1
|
Kubo S, Okada Y. The ATPase asymmetry: Novel computational insight into coupling diverse F O motors with tripartite F 1. Biophys J 2024:S0006-3495(24)00178-4. [PMID: 38459696 DOI: 10.1016/j.bpj.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024] Open
Abstract
ATP synthase, a crucial enzyme for cellular bioenergetics, operates via the coordinated coupling of an FO motor, which presents variable symmetry, and a tripartite F1 motor. Despite extensive research, the understanding of their coupling dynamics, especially with non-10-fold symmetrical FO motors, remains incomplete. This study investigates the coupling patterns between eightfold and ninefold FO motors and the constant threefold F1 motor using coarse-grained molecular dynamics simulations. We unveil that in the case of a ninefold FO motor, a 3-3-3 motion is most likely to occur, whereas a 3-3-2 motion predominates with an eightfold FO motor. Furthermore, our findings propose a revised model for the coupling method, elucidating that the pathways' energy usage is primarily influenced by F1 rotation and conformational changes hindered by the b-subunits. Our results present a crucial step toward comprehending the energy landscape and mechanisms governing ATP synthase operation.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan; Universal Biology Institute and International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan; Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, Japan
| |
Collapse
|
2
|
Burton-Smith RN, Song C, Ueno H, Murata T, Iino R, Murata K. Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover. Commun Biol 2023; 6:755. [PMID: 37507515 PMCID: PMC10382590 DOI: 10.1038/s42003-023-05110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The vacuolar-type ATPase from Enterococcus hirae (EhV-ATPase) is a thus-far unique adaptation of V-ATPases, as it performs Na+ transport and demonstrates an off-axis rotor assembly. Recent single molecule studies of the isolated V1 domain have indicated that there are subpauses within the three major states of the pseudo three-fold symmetric rotary enzyme. However, there was no structural evidence for these. Herein we activate the EhV-ATPase complex with ATP and identified multiple structures consisting of a total of six states of this complex by using cryo-electron microscopy. The orientations of the rotor complex during turnover, especially in the intermediates, are not as perfectly uniform as expected. The densities in the nucleotide binding pockets in the V1 domain indicate the different catalytic conditions for the six conformations. The off-axis rotor and its' interactions with the stator a-subunit during rotation suggests that this non-uniform rotor rotation is performed through the entire complex.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institute for Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
3
|
Kubo S, Niina T, Takada S. F O-F 1 coupling and symmetry mismatch in ATP synthase resolved in every F O rotation step. Biophys J 2023; 122:2898-2909. [PMID: 36171725 PMCID: PMC10397808 DOI: 10.1016/j.bpj.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/19/2022] Open
Abstract
FOF1 ATP synthase, a ubiquitous enzyme that synthesizes most ATP in living cells, is composed of two rotary motors: a membrane-embedded proton-driven FO motor and a catalytic F1 motor. These motors share both central and peripheral stalks. Although both FO and F1 have pseudo-symmetric structures, their symmetries do not match. How symmetry mismatch is solved remains elusive because of the missing intermediate structures of the rotational steps. Here, for the case of Bacillus PS3 ATP synthases with three- and 10-fold symmetries in F1 and FO, respectively, we uncovered the mechanical couplings between FO and F1 at every 36° rotation step via molecular dynamics simulations and comparative studies of cryoelectron microscopy (cryo-EM) structures from three species. We found that the mismatch could be solved using several elements: 1) the F1 head partially rotates relative to the FO a subunit via elastic distortion of the b subunits, 2) the rotor is twisted, and 3) comparisons of cryo-EM structures further suggest that the c ring rotary angles can deviate from the symmetric ones. In addition, the F1 motor may have non-canonical structures, relieving stronger frustration. Thus, we provide new insights for solving the symmetry mismatch problem.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada.
| | - Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Lai Y, Zhang Y, Zhou S, Xu J, Du Z, Feng Z, Yu L, Zhao Z, Wang W, Tang Y, Yang X, Guddat LW, Liu F, Gao Y, Rao Z, Gong H. Structure of the human ATP synthase. Mol Cell 2023:S1097-2765(23)00324-6. [PMID: 37244256 DOI: 10.1016/j.molcel.2023.04.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
Biological energy currency ATP is produced by F1Fo-ATP synthase. However, the molecular mechanism for human ATP synthase action remains unknown. Here, we present snapshot images for three main rotational states and one substate of human ATP synthase using cryoelectron microscopy. These structures reveal that the release of ADP occurs when the β subunit of F1Fo-ATP synthase is in the open conformation, showing how ADP binding is coordinated during synthesis. The accommodation of the symmetry mismatch between F1 and Fo motors is resolved by the torsional flexing of the entire complex, especially the γ subunit, and the rotational substep of the c subunit. Water molecules are identified in the inlet and outlet half-channels, suggesting that the proton transfer in these two half-channels proceed via a Grotthus mechanism. Clinically relevant mutations are mapped to the structure, showing that they are mainly located at the subunit-subunit interfaces, thus causing instability of the complex.
Collapse
Affiliation(s)
- Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziyan Feng
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Long Yu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziqing Zhao
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China.
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute for Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Changes within the central stalk of E. coli F 1F o ATP synthase observed after addition of ATP. Commun Biol 2023; 6:26. [PMID: 36631659 PMCID: PMC9834311 DOI: 10.1038/s42003-023-04414-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.
Collapse
|
6
|
Gerle C, Kishikawa JI, Yamaguchi T, Nakanishi A, Çoruh O, Makino F, Miyata T, Kawamoto A, Yokoyama K, Namba K, Kurisu G, Kato T. Structures of multisubunit membrane complexes with the CRYO ARM 200. Microscopy (Oxf) 2022; 71:249-261. [PMID: 35861182 PMCID: PMC9535789 DOI: 10.1093/jmicro/dfac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo-electron microscopy (cryo-EM). In particular, structure determination by single-particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever-increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo-electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single-particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor lipopolysaccharide peptidoglycan ring (LP ring) from Salmonella enterica.
