1
|
Suh IY, Huo ZY, Jung JH, Kang D, Lee DM, Kim YJ, Kim B, Jeon J, Zhao P, Shin J, Kim S, Kim SW. Highly efficient microbial inactivation enabled by tunneling charges injected through two-dimensional electronics. SCIENCE ADVANCES 2024; 10:eadl5067. [PMID: 38701201 PMCID: PMC11067992 DOI: 10.1126/sciadv.adl5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.
Collapse
Affiliation(s)
- In-Yong Suh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Institute of Ecological Civilization, Renmin University of China, Beijing 100872, PR China
| | - Jae-Hwan Jung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Donghyeon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dong-Min Lee
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Jun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Bosung Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinyoung Jeon
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Pin Zhao
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Jeonghune Shin
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research and Development Center, SEMS CO., Ltd., Suwon 16229, Republic of Korea
| | - SeongMin Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department of Materials Science and Engineering, Center for Human-oriented Triboelectric Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
3
|
Kumbhakar P, Jayan JS, Sreedevi Madhavikutty A, Sreeram P, Saritha A, Ito T, Tiwary CS. Prospective applications of two-dimensional materials beyond laboratory frontiers: A review. iScience 2023; 26:106671. [PMID: 37168568 PMCID: PMC10165413 DOI: 10.1016/j.isci.2023.106671] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The development of nanotechnology has been advancing for decades and gained acceleration in the 21st century. Two-dimensional (2D) materials are widely available, giving them a wide range of material platforms for technological study and the advancement of atomic-level applications. The design and application of 2D materials are discussed in this review. In order to evaluate the performance of 2D materials, which might lead to greater applications benefiting the electrical and electronics sectors as well as society, the future paradigm of 2D materials needs to be visualized. The development of 2D hybrid materials with better characteristics that will help industry and society at large is anticipated to result from intensive research in 2D materials. This enhanced evaluation might open new opportunities for the synthesis of 2D materials and the creation of devices that are more effective than traditional ones in various sectors of application.
Collapse
Affiliation(s)
- Partha Kumbhakar
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
- Department of Physics and Electronics, CHRIST (Deemed to Be University), Bangalore 560029, India
| | - Jitha S. Jayan
- Department of Chemistry, National Institute of Technology Calicut, Calicut, Kerala, India
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | | | - P.R. Sreeram
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chandra Sekhar Tiwary
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| |
Collapse
|
4
|
Corletto A, Ellis AV, Shepelin NA, Fronzi M, Winkler DA, Shapter JG, Sherrell PC. Energy Interplay in Materials: Unlocking Next-Generation Synchronous Multisource Energy Conversion with Layered 2D Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203849. [PMID: 35918607 DOI: 10.1002/adma.202203849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Layered 2D crystals have unique properties and rich chemical and electronic diversity, with over 6000 2D crystals known and, in principle, millions of different stacked hybrid 2D crystals accessible. This diversity provides unique combinations of properties that can profoundly affect the future of energy conversion and harvesting devices. Notably, this includes catalysts, photovoltaics, superconductors, solar-fuel generators, and piezoelectric devices that will receive broad commercial uptake in the near future. However, the unique properties of layered 2D crystals are not limited to individual applications and they can achieve exceptional performance in multiple energy conversion applications synchronously. This synchronous multisource energy conversion (SMEC) has yet to be fully realized but offers a real game-changer in how devices will be produced and utilized in the future. This perspective highlights the energy interplay in materials and its impact on energy conversion, how SMEC devices can be realized, particularly through layered 2D crystals, and provides a vision of the future of effective environmental energy harvesting devices with layered 2D crystals.
