1
|
Elhanafy E, Akbari Ahangar A, Roth R, Gamal El-Din TM, Bankston JR, Li J. The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels. J Gen Physiol 2025; 157:e202413669. [PMID: 39820972 PMCID: PMC11740781 DOI: 10.1085/jgp.202413669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025] Open
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating property impacts in electrophysiology measurements. We conducted molecular dynamics (MD) simulations on wild-type channels and six mutants to elucidate the structural basis of their differential impacts. Our 120-µs MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis revealed how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study advances our understanding of structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
2
|
Liu Y, Bezanilla F. A sodium channel mutant removes fast inactivation with the inactivation particle bound. J Gen Physiol 2025; 157:e202413667. [PMID: 39601860 PMCID: PMC11602646 DOI: 10.1085/jgp.202413667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Fast inactivation is a key feature of voltage-gated sodium channels and is pivotal for countless physiological functions. Despite the prevalence of the canonical ball-and-chain model, more recent structural results suggest that fast inactivation requires multiple conformational changes beyond the binding of the inactivation particle, the IFM motif. Combining ionic current, gating current, and fluorescent measurements, here we showed that a double mutant at the bottom of the pore domain (CW) removes fast inactivation by interrupting the communication of the IFM motif and the pore. Instead of triggering fast inactivation, the IFM motif binding in CW allows the channel to enter an alternative open state. This alternative open state severely influenced the voltage sensor movements and was not accessible to wild type or other fast inactivation-deficient channels. Our results highlight the multistep nature of the fast inactivation process in mammalian voltage-gated sodium channels and demonstrate that CW modifies the channel behaviors more profoundly than simple removal of fast inactivation.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Centro Interdisciplinario de Neurociencias de Valparaiso, Valparaiso, Chile
| |
Collapse
|
3
|
He M, Wollmuth LP. Regulation of NMDAR activation efficiency by environmental factors and subunit composition. J Gen Physiol 2025; 157:e202413637. [PMID: 39576244 PMCID: PMC11586625 DOI: 10.1085/jgp.202413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
NMDA receptors (NMDAR) convert the major excitatory neurotransmitter glutamate into a synaptic signal. A key question is how efficiently the ion channel opens in response to the rapid exposure to presynaptic glutamate release. Here, we applied glutamate to single channel outside-out patches and measured the successes of channel openings and the latency to first opening to assay the activation efficiency of NMDARs under different physiological conditions and with different human subunit compositions. For GluN1/GluN2A receptors, we find that various factors, including intracellular ATP and GTP, can enhance the efficiency of activation presumably via the intracellular C-terminal domain. Notably, an energy-based internal solution or increasing the time between applications to increase recovery time improved efficiency. However, even under these optimized conditions and with a 1-s glutamate application, there remained around 10-15% inefficiency. Channel activation became more inefficient with brief synaptic-like pulses of glutamate at 2 ms. Of the different NMDAR subunit compositions, GluN2B-containing NMDARs showed the lowest success rate and longest latency to first openings, highlighting that they display the most distinct activation mechanism. In contrast, putative triheteromeric GluN1/GluN2A/GluN2B receptors showed high activation efficiency. Despite the low open probability, NMDARs containing either GluN2C or GluN2D subunits displayed high activation efficiency, nearly comparable with that for GluN2A-containing receptors. These results highlight that activation efficiency in NMDARs can be regulated by environmental surroundings and varies across different subunits.
Collapse
Affiliation(s)
- Miaomiao He
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Lonnie P. Wollmuth
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Li M, Jin Y, Wu J, Zhao M, Yu K, Yu H. Arbidol, an antiviral drug, identified as a sodium channel blocker with anticonvulsant activity. Br J Pharmacol 2024; 181:4311-4327. [PMID: 38982721 DOI: 10.1111/bph.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel blockers (SCBs) have traditionally been utilized as anti-seizure medications by primarily targeting the inactivation process. In a drug discovery project aiming at finding potential anticonvulsants, we have identified arbidol, originally an antiviral drug, as a potent SCB. In order to evaluate its anticonvulsant potential, we have thoroughly examined its biophysical properties as well as its effects on animal seizure models. EXPERIMENTAL APPROACH Patch clamp recording was used to investigate the electrophysiological properties of arbidol, as well as the binding and unbinding kinetics of arbidol, carbamazepine and lacosamide. Furthermore, we evaluated the anticonvulsant effects of arbidol using three different seizure models in male mice. KEY RESULTS Arbidol effectively suppressed neuronal epileptiform activity by blocking sodium channels. Arbidol demonstrated a distinct mode of action by interacting with both the fast and slow inactivation of Nav1.2 channels compared with carbamazepine and lacosamide. A kinetic study suggested that the binding and unbinding rates might be associated with the specific characteristics of these three drugs. Arbidol targeted the classical binding site of local anaesthetics, effectively inhibited the gain-of-function effects of Nav1.2 epileptic mutations and exhibited varying degrees of anticonvulsant effects in the maximal electroshock model and subcutaneous pentylenetetrazol model but had no effect in the pilocarpine-induced status epilepticus model. CONCLUSIONS AND IMPLICATIONS Arbidol shows promising potential as an anticonvulsant agent, providing a unique mode of action that sets it apart from existing SCBs.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Miao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kexin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
5
|
Thapa A, Beh JH, Robinson SD, Deuis JR, Tran H, Vetter I, Keramidas A. A venom peptide-induced Na V channel modulation mechanism involving the interplay between fixed channel charges and ionic gradients. J Biol Chem 2024; 300:107757. [PMID: 39260690 PMCID: PMC11470524 DOI: 10.1016/j.jbc.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Venoms are used by arthropods either to immobilize prey or as defense against predators. Our study focuses on the venom peptide, Ta3a, from the African ant species, Tetramorium africanum and its effects on voltage-gated sodium (NaV) channels, which are ion channels responsible for the generation of electrical signals in electrically excitable cells, such as neurons. Using the NaV1.7 isoform as our model NaV channel we show that Ta3a prolongs single channel active periods with increased open probability and induces non-inactivating whole-cell currents. Ta3a-affected NaV1.7 channels exhibit a leftward (hyperpolarizing) shift in activation threshold, constitutive activity even in the absence of an activating voltage stimulus, and at cell membrane voltages where channels are normally silent. Current-voltage experiments show that Ta3a shifts the voltage at which NaV current changes direction (reversal potential) by altering the local ionic concentration of permeant ions (Na+) rather than changing the channel's preference for ionic species. We propose a model where Ta3a maintains the positively charged voltage-sensing (S4) domains of the channel in the activated configuration where their electric field is exposed to the extracellular membrane surface to create an ionic bilayer comprising S4 domains and mobile anions (Cl-). This bilayer has a depolarizing effect on the cell membrane, thus reducing the amount of externally applied voltage required for channel activation.
Collapse
Affiliation(s)
- Ashvriya Thapa
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jia Hao Beh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hue Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
6
|
Akbari Ahangar A, Elhanafy E, Blanton H, Li J. Mapping structural distribution and gating-property impacts of disease-associated mutations in voltage-gated sodium channels. iScience 2024; 27:110678. [PMID: 39286500 PMCID: PMC11404175 DOI: 10.1016/j.isci.2024.110678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Thousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, cardiac arrhythmia, and pain disorders. Yet, the effects of more variants remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications are frequently employed to interpret mutations' effects and guide therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar GoF/LoF effects can stem from unique molecular mechanisms. Utilizing UniProt data, we mapped over 2,400 disease-associated missense mutations across Nav channels. This analysis pinpoints key mutation hotspots and maps patterns of gating-property impacts for the mutations, respectively, located around the selectivity filter, activation gate, fast inactivation region, and voltage-sensing domains. This study shows great potential to enhance prediction accuracy for mutational effects based on the structural context, paving the way for targeted drug design in precision medicine.