Collapse
Affiliation(s)
- Christoph Gerle
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- RIKEN SPring-8 Center, Life Science Research Infrastructure Group, Sayo-gun, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jun-ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Tomoko Yamaguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Orkun Çoruh
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Niederösterreich 3400, Austria
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- JEOL Ltd., 3 Chome 1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Manoj KM, Bazhin NM, Tamagawa H, Jaeken L, Parashar A. The physiological role of complex V in ATP synthesis: Murzyme functioning is viable whereas rotary conformation change model is untenable. J Biomol Struct Dyn 2022; 41:3993-4012. [PMID: 35394896 DOI: 10.1080/07391102.2022.2060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Complex V or FoF1-ATPase is a multimeric protein found in bioenergetic membranes of cells and organelles like mitochondria/chloroplasts. The popular perception on Complex V deems it as a reversible molecular motor, working bi-directionally (breaking or making ATP) via a conformation-change based chemiosmotic rotary ATP synthesis (CRAS) mechanism, driven by proton-gradients or trans-membrane potential (TMP). In continuance of our pursuits against the CRAS model of cellular bioenergetics, herein we demonstrate the validity of the murburn model based in diffusible reactive (oxygen) species (DRS/DROS). Supported by new in silico derived data (that there are ∼12 adenosine nucleotide binding sites on the F1 bulb and not merely 3 sites, as perceived earlier), available structural information, known experimental observations, and thermodynamic/kinetic considerations (that de-solvation of protons from hydronium ions is facile), we deduce that Complex V serves as a physiological chemostat and a murzyme (enzyme working via murburn scheme, employing DRS). That is- Complex V uses ATP (via consumption at ε or proteins of F1 module) as a Michaelis-Menten substrate to serve as a pH-stat by inletting protons via the c-ring of Fo module. Physiologically, Complex V also functions as a murzyme by presenting ADP/Pi (or their reaction intermediates) on the αβ bulb, thereby enabling greater opportunities for DRS/proton-assisted ATP formation. Thus, the murburn paradigm succeeds the CRAS hypothesis for explaining the role of oxygen in mitochondrial physiologies of oxidative phosphorylation, thermogenesis, TMP and homeostasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Biochemistry Department, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Nikolai Mikhailovich Bazhin
- Environmental Chemistry Department, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Laurent Jaeken
- Industrial Sciences and Technology, Karel de Grote University College, Antwerp University Association, Hoboken, Belgium
| | - Abhinav Parashar
- Biochemistry Department, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
8
|
Wittig S, Ganzella M, Barth M, Kostmann S, Riedel D, Pérez-Lara Á, Jahn R, Schmidt C. Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes. Nat Commun 2021; 12:858. [PMID: 33558502 PMCID: PMC7870876 DOI: 10.1038/s41467-021-21102-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Synaptic vesicles are storage organelles for neurotransmitters. They pass through a trafficking cycle and fuse with the pre-synaptic membrane when an action potential arrives at the nerve terminal. While molecular components and biophysical parameters of synaptic vesicles have been determined, our knowledge on the protein interactions in their membranes is limited. Here, we apply cross-linking mass spectrometry to study interactions of synaptic vesicle proteins in an unbiased approach without the need for specific antibodies or detergent-solubilisation. Our large-scale analysis delivers a protein network of vesicle sub-populations and functional assemblies including an active and an inactive conformation of the vesicular ATPase complex as well as non-conventional arrangements of the luminal loops of SV2A, Synaptophysin and structurally related proteins. Based on this network, we specifically target Synaptobrevin-2, which connects with many proteins, in different approaches. Our results allow distinction of interactions caused by 'crowding' in the vesicle membrane from stable interaction modules.
Collapse
Affiliation(s)
- Sabine Wittig
- Interdisciplinary Research Centre HALOmem, Charles Tanford Protein Centre, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Marcelo Ganzella
- Department for Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marie Barth
- Interdisciplinary Research Centre HALOmem, Charles Tanford Protein Centre, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Susann Kostmann
- Interdisciplinary Research Centre HALOmem, Charles Tanford Protein Centre, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dietmar Riedel
- Department for Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ángel Pérez-Lara
- Department for Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Reinhard Jahn
- Department for Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carla Schmidt
- Interdisciplinary Research Centre HALOmem, Charles Tanford Protein Centre, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
9
|
Kamariah N, Huber RG, Bond PJ, Müller V, Grüber G. 3D reconstruction and flexibility of the hybrid engine Acetobacterium woodii F-ATP synthase. Biochem Biophys Res Commun 2020; 527:518-524. [PMID: 32423799 DOI: 10.1016/j.bbrc.2020.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
The Na+-translocating F1FO ATP synthase from Acetobacterium woodii (AwF-ATP synthase) with a subunit stoichiometry of α3:β3:γ:δ:ε:a:b2:(c2/3)9:c1 represents an evolutionary path between ATP-synthases and vacuolar ATPases, by containing a heteromeric rotor c-ring, composed of subunits c1, c2 and c3, and an extra loop (γ195-211) within the rotary γ subunit. Here, the recombinant AwF-ATP synthase was subjected to negative stain electron microscopy and single particle analysis. The reference free 2D class averages revealed high flexibility of the enzyme, wherein the F1 and FO domains distinctively bended to adopt multiple conformations. Moreover, both the F1 and FO domains tilted relative to each other to a maximum extent of 28° and 30°, respectively. The first 3D reconstruction of the AwF-ATP synthase was determined which accommodates well the modelled structure of the AwF-ATP synthase as well as the γ195-211-loop. Molecular simulations of the enzyme underlined the bending features and flexibility observed in the electron micrographs, and enabled assessment of the dynamics of the extra γ195-211-loop.
