1
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Wang X, Cao L, Liu S, Zhou Y, Zhou J, Zhao W, Gao S, Liu R, Shi Y, Shao C, Fang J. The critical roles of IGFs in immune modulation and inflammation. Cytokine 2024; 183:156750. [PMID: 39243567 DOI: 10.1016/j.cyto.2024.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Insulin-like growth factors (IGFs) are crucial for embryonic and postnatal growth and development, influencing cell survival, metabolism, myogenesis, and cancer progression. Many studies have demonstrated that IGFs also play prominent roles in the modulation of both innate and adaptive immune systems during inflammation. Strikingly, IGFs dictate the phenotype and functional properties of macrophages and T cells. Furthermore, the interplay between IGFs and inflammatory cytokines may generate tissue-protective properties during inflammation. Herein, we review the recent advances on the dialogue between immune cells and IGFs, especially zooming in on the significance of immunomodulatory properties in inflammatory conditions, cancer and autoimmune diseases. The investigation of IGFs may have broad clinical implications.
Collapse
Affiliation(s)
- Xin Wang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lijuan Cao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Shisong Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yipeng Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiarui Zhou
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenxuan Zhao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengqi Gao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Liu
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yufang Shi
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changshun Shao
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jiankai Fang
- The Third/Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Lee MJ, de los Rios Kobara I, Barnard TR, Vales Torres X, Tobin NH, Ferbas KG, Rimoin AW, Yang OO, Aldrovandi GM, Wilk AJ, Fulcher JA, Blish CA. NK Cell-Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1693-1705. [PMID: 38578283 PMCID: PMC11102029 DOI: 10.4049/jimmunol.2300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Madeline J. Lee
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Izumi de los Rios Kobara
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Trisha R. Barnard
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Xariana Vales Torres
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
| | - Nicole H. Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Kathie G. Ferbas
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anne W. Rimoin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Grace M. Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Aaron J. Wilk
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
4
|
Mofazali P, Atapour M, Nakamura M, Galati M, Saboori A. Evaluation of layer-by-layer assembly systems for drug delivery and antimicrobial properties in orthopaedic application. Int J Pharm 2024; 657:124148. [PMID: 38657718 DOI: 10.1016/j.ijpharm.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Layer-by-layer self-assembly systems were developed using monolayer and multilayer carriers to prevent infections and improve bone regeneration of porous Ti-6Al-4V scaffolds. These polymeric carriers incorporated (Gel/Alg-IGF-1 + Chi-Cef) and (4Gel/Alg-IGF-1 + Chi-Cef) on the surface of porous implants produced via electron beam melting (EBM). The results showed that the drug release from multilayer carriers was higher than that of monolayers after 14 days. However, the carrier containing Gel/Alg-IGF-1 + Chi-Cef exhibited more sustained behavior. Cell morphology was characterized, revealing that multilayer carriers had higher cell adhesion than monolayers. Additionally, cell differentiation was significantly greater for (Gel/Alg-IGF-1) + Chi-Cef, and (4Gel/Alg-IGF-1) + Chi-Cef multilayer carriers than for the monolayer groups after 7 days. Notably, the drug dosage was effective and did not interfere, and the cell viability assay showed safe results. Antibacterial evaluations demonstrated that both multilayer carriers had a greater effect on Staphylococcus aureus during treatment. The carriers containing lower alginate had notably less effect than the other studied carriers. This study aimed to test systems for controlling drug release, which will be applied to improve MG63 cell behavior and prevent bacterial accumulation during orthopaedic applications.