Collapse
Affiliation(s)
- Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Hayden Blanton
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
7
|
Elhanafy E, Ahangar AA, Roth R, Gamal El-Din TM, Bankston JR, Li J. ELUCIDATING THE DIFFERENTIAL IMPACTS OF EQUIVALENT GATING-CHARGE MUTATIONS IN VOLTAGE-GATED SODIUM CHANNELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612021. [PMID: 39314455 PMCID: PMC11419121 DOI: 10.1101/2024.09.09.612021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino-acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating-property impacts in electrophysiology measurements. We conducted 120 μs molecular dynamics (MD) simulations on wild-type and six mutants to elucidate the structural basis of their differential impacts. Our μs-scale MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis elucidated how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study represents a significant leap forward in understanding structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
8
|
Goldschen-Ohm MP, Chanda B. Bioelectricity and molecular signaling. Biophys J 2024; 123:E1-E2. [PMID: 38945122 PMCID: PMC11309963 DOI: 10.1016/j.bpj.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
9
|
Aman TK, Raman IM. Resurgent current in context: Insights from the structure and function of Na and K channels. Biophys J 2024; 123:1924-1941. [PMID: 38130058 PMCID: PMC11309984 DOI: 10.1016/j.bpj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Discovered just over 25 years ago in cerebellar Purkinje neurons, resurgent Na current was originally described operationally as a component of voltage-gated Na current that flows upon repolarization from relatively depolarized potentials and speeds recovery from inactivation, increasing excitability. Its presence in many excitable cells and absence from others has raised questions regarding its biophysical and molecular mechanisms. Early studies proposed that Na channels capable of generating resurgent current are subject to a rapid open-channel block by an endogenous blocking protein, which binds upon depolarization and unblocks upon repolarization. Since the time that this mechanism was suggested, many physiological and structural studies of both Na and K channels have revealed aspects of gating and conformational states that provide insights into resurgent current. These include descriptions of domain movements for activation and inactivation, solution of cryo-EM structures with pore-blocking compounds, and identification of native blocking domains, proteins, and modulatory subunits. Such results not only allow the open-channel block hypothesis to be refined but also link it more clearly to research that preceded it. This review considers possible mechanisms for resurgent Na current in the context of earlier and later studies of ion channels and suggests a framework for future research.
Collapse
Affiliation(s)
- Teresa K Aman
- Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, Illinois.
| |
Collapse
|
10
|
Tibery DV, Nunes JAA, da Mata DO, Menezes LFS, de Souza ACB, Fernandes-Pedrosa MDF, Treptow W, Schwartz EF. Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus. Toxins (Basel) 2024; 16:257. [PMID: 38922152 PMCID: PMC11209618 DOI: 10.3390/toxins16060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.
Collapse
Affiliation(s)
- Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - João Antonio Alves Nunes
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Daniel Oliveira da Mata
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Adolfo Carlos Barros de Souza
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| |
Collapse
|
11
|
Ramírez-Piscina L, Sancho JM. Subconductance states in a semimicroscopic model for a tetrameric pore. Phys Rev E 2024; 109:044402. [PMID: 38755917 DOI: 10.1103/physreve.109.044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 05/18/2024]
Abstract
A physical model for a structured tetrameric pore is studied. The pore is modeled as a device composed of four subunits, each one exhibiting two possible states (open and closed). The pore is located within a membrane that separates two reservoirs with ionic solutions. All variables of the model follow physical dynamical equations accounting for the internal structure of the pore, derived from a single energy functional and supplemented with thermal noises. An extensive study of the resulting ionic intensity is performed for different values of the control parameters, mainly membrane potential and reservoir ion concentrations. Two possible physical devices are studied: voltage-gated (including a voltage sensor in each subunit) and non-voltage-gated pores. The ionic flux through the pore exhibits several distinct dynamical configurations, in particular subconductance states, which indicate very different dynamical internal states of the subunits. Such subconductance states become much easier to observe in sensorless pores. These results are compared with available experimental data on tetrameric K channels and analytical predictions.
Collapse
Affiliation(s)
- L Ramírez-Piscina
- Departament de Física Aplicada, EPSEB, Universitat Politécnica de Catalunya, Avinguda Doctor Marañón, 44, E-08028 Barcelona, Spain
| | - J M Sancho
- Universitat de Barcelona, Departament de Física de la Matèria Condensada, Martí i Franqués, 1, E-08028 Barcelona, Spain
| |
Collapse
|
12
|
Lin Y, Tao E, Champion JP, Corry B. A binding site for phosphoinositides described by multiscale simulations explains their modulation of voltage-gated sodium channels. eLife 2024; 12:RP91218. [PMID: 38465747 DOI: 10.7554/elife.91218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Voltage-gated sodium channels (Naᵥ) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naᵥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naᵥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naᵥ1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naᵥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naᵥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naᵥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naᵥ-related diseases.
Collapse
Affiliation(s)
- Yiechang Lin
- Research School of Biology, Australian National University, Canberra, Australia
| | - Elaine Tao
- Research School of Biology, Australian National University, Canberra, Australia
| | - James P Champion
- Research School of Biology, Australian National University, Canberra, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
13
|
del Rivero Morfin PJ, Kochiss AL, Liedl KR, Flucher BE, Fernández-Quintero ML, Ben-Johny M. Asymmetric contribution of a selectivity filter gate in triggering inactivation of CaV1.3 channels. J Gen Physiol 2024; 156:e202313365. [PMID: 38175169 PMCID: PMC10771039 DOI: 10.1085/jgp.202313365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Voltage-dependent and Ca2+-dependent inactivation (VDI and CDI, respectively) of CaV channels are two biologically consequential feedback mechanisms that fine-tune Ca2+ entry into neurons and cardiomyocytes. Although known to be initiated by distinct molecular events, how these processes obstruct conduction through the channel pore remains poorly defined. Here, focusing on ultrahighly conserved tryptophan residues in the interdomain interfaces near the selectivity filter of CaV1.3, we demonstrate a critical role for asymmetric conformational changes in mediating VDI and CDI. Specifically, mutagenesis of the domain III-IV interface, but not others, enhanced VDI. Molecular dynamics simulations demonstrate that mutations in distinct selectivity filter interfaces differentially impact conformational flexibility. Furthermore, mutations in distinct domains preferentially disrupt CDI mediated by the N- versus C-lobes of CaM, thus uncovering a scheme of structural bifurcation of CaM signaling. These findings highlight the fundamental importance of the asymmetric arrangement of the pseudotetrameric CaV pore domain for feedback inhibition.
Collapse
Affiliation(s)
| | - Audrey L. Kochiss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Raman IM. The Hodgkin-Huxley-Katz Prize Lecture: A Markov model with permeation-dependent gating that accounts for resurgent current of voltage-gated Na channels. J Physiol 2023; 601:5147-5164. [PMID: 37837315 PMCID: PMC10913027 DOI: 10.1113/jp285166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023] Open
Abstract
Many neurons that fire high-frequency action potentials express specialized voltage-gated Na channel complexes that not only conduct transient current upon depolarization, but also pass resurgent current upon repolarization. The resurgent current is associated with recovery of transient current, even at moderately negative potentials where fast inactivation is usually absorbing. The combined results of many experimental studies have led to the hypothesis that resurgent current flows upon repolarization when an endogenous blocking protein that occludes open channels at depolarized potentials is expelled by inwardly permeating Na ions. Additional observations have suggested that the position of the voltage sensor of domain IV regulates the affinity of the channel for the putative blocker. To test the effectiveness of a kinetic scheme incorporating these features, here we develop and justify a Markov model with states grounded in known Na channel conformations. Simulations were designed to investigate whether including a permeation-dependent unblocking rate constant and two open-blocked states, superimposed on conformations and voltage-sensitive movements present in all voltage-gated Na channels, is sufficient to account for the unusual gating of channels with a resurgent component. Optimizing rate constant parameters against a wide range of experimental data from cerebellar Purkinje cells demonstrates that a kinetic scheme for Na channels incorporating the novel aspects of a permeation-dependent unblock, as well as distinct high- and low-affinity blocked states, reproduces all the attributes of experimentally recorded Na currents in a physiologically plausible manner.
Collapse
Affiliation(s)
- Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
15
|
del Rivero Morfin PJ, Kochiss AL, Liedl KR, Flucher BE, Fernández-Quintero ML, Ben-Johny M. Asymmetric Contribution of a Selectivity Filter Gate in Triggering Inactivation of Ca V1.3 Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558864. [PMID: 37790368 PMCID: PMC10542529 DOI: 10.1101/2023.09.21.558864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Voltage-dependent and Ca2+-dependent inactivation (VDI and CDI, respectively) of CaV channels are two biologically consequential feedback mechanisms that fine-tune Ca2+ entry into neurons and cardiomyocytes. Although known to be initiated by distinct molecular events, how these processes obstruct conduction through the channel pore remains poorly defined. Here, focusing on ultra-highly conserved tryptophan residues in the inter-domain interfaces near the selectivity filter of CaV1.3, we demonstrate a critical role for asymmetric conformational changes in mediating VDI and CDI. Specifically, mutagenesis of the domain III-IV interface, but not others, enhanced VDI. Molecular dynamics simulations demonstrate that mutations in distinct selectivity filter interfaces differentially impact conformational flexibility. Furthermore, mutations in distinct domains preferentially disrupt CDI mediated by the N- versus C-lobes of CaM, thus uncovering a scheme of structural bifurcation of CaM signaling. These findings highlight the fundamental importance of the asymmetric arrangement of the pseudo-tetrameric CaV pore domain for feedback inhibition.