Collapse
Affiliation(s)
- Neelagandan Kamariah
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), #07-01 Matrix, 30 Biopolis Street, Singapore, 38671
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), #07-01 Matrix, 30 Biopolis Street, Singapore, 38671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 14 Science Drive 4, Singapore, 117543
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), #07-01 Matrix, 30 Biopolis Street, Singapore, 38671.
| |
Collapse
|
10
|
Sobti M, Walshe JL, Wu D, Ishmukhametov R, Zeng YC, Robinson CV, Berry RM, Stewart AG. Cryo-EM structures provide insight into how E. coli F 1F o ATP synthase accommodates symmetry mismatch. Nat Commun 2020; 11:2615. [PMID: 32457314 PMCID: PMC7251095 DOI: 10.1038/s41467-020-16387-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - James L Walshe
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Robert Ishmukhametov
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Yi C Zeng
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, United Kingdom
| | - Richard M Berry
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia. .,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
11
|
Zhou L, Sazanov LA. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science 2020; 365:365/6455/eaaw9144. [PMID: 31439765 DOI: 10.1126/science.aaw9144] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
V (vacuolar)/A (archaeal)-type adenosine triphosphatases (ATPases), found in archaea and eubacteria, couple ATP hydrolysis or synthesis to proton translocation across the plasma membrane using the rotary-catalysis mechanism. They belong to the V-type ATPase family, which differs from the mitochondrial/chloroplast F-type ATP synthases in overall architecture. We solved cryo-electron microscopy structures of the intact Thermus thermophilus V/A-ATPase, reconstituted into lipid nanodiscs, in three rotational states and two substates. These structures indicate substantial flexibility between V1 and Vo in a working enzyme, which results from mechanical competition between central shaft rotation and resistance from the peripheral stalks. We also describe details of adenosine diphosphate inhibition release, V1-Vo torque transmission, and proton translocation, which are relevant for the entire V-type ATPase family.
Collapse
Affiliation(s)
- Long Zhou
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuberg 3400, Austria.
| |
Collapse
|
12
|
Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J, Wang P, Zhuo W, Yang M. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science 2019; 364:1068-1075. [PMID: 31197009 DOI: 10.1126/science.aaw4852] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
The mitochondrial adenosine triphosphate (ATP) synthase produces most of the ATP required by mammalian cells. We isolated porcine tetrameric ATP synthase and solved its structure at 6.2-angstrom resolution using a single-particle cryo-electron microscopy method. Two classical V-shaped ATP synthase dimers lie antiparallel to each other to form an H-shaped ATP synthase tetramer, as viewed from the matrix. ATP synthase inhibitory factor subunit 1 (IF1) is a well-known in vivo inhibitor of mammalian ATP synthase at low pH. Two IF1 dimers link two ATP synthase dimers, which is consistent with the ATP synthase tetramer adopting an inhibited state. Within the tetramer, we refined structures of intact ATP synthase in two different rotational conformations at 3.34- and 3.45-Å resolution.
Collapse
Affiliation(s)
- Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peiyi Wang
- SUSTech Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Zhuo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Sobti M, Ishmukhametov R, Bouwer JC, Ayer A, Suarna C, Smith NJ, Christie M, Stocker R, Duncan TM, Stewart AG. Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP. eLife 2019; 8:e43864. [PMID: 30912741 PMCID: PMC6449082 DOI: 10.7554/elife.43864] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, β and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Robert Ishmukhametov
- Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUnited Kingdom
| | - James C Bouwer
- Molecular HorizonsThe University of WollongongWollongongAustralia
| | - Anita Ayer
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Cacang Suarna
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Nicola J Smith
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Mary Christie
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| | - Roland Stocker
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
- Vascular Biology DivisionVictor Chang Cardiac Research InstituteDarlinghurstAustralia
| | - Thomas M Duncan
- Department of Biochemistry & Molecular BiologySUNY Upstate Medical UniversitySyracuse, NYUnited States
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology DivisionThe Victor Chang Cardiac Research InstituteDarlinghurstAustralia
- St Vincent’s Clinical School, Faculty of MedicineUNSW SydneySydneyAustralia
| |
Collapse
|
14
|
Cossio P, Allegretti M, Mayer F, Müller V, Vonck J, Hummer G. Bayesian inference of rotor ring stoichiometry from electron microscopy images of archaeal ATP synthase. Microscopy (Oxf) 2018; 67:266-273. [PMID: 30032235 DOI: 10.1093/jmicro/dfy033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/20/2018] [Indexed: 12/24/2022] Open
Abstract
The 'Bayesian inference of electron microscopy' (BioEM) framework makes it possible to determine the stoichiometry of protein complexes using 3D coarse-grained models and a relatively small number of cryo-electron microscopy images as input. We applied the method to determine the most probable rotor ring stoichiometry of the archaeal Na+ ATP synthase from Pyrococcus furiosus, a multisubunit complex able to produce ATP under extreme conditions. Archaeal ATP synthases consist of a catalytic A1 part and a membrane-embedded AO portion. The AO portion is composed of a rotor ring and the a-subunit. The rotor ring of P. furiosus ATP synthase is composed of 16-kDa c-subunits, each consisting of four helices forming a bundle, with only one Na+-binding site per bundle. This ring was proposed to be decameric from LILBID-MS analysis of the entire ATP synthase. By contrast, the BioEM posterior favors a c9 ring stoichiometry. With BioEM, we ranked coarse-grained models of the whole complex with different ring geometry, using 6400 unprocessed particle images of the A1AO complex collected in vitreous ice. BioEM makes it possible to probabilistically establish the domain stoichiometry using low-resolution information and comparably few particle images.
Collapse
Affiliation(s)
- Pilar Cossio
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Matteo Allegretti
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Florian Mayer
- Department of Molecular Microbiology & Bioenergetics, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Department of Physics, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Tsunoda J, Song C, Imai FL, Takagi J, Ueno H, Murata T, Iino R, Murata K. Off-axis rotor in Enterococcus hirae V-ATPase visualized by Zernike phase plate single-particle cryo-electron microscopy. Sci Rep 2018; 8:15632. [PMID: 30353110 PMCID: PMC6199243 DOI: 10.1038/s41598-018-33977-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
EhV-ATPase is an ATP-driven Na+ pump in the eubacteria Enterococcus hirae (Eh). Here, we present the first entire structure of detergent-solubilized EhV-ATPase by single-particle cryo-electron microscopy (cryo-EM) using Zernike phase plate. The cryo-EM map dominantly showed one of three catalytic conformations in this rotary enzyme. To further stabilize the originally heterogeneous structure caused by the ATP hydrolysis states of the V1-ATPases, a peptide epitope tag system was adopted, in which the inserted peptide epitope sequence interfered with rotation of the central rotor by binding the Fab. As a result, the map unexpectedly showed another catalytic conformation of EhV-ATPase. Interestingly, these two conformations identified with and without Fab conversely coincided with those of the minor state 2 and the major state 1 of Thermus thermophilus V/A-ATPase, respectively. The most prominent feature in EhV-ATPase was the off-axis rotor, where the cytoplasmic V1 domain was connected to the transmembrane Vo domain through the off-axis central rotor. Furthermore, compared to the structure of ATP synthases, the larger size of the interface between the transmembrane a-subunit and c-ring of EhV-ATPase would be more advantageous for active ion pumping.
