1
|
Buck S, Reid D, Galimberti M. Automated control and stabilization of ultrabroadband laser pulse angular dispersion. APPLIED OPTICS 2024; 63:1613-1617. [PMID: 38437376 DOI: 10.1364/ao.514074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024]
Abstract
We present an innovative automatic control of angular dispersion for high-power laser systems. A novel, to the best of our knowledge, diagnostic has been developed to visualize angular dispersion in ultrashort near-infrared laser pulses for on-shot analysis. The output of a commercial ultrabroadband oscillator was prepared with an arbitrary chromatic dispersion and sent through a compensation system composed of 4° glass wedges in motorized mounts. These wedges were rotationally controlled in discrete steps about the beam axis in accordance with the diagnostic, via an automated feedback loop, to successfully eliminate angular dispersion to a precision of 5 nrad/nm. The system can be implemented to maintain a zero or nonzero target dispersion for experiments.
Collapse
|
2
|
Dover NP, Ziegler T, Assenbaum S, Bernert C, Bock S, Brack FE, Cowan TE, Ditter EJ, Garten M, Gaus L, Goethel I, Hicks GS, Kiriyama H, Kluge T, Koga JK, Kon A, Kondo K, Kraft S, Kroll F, Lowe HF, Metzkes-Ng J, Miyatake T, Najmudin Z, Püschel T, Rehwald M, Reimold M, Sakaki H, Schlenvoigt HP, Shiokawa K, Umlandt MEP, Schramm U, Zeil K, Nishiuchi M. Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities. LIGHT, SCIENCE & APPLICATIONS 2023; 12:71. [PMID: 36914618 PMCID: PMC10011581 DOI: 10.1038/s41377-023-01083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.
Collapse
Affiliation(s)
- Nicholas P Dover
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Emma J Ditter
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Marco Garten
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Ilja Goethel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - George S Hicks
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hiromitsu Kiriyama
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - James K Koga
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Akira Kon
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Kotaro Kondo
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Hazel F Lowe
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | | | - Tatsuhiko Miyatake
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Zulfikar Najmudin
- The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas Püschel
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Marvin Reimold
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Hironao Sakaki
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | | | - Keiichiro Shiokawa
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
| | - Mamiko Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
3
|
Bock S, Oksenhendler T, Püschel T, Gebhardt R, Helbig U, Pausch R, Ziegler T, Bernert C, Zeil K, Irman A, Toncian T, Kiriyama H, Nishiuchi M, Kon A, Schramm U. Spectral-temporal measurement capabilities of third-order correlators. OPTICS EXPRESS 2023; 31:9923-9934. [PMID: 37157556 DOI: 10.1364/oe.475575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a method extending scanning third-order correlator temporal pulse evolution measurement capabilities of high power short pulse lasers to spectral sensitivity within the spectral range exploited by typical chirped pulse amplification systems. Modelling of the spectral response achieved by angle tuning of the third harmonic generating crystal is applied and experimentally validated. Exemplary measurements of spectrally resolved pulse contrast of a Petawatt laser frontend illustrate the importance of full bandwidth coverage for the interpretation of relativistic laser target interaction in particular for the case of solid targets.
Collapse
|
4
|
Reimold M, Assenbaum S, Bernert C, Beyreuther E, Brack FE, Karsch L, Kraft SD, Kroll F, Loeser M, Nossula A, Pawelke J, Püschel T, Schlenvoigt HP, Schramm U, Umlandt MEP, Zeil K, Ziegler T, Metzkes-Ng J. Time-of-flight spectroscopy for laser-driven proton beam monitoring. Sci Rep 2022; 12:21488. [PMID: 36509788 PMCID: PMC9744900 DOI: 10.1038/s41598-022-25120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Application experiments with laser plasma-based accelerators (LPA) for protons have to cope with the inherent fluctuations of the proton source. This creates a demand for non-destructive and online spectral characterization of the proton pulses, which are for application experiments mostly spectrally filtered and transported by a beamline. Here, we present a scintillator-based time-of-flight (ToF) beam monitoring system (BMS) for the recording of single-pulse proton energy spectra. The setup's capabilities are showcased by characterizing the spectral stability for the transport of LPA protons for two beamline application cases. For the two beamline settings monitored, data of 122 and 144 proton pulses collected over multiple days were evaluated, respectively. A relative energy uncertainty of 5.5% (1[Formula: see text]) is reached for the ToF BMS, allowing for a Monte-Carlo based prediction of depth dose distributions, also used for the calibration of the device. Finally, online spectral monitoring combined with the prediction of the corresponding depth dose distribution in the irradiated samples is demonstrated to enhance applicability of plasma sources in dose-critical scenarios.