Collapse
Affiliation(s)
| | - Audrey L. Kochiss
- Department of Physiology and Cellular Biophysics, Columbia University
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Bernhard E. Flucher
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University
| |
Collapse
|
16
|
Ahangar AA, Elhanafy E, Blanton H, Li J. Mapping Structural Distribution and Gating-Property Impacts of Disease-Associated Missense Mutations in Voltage-Gated Sodium Channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558623. [PMID: 37781633 PMCID: PMC10541146 DOI: 10.1101/2023.09.20.558623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Thousands of voltage-gated sodium (Nav) channel variants contribute to a variety of disorders, including epilepsy, autism, cardiac arrhythmia, and pain disorders. Yet variant effects of more mutations remain unclear. The conventional gain-of-function (GoF) or loss-of-function (LoF) classifications is frequently employed to interpret of variant effects on function and guide precision therapy for sodium channelopathies. Our study challenges this binary classification by analyzing 525 mutations associated with 34 diseases across 366 electrophysiology studies, revealing that diseases with similar phenotypic effects can stem from unique molecular mechanisms. Our results show a high biophysical agreement (86%) between homologous disease-associated variants in different Nav genes, significantly surpassing the 60% phenotype (GoFo/LoFo) agreement among homologous mutants, suggesting the need for more nuanced disease categorization and treatment based on specific gating-property changes. Using UniProt data, we mapped over 2,400 disease-associated missense variants across nine human Nav channels and identified three clusters of mutation hotspots. Our findings indicate that mutations near the selectivity filter generally diminish the maximal current amplitude, while those in the fast inactivation region lean towards a depolarizing shift in half-inactivation voltage in steady-state activation, and mutations in the activation gate commonly enhance persistent current. In contrast to mutations in the PD, those within the VSD exhibit diverse impacts and subtle preferences on channel activity. This study shows great potential to enhance prediction accuracy for variant effects based on the structural context, laying the groundwork for targeted drug design in precision medicine.
Collapse
Affiliation(s)
- Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Hayden Blanton
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi
| |
Collapse
|
17
|
Gada KD, Kamuene JM, Chandrashekar A, Kissell RC, Yauch AK, Plant LD. PI(4,5)P2 regulates the gating of NaV1.4 channels. J Gen Physiol 2023; 155:e202213255. [PMID: 37043561 PMCID: PMC10103707 DOI: 10.1085/jgp.202213255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are densely expressed in most excitable cells and activate in response to depolarization, causing a rapid influx of Na+ ions that initiates the action potential. The voltage-dependent activation of NaV channels is followed almost instantaneously by fast inactivation, setting the refractory period of excitable tissues. The gating cycle of NaV channels is subject to tight regulation, with perturbations leading to a range of pathophysiological states. The gating properties of most ion channels are regulated by the membrane phospholipid, phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2). However, it is not known whether PI(4,5)P2 modulates the activity of NaV channels. Here, we utilize optogenetics to activate specific, membrane-associated phosphoinositide (PI)-phosphatases that dephosphorylate PI(4,5)P2 while simultaneously recording NaV1.4 channel currents. We show that dephosphorylating PI(4,5)P2 left-shifts the voltage-dependent gating of NaV1.4 to more hyperpolarized membrane potentials, augments the late current that persists after fast inactivation, and speeds the rate at which channels recover from fast inactivation. These effects are opposed by exogenous diC8PI(4,5)P2. We provide evidence that PI(4,5)P2 is a negative regulator that tunes the gating behavior of NaV1.4 channels.
Collapse
Affiliation(s)
- Kirin D. Gada
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jordie M. Kamuene
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - R. Charles Kissell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Anne K. Yauch
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| |
Collapse
|
18
|
Oliveira da Mata D, Tibery DV, Fernandes-Pedrosa MF, Schwartz EF. Modulation of hNav by Tst1, a β-toxin purified from the scorpion Tityus stigmurus. Biochimie 2023; 204:118-126. [PMID: 36116743 DOI: 10.1016/j.biochi.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Scorpion venoms are known as a rich mixture of components, including peptides that can interact with different ion channels, particularly voltage-gated potassium channels (Kv), calcium channels (Cav) and sodium channels (Nav), essential membrane proteins for various physiological functions in organisms. The present work aimed to characterize the modulation of hNa+-channels by Tst1, a peptide purified from the venom of Tityus stigmurus, using whole-cell patch clamp. Tst1 at 100 nM provoked current inhibition in Nav 1.3 (85.23%), Nav 1.2 (67.26%) and Nav 1.4 (63.43%), while Nav 1.1, 1.5, 1.6, and 1.7 were not significantly affected. Tst1 also shifted the voltage of activation and steady-state inactivation to more hyperpolarized states and altered the recovery from inactivation of the channels, reducing repetitive firing of cells, which was more effective in Nav 1.3. Tst1 also demonstrated that the effect on Nav 1.3 is dose-dependent, with an IC50 of 8.79 nM. Taken together, these results confirmed that Tst1, the first Tityus stigmurus NaScTx assayed in relation to Nav channels, is a β-toxin, as was previously suggested due to its amino acid sequence. KEY CONTRIBUTION: First β-toxin purified from the venom of Tityus stigmurus scorpion broadly characterized in hNa+-channels.
Collapse
Affiliation(s)
- Daniel Oliveira da Mata
- Laboratory of Neuropharmacology, Biological Science Department, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Diogo Vieira Tibery
- Laboratory of Neuropharmacology, Biological Science Department, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Pharmacy Department, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratory of Neuropharmacology, Biological Science Department, University of Brasília, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
19
|
Zhorov BS. Molecular Modeling of Cardiac Sodium Channel with Mexiletine. MEMBRANES 2022; 12:1252. [PMID: 36557159 PMCID: PMC9786191 DOI: 10.3390/membranes12121252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 05/15/2023]
Abstract
A sodium channel blocker mexiletine (MEX) is used to treat chronic pain, myotonia and some arrhythmias. Mutations in the pore domain (PD) of voltage-gated sodium channels differently affect tonic block (TB) and use-dependent block (UDB) by MEX. Previous studies identified several MEX-sensing residues in the hNav1.5 channel and demonstrated that the channel block by MEX increases with activation of the voltage-sensing domain III (VSDIII), whereas MEX stabilizes the activated state of VSDIII. Structural rationales for these observations are unclear. Here, Monte Carlo (MC) energy minimizations were used to dock MEX and its more potent analog, Thio-Me2, into the hNav1.5 cryo-EM structure with activated VSDs and presumably inactivated PD. Computations yielded two ensembles of ligand binding poses in close contacts with known MEX-sensing residues in helices S6III, S6IV and P1IV. In both ensembles, the ligand NH3 group approached the cation-attractive site between backbone carbonyls at the outer-pore bottom, while the aromatic ring protruded ether into the inner pore (putative UDB pose) or into the III/IV fenestration (putative TB pose). In silico deactivation of VSDIII shifted helices S4-S5III, S5III, S6III and S6IV and tightened the TB site. In a model with activated VSDIII and three resting VSDs, MC-minimized energy profile of MEX pulled from the TB site towards lipids shows a deep local minimum due to interactions with 11 residues in S5III, P1III, S6III and S6IV. The minimum may correspond to an interim binding site for MEX in the hydrophobic path to the TB site along the lipid-exposed sides of repeats III and IV where 15 polar and aromatic residues would attract cationic blockers. The study explains numerous experimental data and suggests the mechanism of allosteric modification of the MEX binding site by VSDIII.
Collapse
Affiliation(s)
- Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
20
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
21
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Brake N, Mancino AS, Yan Y, Shimomura T, Kubo Y, Khadra A, Bowie D. Closed-state inactivation of cardiac, skeletal, and neuronal sodium channels is isoform specific. J Gen Physiol 2022; 154:213242. [PMID: 35612552 PMCID: PMC9136305 DOI: 10.1085/jgp.202112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
Voltage-gated sodium (Nav) channels produce the upstroke of action potentials in excitable tissues throughout the body. The gating of these channels is determined by the asynchronous movements of four voltage-sensing domains (VSDs). Past studies on the skeletal muscle Nav1.4 channel have indicated that VSD-I, -II, and -III are sufficient for pore opening, whereas VSD-IV movement is sufficient for channel inactivation. Here, we studied the cardiac sodium channel, Nav1.5, using charge-neutralizing mutations and voltage-clamp fluorometry. Our results reveal that both VSD-III and -IV are necessary for Nav1.5 inactivation, and that steady-state inactivation can be modulated by all VSDs. We also demonstrate that channel activation is partially determined by VSD-IV movement. Kinetic modeling suggests that these observations can be explained from the cardiac channel's propensity to enter closed-state inactivation (CSI), which is significantly higher than that of other Nav channels. We show that skeletal muscle Nav1.4, cardiac Nav1.5, and neuronal Nav1.6 all have different propensities for CSI and postulate that these differences produce isoform-dependent roles for the four VSDs.