Collapse
Affiliation(s)
- Jun Tsunoda
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.,National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Fabiana Lica Imai
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, 263-8522, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Suita, Osaka, 565-0871, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, University of Tokyo, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, 263-8522, Japan.,JST, PRESTO, Inage, Chiba, 263-8522, Japan
| | - Ryota Iino
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan.,Institute for Molecular Science, Okazaki, Aichi, 444-8787, Japan
| | - Kazuyoshi Murata
- The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, 240-0193, Japan. .,National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
16
|
|
17
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Ben Imeddourene A, Esque J, André I. Combining multi-scale modelling methods to decipher molecular motions of a branching sucrase from glycoside-hydrolase family 70. PLoS One 2018; 13:e0201323. [PMID: 30067837 PMCID: PMC6070258 DOI: 10.1371/journal.pone.0201323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/12/2018] [Indexed: 01/23/2023] Open
Abstract
Among α-transglucosylases from Glycoside-Hydrolase family 70, the ΔN123-GB-CD2 enzyme derived from the bifunctional DSR-E from L. citreum NRRL B-1299 is particularly interesting as it was the first described engineered Branching Sucrase, not able to elongate glucan polymers from sucrose substrate. The previously reported overall structural organization of this multi-domain enzyme is an intricate U-shape fold conserved among GH70 enzymes which showed a certain conformational variability of the so-called domain V, assumed to play a role in the control of product structures, in available X-ray structures. Understanding the role of functional dynamics on enzyme reaction and substrate recognition is of utmost interest although it remains a challenge for biophysical methods. By combining long molecular dynamics simulation (1μs) and multiple analyses (NMA, PCA, Morelet Continuous Wavelet Transform and Cross Correlations Dynamics), we investigated here the dynamics of ΔN123-GB-CD2 alone and in interaction with sucrose substrate. Overall, our results provide the detailed picture at atomic level of the hierarchy of motions occurring along different timescales and how they are correlated, in agreement with experimental structural data. In particular, detailed analysis of the different structural domains revealed cooperative dynamic behaviors such as twisting, bending and wobbling through anti- and correlated motions, and also two structural hinge regions, of which one was unreported. Several highly flexible loops surrounding the catalytic pocket were also highlighted, suggesting a potential role in the acceptor promiscuity of ΔN123-GBD-CD2. Normal modes and essential dynamics underlined an interesting two-fold dynamic of the catalytic domain A, pivoting about an axis splitting the catalytic gorge in two parts. The comparison of the conformational free energy landscapes using principal component analysis of the enzyme in absence or in presence of sucrose, also revealed a more harmonic basin when sucrose is bound with a shift population of the bending mode, consistent with the substrate binding event.
Collapse
Affiliation(s)
- Akli Ben Imeddourene
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jérémy Esque
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Isabelle André
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- * E-mail:
| |
Collapse
|
20
|
Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 2018; 360:eaat4318. [PMID: 29748256 PMCID: PMC7116070 DOI: 10.1126/science.aat4318] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
Abstract
The chloroplast adenosine triphosphate (ATP) synthase uses the electrochemical proton gradient generated by photosynthesis to produce ATP, the energy currency of all cells. Protons conducted through the membrane-embedded Fo motor drive ATP synthesis in the F1 head by rotary catalysis. We determined the high-resolution structure of the complete cF1Fo complex by cryo-electron microscopy, resolving side chains of all 26 protein subunits, the five nucleotides in the F1 head, and the proton pathway to and from the rotor ring. The flexible peripheral stalk redistributes differences in torsional energy across three unequal steps in the rotation cycle. Plant ATP synthase is autoinhibited by a β-hairpin redox switch in subunit γ that blocks rotation in the dark.
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany.
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Lau C, Hunter MJ, Stewart A, Perozo E, Vandenberg JI. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. J Physiol 2018; 596:1107-1119. [PMID: 29377132 PMCID: PMC5878226 DOI: 10.1113/jp274888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/27/2017] [Indexed: 01/04/2023] Open
Abstract
The tightly regulated opening and closure of ion channels underlies the electrical signals that are vital for a wide range of physiological processes. Two decades ago the first atomic level view of ion channel structures led to a detailed understanding of ion selectivity and conduction. In recent years, spectacular developments in the field of cryo-electron microscopy have resulted in cryo-EM superseding crystallography as the technique of choice for determining near-atomic resolution structures of ion channels. Here, we will review the recent developments in cryo-EM and its specific application to the study of ion channel gating. We will highlight the advantages and disadvantages of the current technology and where the field is likely to head in the next few years.
Collapse
Affiliation(s)
- Carus Lau
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| | - Mark J. Hunter
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
| | - Alastair Stewart
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| | - Eduardo Perozo
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoIL60637USA
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research InstituteDarlinghurstNSW2010Australia
- St Vincent's Clinical SchoolUniversity of NSWDarlinghurstNSW2010Australia
| |
Collapse
|
22
|
Rotating with the brakes on and other unresolved features of the vacuolar ATPase. Biochem Soc Trans 2017; 44:851-5. [PMID: 27284051 PMCID: PMC4900747 DOI: 10.1042/bst20160043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 12/31/2022]
Abstract
The rotary ATPase family comprises the ATP synthase (F-ATPase), vacuolar ATPase (V-ATPase) and archaeal ATPase (A-ATPase). These either predominantly utilize a proton gradient for ATP synthesis or use ATP to produce a proton gradient, driving secondary transport and acidifying organelles. With advances in EM has come a significant increase in our understanding of the rotary ATPase family. Following the sub nm resolution reconstructions of both the F- and V-ATPases, the secondary structure organization of the elusive subunit a has now been resolved, revealing a novel helical arrangement. Despite these significant developments in our understanding of the rotary ATPases, there are still a number of unresolved questions about the mechanism, regulation and overall architecture, which this mini-review aims to highlight and discuss.
