tax PBM with cellular PDZ proteins results in the expression of several genes involved in proliferation, apoptosis and cytoskeletal organization. Collectively, these results indicate that the Tax PBM is an auxiliary motif that contributes to the growth of HTLV-1 infected T-cells. As a consequence, targeting the PBM/PDZ nodes using small peptides may have the potential to antagonize the Tax-induced lymphoproliferation, offering a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Eléonore Pérès
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Juliana Blin
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Emiliano P. Ricci
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, Groupe Interdisciplinaire Génoprotéomique Appliquée (GIGA), Université de Liège, Liège, Belgium
| | - Antoine Corbin
- International Center for Infectiology Research, ENS de Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR 5308, 46 allée d'Italie, Lyon, France
| | - Louis Gazzolo
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Pierre Jalinot
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
| | - Madeleine Duc Dodon
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, 46 allée d'Italie, Lyon, France
- * E-mail:
| |
Collapse
|
22
|
Monitoring molecular response in adult T-cell leukemia by high-throughput sequencing analysis of HTLV-1 clonality. Leukemia 2017; 31:2532-2535. [PMID: 28811663 PMCID: PMC5668493 DOI: 10.1038/leu.2017.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|