Collapse
Affiliation(s)
- Niklas Brake
- Quantitative Life Sciences PhD Program, McGill University, Montreal, Quebec, Canada,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Adamo S. Mancino
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Yuhao Yan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada,Correspondence to Derek Bowie:
| |
Collapse
|
23
|
Kinetic Alterations in Resurgent Sodium Currents of Mutant Nav1.4 Channel in Two Patients Affected by Paramyotonia Congenita. BIOLOGY 2022; 11:biology11040613. [PMID: 35453812 PMCID: PMC9031228 DOI: 10.3390/biology11040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Paramyotonia congenita (PMC) is a rare muscle disorder that causes myotonia and weakness of facial and limb muscles. The electromyography in PMC shows continual spontaneous, high-frequency spike potentials in skeletal muscles. Genetic mutations in the Nav1.4 channel that cause hyperexcitability of muscle fibers are responsible for PMC. However, the genotype–phenotype relationship is highly diversified, and the molecular pathology remains unclear. Here, we investigated the electrophysiology in the Nav1.4 channel with mutations, p.V781I and p.A1737T, which were found in two Taiwanese patients. We identified the distinct changes in gating mechanisms altered by mutations which may underlie the clinical phenotype. Abstract Paramyotonia congenita (PMC) is a rare skeletal muscle disorder characterized by muscle stiffness upon repetitive exercise and cold exposure. PMC was reported to be caused by dominant mutations in the SCN4A gene encoding the α subunit of the Nav1.4 channel. Recently, we identified two missense mutations of the SCN4A gene, p.V781I and p.A1737T, in two PMC families. To evaluate the changes in electrophysiological properties caused by the mutations, both mutant and wild-type (WT) SCN4A genes were expressed in CHO-K1 and HEK-293T cells. Then, whole-cell patch-clamp recording was employed to study the altered gating of mutant channels. The activation curve of transient current showed a hyperpolarizing shift in both mutant Nav1.4 channels as compared to the WT channel, whereas there was a depolarizing shift in the fast inactivation curve. These changes confer to an increase in window current in the mutant channels. Further investigations demonstrated that the mutated channel proteins generate significantly larger resurgent currents as compared to the WT channel and take longer to attain the peak of resurgent current than the WT channel. In conclusion, the current study demonstrates that p.V781I and p.A1737T mutations in the Nav1.4 channel increase both the sustained and the resurgent Na+ current, leading to membrane hyperexcitability with a lower firing threshold, which may influence the clinical phenotype.
Collapse
|
24
|
Labau JIR, Alsaloum M, Estacion M, Tanaka B, Dib-Hajj FB, Lauria G, Smeets HJM, Faber CG, Dib-Hajj S, Waxman SG. Lacosamide Inhibition of Na V1.7 Channels Depends on its Interaction With the Voltage Sensor Domain and the Channel Pore. Front Pharmacol 2022; 12:791740. [PMID: 34992539 PMCID: PMC8724789 DOI: 10.3389/fphar.2021.791740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Lacosamide, developed as an anti-epileptic drug, has been used for the treatment of pain. Unlike typical anticonvulsants and local anesthetics which enhance fast-inactivation and bind within the pore of sodium channels, lacosamide enhances slow-inactivation of these channels, suggesting different binding mechanisms and mode of action. It has been reported that lacosamide's effect on NaV1.5 is sensitive to a mutation in the local anesthetic binding site, and that it binds with slow kinetics to the fast-inactivated state of NaV1.7. We recently showed that the NaV1.7-W1538R mutation in the voltage-sensing domain 4 completely abolishes NaV1.7 inhibition by clinically-achievable concentration of lacosamide. Our molecular docking analysis suggests a role for W1538 and pore residues as high affinity binding sites for lacosamide. Aryl sulfonamide sodium channel blockers are also sensitive to substitutions of the W1538 residue but not of pore residues. To elucidate the mechanism by which lacosamide exerts its effects, we used voltage-clamp recordings and show that lacosamide requires an intact local anesthetic binding site to inhibit NaV1.7 channels. Additionally, the W1538R mutation does not abrogate local anesthetic lidocaine-induced blockade. We also show that the naturally occurring arginine in NaV1.3 (NaV1.3-R1560), which corresponds to NaV1.7-W1538R, is not sufficient to explain the resistance of NaV1.3 to clinically-relevant concentrations of lacosamide. However, the NaV1.7-W1538R mutation conferred sensitivity to the NaV1.3-selective aryl-sulfonamide blocker ICA-121431. Together, the W1538 residue and an intact local anesthetic site are required for lacosamide's block of NaV1.7 at a clinically-achievable concentration. Moreover, the contribution of W1538 to lacosamide inhibitory effects appears to be isoform-specific.
Collapse
Affiliation(s)
- Julie I R Labau
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Brian Tanaka
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation, "Carlo Besta" Neurological Institute, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Hubert J M Smeets
- Department of Toxicogenomics, Clinical Genomics, Maastricht University Medical Centre+, Maastricht, Netherlands.,School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT, United States.,Rehabilitation Research Center, Veteran Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
25
|
Savalli N, Angelini M, Steccanella F, Wier J, Wu F, Quinonez M, DiFranco M, Neely A, Cannon SC, Olcese R. The distinct role of the four voltage sensors of the skeletal CaV1.1 channel in voltage-dependent activation. J Gen Physiol 2021; 153:212652. [PMID: 34546289 PMCID: PMC8460119 DOI: 10.1085/jgp.202112915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
Initiation of skeletal muscle contraction is triggered by rapid activation of RYR1 channels in response to sarcolemmal depolarization. RYR1 is intracellular and has no voltage-sensing structures, but it is coupled with the voltage-sensing apparatus of CaV1.1 channels to inherit voltage sensitivity. Using an opto-electrophysiological approach, we resolved the excitation-driven molecular events controlling both CaV1.1 and RYR1 activations, reported as fluorescence changes. We discovered that each of the four human CaV1.1 voltage-sensing domains (VSDs) exhibits unique biophysical properties: VSD-I time-dependent properties were similar to ionic current activation kinetics, suggesting a critical role of this voltage sensor in CaV1.1 activation; VSD-II, VSD-III, and VSD-IV displayed faster activation, compatible with kinetics of sarcoplasmic reticulum Ca2+ release. The prominent role of VSD-I in governing CaV1.1 activation was also confirmed using a naturally occurring, charge-neutralizing mutation in VSD-I (R174W). This mutation abolished CaV1.1 current at physiological membrane potentials by impairing VSD-I activation without affecting the other VSDs. Using a structurally relevant allosteric model of CaV activation, which accounted for both time- and voltage-dependent properties of CaV1.1, to predict VSD-pore coupling energies, we found that VSD-I contributed the most energy (~75 meV or ∼3 kT) toward the stabilization of the open states of the channel, with smaller (VSD-IV) or negligible (VSDs II and III) energetic contribution from the other voltage sensors (<25 meV or ∼1 kT). This study settles the longstanding question of how CaV1.1, a slowly activating channel, can trigger RYR1 rapid activation, and reveals a new mechanism for voltage-dependent activation in ion channels, whereby pore opening of human CaV1.1 channels is primarily driven by the activation of one voltage sensor, a mechanism distinct from that of all other voltage-gated channels.
Collapse
Affiliation(s)
- Nicoletta Savalli
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Federica Steccanella
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Julian Wier
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marbella Quinonez
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alan Neely
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
26
|
Structure of human Na v1.5 reveals the fast inactivation-related segments as a mutational hotspot for the long QT syndrome. Proc Natl Acad Sci U S A 2021; 118:2100069118. [PMID: 33712541 DOI: 10.1073/pnas.2100069118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nav1.5 is the primary voltage-gated Na+ (Nav) channel in the heart. Mutations of Nav1.5 are associated with various cardiac disorders exemplified by the type 3 long QT syndrome (LQT3) and Brugada syndrome (BrS). E1784K is a common mutation that has been found in both LQT3 and BrS patients. Here we present the cryo-EM structure of the human Nav1.5-E1784K variant at an overall resolution of 3.3 Å. The structure is nearly identical to that of the wild-type human Nav1.5 bound to quinidine. Structural mapping of 91- and 178-point mutations that are respectively associated with LQT3 and BrS reveals a unique distribution pattern for LQT3 mutations. Whereas the BrS mutations spread evenly on the structure, LQT3 mutations are clustered mainly to the segments in repeats III and IV that are involved in gating, voltage-sensing, and particularly inactivation. A mutational hotspot involving the fast inactivation segments is identified and can be mechanistically interpreted by our "door wedge" model for fast inactivation. The structural analysis presented here, with a focus on the impact of mutations on inactivation and late sodium current, establishes a structure-function relationship for the mechanistic understanding of Nav1.5 channelopathies.