Collapse
|
23
|
Yadav KS, Miranda-Astudillo HV, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, González-Halphen D, Boekema EJ, Cardol P. Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:267-275. [DOI: 10.1016/j.bbabio.2017.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 11/26/2022]
|
24
|
Schmidt C, Macpherson JA, Lau AM, Tan KW, Fraternali F, Politis A. Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling. Anal Chem 2017; 89:1459-1468. [PMID: 28208298 PMCID: PMC5299547 DOI: 10.1021/acs.analchem.6b02875] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 12/22/2022]
Abstract
Mass spectrometry (MS) has become an indispensable tool for investigating the architectures and dynamics of macromolecular assemblies. Here we show that covalent labeling of solvent accessible residues followed by their MS-based identification yields modeling restraints that allow mapping the location and orientation of subunits within protein assemblies. Together with complementary restraints derived from cross-linking and native MS, we built native-like models of four heterocomplexes with known subunit structures and compared them with available X-ray crystal structures. The results demonstrated that covalent labeling followed by MS markedly increased the predictive power of the integrative modeling strategy enabling more accurate protein assembly models. We applied this strategy to the F-type ATP synthase from spinach chloroplasts (cATPase) providing a structural basis for its function as a nanomotor. By subjecting the models generated by our restraint-based strategy to molecular dynamics (MD) simulations, we revealed the conformational states of the peripheral stalk and assigned flexible regions in the enzyme. Our strategy can readily incorporate complementary chemical labeling strategies and we anticipate that it will be applicable to many other systems providing new insights into the structure and function of protein complexes.
Collapse
Affiliation(s)
- Carla Schmidt
- Interdisciplinary
Research Center HALOmem, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - Jamie A. Macpherson
- Division
of Cell & Molecular Biophysics, King’s
College London, New Hunt’s
House, SE1 1UL, London, United Kingdom
| | - Andy M. Lau
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Ken Wei Tan
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Franca Fraternali
- Division
of Cell & Molecular Biophysics, King’s
College London, New Hunt’s
House, SE1 1UL, London, United Kingdom
| | - Argyris Politis
- Department
of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| |
Collapse
|
25
|
Abstract
For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.
Collapse
Affiliation(s)
- Gabriella H Kelemen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
26
|
Sobti M, Smits C, Wong AS, Ishmukhametov R, Stock D, Sandin S, Stewart AG. Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 2016; 5. [PMID: 28001127 PMCID: PMC5214741 DOI: 10.7554/elife.21598] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk’s ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates toward the membrane with its helices separating to embrace subunit a from two sides. DOI:http://dx.doi.org/10.7554/eLife.21598.001 ATP synthase is a biological motor that produces a molecule called adenosine tri-phosphate (ATP for short), which acts as the major store of chemical energy in cells. A single molecule of ATP contains three phosphate groups: the cell can remove one of these phosphates to make a molecule called adenosine di-phosphate (ADP) and release energy to drive a variety of biological processes. ATP synthase sits in the membranes that separate cell compartments or form barriers around cells. When cells break down food they transport hydrogen ions across these membranes so that each side of the membrane has a different level (or “concentration”) of hydrogen ions. Movement of hydrogen ions from an area with a high concentration to a low concentration causes ATP synthase to rotate like a turbine. This rotation of the enzyme results in ATP synthase adding a phosphate group to ADP to make a new molecule of ATP. In certain conditions cells need to switch off the ATP synthase and this is done by changing the shape of the central shaft in a process called autoinhibition, which blocks the rotation. The ATP synthase from a bacterium known as E. coli – which is commonly found in the human gut –has been used as a model to study how this biological motor works. However, since the precise details of the three-dimensional structure of ATP synthase have remained unclear it has been difficult to interpret the results of these studies. Sobti et al. used a technique called Cryo-electron microscopy to investigate the structure of ATP synthase from E. coli. This made it possible to develop a three-dimensional model of the ATP synthase in its autoinhibited form. The structural data could also be split into three distinct shapes that relate to dwell points in the rotation of the motor where the rotation has been inhibited. These models further our understanding of ATP synthases and provide a template to understand the findings of previous studies. Further work will be needed to understand this essential biological process at the atomic level in both its inhibited and uninhibited form. This will reveal the inner workings of a marvel of the natural world and may also lead to the discovery of new antibiotics against related bacteria that cause diseases in humans. DOI:http://dx.doi.org/10.7554/eLife.21598.002
Collapse
Affiliation(s)
- Meghna Sobti
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Callum Smits
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Andrew Sw Wong
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Robert Ishmukhametov
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniela Stock
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Sara Sandin
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Faculty of Medicine, The University of New South Wales, Sydney, Australia
| |
Collapse
|
27
|
Mazhab-Jafari MT, Rubinstein JL. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. SCIENCE ADVANCES 2016; 2:e1600725. [PMID: 27532044 PMCID: PMC4985227 DOI: 10.1126/sciadv.1600725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases.