Collapse
Affiliation(s)
- Alexander Corletto
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Nick A Shepelin
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, Villigen, CH-5232, Switzerland
| | - Marco Fronzi
- School of Mathematical and Physical Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- School of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Bundoora, Victoria, 3086, Australia
- School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joseph G Shapter
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
5
|
Huang SD, Chu ED, Wang YH, Liou JW, Wang RS, Woon WY, Chiu HC. Variations in the Effective Work Function of Graphene in a Sliding Electrical Contact Interface under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27328-27338. [PMID: 35438951 DOI: 10.1021/acsami.2c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Control of work function (WF) in graphene is crucial for graphene application in electrode material replacement and electrode surface protection in optoelectronic devices. Although efforts have been made to manipulate the effective WF of graphene to optimize its application, most studies have focused on graphene employed in static electrical contact interfaces. In this work, we investigated WF variations of supported single-layer graphene (SLG) in sliding electrical contact under ambient conditions, which was achieved by sliding an electrically biased conductive atomic force microscopy (cAFM) probe on the SLG surface. The effective WF, structural properties, and chemical compositions of rubbed SLG were subsequently measured by Kelvin probe force microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. We found that the effective WF of the rubbed SLG was governed by both the tunneling triboelectric effect (TTE) and tribochemical-induced surface functionalization. The TTE charges generated by the sliding cAFM probe tunneled through the structural defects of the SLG and were trapped underneath the SLG. The SLG will be either p-doped or n-doped depending on the type of TTE charges and the polarity of electric bias applied to the cAFM probe during the rubbing process. However, the applied electric bias also led to the electrolysis of a water meniscus formed at the cAFM probe-SLG contact, resulting in surface oxidation and the increase of SLG WF. Further absorption of ambient water molecules on the oxygenated functional groups gradually reduced the SLG WF. The influence of TTE and surface functionalization on the SLG WF depends on the magnitude and polarity of applied electric biases, relative humidity, and physical properties of the supporting substrates. Our results demonstrate that the effective WF of SLG in a sliding electrical contact interface will vary with time and might need to be considered for related applications.
Collapse
Affiliation(s)
- Shuei-De Huang
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - En-De Chu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Han Wang
- Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
- Department of Physics, National Central University, Taoyuan 32001, Taiwan
| | - Jhe-Wei Liou
- Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
| | - Ruei-Si Wang
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wei-Yen Woon
- Molecular Science and Technology Program, Taiwan International Graduate Program, Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan
- Department of Physics, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Chih Chiu
- Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Montoya NA, Criscuolo V, Lo Presti A, Vecchione R, Falconi C. Twin-Wire Networks for Zero Interconnect, High-Density 4-Wire Electrical Characterizations of Materials. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9874249. [PMID: 35098140 PMCID: PMC8771198 DOI: 10.34133/2022/9874249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/05/2021] [Indexed: 02/04/2023]
Abstract
Four-wire measurements have been introduced by Lord Kelvin in 1861 and have since become the standard technique for characterizing small resistances and impedances. However, high-density 4-wire measurements are generally complex, time-consuming, and inefficient because of constraints on interconnects, pads, external wires, and mechanical contacts, thus reducing reproducibility, statistical significance, and throughput. Here, we introduce, systematically design, analyze, and experimentally validate zero interconnect networks interfaced to external instrumentation by couples of twin wire. 3D-printed holders with magnets, interconnects, nonadhesive layers, and spacers can effortlessly establish excellent electrical connections with tunable or minimum contact forces and enable accurate measurements even for delicate devices, such as thin metals on soft polymers. As an example, we measured all the resistances of a twin-wire 29-resistor network made of silver-nanoparticle ink printed on polyimide, paper, or photo paper, including during sintering or temperature calibration, resulting in an unprecedentedly easy and accurate characterization of both resistivity and its temperature coefficient. The theoretical framework and experimental strategies reported here represent a breakthrough toward zero interconnect, simple, and efficient high-density 4-wire characterizations, can be generalized to other 4-wire measurements (impedances, sensors) and can open the way to more statistically meaningful and reproducible analyses of materials, high-throughput measurements, and minimally invasive characterizations of biomaterials.