Collapse
|
27
|
Angsutararux P, Kang PW, Zhu W, Silva JR. Conformations of voltage-sensing domain III differentially define NaV channel closed- and open-state inactivation. J Gen Physiol 2021; 153:212533. [PMID: 34347027 PMCID: PMC8348240 DOI: 10.1085/jgp.202112891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated Na+ (NaV) channels underlie the initiation and propagation of action potentials (APs). Rapid inactivation after NaV channel opening, known as open-state inactivation, plays a critical role in limiting the AP duration. However, NaV channel inactivation can also occur before opening, namely closed-state inactivation, to tune the cellular excitability. The voltage-sensing domain (VSD) within repeat IV (VSD-IV) of the pseudotetrameric NaV channel α-subunit is known to be a critical regulator of NaV channel inactivation. Yet, the two processes of open- and closed-state inactivation predominate at different voltage ranges and feature distinct kinetics. How inactivation occurs over these different ranges to give rise to the complexity of NaV channel dynamics is unclear. Past functional studies and recent cryo-electron microscopy structures, however, reveal significant inactivation regulation from other NaV channel components. In this Hypothesis paper, we propose that the VSD of NaV repeat III (VSD-III), together with VSD-IV, orchestrates the inactivation-state occupancy of NaV channels by modulating the affinity of the intracellular binding site of the IFMT motif on the III-IV linker. We review and outline substantial evidence that VSD-III activates in two distinct steps, with the intermediate and fully activated conformation regulating closed- and open-state inactivation state occupancy by altering the formation and affinity of the IFMT crevice. A role of VSD-III in determining inactivation-state occupancy and recovery from inactivation suggests a regulatory mechanism for the state-dependent block by small-molecule anti-arrhythmic and anesthetic therapies.
Collapse
Affiliation(s)
- Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Wandi Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
28
|
Seizure Phenotype and Underlying Cellular Defects in Drosophila Knock-In Models of DS (R1648C) and GEFS+ (R1648H) SCN1A Epilepsy. eNeuro 2021; 8:ENEURO.0002-21.2021. [PMID: 34475263 PMCID: PMC8454921 DOI: 10.1523/eneuro.0002-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the voltage-gated sodium channel gene SCN1A are associated with human epilepsy disorders, but how most of these mutations alter channel properties and result in seizures is unknown. This study focuses on two different mutations occurring at one position within SCN1A. R1648C (R-C) is associated with the severe disorder Dravet syndrome, and R1648H (R-H), with the milder disorder GEFS+. To explore how these different mutations contribute to distinct seizure disorders, Drosophila lines with the R-C or R-H mutation, or R1648R (R-R) control substitution in the fly sodium channel gene para were generated by CRISPR-Cas9 gene editing. The R-C and R-H mutations are homozygous lethal. Animals heterozygous for R-C or R-H mutations displayed reduced life spans and spontaneous and temperature-induced seizures not observed in R-R controls. Electrophysiological recordings from adult GABAergic neurons in R-C and R-H mutants revealed the appearance of sustained neuronal depolarizations and altered firing frequency that were exacerbated at elevated temperature. The only significant change observed in underlying sodium currents in both R-C and R-H mutants was a hyperpolarized deactivation threshold at room and elevated temperature compared with R-R controls. Since this change is constitutive, it is likely to interact with heat-induced changes in other cellular properties to result in the heat-induced increase in sustained depolarizations and seizure activity. Further, the similarity of the behavioral and cellular phenotypes in the R-C and R-H fly lines, suggests that disease symptoms of different severity associated with these mutations in humans could be due in large part to differences in genetic background.
Collapse
|
29
|
Neumaier F, Alpdogan S, Hescheler J, Schneider T. Zn2+-induced changes in Cav2.3 channel function: An electrophysiological and modeling study. J Gen Physiol 2021; 152:151872. [PMID: 32559275 PMCID: PMC7478874 DOI: 10.1085/jgp.202012585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 01/25/2023] Open
Abstract
Loosely bound Zn2+ ions are increasingly recognized as potential modulators of synaptic plasticity and neuronal excitability under normal and pathophysiological conditions. Cav2.3 voltage-gated Ca2+ channels are among the most sensitive targets of Zn2+ and are therefore likely to be involved in the neuromodulatory actions of endogenous Zn2+. Although histidine residues on the external side of domain I have been implicated in the effects on Cav2.3 channel gating, the exact mechanisms involved in channel modulation remain incompletely understood. Here, we use a combination of electrophysiological recordings, modification of histidine residues, and computational modeling to analyze Zn2+-induced changes in Cav2.3 channel function. Our most important findings are that multiple high- and low-affinity mechanisms contribute to the net Zn2+ action, that Zn2+ can either inhibit or stimulate Ca2+ influx through Cav2.3 channels depending on resting membrane potential, and that Zn2+ effects may persist for some time even after cessation of the Zn2+ signal. Computer simulations show that (1) most salient features of Cav2.3 channel gating in the absence of trace metals can be reproduced by an obligatory model in which activation of two voltage sensors is necessary to open the pore; and (2) most, but not all, of the effects of Zn2+ can be accounted for by assuming that Zn2+ binding to a first site is associated with an electrostatic modification and mechanical slowing of one of the voltage sensors, whereas Zn2+ binding to a second, lower-affinity site blocks the channel and modifies the opening and closing transitions. While still far from complete, our model provides a first quantitative framework for understanding Zn2+ effects on Cav2.3 channel function and a step toward the application of computational approaches for predicting the complex actions of Zn2+ on neuronal excitability.
Collapse
Affiliation(s)
- Felix Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Serdar Alpdogan
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Jürgen Hescheler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Toni Schneider
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| |
Collapse
|
30
|
Fraser SP, Onkal R, Theys M, Bosmans F, Djamgoz MBA. Neonatal Na V 1.5: Pharmacological distinctiveness of a cancer-related voltage-gated sodium channel splice variant. Br J Pharmacol 2021; 179:473-486. [PMID: 34411279 DOI: 10.1111/bph.15668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Voltage-gated sodium (NaV ) channels are expressed de novo in carcinomas where their activity promotes invasiveness. Breast and colon cancer cells express the neonatal splice variant of NaV 1.5 (nNaV 1.5) which has several amino acid substitutions in the domain I voltage-sensor compared to its adult counterpart (aNaV 1.5). This study aimed to determine whether nNaV 1.5 could be distinguished pharmacologically from aNaV 1.5. EXPERIMENTAL APPROACH Cells expressing either nNaV 1.5 or aNaV 1.5 were exposed to small-molecule inhibitors, an antibody or natural toxins, and changes in electrophysiological parameters were measured. Stable expression in EBNA cells and transient expression in Xenopus laevis oocytes were used. Currents were recorded by whole-cell patch clamp and two-electrode voltage-clamp, respectively. KEY RESULTS Several clinically-used blockers of Nav channels (lidocaine, procaine, phenytoin, mexiletine, ranolazine and riluzole) could not distinguish between nNaV 1.5 or aNaV 1.5. On the other hand, two tarantula toxins (HaTx and ProTx-II) and a polyclonal antibody (NESOpAb) preferentially inhibited currents elicited by either nNaV 1.5 or aNaV 1.5 by binding to the spliced region of the channel. Furthermore, the amino acid residue at position 211 (aspartate in aNaV 1.5/lysine in nNaV 1.5), i.e. the charge reversal in the spliced region of the channel, played a key role in the selectivity especially in the antibody binding. CONCLUSION AND IMPLICATIONS We conclude that the cancer-related nNaV 1.5 channel can be distinguished pharmacologically from its nearest neighbour, aNaV 1.5. Thus, it may be possible to design small molecules as anti-metastatic drugs for non-toxic therapy of nNaV 1.5-expressing carcinomas.