Collapse
Affiliation(s)
- Mohammad T. Mazhab-Jafari
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - John L. Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
28
|
Papachristos K, Muench SP, Paci E. Characterization of the flexibility of the peripheral stalk of prokaryotic rotary A-ATPases by atomistic simulations. Proteins 2016; 84:1203-12. [PMID: 27177595 PMCID: PMC4988496 DOI: 10.1002/prot.25066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Rotary ATPases are involved in numerous physiological processes, with the three distinct types (F/A/V‐ATPases) sharing functional properties and structural features. The basic mechanism involves the counter rotation of two motors, a soluble ATP hydrolyzing/synthesizing domain and a membrane‐embedded ion pump connected through a central rotor axle and a stator complex. Within the A/V‐ATPase family conformational flexibility of the EG stators has been shown to accommodate catalytic cycling and is considered to be important to function. For the A‐ATPase three EG structures have been reported, thought to represent conformational states of the stator during different stages of rotary catalysis. Here we use long, detailed atomistic simulations to show that those structures are conformers explored through thermal fluctuations, but do not represent highly populated states of the EG stator in solution. We show that the coiled coil tail domain has a high persistence length (∼100 nm), but retains the ability to adapt to different conformational states through the presence of two hinge regions. Moreover, the stator network of the related V‐ATPase has been suggested to adapt to subunit interactions in the collar region in addition to the nucleotide occupancy of the catalytic domain. The MD simulations reported here, reinforce this observation showing that the EG stators have enough flexibility to adapt to significantly different structural re‐arrangements and accommodate structural changes in the catalytic domain whilst resisting the large torque generated by catalytic cycling. These results are important to understand the role the stators play in the rotary‐ATPase mechanism. Proteins 2016; 84:1203–1212. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kostas Papachristos
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, England.,School of Molecular and Cellular Biology, University of Leeds, Leeds, England
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, England.,School of Biomedical Sciences, University of Leeds, Leeds, England
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, England.,School of Molecular and Cellular Biology, University of Leeds, Leeds, England
| |
Collapse
|
29
|
Colina-Tenorio L, Miranda-Astudillo H, Cano-Estrada A, Vázquez-Acevedo M, Cardol P, Remacle C, González-Halphen D. Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:359-69. [DOI: 10.1016/j.bbabio.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 11/26/2022]
|
30
|
Rawson S, Iadanza MG, Ranson NA, Muench SP. Methods to account for movement and flexibility in cryo-EM data processing. Methods 2016; 100:35-41. [PMID: 27016144 PMCID: PMC4854228 DOI: 10.1016/j.ymeth.2016.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/02/2022] Open
Abstract
Recent advances in direct electron detectors and improved CMOS cameras have been accompanied by the development of a range of software to take advantage of the data they produce. In particular they allow for the correction of two types of motion in cryo electron microscopy samples: motion correction for movements of the sample particles in the ice, and differential masking to account for heterogeneity caused by flexibility within protein complexes. Here we provide several scripts that allow users to move between RELION and standalone motion correction and centring programs. We then compare the computational cost and improvements in data quality with each program. We also describe our masking procedures to account for conformational flexibility. For the different elements of this study we have used three samples; a high symmetry virus, flexible protein complex (∼1 MDa) and a relatively small protein complex (∼550 kDa), to benchmark four widely available motion correction packages. Using these as test cases we demonstrate how motion correction and differential masking, as well as an additional particle re-centring protocol can improve final reconstructions when used within the RELION image-processing package.
Collapse
Affiliation(s)
- S Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - M G Iadanza
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - N A Ranson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - S P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
31
|
Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator. Proc Natl Acad Sci U S A 2016; 113:3633-8. [PMID: 26984495 DOI: 10.1073/pnas.1524025113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FliI and FliJ form the FliI6FliJ ATPase complex of the bacterial flagellar export apparatus, a member of the type III secretion system. The FliI6FliJ complex is structurally similar to the α3β3γ complex of F1-ATPase. The FliH homodimer binds to FliI to connect the ATPase complex to the flagellar base, but the details are unknown. Here we report the structure of the homodimer of a C-terminal fragment of FliH (FliHC2) in complex with FliI. FliHC2 shows an unusually asymmetric homodimeric structure that markedly resembles the peripheral stalk of the A/V-type ATPases. The FliHC2-FliI hexamer model reveals that the C-terminal domains of the FliI ATPase face the cell membrane in a way similar to the F/A/V-type ATPases. We discuss the mechanism of flagellar ATPase complex formation and a common origin shared by the type III secretion system and the F/A/V-type ATPases.
Collapse
|
32
|
Vázquez-Acevedo M, Vega-deLuna F, Sánchez-Vásquez L, Colina-Tenorio L, Remacle C, Cardol P, Miranda-Astudillo H, González-Halphen D. Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1183-1190. [PMID: 26873638 DOI: 10.1016/j.bbabio.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
The algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600 kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Félix Vega-deLuna
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Lorenzo Sánchez-Vásquez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Lilia Colina-Tenorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Claire Remacle
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico.
| |
Collapse
|
33
|
Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 2015; 521:241-5. [PMID: 25971514 DOI: 10.1038/nature14365] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/05/2015] [Indexed: 01/19/2023]
Abstract
Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.
Collapse
|
34
|
Nakanishi A, Kishikawa JI, Tamakoshi M, Yokoyama K. The ingenious structure of central rotor apparatus in VoV1; key for both complex disassembly and energy coupling between V1 and Vo. PLoS One 2015; 10:e0119602. [PMID: 25756791 PMCID: PMC4355294 DOI: 10.1371/journal.pone.0119602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/14/2015] [Indexed: 11/25/2022] Open
Abstract
Vacuolar type rotary H+-ATPases (VoV1) couple ATP synthesis/hydrolysis by V1 with proton translocation by Vo via rotation of a central rotor apparatus composed of the V1-DF rotor shaft, a socket-like Vo-C (eukaryotic Vo-d) and the hydrophobic rotor ring. Reconstitution experiments using subcomplexes revealed a weak binding affinity of V1-DF to Vo-C despite the fact that torque needs to be transmitted between V1-DF and Vo-C for the tight energy coupling between V1 and Vo. Mutation of a short helix at the tip of V1-DF caused intramolecular uncoupling of VoV1, suggesting that proper fitting of the short helix of V1-D into the socket of Vo-C is required for tight energy coupling between V1 and Vo. To account for the apparently contradictory properties of the interaction between V1-DF and Vo-C (weak binding affinity but strict requirement for torque transmission), we propose a model in which the relationship between V1-DF and Vo-C corresponds to that between a slotted screwdriver and a head of slotted screw. This model is consistent with our previous result in which the central rotor apparatus is not the major factor for the association of V1 with Vo (Kishikawa and Yokoyama, J Biol Chem. 2012 24597-24603).