Collapse
Affiliation(s)
- Marvin Reimold
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany.
- Technische Universität Dresden, 01062, Dresden, Germany.
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, 01309, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, 01309, Dresden, Germany
| | - Stephan D Kraft
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Markus Loeser
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Alexej Nossula
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, 01309, Dresden, Germany
| | - Thomas Püschel
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden, Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | | |
Collapse
|
5
|
Grace ES, Djordjevic BZ, Guang Z, Mariscal D, Scott GG, Simpson RA, Swanson KK, Zeraouli G, Stuart B, Trebino R, Ma T. Single-shot measurements of pulse-front tilt in intense ps laser pulses and its effect on accelerated electron and ion beam characteristics (invited). THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:123508. [PMID: 36586893 DOI: 10.1063/5.0101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
We report recent single-shot spatiotemporal measurements of laser pulses, including pulse-front tilt (PFT) and spatial chirp, taken at the Compact Multipulse Terawatt laser at the Jupiter Laser Facility in Livermore, CA. STRIPED FISH, a device that measures the complete 3D electric field of fs to ps laser pulses on a single shot, was adapted to near infrared for these measurements. We present the design of the instrument used for these experiments, the on-shot measurements of systematic high-order PFT, and shot-to-shot variations in the measurements of spatiotemporal couplings. Finally, we simulate the effect of PFT in target normal sheath acceleration experiments. These simulations showed that pulse front tilt can steer hot electrons, shape the distribution of the accelerating sheath field, and increase the variability of cutoff energy in the resulting proton spectra. While these effects may be detrimental to experimental accuracy if the pulse front tilt is left unmeasured, hot electron steering shows promise for precision manipulation of the particle source for a range of applications, including irradiation of secondary targets for opacity measurements, radiography, or neutron generation.
Collapse
Affiliation(s)
- E S Grace
- School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332, USA
| | - B Z Djordjevic
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - Z Guang
- School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332, USA
| | - D Mariscal
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - G G Scott
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - R A Simpson
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - K K Swanson
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - G Zeraouli
- Electrical and Computer Engineering, Colorado State University, 900 Oval Dr., Fort Collins, Colorado 80523, USA
| | - B Stuart
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| | - R Trebino
- School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332, USA
| | - T Ma
- Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550, USA
| |
Collapse
|
6
|
Jeandet A, Jolly SW, Borot A, Bussière B, Dumont P, Gautier J, Gobert O, Goddet JP, Gonsalves A, Irman A, Leemans WP, Lopez-Martens R, Mennerat G, Nakamura K, Ouillé M, Pariente G, Pittman M, Püschel T, Sanson F, Sylla F, Thaury C, Zeil K, Quéré F. Survey of spatio-temporal couplings throughout high-power ultrashort lasers. OPTICS EXPRESS 2022; 30:3262-3288. [PMID: 35209589 DOI: 10.1364/oe.444564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The investigation of spatio-temporal couplings (STCs) of broadband light beams is becoming a key topic for the optimization as well as applications of ultrashort laser systems. This calls for accurate measurements of STCs. Yet, it is only recently that such complete spatio-temporal or spatio-spectral characterization has become possible, and it has so far mostly been implemented at the output of the laser systems, where experiments take place. In this survey, we present for the first time STC measurements at different stages of a collection of high-power ultrashort laser systems, all based on the chirped-pulse amplification (CPA) technique, but with very different output characteristics. This measurement campaign reveals spatio-temporal effects with various sources, and motivates the expanded use of STC characterization throughout CPA laser chains, as well as in a wider range of types of ultrafast laser systems. In this way knowledge will be gained not only about potential defects, but also about the fundamental dynamics and operating regimes of advanced ultrashort laser systems.