Collapse
Affiliation(s)
- Nerio Andrés Montoya
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy.,School of Physics, Universidad Nacional de Colombia, A.A. 3840 Medellín, Colombia
| | - Valeria Criscuolo
- Center for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Andrea Lo Presti
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Naples 80125, Italy
| | - Christian Falconi
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
| |
Collapse
|
7
|
Das B, Maity S, Paul S, Dolui K, Paramanik S, Naskar S, Mohanty SR, Chakraborty S, Ghosh A, Palit M, Watanabe K, Taniguchi T, Menon KSR, Datta S. Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction. ACS NANO 2021; 15:20203-20213. [PMID: 34878256 DOI: 10.1021/acsnano.1c08212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We map spatially correlated electrical current on the stacking boundaries of pristine and doped hexagonal boron nitride (hBN) to distinguish from its insulating bulk via conductive atomic force microscopy (CAFM). While the pristine edges of hBN show an insulating nature, the O-doped edges reveal a current 2 orders of higher even for bulk layers where the direct transmission through tunnel barrier is implausible. Instead, the nonlinear current-voltage characteristics (I-V) at the edges of O-doped hBN can be explained by trap-assisted lowering of the tunnel barrier by adopting a Poole-Frenkel (PF) model. However, in the stacked heterostructure with multilayer graphene (MLG) on top, the buried edge of pristine hBN shows a signature of electron conduction in the scanning mode which contradicts the first-principle calculation of spatial distribution of local density of states (LDOS) data. Enhancement of friction between the Pt-tip and MLG at the step-edge of the heterostructure while scanning in the contact mode has prompted us to construct a phenomenological model where the localization of opposite surface charges on two conducting plates (MLG and Si substrate) containing a dielectric film (hBN) with negatively charged defects creates an internal electric field opposite to the external electric field due to the applied voltage bias in the CAFM setup. An equivalent circuit with a parallel resistor network based on a vertical conducting channel through the MLG/hBN edge and an in-plane surface carrier transport through MLG can successfully analyze the current maps on pristine/doped hBN and the related heterostructures. These results yield fundamental insight into the emerging field of insulatronics in which defect-induced electron transport along the edge can be manipulated in an 1D-2D synergized insulator.
Collapse
Affiliation(s)
- Bikash Das
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sujan Maity
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subrata Paul
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Kapildeb Dolui
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Subham Paramanik
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sanjib Naskar
- Central Scientific Services, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Smruti Ranjan Mohanty
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Supriya Chakraborty
- Central Scientific Services, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Anudeepa Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mainak Palit
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Krishnakumar S R Menon
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Subhadeep Datta
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Qiao H, Zhao P, Kwon O, Sohn A, Zhuo F, Lee D, Sun C, Seol D, Lee D, Kim S, Kim Y. Mixed Triboelectric and Flexoelectric Charge Transfer at the Nanoscale. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101793. [PMID: 34390211 PMCID: PMC8529448 DOI: 10.1002/advs.202101793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Indexed: 05/05/2023]
Abstract
The triboelectric effect is a ubiquitous phenomenon in which the surfaces of two materials are easily charged during the contact-separation process. Despite the widespread consequences and applications, the charging mechanisms are not sufficiently understood. Here, the authors report that, in the presence of a strain gradient, the charge transfer is a result of competition between flexoelectricity and triboelectricity, which could enhance charge transfer during triboelectric measurements when the charge transfers of both effects are in the same direction. When they are in the opposite directions, the direction and amount of charge transfer could be modulated by the competition between flexoelectric and triboelectric effects, which leads to a distinctive phenomenon, that is, the charge transfer is reversed with varying forces. The subsequent results on the electrical power output signals from the triboelectrification support the proposed mechanism. Therefore, the present study emphasizes the key role of the flexoelectric effect through experimental approaches, and suggests that both the amount and direction of charge transfer can be modulated by manipulating the mixed triboelectric and flexoelectric effects. This finding may provide important information on the triboelectric effect and can be further extended to serve as a guideline for material selection during a nanopatterned device design.