Collapse
Affiliation(s)
- Parinaz Mofazali
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku Tykistökatu 6, 20520 Turku, Finland
| | - Manuela Galati
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
5
|
Mofazali P, Atapour M, Nakamura M, Sheikholeslam M, Galati M, Saboori A. Surface modification of additive manufactured Ti6Al4V scaffolds with gelatin/alginate- IGF-1 carrier: An effective approach for healing bone defects. Int J Biol Macromol 2024; 265:131125. [PMID: 38527675 DOI: 10.1016/j.ijbiomac.2024.131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The study investigates the potential of porous scaffolds with Gel/Alg-IGF-1 coatings as a viable candidate for orthopaedic implants. The scaffolds are composed of additively manufactured Ti6Al4V lattices, which were treated in an alkali solution to obtain the anatase and rutile phases. The treated surface exhibited hydrophilicity of <11.5°. A biopolymer carrier containing Insulin-like growth factor 1 was coated on the samples using immersion treatment. This study showed that the surface-modified porous Ti6Al4V scaffolds increased cell viability and proliferation, indicating potential for bone regeneration. The results demonstrate that surface modifications can enhance the osteoconduction and osteoinduction of Ti6Al4V implants, leading to improved bone regeneration and faster recovery. The porous Ti6Al4V scaffolds modified with surface coating of Gel/Alg-IGF-1 exhibited a noteworthy increase in cell viability (from 80.7 to 104.1%viability) and proliferation. These results suggest that the surface modified scaffolds have potential for use in treating bone defects.
Collapse
Affiliation(s)
- Parinaz Mofazali
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku Tykistökatu 6, 20520 Turku, Finland
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Manuela Galati
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turino, Italy
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turino, Italy
| |
Collapse
|
6
|
Martini V, Silvestri Y, Ciurea A, Möller B, Danelon G, Flamigni F, Jarrossay D, Kwee I, Foglierini M, Rinaldi A, Cecchinato V, Uguccioni M. Patients with ankylosing spondylitis present a distinct CD8 T cell subset with osteogenic and cytotoxic potential. RMD Open 2024; 10:e003926. [PMID: 38395454 PMCID: PMC10895246 DOI: 10.1136/rmdopen-2023-003926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease affecting mainly the axial skeleton. Peripheral involvement (arthritis, enthesitis and dactylitis) and extra-musculoskeletal manifestations, including uveitis, psoriasis and bowel inflammation, occur in a relevant proportion of patients. AS is responsible for chronic and severe back pain caused by local inflammation that can lead to osteoproliferation and ultimately spinal fusion. The association of AS with the human leucocyte antigen-B27 gene, together with elevated levels of chemokines, CCL17 and CCL22, in the sera of patients with AS, led us to study the role of CCR4+ T cells in the disease pathogenesis. METHODS CD8+CCR4+ T cells isolated from the blood of patients with AS (n=76) or healthy donors were analysed by multiparameter flow cytometry, and gene expression was evaluated by RNA sequencing. Patients with AS were stratified according to the therapeutic regimen and current disease score. RESULTS CD8+CCR4+ T cells display a distinct effector phenotype and upregulate the inflammatory chemokine receptors CCR1, CCR5, CX3CR1 and L-selectin CD62L, indicating an altered migration ability. CD8+CCR4+ T cells expressing CX3CR1 present an enhanced cytotoxic profile, expressing both perforin and granzyme B. RNA-sequencing pathway analysis revealed that CD8+CCR4+ T cells from patients with active disease significantly upregulate genes promoting osteogenesis, a core process in AS pathogenesis. CONCLUSIONS Our results shed light on a new molecular mechanism by which T cells may selectively migrate to inflammatory loci, promote new bone formation and contribute to the pathological ossification process observed in AS.