Collapse
|
7
|
Proton beam quality enhancement by spectral phase control of a PW-class laser system. Sci Rep 2021; 11:7338. [PMID: 33795713 PMCID: PMC8017008 DOI: 10.1038/s41598-021-86547-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/16/2021] [Indexed: 11/08/2022] Open
Abstract
We report on experimental investigations of proton acceleration from solid foils irradiated with PW-class laser-pulses, where highest proton cut-off energies were achieved for temporal pulse parameters that varied significantly from those of an ideally Fourier transform limited (FTL) pulse. Controlled spectral phase modulation of the driver laser by means of an acousto-optic programmable dispersive filter enabled us to manipulate the temporal shape of the last picoseconds around the main pulse and to study the effect on proton acceleration from thin foil targets. The results show that applying positive third order dispersion values to short pulses is favourable for proton acceleration and can lead to maximum energies of 70 MeV in target normal direction at 18 J laser energy for thin plastic foils, significantly enhancing the maximum energy compared to ideally compressed FTL pulses. The paper further proves the robustness and applicability of this enhancement effect for the use of different target materials and thicknesses as well as laser energy and temporal intensity contrast settings. We demonstrate that application relevant proton beam quality was reliably achieved over many months of operation with appropriate control of spectral phase and temporal contrast conditions using a state-of-the-art high-repetition rate PW laser system.
Collapse
|
8
|
Mahmood MA, Lee SG, Lee SH, Kim HN, Lee K, Ahmad I, Yang JM, Yoon JW, Lee HW, Sung JH, Lee SK, Choi IW, Nam CH. Calibration of radiochromic EBT3 film using laser-accelerated protons. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:023302. [PMID: 33648087 DOI: 10.1063/5.0031253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
We present a proof of principle for onsite calibration of a radiochromic film (EBT3) using CR-39 as an absolute proton-counting detector and laser-accelerated protons as a calibration source. A special detector assembly composed of aluminum range filters, an EBT3 film, and a CR-39 detector is used to expose the EBT3 film with protons in an energy range of 3.65 MeV-5.85 MeV. In our design, the proton beam is divided into small beamlets and their projection images are taken on the EBT3 film and the CR-39 detector by maintaining a certain distance between the two detectors. Owing to the geometrical factor of the configuration and scattering inside the EBT3, the areal number density of protons was kept below the saturation level of the CR-39 detector. We also present a method to relate the number of protons detected on the CR-39 in a narrow energy range to protons with a broad energy spectrum that contribute to the dose deposited in the EBT3 film. The energy spectrum of protons emitted along the target normal direction is simultaneously measured using another CR-39 detector installed in a Thomson parabola spectrometer. The calibration curves for the EBT3 film were obtained in the optical density range of 0.01-0.25 for low dose values of 0.1 Gy-3.0 Gy. Our results are in good agreement with the calibrations of the EBT3 film that are traditionally carried out using conventional accelerators. The method presented here can be further extended for onsite calibration of radiochromic films of other types and for a higher range of dose values.