Collapse
Affiliation(s)
- Huimin Qiao
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Pin Zhao
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Owoong Kwon
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Ahrum Sohn
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Fangping Zhuo
- Department of Materials and Earth SciencesTechnical University of Darmstadt64287DarmstadtGermany
| | - Dong‐Min Lee
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Changhyo Sun
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Daehee Seol
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Daesu Lee
- Department of PhysicsPohang University of Science & Technology (POSTECH)Pohang37673Republic of Korea
| | - Sang‐Woo Kim
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT) and Samsung Advanced Institute for Health Sciences & Technology (SAIHST)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Yunseok Kim
- School of Advanced Materials and EngineeringSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Research Center for Advanced Materials TechnologySungkyunkwan University (SKKU)Suwon16419Republic of Korea
| |
Collapse
|
9
|
Rouzhahong Y, Liang C, Li C, Li H, Wang B. Flexible Piezoelectricity of Two-Dimensional Materials Governed by Effective Berry Curvature. J Phys Chem Lett 2021; 12:8220-8228. [PMID: 34415754 DOI: 10.1021/acs.jpclett.1c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional piezoelectric materials have been regarded as ideal candidates for flexible and versatile nanoelectromechanical systems, yet their fundamental piezoelectric mechanisms remain to be fully understood. Employing joint theoretical-statistical analyses, we develop universal models for quantifying the piezoelectricity of three-coordinated honeycomb-like monolayers at the atomistic level. The theoretical model within the framework of modern polarization theory suggests that the distribution of effective Berry curvature is essential for interpreting the relation between microscopic/electronic structures and piezoelectric properties. The statistical model based on DFT high-throughput calculation reveals that 2D piezoelectricity crucially depends on the effective mass, bandgap, and atomic distance along the rotation axis. Implementing stress and doping is demonstrated to be effective for optimizing piezoelectricity. Such findings provide valuable guidelines for designing 2D piezoelectric materials.
Collapse
Affiliation(s)
| | - Chao Liang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Chong Li
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Huashan Li
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Biao Wang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Li M, Lan F, Yang W, Ji Z, Zhang Y, Xi N, Xin X, Jin X, Li G. Influence of MoS 2-metal interface on charge injection: a comparison between various metal contacts. NANOTECHNOLOGY 2020; 31:395713. [PMID: 32662448 DOI: 10.1088/1361-6528/ab9cf6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Achieving good contacts is vital for harnessing the fascinating properties of two-dimensional (2D) materials. However, unsatisfactory 2D material-metal interfaces remain a problem that hinders the successful application of 2D materials for fabricating nanodevices. In this study, Kelvin probe force microscopy (KPFM) and other high-resolution microscopy techniques are utilized to characterize the surface morphology and contact interface between MoS2 and common metals including Au, Ti, Pd, and Ni. Surface potential information, including the contact potential difference ([Formula: see text]) and surface potential difference ([Formula: see text]) of each MoS2-metal contact, is obtained. By comparing the surface potential distribution mappings with and without illumination, non-zero surface photovoltage (SPV) values and evident shift with amplitudes of 32 mV and 44 mV are observed for MoS2-Au and Ti, but not for MoS2-Pd and Ni. The Schottky barrier heights of MoS2-Au, Ti, Pd, and Ni are roughly evaluated from their I-V curves. Raman spectroscopy is also carried out to ensure more convincing results. All the results suggest that a smoother MoS2-metal interface results in better charge transport behaviors. Our analysis of the underlying mechanism and experimental findings offer a new perspective to better understand MoS2-metal contacts and underscore the fundamental importance of interface morphology for MoS2-based devices.
Collapse
Affiliation(s)
- Meng Li
- College of Information Science and Engineering, Shenyang University of Technology, Shenyang, People's Republic of China. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Park S, Jeong Y, Jin HJ, Park J, Jang H, Lee S, Huh W, Cho H, Shin HG, Kim K, Lee CH, Choi S, Im S. Nonvolatile and Neuromorphic Memory Devices Using Interfacial Traps in Two-Dimensional WSe 2/MoTe 2 Stack Channel. ACS NANO 2020; 14:12064-12071. [PMID: 32816452 DOI: 10.1021/acsnano.0c05393] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Very recently, stacked two-dimensional materials have been studied, focusing on the van der Waals interaction at their stack junction interface. Here, we report field effect transistors (FETs) with stacked transition metal dichalcogenide (TMD) channels, where the heterojunction interface between two TMDs appears useful for nonvolatile or neuromorphic memory FETs. A few nanometer-thin WSe2 and MoTe2 flakes are vertically stacked on the gate dielectric, and bottom p-MoTe2 performs as a channel for hole transport. Interestingly, the WSe2/MoTe2 stack interface functions as a hole trapping site where traps behave in a nonvolatile manner, although trapping/detrapping can be controlled by gate voltage (VGS). Memory retention after high VGS pulse appears longer than 10000 s, and the Program/Erase ratio in a drain current is higher than 200. Moreover, the traps are delicately controllable even with small VGS, which indicates that a neuromorphic memory is also possible with our heterojunction stack FETs. Our stack channel FET demonstrates neuromorphic memory behavior of ∼94% recognition accuracy.