Collapse
Affiliation(s)
- Scott P Fraser
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK
| | - Rustem Onkal
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| | - Margaux Theys
- Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, London, UK.,Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
31
|
Dobson JS, Harris RJ, Zdenek CN, Huynh T, Hodgson WC, Bosmans F, Fourmy R, Violette A, Fry BG. The Dragon's Paralysing Spell: Evidence of Sodium and Calcium Ion Channel Binding Neurotoxins in Helodermatid and Varanid Lizard Venoms. Toxins (Basel) 2021; 13:toxins13080549. [PMID: 34437420 PMCID: PMC8402328 DOI: 10.3390/toxins13080549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Bites from helodermatid lizards can cause pain, paresthesia, paralysis, and tachycardia, as well as other symptoms consistent with neurotoxicity. Furthermore, in vitro studies have shown that Heloderma horridum venom inhibits ion flux and blocks the electrical stimulation of skeletal muscles. Helodermatids have long been considered the only venomous lizards, but a large body of robust evidence has demonstrated venom to be a basal trait of Anguimorpha. This clade includes varanid lizards, whose bites have been reported to cause anticoagulation, pain, and occasionally paralysis and tachycardia. Despite the evolutionary novelty of these lizard venoms, their neuromuscular targets have yet to be identified, even for the iconic helodermatid lizards. Therefore, to fill this knowledge gap, the venoms of three Heloderma species (H. exasperatum, H. horridum and H. suspectum) and two Varanus species (V. salvadorii and V. varius) were investigated using Gallus gallus chick biventer cervicis nerve–muscle preparations and biolayer interferometry assays for binding to mammalian ion channels. Incubation with Heloderma venoms caused the reduction in nerve-mediated muscle twitches post initial response of avian skeletal muscle tissue preparation assays suggesting voltage-gated sodium (NaV) channel binding. Congruent with the flaccid paralysis inducing blockage of electrical stimulation in the skeletal muscle preparations, the biolayer interferometry tests with Heloderma suspectum venom revealed binding to the S3–S4 loop within voltage-sensing domain IV of the skeletal muscle channel subtype, NaV1.4. Consistent with tachycardia reported in clinical cases, the venom also bound to voltage-sensing domain IV of the cardiac smooth muscle calcium channel, CaV1.2. While Varanus varius venom did not have discernable effects in the avian tissue preparation assay at the concentration tested, in the biointerferometry assay both V. varius and V. salvadorii bound to voltage-sensing domain IV of both NaV1.4 and CaV1.2, similar to H. suspectum venom. The ability of varanid venoms to bind to mammalian ion channels but not to the avian tissue preparation suggests prey-selective actions, as did the differential potency within the Heloderma venoms for avian versus mammalian pathophysiological targets. This study thus presents the detailed characterization of Heloderma venom ion channel neurotoxicity and offers the first evidence of varanid lizard venom neurotoxicity. In addition, the data not only provide information useful to understanding the clinical effects produced by envenomations, but also reveal their utility as physiological probes, and underscore the potential utility of neglected venomous lineages in the drug design and development pipeline.
Collapse
Affiliation(s)
- James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Richard J. Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
| | - Tam Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (T.H.); (W.C.H.)
| | - Wayne C. Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (T.H.); (W.C.H.)
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (R.F.); (A.V.)
| | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (R.F.); (A.V.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; (J.S.D.); (R.J.H.); (C.N.Z.)
- Correspondence: ; Tel.: +61-7-336-58515
| |
Collapse
|
32
|
Amin JB, Gochman A, He M, Certain N, Wollmuth LP. NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity. Neuron 2020; 109:488-501.e4. [PMID: 33264592 DOI: 10.1016/j.neuron.2020.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate fast excitatory synaptic transmission in the nervous system. Applying glutamate to outside-out patches containing a single NMDAR, we find that agonist-bound receptors transition to the open state via two conformations, an "unconstrained pre-active" state that contributes to fast synaptic events and a "constrained pre-active" state that does not. To define how glutamate drives these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for GluN1 and GluN2A. Displacements of the pore-forming M3 segments define the energy of fast opening. However, to enter the unconstrained conformation and contribute to fast signaling, the GluN2 pre-M1 helix must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of the S2-M4 of GluN1 and GluN2A. Thus, outer structures-pre-M1 and S2-M4-work in concert to remove constraints and prime the channel for rapid opening, facilitating fast synaptic transmission.
Collapse
Affiliation(s)
- Johansen B Amin
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Aaron Gochman
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Miaomiao He
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Noele Certain
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| |
Collapse
|
33
|
Neumaier F, Schneider T, Albanna W. Ca v2.3 channel function and Zn 2+-induced modulation: potential mechanisms and (patho)physiological relevance. Channels (Austin) 2020; 14:362-379. [PMID: 33079629 PMCID: PMC7583514 DOI: 10.1080/19336950.2020.1829842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are critical for Ca2+ influx into all types of excitable cells, but their exact function is still poorly understood. Recent reconstruction of homology models for all human VGCCs at atomic resolution provides the opportunity for a structure-based discussion of VGCC function and novel insights into the mechanisms underlying Ca2+ selective flux through these channels. In the present review, we use these data as a basis to examine the structure, function, and Zn2+-induced modulation of Cav2.3 VGCCs, which mediate native R-type currents and belong to the most enigmatic members of the family. Their unique sensitivity to Zn2+ and the existence of multiple mechanisms of Zn2+ action strongly argue for a role of these channels in the modulatory action of endogenous loosely bound Zn2+, pools of which have been detected in a number of neuronal, endocrine, and reproductive tissues. Following a description of the different mechanisms by which Zn2+ has been shown or is thought to alter the function of these channels, we discuss their potential (patho)physiological relevance, taking into account what is known about the magnitude and function of extracellular Zn2+ signals in different tissues. While still far from complete, the picture that emerges is one where Cav2.3 channel expression parallels the occurrence of loosely bound Zn2+ pools in different tissues and where these channels may serve to translate physiological Zn2+ signals into changes of electrical activity and/or intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5) , Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging , Cologne, Germany
| | - Toni Schneider
- Institute of Neurophysiology , Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
34
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
35
|
Brewer KR, Kuenze G, Vanoye CG, George AL, Meiler J, Sanders CR. Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Front Pharmacol 2020; 11:550. [PMID: 32431610 PMCID: PMC7212895 DOI: 10.3389/fphar.2020.00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The cardiac action potential is critical to the production of a synchronized heartbeat. This electrical impulse is governed by the intricate activity of cardiac ion channels, among them the cardiac voltage-gated potassium (Kv) channels KCNQ1 and hERG as well as the voltage-gated sodium (Nav) channel encoded by SCN5A. Each channel performs a highly distinct function, despite sharing a common topology and structural components. These three channels are also the primary proteins mutated in congenital long QT syndrome (LQTS), a genetic condition that predisposes to cardiac arrhythmia and sudden cardiac death due to impaired repolarization of the action potential and has a particular proclivity for reentrant ventricular arrhythmias. Recent cryo-electron microscopy structures of human KCNQ1 and hERG, along with the rat homolog of SCN5A and other mammalian sodium channels, provide atomic-level insight into the structure and function of these proteins that advance our understanding of their distinct functions in the cardiac action potential, as well as the molecular basis of LQTS. In this review, the gating, regulation, LQTS mechanisms, and pharmacological properties of KCNQ1, hERG, and SCN5A are discussed in light of these recent structural findings.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
36
|
Thull S, Neacsu C, O'Reilly AO, Bothe S, Hausmann R, Huth T, Meents J, Lampert A. Mechanism underlying hooked resurgent-like tail currents induced by an insecticide in human cardiac Nav1.5. Toxicol Appl Pharmacol 2020; 397:115010. [PMID: 32302602 DOI: 10.1016/j.taap.2020.115010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Abstract
Voltage-gated sodium channels are responsible not only for the fast upstroke of the action potential, but they also modify cellular excitability via persistent and resurgent currents. Insecticides act via permanently opening sodium channels to immobilize the animals. Cellular recordings performed decades ago revealed distinctly hooked tail currents induced by these compounds. Here, we applied the classical type-II pyrethroid deltamethrin on human cardiac Nav1.5 and observed resurgent-like currents at very negative potentials in the absence of any pore-blocker, which resemble those hooked tail currents. We show that deltamethrin dramatically slows both fast inactivation and deactivation of Nav1.5 and thereby induces large persistent currents. Using the sea anemone toxin ATx-II as a tool to prevent all inactivation-related processes, resurgent-like currents were eliminated while persistent currents were preserved. Our experiments suggest that, in deltamethrin-modified channels, recovery from inactivation occurs faster than delayed deactivation, opening a brief window for sodium influx and leading to hooked, resurgent-like currents, in the absence of an open channel blocker. Thus, we now explain with pharmacological methods the biophysical gating changes underlying the deltamethrin induced hooked tail currents. SUMMARY: The pyrethroid deltamethrin induces hooked resurgent-like tail currents in human cardiac voltage-gated Nav1.5 channels. Using deltamethrin and ATx-II, we identify additional conducting channel states caused by a faster recovery from inactivation compared to the deltamethrin-induced delayed deactivation.