Collapse
Affiliation(s)
- M Ahsan Mahmood
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Seong Geun Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Sang Hwa Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Ha-Na Kim
- Research Center for Ultrafast Science, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Kitae Lee
- Research Center for Ultrafast Science, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Izhar Ahmad
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan
| | - Jeong Moon Yang
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Jin Woo Yoon
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Hwang Woon Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Jae Hee Sung
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Seong Ku Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Il Woo Choi
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| | - Chang Hee Nam
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Brack FE, Kroll F, Gaus L, Bernert C, Beyreuther E, Cowan TE, Karsch L, Kraft S, Kunz-Schughart LA, Lessmann E, Metzkes-Ng J, Obst-Huebl L, Pawelke J, Rehwald M, Schlenvoigt HP, Schramm U, Sobiella M, Szabó ER, Ziegler T, Zeil K. Spectral and spatial shaping of laser-driven proton beams using a pulsed high-field magnet beamline. Sci Rep 2020; 10:9118. [PMID: 32499539 PMCID: PMC7272427 DOI: 10.1038/s41598-020-65775-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/11/2020] [Indexed: 01/19/2023] Open
Abstract
Intense laser-driven proton pulses, inherently broadband and highly divergent, pose a challenge to established beamline concepts on the path to application-adapted irradiation field formation, particularly for 3D. Here we experimentally show the successful implementation of a highly efficient (50% transmission) and tuneable dual pulsed solenoid setup to generate a homogeneous (laterally and in depth) volumetric dose distribution (cylindrical volume of 5 mm diameter and depth) at a single pulse dose of 0.7 Gy via multi-energy slice selection from the broad input spectrum. The experiments were conducted at the Petawatt beam of the Dresden Laser Acceleration Source Draco and were aided by a predictive simulation model verified by proton transport studies. With the characterised beamline we investigated manipulation and matching of lateral and depth dose profiles to various desired applications and targets. Using an adapted dose profile, we performed a first proof-of-technical-concept laser-driven proton irradiation of volumetric in-vitro tumour tissue (SAS spheroids) to demonstrate concurrent operation of laser accelerator, beam shaping, dosimetry and irradiation procedure of volumetric biological samples.
Collapse
Affiliation(s)
- Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany. .,Technische Universität Dresden, 01062, Dresden, Germany.
| | - Florian Kroll
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany
| | - Lennart Gaus
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | | | | | - Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Emília Rita Szabó
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged, H-6728, Hungary
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, 01328, Dresden, Germany
| |
Collapse
|
10
|
Dover NP, Nishiuchi M, Sakaki H, Kondo K, Alkhimova MA, Faenov AY, Hata M, Iwata N, Kiriyama H, Koga JK, Miyahara T, Pikuz TA, Pirozhkov AS, Sagisaka A, Sentoku Y, Watanabe Y, Kando M, Kondo K. Effect of Small Focus on Electron Heating and Proton Acceleration in Ultrarelativistic Laser-Solid Interactions. PHYSICAL REVIEW LETTERS 2020; 124:084802. [PMID: 32167312 DOI: 10.1103/physrevlett.124.084802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Acceleration of particles from the interaction of ultraintense laser pulses up to 5×10^{21} W cm^{-2} with thin foils is investigated experimentally. The electron beam parameters varied with decreasing spot size, not just laser intensity, resulting in reduced temperatures and divergence. In particular, the temperature saturated due to insufficient acceleration length in the tightly focused spot. These dependencies affected the sheath-accelerated protons, which showed poorer spot-size scaling than widely used scaling laws. It is therefore shown that maximizing laser intensity by using very small foci has reducing returns for some applications.