Collapse
Affiliation(s)
- Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
35
|
Rawson S, Phillips C, Huss M, Tiburcy F, Wieczorek H, Trinick J, Harrison MA, Muench SP. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights. Structure 2015; 23:461-471. [PMID: 25661654 PMCID: PMC4353692 DOI: 10.1016/j.str.2014.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 01/08/2023]
Abstract
Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.
Collapse
Affiliation(s)
- Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clair Phillips
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Felix Tiburcy
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Helmut Wieczorek
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - John Trinick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
36
|
Zhao J, Rubinstein JL. The study of vacuolar-type ATPases by single particle electron microscopy. Biochem Cell Biol 2014; 92:460-6. [DOI: 10.1139/bcb-2014-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nature’s molecular machines often work through the concerted action of many different protein subunits, which can give rise to large structures with complex activities. Vacuolar-type ATPases (V-ATPases) are membrane-embedded protein assemblies with a unique rotary catalytic mechanism. The dynamic nature and instability of V-ATPases make structural and functional studies of these enzymes challenging. Electron microscopy (EM) techniques, especially single particle electron cryomicroscopy (cryo-EM) and negative-stain EM, have provided extensive insight into the structure and function of these protein complexes. This minireview outlines what has been learned about V-ATPases using electron microscopy, highlights current challenges for their structural study, and discusses what cryo-EM will allow us to learn about these fascinating enzymes in the future.
Collapse
Affiliation(s)
- Jianhua Zhao
- The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Medical Biophysics, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
| | - John L. Rubinstein
- The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Medical Biophysics, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
37
|
Richardson RA, Papachristos K, Read DJ, Harlen OG, Harrison M, Paci E, Muench SP, Harris SA. Understanding the apparent stator-rotor connections in the rotary ATPase family using coarse-grained computer modeling. Proteins 2014; 82:3298-311. [PMID: 25174610 DOI: 10.1002/prot.24680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 11/12/2022]
Abstract
Advances in structural biology, such as cryo-electron microscopy (cryo-EM) have allowed for a number of sophisticated protein complexes to be characterized. However, often only a static snapshot of a protein complex is visualized despite the fact that conformational change is frequently inherent to biological function, as is the case for molecular motors. Computer simulations provide valuable insights into the different conformations available to a particular system that are not accessible using conventional structural techniques. For larger proteins and protein complexes, where a fully atomistic description would be computationally prohibitive, coarse-grained simulation techniques such as Elastic Network Modeling (ENM) are often employed, whereby each atom or group of atoms is linked by a set of springs whose properties can be customized according to the system of interest. Here we compare ENM with a recently proposed continuum model known as Fluctuating Finite Element Analysis (FFEA), which represents the biomolecule as a viscoelastic solid subject to thermal fluctuations. These two complementary computational techniques are used to answer a critical question in the rotary ATPase family; implicit within these motors is the need for a rotor axle and proton pump to rotate freely of the motor domain and stator structures. However, current single particle cryo-EM reconstructions have shown an apparent connection between the stators and rotor axle or pump region, hindering rotation. Both modeling approaches show a possible role for this connection and how it would significantly constrain the mobility of the rotary ATPase family.
Collapse
Affiliation(s)
- Robin A Richardson
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhou M, Robinson CV. Flexible membrane proteins: functional dynamics captured by mass spectrometry. Curr Opin Struct Biol 2014; 28:122-30. [DOI: 10.1016/j.sbi.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/23/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
39
|
Ueno H, Minagawa Y, Hara M, Rahman S, Yamato I, Muneyuki E, Noji H, Murata T, Iino R. Torque generation of Enterococcus hirae V-ATPase. J Biol Chem 2014; 289:31212-23. [PMID: 25258315 DOI: 10.1074/jbc.m114.598177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.
Collapse
Affiliation(s)
- Hiroshi Ueno
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Yoshihiro Minagawa
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mayu Hara
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Suhaila Rahman
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Ichiro Yamato
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Eiro Muneyuki
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Hiroyuki Noji
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, JST, PRESTO, Chiba 263-8522, Japan,
| | - Ryota Iino
- the Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Aichi 444-8787, Japan, and the Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan
| |
Collapse
|
40
|
Mayer F, Müller V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev 2014; 38:449-72. [DOI: 10.1111/1574-6976.12043] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
|
41
|
Grüber G, Manimekalai MSS, Mayer F, Müller V. ATP synthases from archaea: the beauty of a molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:940-52. [PMID: 24650628 DOI: 10.1016/j.bbabio.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022]
Abstract
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| | | | - Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
42
|
Zhou M, Politis A, Davies R, Liko I, Wu KJ, Stewart AG, Stock D, Robinson CV. Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nat Chem 2014; 6:208-215. [PMID: 24557135 PMCID: PMC4067995 DOI: 10.1038/nchem.1868] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.
Collapse
Affiliation(s)
- Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Roberta Davies
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Idlir Liko
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Kuan-Jung Wu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
43
|
|
44
|
Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1208-18. [PMID: 24513197 DOI: 10.1016/j.bbabio.2014.01.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Ping Lu
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
45
|
|
46
|
Stewart AG, Laming EM, Sobti M, Stock D. Rotary ATPases--dynamic molecular machines. Curr Opin Struct Biol 2013; 25:40-8. [PMID: 24878343 DOI: 10.1016/j.sbi.2013.11.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 01/14/2023]
Abstract
Recent work has provided the detailed overall architecture and subunit composition of three subtypes of rotary ATPases. Composite models of F-type, V-type and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual components into electron microscopy derived envelopes of the intact enzymes. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria. An inherent flexibility in rotary ATPases observed by different techniques suggests greater dynamics during operation than previously envisioned. The concerted movement of subunits within the complex might provide means of regulation and information transfer between distant parts of rotary ATPases thereby fine tuning these molecular machines to their cellular environment, while optimizing their efficiency.