Collapse
Affiliation(s)
- Sam Park
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yeonsu Jeong
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye-Jin Jin
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junkyu Park
- The school of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyenam Jang
- The school of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sol Lee
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woong Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyunmin Cho
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyung Gon Shin
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwanpyo Kim
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chul-Ho Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Shinhyun Choi
- The school of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongil Im
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Stan G, Ciobanu CV, Likith SRJ, Rani A, Zhang S, Hacker CA, Krylyuk S, Davydov AV. Doping of MoTe 2 via Surface Charge Transfer in Air. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18182-18193. [PMID: 32192325 PMCID: PMC7425619 DOI: 10.1021/acsami.0c04339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Doping is a key process by which the concentration and type of majority carriers can be tuned to achieve desired conduction properties. The common way of doping is via bulk impurities, as in the case of silicon. For van der Waals bonded semiconductors, control over bulk impurities is not as well developed, because they may either migrate between the layers or bond with the surfaces or interfaces becoming undesired scattering centers for carriers. Herein, we investigate by means of Kelvin probe force microscopy (KPFM) and density functional theory calculations (DFT) the doping of MoTe2 via surface charge transfer occurring in air. Using DFT, we show that oxygen molecules physisorb on the surface and increase its work function (compared to pristine surfaces) toward p-type behavior, which is consistent with our KPFM measurements. The surface charge transfer doping (SCTD) driven by adsorbed oxygen molecules can be easily controlled or reversed through thermal annealing of the entire sample. Furthermore, we also demonstrate local control of the doping by contact electrification. As a reversible and controllable nanoscale physisorption process, SCTD can thus open new avenues for the emerging field of 2D electronics.
Collapse
Affiliation(s)
- Gheorghe Stan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Cristian V. Ciobanu
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Sri Ranga Jai Likith
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Asha Rani
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- School of Engineering and Applied Science, The George Washington University, Washington, D. C. 20052, USA
| | - Siyuan Zhang
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Theiss Research, Inc., La Jolla, California 92037, USA
| | - Christina A. Hacker
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Theiss Research, Inc., La Jolla, California 92037, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
13
|
Zhao J, Bu T, Zhang X, Pang Y, Li W, Zhang Z, Liu G, Wang ZL, Zhang C. Intrinsically Stretchable Organic-Tribotronic-Transistor for Tactile Sensing. RESEARCH (WASHINGTON, D.C.) 2020; 2020:1398903. [PMID: 32676585 PMCID: PMC7333181 DOI: 10.34133/2020/1398903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Stretchable electronics are of great significance for the development of the next-generation smart interactive systems. Here, we propose an intrinsically stretchable organic tribotronic transistor (SOTT) without a top gate electrode, which is composed of a stretchable substrate, silver nanowire electrodes, semiconductor blends, and a nonpolar elastomer dielectric. The drain-source current of the SOTT can be modulated by external contact electrification with the dielectric layer. Under 0-50% stretching both parallel and perpendicular to the channel directions, the SOTT retains great output performance. After being stretched to 50% for thousands of cycles, the SOTT can survive with excellent stability. Moreover, the SOTT can be conformably attached to the human hand, which can be used for tactile signal perception in human-machine interaction and for controlling smart home devices and robots. This work has realized a stretchable tribotronic transistor as the tactile sensor for smart interaction, which has extended the application of tribotronics in the human-machine interface, wearable electronics, and robotics.