Collapse
Affiliation(s)
- N P Dover
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - H Sakaki
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Ko Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M A Alkhimova
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - A Ya Faenov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
- Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka 565-0871, Japan
| | - M Hata
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - N Iwata
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - H Kiriyama
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - J K Koga
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - T Miyahara
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - T A Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
- Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka 565-0871, Japan
| | - A S Pirozhkov
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - A Sagisaka
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Y Sentoku
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Y Watanabe
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - M Kando
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
11
|
Kaymak V, Aktan E, Cerchez M, Elkin B, Papenheim M, Prasad R, Pukhov A, Scheer HC, Schroer AM, Willi O, Aurand B. Boosted acceleration of protons by tailored ultra-thin foil targets. Sci Rep 2019; 9:18672. [PMID: 31822698 PMCID: PMC6904736 DOI: 10.1038/s41598-019-55011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/22/2019] [Indexed: 11/09/2022] Open
Abstract
We report on a detailed experimental and numerical study on the boosted acceleration of protons from ultra-thin hemispherical targets utilizing multi-Joule short-pulse laser-systems. For a laser intensity of 1 × 1020 W/cm2 and an on-target energy of only 1.3 J with this setup a proton cut-off energy of 8.5 MeV was achieved, which is a factor of 1.8 higher compared to a flat foil target of the same thickness. While a boost of the acceleration process by additionally injected electrons was observed for sophisticated targets at high-energy laser-systems before, our studies reveal that the process can be utilized over at least two orders of magnitude in intensity and is therefore suitable for a large number of nowadays existing laser-systems. We retrieved a cut-off energy of about 6.5 MeV of proton energy per Joule of incident laser energy, which is a noticeable enhancement with respect to previous results employing this mechanism. The approach presented here has the advantage of using structure-wise simple targets and being sustainable for numerous applications and high repetition rate demands at the same time.
Collapse
Affiliation(s)
- Vural Kaymak
- Institut für Theoretische Physik I, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Esin Aktan
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Mirela Cerchez
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Bentsian Elkin
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569, Stuttgart, Germany
| | - Marc Papenheim
- Fakultät für Elektrotechnik, Informationstechnik, Medientechnik, Bergische Universität Wuppertal, 42119, Wuppertal, Germany
| | - Rajendra Prasad
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Alexander Pukhov
- Institut für Theoretische Physik I, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Hella-C Scheer
- Fakultät für Elektrotechnik, Informationstechnik, Medientechnik, Bergische Universität Wuppertal, 42119, Wuppertal, Germany
| | - Anna-Marie Schroer
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Oswald Willi
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Bastian Aurand
- Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Abstract
Ion beam analysis techniques are among the most powerful tools for advanced materials characterization. Despite their growing relevance in a widening number of fields, most ion beam analysis facilities still rely on the oldest accelerator technologies, with severe limitations in terms of portability and flexibility. In this work we thoroughly address the potential of superintense laser-driven proton sources for this application. We develop a complete analytical and numerical framework suitable to describe laser-driven ion beam analysis, exemplifying the approach for Proton Induced X-ray/Gamma-ray emission, a technique of widespread interest. This allows us to propose a realistic design for a compact, versatile ion beam analysis facility based on this novel concept. These results can pave the way for ground-breaking developments in the field of hadron-based advanced materials characterization.
Collapse
|
13
|
Obst-Huebl L, Ziegler T, Brack FE, Branco J, Bussmann M, Cowan TE, Curry CB, Fiuza F, Garten M, Gauthier M, Göde S, Glenzer SH, Huebl A, Irman A, Kim JB, Kluge T, Kraft SD, Kroll F, Metzkes-Ng J, Pausch R, Prencipe I, Rehwald M, Roedel C, Schlenvoigt HP, Schramm U, Zeil K. All-optical structuring of laser-driven proton beam profiles. Nat Commun 2018; 9:5292. [PMID: 30546015 PMCID: PMC6294339 DOI: 10.1038/s41467-018-07756-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
Extreme field gradients intrinsic to relativistic laser-interactions with thin solid targets enable compact MeV proton accelerators with unique bunch characteristics. Yet, direct control of the proton beam profile is usually not possible. Here we present a readily applicable all-optical approach to imprint detailed spatial information from the driving laser pulse onto the proton bunch. In a series of experiments, counter-intuitively, the spatial profile of the energetic proton bunch was found to exhibit identical structures as the fraction of the laser pulse passing around a target of limited size. Such information transfer between the laser pulse and the naturally delayed proton bunch is attributed to the formation of quasi-static electric fields in the beam path by ionization of residual gas. Essentially acting as a programmable memory, these fields provide access to a higher level of proton beam manipulation.