Collapse
Affiliation(s)
- Sarah Thull
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Cristian Neacsu
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstr. 17, 91054 Erlangen, Germany
| | - Andrias O O'Reilly
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - Stefanie Bothe
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Ralf Hausmann
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Tobias Huth
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstr. 17, 91054 Erlangen, Germany
| | - Jannis Meents
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany; Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany; Research Training Group 2415 ME3T, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
37
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
38
|
Beard JM, Shockett PE, O'Reilly JP. Substituted cysteine scanning in D1-S6 of the sodium channel hNav1.4 alters kinetics and structural interactions of slow inactivation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183129. [PMID: 31738900 DOI: 10.1016/j.bbamem.2019.183129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Slow inactivation in voltage-gated Na+ channels (Navs) plays an important physiological role in excitable tissues (muscle, heart, nerves) and mutations that disrupt Nav slow inactivation can result in pathophysiologies (myotonia, arrhythmias, epilepsy). While the molecular mechanisms responsible for slow inactivation remain elusive, previous studies have suggested a role for the pore-lining D1-S6 helix. The goals of this research were to determine if (1) cysteine substitutions in D1-S6 affect gating kinetics and (2) methanethiosulfonate ethylammonium (MTSEA) accessibility changes in different kinetic states. Site-directed mutagenesis in the human skeletal muscle isoform hNav1.4 was used to substitute cysteine for eleven amino acids in D1-S6 from L433 to L443. Mutants were expressed in HEK cells and recorded from with whole-cell patch clamp. All mutations affected one or more baseline kinetics of the sodium channel, including activation, fast inactivation, and slow inactivation. Substitution of cysteine (for nonpolar residues) adjacent to polar residues destabilized slow inactivation in G434C, F436C, I439C, and L441C. Cysteine substitution without adjacent polar residues enhanced slow inactivation in L438C and N440C, and disrupted possible H-bonds involving Y437:D4 S4-S5 and N440:D4-S6. MTSEA exposure in closed, fast-inactivated, or slow-inactivated states in most mutants had little-to-no effect. In I439C, MTSEA application in closed, fast-inactivated, and slow-inactivated states produced irreversible reduction in current, suggesting I439C accessibility to MTSEA in all three kinetic states. D1-S6 is important for Nav gating kinetics, stability of slow-inactivated state, structural contacts, and state-dependent positioning. However, prominent reconfiguration of D1-S6 may not occur in slow inactivation.
Collapse
Affiliation(s)
- Jonathan M Beard
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA.
| | - Penny E Shockett
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA.
| | - John P O'Reilly
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA.
| |
Collapse
|
39
|
Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, Catterall WA. Structure of the Cardiac Sodium Channel. Cell 2019; 180:122-134.e10. [PMID: 31866066 DOI: 10.1016/j.cell.2019.11.041] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVβ subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yan Zhao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Bois JD, Hunter JC. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform Na V1.7. J Med Chem 2019; 62:8695-8710. [PMID: 31012583 PMCID: PMC6786914 DOI: 10.1021/acs.jmedchem.8b01906] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Voltage-gated sodium ion channel subtype 1.7 (NaV1.7) is a high interest target for the discovery of non-opioid analgesics. Compelling evidence from human genetic data, particularly the finding that persons lacking functional NaV1.7 are insensitive to pain, has spurred considerable effort to develop selective inhibitors of this Na+ ion channel target as analgesic medicines. Recent clinical setbacks and disappointing performance of preclinical compounds in animal pain models, however, have led to skepticism around the potential of selective NaV1.7 inhibitors as human therapeutics. In this Perspective, we discuss the attributes and limitations of recently disclosed investigational drugs targeting NaV1.7 and review evidence that, by better understanding the requirements for selectivity and target engagement, the opportunity to deliver effective analgesic medicines targeting NaV1.7 endures.
Collapse
Affiliation(s)
- John V. Mulcahy
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Hassan Pajouhesh
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - Jacob T. Beckley
- SiteOne Therapeutics, 351 Evergreen Drive, Suite B1, Bozeman, MT 59715
| | - Anton Delwig
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| | - J. Du Bois
- Stanford University, Lokey Chemistry and Biology, 337 Campus Drive, Stanford, CA 94305
| | - John C. Hunter
- SiteOne Therapeutics, 280 Utah Ave, Suite 250, South San Francisco, CA 94080
| |
Collapse
|
41
|
Cowgill J, Chanda B. The contribution of voltage clamp fluorometry to the understanding of channel and transporter mechanisms. J Gen Physiol 2019; 151:1163-1172. [PMID: 31431491 PMCID: PMC6785729 DOI: 10.1085/jgp.201912372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cowgill and Chanda discuss the importance of voltage clamp fluorometry to the functional interpretation of ion channel and transporter structures. Key advances in single particle cryo-EM methods in the past decade have ushered in a resolution revolution in modern biology. The structures of many ion channels and transporters that were previously recalcitrant to crystallography have now been solved. Yet, despite having atomistic models of many complexes, some in multiple conformations, it has been challenging to glean mechanistic insight from these structures. To some extent this reflects our inability to unambiguously assign a given structure to a particular physiological state. One approach that may allow us to bridge this gap between structure and function is voltage clamp fluorometry (VCF). Using this technique, dynamic conformational changes can be measured while simultaneously monitoring the functional state of the channel or transporter. Many of the important papers that have used VCF to probe the gating mechanisms of channels and transporters have been published in the Journal of General Physiology. In this review, we provide an overview of the development of VCF and discuss some of the key problems that have been addressed using this approach. We end with a brief discussion of the outlook for this technique in the era of high-resolution structures.
Collapse
Affiliation(s)
- John Cowgill
- Graduate Program in Biophysics, University of Wisconsin, Madison, WI.,Department of Neuroscience, University of Wisconsin, Madison, WI
| | - Baron Chanda
- Department of Neuroscience, University of Wisconsin, Madison, WI .,Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| |
Collapse
|
42
|
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, Payandeh J. Structural basis of α-scorpion toxin action on Na v channels. Science 2019; 363:eaav8573. [PMID: 30733386 DOI: 10.1126/science.aav8573] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Alexander Cloake
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - José P Llongueras
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Zhong Rong Li
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Yuwen Jian
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, LNC, UMR 7291, 13003 Marseille, France
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - David H Hackos
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
43
|
Pan X, Li Z, Zhou Q, Shen H, Wu K, Huang X, Chen J, Zhang J, Zhu X, Lei J, Xiong W, Gong H, Xiao B, Yan N. Structure of the human voltage-gated sodium channel Na v1.4 in complex with β1. Science 2018; 362:science.aau2486. [PMID: 30190309 DOI: 10.1126/science.aau2486] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium (Nav) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Nav channel has hampered mechanistic understanding. Here, we report the cryo-electron microscopy structure of the human Nav1.4-β1 complex at 3.2-Å resolution. Accurate model building was made for the pore domain, the voltage-sensing domains, and the β1 subunit, providing insight into the molecular basis for Na+ permeation and kinetic asymmetry of the four repeats. Structural analysis of reported functional residues and disease mutations corroborates an allosteric blocking mechanism for fast inactivation of Nav channels. The structure provides a path toward mechanistic investigation of Nav channels and drug discovery for Nav channelopathies.
Collapse
Affiliation(s)
- Xiaojing Pan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kun Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoshuang Huang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaofeng Chen
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juanrong Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechen Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, China.,Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Bailong Xiao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Mata DOD, Tibery DV, Campos LA, Camargos TS, Peigneur S, Tytgat J, Schwartz EF. Subtype Specificity of β-Toxin Tf1a from Tityus fasciolatus in Voltage Gated Sodium Channels. Toxins (Basel) 2018; 10:toxins10090339. [PMID: 30131471 PMCID: PMC6162530 DOI: 10.3390/toxins10090339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022] Open
Abstract
Scorpion venoms are a complex mixture of components. Among them the most important are peptides, which presents the capacity to interact and modulate several ion channel subtypes, including voltage-gated sodium channels (NaV). Screening the activity of scorpion toxins on different subtypes of NaV reveals the scope of modulatory activity and, in most cases, low channel selectivity. Until now there are approximately 60 scorpion toxins experimentally assayed on NaV channels. However, the molecular bases of interaction between scorpion toxins and NaV channels are not fully elucidated. The activity description of new scorpion toxins is crucial to enhance the predictive strength of the structural–function correlations of these NaV modulatory molecules. In the present work a new scorpion toxin (Tf1a) was purified from Tityus fasciolatus venom by RP-HPLC, and characterized using electrophysiological experiments on different types of voltage-gated sodium channels. Tf1a was able to modify the normal function of NaV tested, showing to be a typical β-NaScTx. Tf1a also demonstrated an unusual capability to alter the kinetics of NaV1.5.
Collapse
Affiliation(s)
- Daniel Oliveira da Mata
- Laboratório de Neurofarmacologia, Departamento de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil.