Collapse
Affiliation(s)
- Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia.
| | - Elise M Laming
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Meghna Sobti
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
47
|
Flexibility within the rotor and stators of the vacuolar H+-ATPase. PLoS One 2013; 8:e82207. [PMID: 24312643 PMCID: PMC3846802 DOI: 10.1371/journal.pone.0082207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°. This has been complemented by elastic network normal mode analysis that shows both flexing and twisting with the compliance being located in the rotor axle, stator filaments, or both. This study provides direct evidence of flexibility within the V-ATPase and by implication in related rotary ATPases, a feature predicted to be important for regulation and their high energetic efficiencies.
Collapse
|
48
|
Muench SP, Scheres SHW, Huss M, Phillips C, Vitavska O, Wieczorek H, Trinick J, Harrison MA. Subunit positioning and stator filament stiffness in regulation and power transmission in the V1 motor of the Manduca sexta V-ATPase. J Mol Biol 2013; 426:286-300. [PMID: 24075871 PMCID: PMC3899036 DOI: 10.1016/j.jmb.2013.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/01/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-driven proton pump essential to the function of eukaryotic cells. Its cytoplasmic V1 domain is an ATPase, normally coupled to membrane-bound proton pump Vo via a rotary mechanism. How these asymmetric motors are coupled remains poorly understood. Low energy status can trigger release of V1 from the membrane and curtail ATP hydrolysis. To investigate the molecular basis for these processes, we have carried out cryo-electron microscopy three-dimensional reconstruction of deactivated V1 from Manduca sexta. In the resulting model, three peripheral stalks that are parts of the mechanical stator of the V-ATPase are clearly resolved as unsupported filaments in the same conformations as in the holoenzyme. They are likely therefore to have inherent stiffness consistent with a role as flexible rods in buffering elastic power transmission between the domains of the V-ATPase. Inactivated V1 adopted a homogeneous resting state with one open active site adjacent to the stator filament normally linked to the H subunit. Although present at 1:1 stoichiometry with V1, both recombinant subunit C reconstituted with V1 and its endogenous subunit H were poorly resolved in three-dimensional reconstructions, suggesting structural heterogeneity in the region at the base of V1 that could indicate positional variability. If the position of H can vary, existing mechanistic models of deactivation in which it binds to and locks the axle of the V-ATPase rotary motor would need to be re-evaluated. Dissociation of vacuolar H+-ATPase domains deactivates its V1 motor. V1 has one “open” catalytic site linked to the stator filament bound by subunit H. Movement of subunit H to prevent rotary catalysis is possible. Three stator filaments project from deactivated V1, indicating inherent stiffness. This work gives new insight into energetic coupling and control in V-ATPases.
Collapse
Affiliation(s)
- Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Markus Huss
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Clair Phillips
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Olga Vitavska
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - Helmut Wieczorek
- Abteilung Tierphysiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, 49069 Osnabrück, Germany
| | - John Trinick
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
49
|
Miranda-Astudillo H, Cano-Estrada A, Vázquez-Acevedo M, Colina-Tenorio L, Downie-Velasco A, Cardol P, Remacle C, Domínguez-Ramírez L, González-Halphen D. Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1-13. [PMID: 23933283 DOI: 10.1016/j.bbabio.2013.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/24/2013] [Accepted: 08/02/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial F1FO-ATP synthase of chlorophycean algae is a complex partially embedded in the inner mitochondrial membrane that is isolated as a highly stable dimer of 1600kDa. It comprises 17 polypeptides, nine of which (subunits Asa1 to 9) are not present in classical mitochondrial ATP synthases and appear to be exclusive of the chlorophycean lineage. In particular, subunits Asa2, Asa4 and Asa7 seem to constitute a section of the peripheral stalk of the enzyme. Here, we over-expressed and purified subunits Asa2, Asa4 and Asa7 and the corresponding amino-terminal and carboxy-terminal halves of Asa4 and Asa7 in order to explore their interactions in vitro, using immunochemical techniques, blue native electrophoresis and affinity chromatography. Asa4 and Asa7 interact strongly, mainly through their carboxy-terminal halves. Asa2 interacts with both Asa7 and Asa4, and also with subunit α in the F1 sector. The three Asa proteins form an Asa2/Asa4/Asa7 subcomplex. The entire Asa7 and the carboxy-terminal half of Asa4 seem to be instrumental in the interaction with Asa2. Based on these results and on computer-generated structural models of the three subunits, we propose a model for the Asa2/Asa4/Asa7 subcomplex and for its disposition in the peripheral stalk of the algal ATP synthase.
Collapse
|
50
|
Toei M, Noji H. Single-molecule analysis of F0F1-ATP synthase inhibited by N,N-dicyclohexylcarbodiimide. J Biol Chem 2013; 288:25717-25726. [PMID: 23893417 DOI: 10.1074/jbc.m113.482455] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N,N-Dicyclohexylcarbodiimide (DCCD) is a classical inhibitor of the F0F1-ATP synthase (F0F1), which covalently binds to the highly conserved carboxylic acid of the proteolipid subunit (c subunit) in F0. Although it is well known that DCCD modification of the c subunit blocks proton translocation in F0 and the coupled ATP hydrolysis activity of F1, how DCCD inhibits the rotary dynamics of F0F1 remains elusive. Here, we carried out single-molecule rotation assays to characterize the DCCD inhibition of Escherichia coli F0F1. Upon the injection of DCCD, rotations irreversibly terminated with first order reaction kinetics, suggesting that the incorporation of a single DCCD moiety is sufficient to block the rotary catalysis of the F0F1. Individual molecules terminated at different angles relative to the three catalytic angles of F1, suggesting that DCCD randomly reacts with one of the 10 c subunits. DCCD-inhibited F0F1 sometimes showed transient activation; molecules abruptly rotated and stopped after one revolution at the original termination angle, suggesting that hindrance by the DCCD moiety is released due to thermal fluctuation. To explore the mechanical activation of DCCD-inhibited molecules, we perturbed inhibited molecules using magnetic tweezers. The probability of transient activation increased upon a forward forcible rotation. Interestingly, during the termination F0F1, showed multiple positional shifts, which implies that F1 stochastically changes the angular position of its rotor upon a catalytic reaction. This effect could be caused by balancing the angular positions of the F1 and the F0 rotors, which are connected via elastic elements.
Collapse
Affiliation(s)
- Masashi Toei
- From the Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- From the Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|