Collapse
Affiliation(s)
- Lieselotte Obst-Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany. .,Technische Universität Dresden, 01062, Dresden, Germany.
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - João Branco
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael Bussmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Frederico Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Garten
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Maxence Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sebastian Göde
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Siegfried H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Axel Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Arie Irman
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Jongjin B Kim
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Stephan D Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Josefine Metzkes-Ng
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Richard Pausch
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Irene Prencipe
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | | | - Hans-Peter Schlenvoigt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.,Technische Universität Dresden, 01062, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| |
Collapse
|
14
|
Obst L, Göde S, Rehwald M, Brack FE, Branco J, Bock S, Bussmann M, Cowan TE, Curry CB, Fiuza F, Gauthier M, Gebhardt R, Helbig U, Huebl A, Hübner U, Irman A, Kazak L, Kim JB, Kluge T, Kraft S, Loeser M, Metzkes J, Mishra R, Rödel C, Schlenvoigt HP, Siebold M, Tiggesbäumker J, Wolter S, Ziegler T, Schramm U, Glenzer SH, Zeil K. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets. Sci Rep 2017; 7:10248. [PMID: 28860614 PMCID: PMC5579044 DOI: 10.1038/s41598-017-10589-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022] Open
Abstract
We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (∅ 5 μm) and planar (20 μm × 2 μm). In both cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. This is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.
Collapse
Affiliation(s)
- Lieselotte Obst
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Sebastian Göde
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Florian-Emanuel Brack
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - João Branco
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Michael Bussmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandra B Curry
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Frederico Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Maxence Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - René Gebhardt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Axel Huebl
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology e.V., 07745, Jena, Germany
| | - Arie Irman
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Lev Kazak
- Universität Rostock, Albert-Einstein-Straße 23-24, 18059, Rostock, Germany
| | - Jongjin B Kim
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Thomas Kluge
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Stephan Kraft
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Markus Loeser
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Josefine Metzkes
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Rohini Mishra
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Christian Rödel
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743, Jena, Germany
| | - Hans-Peter Schlenvoigt
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Mathias Siebold
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
| | | | - Steffen Wolter
- Universität Rostock, Albert-Einstein-Straße 23-24, 18059, Rostock, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Ulrich Schramm
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany
- Technische Universität Dresden, 01062, Dresden, Germany
| | - Siegfried H Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Karl Zeil
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
15
|
Dover NP, Nishiuchi M, Sakaki H, Alkhimova MA, Faenov AY, Fukuda Y, Kiriyama H, Kon A, Kondo K, Nishitani K, Ogura K, Pikuz TA, Pirozhkov AS, Sagisaka A, Kando M, Kondo K. Scintillator-based transverse proton beam profiler for laser-plasma ion sources. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:073304. [PMID: 28764503 DOI: 10.1063/1.4994732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.
Collapse
Affiliation(s)
- N P Dover
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M Nishiuchi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - H Sakaki
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M A Alkhimova
- National Research Nuclear University (MEPhI), Moscow 115409, Russia
| | - A Ya Faenov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - Y Fukuda
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - H Kiriyama
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - A Kon
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Nishitani
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Ogura
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - T A Pikuz
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
| | - A S Pirozhkov
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - A Sagisaka
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - M Kando
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - K Kondo
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
16
|
Oksenhendler T, Bizouard P, Albert O, Bock S, Schramm U. High dynamic, high resolution and wide range single shot temporal pulse contrast measurement. OPTICS EXPRESS 2017; 25:12588-12600. [PMID: 28786614 DOI: 10.1364/oe.25.012588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
A novel apparatus for the single-shot measurement of the temporal pulse contrast of modern ultra-short pulse lasers is presented, based on a simple yet conceptual refinement of the self-referenced spectral interferometry (SRSI) approach. The introduction of the spatial equivalent of a temporal delay by tilted beams analyzed with a high quality imaging spectrometer, enables unprecedented performance in dynamic, temporal range and resolution simultaneously. Demonstrated consistently in simulation and experiment at the front-end of the PW laser Draco, the full range of the ps temporal contrast defining the quality of relativistic laser-solid interaction could be measured with almost 80 dB dynamic range, 18ps temporal window, and 18fs temporal resolution. Additionally, spatio-temporal coupling as in the case of a pulse front tilt can be quantitatively explored.