Collapse
Affiliation(s)
- Veronica Martini
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Ylenia Silvestri
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Adrian Ciurea
- Department of Rheumatology, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Burkhard Möller
- Department of Rheumatology and Immunology, Inselspital-University Hospital Bern, University of Bern, Bern, Switzerland
| | - Gabriela Danelon
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - David Jarrossay
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Ivo Kwee
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Universitá della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
7
|
Pellegrino M, Secli V, D’Amico S, Petrilli LL, Caforio M, Folgiero V, Tumino N, Vacca P, Vinci M, Fruci D, de Billy E. Manipulating the tumor immune microenvironment to improve cancer immunotherapy: IGF1R, a promising target. Front Immunol 2024; 15:1356321. [PMID: 38420122 PMCID: PMC10899349 DOI: 10.3389/fimmu.2024.1356321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Marsha Pellegrino
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valerio Secli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Silvia D’Amico
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Lucia Lisa Petrilli
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Matteo Caforio
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Valentina Folgiero
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Maria Vinci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Doriana Fruci
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Oncohematology and Pharmaceutical Factory Research Area, Pediatric Cancer Genetics and Epigenetics Unit, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
8
|
Bissa M, Galli V, Schifanella L, Vaccari M, Rahman MA, Gorini G, Binello N, Sarkis S, Gutowska A, Silva de Castro I, Doster MN, Moles R, Ferrari G, Shen X, Tomaras GD, Montefiori DC, N’guessan KF, Paquin-Proulx D, Kozlowski PA, Venzon DJ, Choo-Wosoba H, Breed MW, Kramer J, Franchini G. In Vivo Treatment with Insulin-like Growth Factor 1 Reduces CCR5 Expression on Vaccine-Induced Activated CD4 + T-Cells. Vaccines (Basel) 2023; 11:1662. [PMID: 38005994 PMCID: PMC10675829 DOI: 10.3390/vaccines11111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
At the heart of the DNA/ALVAC/gp120/alum vaccine's efficacy in the absence of neutralizing antibodies is a delicate balance of pro- and anti-inflammatory immune responses that effectively decreases the risk of SIVmac251 acquisition in macaques. Vaccine efficacy is linked to antibodies recognizing the V2 helical conformation, DC-10 tolerogenic dendritic cells eliciting the clearance of apoptotic cells via efferocytosis, and CCR5 downregulation on vaccine-induced gut homing CD4+ cells. RAS activation is also linked to vaccine efficacy, which prompted the testing of IGF-1, a potent inducer of RAS activation with vaccination. We found that IGF-1 changed the hierarchy of V1/V2 epitope recognition and decreased both ADCC specific for helical V2 and efferocytosis. Remarkably, IGF-1 also reduced the expression of CCR5 on vaccine-induced CD4+ gut-homing T-cells, compensating for its negative effect on ADCC and efferocytosis and resulting in equivalent vaccine efficacy (71% with IGF-1 and 69% without).
Collapse
Affiliation(s)
- Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
- Tulane National Primate Center & School of Medicine, Tulane University, Covington, LA 70118, USA
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nicolò Binello
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Guido Ferrari
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoying Shen
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C. Montefiori
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kombo F. N’guessan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21701, USA
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21701, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
10
|
Wang S, Wang X, Shen K, Wei C, Li J. Insulin-like growth factor 1 receptor inhibits the proliferation of acute myeloid leukaemia cells via NK cell activation. Ann Hematol 2023; 102:2353-2364. [PMID: 37522970 DOI: 10.1007/s00277-023-05378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Acute myeloid leukaemia (AML) denotes a heterogeneous category of cancers occurring within the bone marrow that are initiated by the unrestricted proliferation of haematopoietic stem cells. Various factors effectuate the dysregulation of AML cell proliferation; for instance, the upregulation of insulin-like growth factor 1 receptor (IGF1R) within AML cells influences their proliferation. However, there is a current dearth of research assessing the association between IGF1R and prognostic risk as well as its potential as an AML immunotherapeutic. This study aims to elucidate the role of IGF1R in AML progression and evaluate its prognostic value. To this end, RNA-sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) database was analysed to compare IGF1R expression between AML and normal tissues. Moreover, a Kaplan-Meier survival analysis was performed to determine whether IGF1R expression correlates with patient overall survival (OS). TCGA data revealed upregulated IGF1R expression in the peripheral blood of AML patients compared to that in healthy individuals. Meanwhile, IGF1R expression positively correlates with patient OS. Additionally, elevated IGF1R expression promotes NK cell expansion and enhances its functional activation, thereby inhibiting AML cell proliferation. Collectively, these findings highlight the clinical potential of IGF1R in the effective treatment of AML through the activation of NK cell proliferation and function and suggest that it may represent a potential predictive marker of AML prognosis.