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil.
| | - Leandro Ambrósio Campos
- Laboratório de Neurofarmacologia, Departamento de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil.
| | - Thalita Soares Camargos
- Departamento de Ciências da Saúde, Centro Universitário UDF, Brasília 70390-045, Distrito Federal, Brazil.
| | - Steve Peigneur
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven (KU Leuven), P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Distrito Federal, Brazil.
| |
Collapse
|
45
|
Dhifallah S, Lancaster E, Merrill S, Leroudier N, Mantegazza M, Cestèle S. Gain of Function for the SCN1A/hNa v1.1-L1670W Mutation Responsible for Familial Hemiplegic Migraine. Front Mol Neurosci 2018; 11:232. [PMID: 30038559 PMCID: PMC6046441 DOI: 10.3389/fnmol.2018.00232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
The SCN1A gene encodes for the voltage-dependent Nav1.1 Na+ channel, an isoform mainly expressed in GABAergic neurons that is the target of hundreds of epileptogenic mutations. More recently, it has been shown that the SCN1A gene is also the target of mutations responsible for familial hemiplegic migraine (FHM-3), a rare autosomal dominant subtype of migraine with aura. Studies of these mutations indicate that they induce gain of function of the channel. Surprisingly, the mutation L1649Q responsible for pure FHM-3 showed a complete loss of function, but, when partially rescued it induced an overall gain of function because of modification of the gating properties of the mutant channel. Here, we report the characterization of the L1670W SCN1A mutation that has been previously identified in a Chinese family with pure FHM-3, and that we have identified also in a Caucasian American family with pure FHM-3. Notably, one patient in our family had severe neurological deterioration after brain radiation for cancer treatment. Functional analysis of L1670W reveals that the mutation is responsible for folding/trafficking defects and, when they are rescued by incubation at lower temperature or by expression in neurons, modifications of the gating properties lead to an overall gain of function. Therefore, L1670W is the second mutation responsible for FHM-3 with this pathophysiological mechanism, showing that it may be a recurrent mechanism for Nav1.1 hemiplegic migraine mutations.
Collapse
Affiliation(s)
- Sandra Dhifallah
- Université Côte d'Azur, CNRS UMR 7275, INSERM, IPMC, Valbonne, France
| | - Eric Lancaster
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Shana Merrill
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Sandrine Cestèle
- Université Côte d'Azur, CNRS UMR 7275, INSERM, IPMC, Valbonne, France
| |
Collapse
|
46
|
Abstract
A voltage change across a membrane protein moves charges or dipoles producing a gating current that is an electrical expression of a conformational change. Many membrane proteins sense the voltage across the membrane where they are inserted, and their function is affected by voltage changes. The voltage sensor consists of charges or dipoles that move in response to changes in the electric field, and their movement produces an electric current that has been called gating current. In the case of voltage-gated ion channels, the kinetic and steady-state properties of the gating charges provide information of conformational changes between closed states that are not visible when observing ionic currents only. In this Journal of General Physiology Milestone, the basic principles of voltage sensing and gating currents are presented, followed by a historical description of the recording of gating currents. The results of gating current recordings are then discussed in the context of structural changes in voltage-dependent membrane proteins and how these studies have provided new insights on gating mechanisms.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
| |
Collapse
|
47
|
Gardill BR, Rivera-Acevedo RE, Tung CC, Okon M, McIntosh LP, Van Petegem F. The voltage-gated sodium channel EF-hands form an interaction with the III-IV linker that is disturbed by disease-causing mutations. Sci Rep 2018; 8:4483. [PMID: 29540853 PMCID: PMC5852250 DOI: 10.1038/s41598-018-22713-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Voltage-gated sodium channels (NaV) are responsible for the rapid depolarization of many excitable cells. They readily inactivate, a process where currents diminish after milliseconds of channel opening. They are also targets for a multitude of disease-causing mutations, many of which have been shown to affect inactivation. A cluster of disease mutations, linked to Long-QT and Brugada syndromes, is located in a C-terminal EF-hand like domain of NaV1.5, the predominant cardiac sodium channel isoform. Previous studies have suggested interactions with the III-IV linker, a cytosolic element directly involved in inactivation. Here we validate and map the interaction interface using isothermal titration calorimetry (ITC) and NMR spectroscopy. We investigated the impact of various disease mutations on the stability of the domain, and found that mutations that cause misfolding of the EF-hand domain result in hyperpolarizing shifts in the steady-state inactivation curve. Conversely, mutations in the III-IV linker that disrupt the interaction with the EF-hand domain also result in large hyperpolarization shifts, supporting the interaction between both elements in intact channels. Disrupting the interaction also causes large late currents, pointing to a dual role of the interaction in reducing the population of channels entering inactivation and in stabilizing the inactivated state.
Collapse
Affiliation(s)
- Bernd R Gardill
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ricardo E Rivera-Acevedo
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
48
|
Distinct modulation of inactivation by a residue in the pore domain of voltage-gated Na + channels: mechanistic insights from recent crystal structures. Sci Rep 2018; 8:631. [PMID: 29330525 PMCID: PMC5766632 DOI: 10.1038/s41598-017-18919-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Inactivation of voltage-gated Na+ channels (VGSC) is essential for the regulation of cellular excitability. The molecular rearrangement underlying inactivation is thought to involve the intracellular linker between domains III and IV serving as inactivation lid, the receptor for the lid (domain III S4-S5 linker) and the pore-lining S6 segements. To better understand the role of the domain IV S6 segment in inactivation we performed a cysteine scanning mutagenesis of this region in rNav 1.4 channels and screened the constructs for perturbations in the voltage-dependence of steady state inactivation. This screen was performed in the background of wild-type channels and in channels carrying the mutation K1237E, which profoundly alters both permeation and gating-properties. Of all tested constructs the mutation I1581C was unique in that the mutation-induced gating changes were strongly influenced by the mutational background. This suggests that I1581 is involved in specific short-range interactions during inactivation. In recently published crystal structures VGSCs the respective amino acids homologous to I1581 appear to control a bend of the S6 segment which is critical to the gating process. Furthermore, I1581 may be involved in the transmission of the movement of the DIII voltage-sensor to the domain IV S6 segment.
Collapse
|
49
|
Mangold KE, Brumback BD, Angsutararux P, Voelker TL, Zhu W, Kang PW, Moreno JD, Silva JR. Mechanisms and models of cardiac sodium channel inactivation. Channels (Austin) 2017; 11:517-533. [PMID: 28837385 PMCID: PMC5786193 DOI: 10.1080/19336950.2017.1369637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Shortly after cardiac Na+ channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na+ current, INa, and allowing the cell membrane to repolarize. A very limited number of Na+ channels that do not inactivate carry a persistent INa, or late INa. While late INa is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late INa would be best modeled with a "feet-on-the-door" approach where multiple channel components participate in determining inactivation and late INa. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late INa.
Collapse
Affiliation(s)
- Kathryn E. Mangold
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brittany D. Brumback
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Taylor L. Voelker
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan D. Moreno
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
50
|
Hinard V, Britan A, Schaeffer M, Zahn-Zabal M, Thomet U, Rougier JS, Bairoch A, Abriel H, Gaudet P. Annotation of functional impact of voltage-gated sodium channel mutations. Hum Mutat 2017; 38:485-493. [PMID: 28168870 PMCID: PMC5413847 DOI: 10.1002/humu.23191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 11/23/2022]
Abstract
Voltage‐gated sodium channels are pore‐forming transmembrane proteins that selectively allow sodium ions to flow across the plasma membrane according to the electro‐chemical gradient thus mediating the rising phase of action potentials in excitable cells and playing key roles in physiological processes such as neurotransmission, skeletal muscle contraction, heart rhythm, and pain sensation. Genetic variations in the nine human genes encoding these channels are known to cause a large range of diseases affecting the nervous and cardiac systems. Understanding the molecular effect of genetic variations is critical for elucidating the pathologic mechanisms of known variations and in predicting the effect of newly discovered ones. To this end, we have created a Web‐based tool, the Ion Channels Variants Portal, which compiles all variants characterized functionally in the human sodium channel genes. This portal describes 672 variants each associated with at least one molecular or clinical phenotypic impact, for a total of 4,658 observations extracted from 264 different research articles. These data were captured as structured annotations using standardized vocabularies and ontologies, such as the Gene Ontology and the Ion Channel ElectroPhysiology Ontology. All these data are available to the scientific community via neXtProt at https://www.nextprot.org/portals/navmut.
Collapse
Affiliation(s)
- Valérie Hinard
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Aurore Britan
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mathieu Schaeffer
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Monique Zahn-Zabal
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Urs Thomet
- Institute of Biochemistry and Molecular Medicine, Bern, Switzerland
| | | | - Amos Bairoch
- Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, Bern, Switzerland
| | - Pascale Gaudet
- CALIPHO Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|