Collapse
|
17
|
Göde S, Rödel C, Zeil K, Mishra R, Gauthier M, Brack FE, Kluge T, MacDonald MJ, Metzkes J, Obst L, Rehwald M, Ruyer C, Schlenvoigt HP, Schumaker W, Sommer P, Cowan TE, Schramm U, Glenzer S, Fiuza F. Relativistic Electron Streaming Instabilities Modulate Proton Beams Accelerated in Laser-Plasma Interactions. PHYSICAL REVIEW LETTERS 2017; 118:194801. [PMID: 28548516 DOI: 10.1103/physrevlett.118.194801] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 06/07/2023]
Abstract
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a μm-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of B>10 MG and E>0.1 MV/μm fields with a μm-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length ≳0.13λ_{0}sqrt[a_{0}]. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multipurpose applications.
Collapse
Affiliation(s)
- S Göde
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C Rödel
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - K Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - R Mishra
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Gauthier
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - F-E Brack
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - T Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - M J MacDonald
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - J Metzkes
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - L Obst
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - M Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - C Ruyer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - H-P Schlenvoigt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - W Schumaker
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P Sommer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - T E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - U Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstr. 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - S Glenzer
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - F Fiuza
- High Energy Density Science Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
18
|
Metzkes J, Zeil K, Kraft SD, Karsch L, Sobiella M, Rehwald M, Obst L, Schlenvoigt HP, Schramm U. An online, energy-resolving beam profile detector for laser-driven proton beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:083310. [PMID: 27587116 DOI: 10.1063/1.4961576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.
Collapse
Affiliation(s)
- J Metzkes
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | - K Zeil
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | - S D Kraft
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | - L Karsch
- OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden, Germany
| | - M Sobiella
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | - M Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | - L Obst
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | - H-P Schlenvoigt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| | - U Schramm
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany
| |
Collapse
|
19
|
Willis C, Poole PL, Akli KU, Schumacher DW, Freeman RR. A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:053303. [PMID: 26026518 DOI: 10.1063/1.4921554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A diagnostic tool for precise alignment of targets in laser-matter interactions based on confocal microscopy is presented. This device permits precision alignment of targets within the Rayleigh range of tight focusing geometries for a wide variety of target surface morphologies. This confocal high-intensity positioner achieves micron-scale target alignment by selectively accepting light reflected from a narrow range of target focal planes. Additionally, the design of the device is such that its footprint and sensitivity can be tuned for the desired chamber and experiment. The device has been demonstrated to position targets repeatably within the Rayleigh range of the Scarlet laser system at The Ohio State University, where use of the device has provided a marked increase in ion yield and maximum energy.
Collapse
Affiliation(s)
- Christopher Willis
- Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, Ohio 43210, USA
| | - Patrick L Poole
- Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, Ohio 43210, USA
| | - Kramer U Akli
- Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, Ohio 43210, USA
| | - Douglass W Schumacher
- Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, Ohio 43210, USA
| | - Richard R Freeman
- Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, Ohio 43210, USA
| |
Collapse
|
20
|
Schollmeier M, Geissel M, Sefkow AB, Flippo KA. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:043305. [PMID: 24784600 DOI: 10.1063/1.4870895] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.
Collapse
Affiliation(s)
- M Schollmeier
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - M Geissel
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - A B Sefkow
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - K A Flippo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
21
|
Metzkes J, Karsch L, Kraft SD, Pawelke J, Richter C, Schürer M, Sobiella M, Stiller N, Zeil K, Schramm U. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:123301. [PMID: 23277976 DOI: 10.1063/1.4768672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.
Collapse
Affiliation(s)
- J Metzkes
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|