Collapse
Affiliation(s)
- Junqing Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzhao Bu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaokun Pang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Material Science and Engineering Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Fan FR, Wu W. Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting. RESEARCH (WASHINGTON, D.C.) 2019; 2019:7367828. [PMID: 31912044 PMCID: PMC6944488 DOI: 10.34133/2019/7367828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022]
Abstract
Two-dimensional (2-D) materials of atomic thickness have attracted considerable interest due to their excellent electrical, optoelectronic, mechanical, and thermal properties, which make them attractive for electronic devices, sensors, and energy systems. Scavenging the otherwise wasted energy from the ambient environment into electrical power holds promise to address the emerging energy needs, in particular for the portable and wearable devices. The versatile properties of 2-D materials together with their atomically thin body create diverse possibilities for the conversion of ambient energy. The present review focuses on the recent key advances in emerging energy-harvesting devices based on monolayer 2-D materials through various mechanisms such as photovoltaic, thermoelectric, piezoelectric, triboelectric, and hydrovoltaic devices, as well as progress for harvesting the osmotic pressure and Wi-Fi wireless energy. The representative achievements regarding the monolayer heterostructures and hybrid devices are also discussed. Finally, we provide a discussion of the challenges and opportunities for 2-D monolayer material-based energy-harvesting devices in the development of self-powered electronics and wearable technologies.
Collapse
Affiliation(s)
- Feng Ru Fan
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
15
|
Wang H, Huang CC, Polcar T. Triboelectrification of Two-Dimensional Chemical Vapor Deposited WS 2 at Nanoscale. Sci Rep 2019; 9:12570. [PMID: 31467397 PMCID: PMC6715710 DOI: 10.1038/s41598-019-49107-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 11/09/2022] Open
Abstract
Triboelectric properties of chemical vapor deposited WS2 nanoflakes have been characterized in nano-range by atomic force microscopy (AFM) and Kelvin force microscopy (KFM). The triboelectric process is dependent on the thickness of WS2 nanoflakes, and it is sensitive to the adsorbates like water molecules, as well as transferred Pt from the tip on the sample. The density of tribo-charge can be modified by applying various biases to the conductive Pt-coated tip during the frictional process. Tunneling of the tribo-charge into the gap between WS2 and the underlying substrate results in a long lifetime, which is about 100 times longer than conventional triboelectric charges. Moreover, we observe a positive correlation between the layer number and resistance to charge dissipation. Our finding can become the driving force for a new category of two-dimensional (2D) WS2 triboelectrically controllable nanodevices.
Collapse
Affiliation(s)
- He Wang
- National Centre for Advanced Tribology, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Chung-Che Huang
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tomas Polcar
- National Centre for Advanced Tribology, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.,Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague 6, Czech Republic
| |
Collapse
|
16
|
Lin S, Xu L, Zhu L, Chen X, Wang ZL. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901418. [PMID: 31095783 DOI: 10.1002/adma.201901418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Contact electrification (CE) (or triboelectrification) is a well-known phenomenon, and the identity of the charge carriers and their transfer mechanism have been discussed for decades. Recently, the species of transferred charges in the CE between a metal and a ceramic was revealed as electron transfer and its subsequent release is dominated by the thermionic emission process. Here, the release of CE-induced electrostatic charges on a dielectric surface under photon excitation is studied by varying the light intensity and wavelength, but under no significant raise in temperature. The results suggest that there exists a threshold photon energy for releasing the triboelectric charges from the surface, which is 4.1 eV (light wavelength at 300 nm) for SiO2 and 3.4 eV (light wavelength at 360 nm) for PVC; photons with energy smaller than this cannot effectively excite the surface electrostatic charges. This process is attributed to the photoelectron emission of the charges trapped in the surface states of the dielectric material. Further, a photoelectron emission model is proposed to describe light-induced charge decay on a dielectric surface. The findings provide an additional strong evidence about the electron transfer process in the CE between metals and dielectrics as well as polymers.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liang Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laipan Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
17
|
Hu W, Zhang C, Wang ZL. Recent progress in piezotronics and tribotronics. NANOTECHNOLOGY 2019; 30:042001. [PMID: 30499452 DOI: 10.1088/1361-6528/aaeddd] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As the electronic technology is approaching its limits of materials and processing, a smart interaction between functional device and environment is a promising way for future electronic technology above the Moore's law. The mechanical signal triggering is the most common and natural way for the smart interactions, which has realized direct interaction between human/ambient and electronics and artificial intelligence. In 2006, the piezotronic effect, as a novel effect, was first proposed by Wang to achieve the effective, adaptive and seamless interactions between electronic devices and the external stress, which utilizes the piezoelectric polarization potential as the virtual gate to tune/control the carriers' transportation in the electronic device. Since then, this new effect has been widely observed in many low-dimensional semiconductors such as ZnO, GaN, CdS nanowires, and 2D MoS2. In extension, tribotronics was first proposed in 2014 by Wang, which is about the devices manufactured using the electrostatic potential created by triboelectrification as a 'gate' voltage to tune/control energy transformation and electrical transport in semiconductors for the smart interaction between device and environment. Tribotronics has made rapid research progress and many tribotronic functional devices have been studied with a variety of materials, such as tribotronic tactile switch, memory, hydrogen sensor and phototransistor. This review highlights advances in piezotronics and tribotronics with focus on fundamental theories, nanoscale materials, functional devices and simulations. Our emphasis is mainly about their application for third-generation semiconductor. The concepts and results presented in this review show that the piezotronics and tribotronics will facilitate the development of MEMS/NEMS, self-powered sensing, man-computer interfacing, and active wearable electronics.
Collapse
Affiliation(s)
- Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, People's Republic of China. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, People's Republic of China
| | | | | |
Collapse
|
18
|
Wang H, Huang CC, Polcar T. Controllable Tunneling Triboelectrification of Two-Dimensional Chemical Vapor Deposited MoS 2. Sci Rep 2019; 9:334. [PMID: 30674961 PMCID: PMC6344571 DOI: 10.1038/s41598-018-36830-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Abstract
Tunneling triboelectrification of chemical vapor deposited monolayer MoS2 has been characterized at nanoscale with contact-mode atomic force microscopy (AFM) and Kelvin force microscopy (KFM). Although charges can be trapped on insulators like SiO2 by conventional triboelectrification, triboelectric charges tunneling through MoS2 and localized at the underlying substrate exhibit more than two orders of magnitude longer lifetime. Their polarity and density can be modified by triboelectric process with various bias voltages applied to Pt-coated AFM tips, and the saturated density is almost 30 times higher than the reported result of SiO2. Thus, the controllable tunneling triboelectric properties of MoS2 on insulating substrates can provide guidance to build a new class of two-dimensional (2D) MoS2-based nanoelectronic devices.
Collapse
Affiliation(s)
- He Wang
- National Centre for Advanced Tribology, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Chung-Che Huang
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tomas Polcar
- National Centre for Advanced Tribology, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 16627, Prague 6, Czech Republic
| |
Collapse
|
19
|
Shin DW, Barnes MD, Walsh K, Dimov D, Tian P, Neves AIS, Wright CD, Yu SM, Yoo JB, Russo S, Craciun MF. A New Facile Route to Flexible and Semi-Transparent Electrodes Based on Water Exfoliated Graphene and their Single-Electrode Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802953. [PMID: 30141202 DOI: 10.1002/adma.201802953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Wearable technologies are driving current research efforts to self-powered electronics, for which novel high-performance materials such as graphene and low-cost fabrication processes are highly sought.The integration of high-quality graphene films obtained from scalable water processing approaches in emerging applications for flexible and wearable electronics is demonstrated. A novel method for the assembly of shear exfoliated graphene in water, comprising a direct transfer process assisted by evaporation of isopropyl alcohol is developed. It is shown that graphene films can be easily transferred to any target substrate such as paper, flexible polymeric sheets and fibers, glass, and Si substrates. By combining graphene as the electrode and poly(dimethylsiloxane) as the active layer, a flexible and semi-transparent triboelectric nanogenerator (TENG) is demonstrated for harvesting energy. The results constitute a new step toward the realization of energy harvesting devices that could be integrated with a wide range of wearable and flexible technologies, and opens new possibilities for the use of TENGs in many applications such as electronic skin and wearable electronics.
Collapse
Affiliation(s)
- Dong-Wook Shin
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Matthew D Barnes
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Kieran Walsh
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Dimitar Dimov
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Peng Tian
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Ana I S Neves
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - C David Wright
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Seong Man Yu
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji-Beom Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Saverio Russo
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Monica F Craciun
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
20
|
Seol M, Kim S, Cho Y, Byun KE, Kim H, Kim J, Kim SK, Kim SW, Shin HJ, Park S. Triboelectric Series of 2D Layered Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801210. [PMID: 30117201 DOI: 10.1002/adma.201801210] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/15/2018] [Indexed: 05/23/2023]
Abstract
Recently, as applications based on triboelectricity have expanded, understanding the triboelectric charging behavior of various materials has become essential. This study investigates the triboelectric charging behaviors of various 2D layered materials, including MoS2 , MoSe2 , WS2 , WSe2 , graphene, and graphene oxide in a triboelectric series using the concept of a triboelectric nanogenerator, and confirms the position of 2D materials in the triboelectric series. It is also demonstrated that the results are obviously related to the effective work functions. The charging polarity indicates the similar behavior regardless of the synthetic method and film thickness ranging from a few hundred nanometers (for chemically exfoliated and restacked films) to a few nanometers (for chemical vapor deposited films). Further, the triboelectric charging characteristics could be successfully modified via chemical doping. This study provides new insights to utilize 2D materials in triboelectric devices, allowing thin and flexible device fabrication.
Collapse
Affiliation(s)
- Minsu Seol
- Samsung Advanced Institute of Technology, Suwon, 443-803, Republic of Korea
| | - Seongsu Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Yeonchoo Cho
- Samsung Advanced Institute of Technology, Suwon, 443-803, Republic of Korea
| | - Kyung-Eun Byun
- Samsung Advanced Institute of Technology, Suwon, 443-803, Republic of Korea
| | - Haeryong Kim
- Samsung Advanced Institute of Technology, Suwon, 443-803, Republic of Korea
| | - Jihye Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Sung Kyun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Hyeon-Jin Shin
- Samsung Advanced Institute of Technology, Suwon, 443-803, Republic of Korea
| | - Seongjun Park
- Samsung Advanced Institute of Technology, Suwon, 443-803, Republic of Korea
| |
Collapse
|
21
|
Xu R, Ye S, Xu K, Lei L, Hussain S, Zheng Z, Pang F, Xing S, Liu X, Ji W, Cheng Z. Nanoscale charge transfer and diffusion at the MoS 2/SiO 2 interface by atomic force microscopy: contact injection versus triboelectrification. NANOTECHNOLOGY 2018; 29:355701. [PMID: 29873636 DOI: 10.1088/1361-6528/aacad7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the process of charge generation, transfer, and diffusion between two-dimensional (2D) materials and their supporting substrates is very important for potential applications of 2D materials. Compared with the systematic studies of triboelectric charging in a bulk sample, a fundamental understanding of the triboelectrification of the 2D material/insulator system is rather limited. Here, the charge transfer and diffusion of both the SiO2 surface and MoS2/SiO2 interface through contact electrification and frictional electrification are investigated systematically in situ by scanning Kelvin probe microscopy and dual-harmonic electrostatic force microscopy. Different from the simple static charge transfer between SiO2 and the PtSi alloy atomic force microscope (AFM) tip, the charge transfer between the tip and the MoS2/SiO2 system is complicated. Triboelectric charges, generated by contact or frictional electrification with the AFM tip, are trapped at the MoS2/SiO2 interface and act as floating gates. The local charge discharge processes can be obtained by monitoring the surface potential. The charge decay time (τ) of the MoS2/SiO2 interface is one (or two) orders of magnitude larger than the decay time τ of the SiO2 surface. This work facilitates an understanding of the triboelectric and de-electrification of the interface between 2D materials and substrates. In addition to the charge transfer and diffusion, we demonstrate the nanopatterns of surface and interfacial charges, which have great potential for the application of self-assembly of charged nanostructures.
Collapse
Affiliation(s)
- Rui Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China. Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|