Collapse
Affiliation(s)
- ShuQing Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - KaiNi Shen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chong Wei
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Xue Q, Zhang Q, Guo Z, Wu L, Chen Y, Chen Z, Yang K, Cao J. Therapeutic Hypothermia Inhibits Hypoxia-Induced Cardiomyocyte Apoptosis Via the MiR-483-3p/Cdk9 Axis. J Am Heart Assoc 2023; 12:e026160. [PMID: 36789845 PMCID: PMC10111479 DOI: 10.1161/jaha.122.026160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background Therapeutic hypothermia has a beneficial effect on cardiac function after acute myocardial infarction, but the exact mechanism is still unclear. Recent research has suggested that microRNAs participate in acute myocardial infarction to regulate cardiomyocyte survival. This study aimed to explore the ability of hypothermia-regulated microRNA-483-3p (miR-483-3p) to inhibit hypoxia-induced myocardial infarction. Methods and Results Primary cardiomyocytes were cultured under hypoxia at 32 °C to mimic therapeutic hypothermia, and the differentially expressed microRNAs were determined by RNA sequencing. Therapeutic hypothermia recovered hypoxia-induced increases in apoptosis, decreases in ATP levels, and decreases in miR-483-3p expression. Overexpression of miR-483-3p exhibited effects similar to those of therapeutic hypothermia on hypoxia in the treatment of cardiomyocytes to associate with maintaining the mitochondrial membrane potential, and cyclin-dependent kinase 9 (Cdk9) was identified as a target gene with downregulated expression by miR-483-3p. Knockdown of Cdk9 also promoted cardiac survival, ATP production, and mitochondrial membrane potential stability under hypoxia. In vivo, the expression of miR-483-3p and Cdk9 was tested in the cardiac tissue of the mice with acute myocardial infarction, and the expression of miR-483-3p decreased and Cdk9 increased in the region of myocardial infarction. However, miR-483-3p was overexpressed with lentivirus, which suppressed apoptosis, infarct size (miR-483-3p, 22.00±4.04% versus negative control, 28.57±5.44%, P<0.05), and Cdk9 expression to improve cardiac contractility. Conclusions MiR-483-3p antagonizes hypoxia, leading to cardiomyocyte injury by targeting Cdk9, which is a new mechanism of therapeutic hypothermia.
Collapse
Affiliation(s)
- Qiqi Xue
- Department of Geriatrics Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Qianru Zhang
- Department of Cardiology Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Zhenzhen Guo
- Department of Cardiovascular Medicine Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Liping Wu
- Department of Cardiac Imaging Center The First Affiliated Hospital, Auhui Medical University Hefei China
| | - Yafen Chen
- Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital, Fudan University Shanghai China
| | - Zhongli Chen
- State Key Laboratory of Cardiovascular Disease Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ke Yang
- Department of Cardiovascular Medicine Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| | - Jiumei Cao
- Department of Geriatrics Ruijin Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
12
|
Hu C, Li S, Fu X, Zhao X, Peng J. LncRNA NR2F1-AS1 was involved in azacitidine resistance of THP-1 cells by targeting IGF1 with miR-483-3p. Cytokine 2023; 162:156105. [PMID: 36527891 DOI: 10.1016/j.cyto.2022.156105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The long noncoding RNAs' (lncRNAs) effect on cancer therapy resistance by targeting microRNA (miRNA) in the regulation of drug resistance genes has attracted more and more attention. This study attempted to explore the mechanism of "lncRNA NR2F1-AS1/miR-483-3p/IGF1″ axis in azacitidine resistance of THP-1 cells. METHODS THP-1 cells were treated with azacitidine to construct THP1-Aza cells. Cell number and morphological changes were observed by a microscope. CCK8, flow cytometry and transwell were used to detect cell proliferation, apoptosis, cycle, invasion and migration. The targeting relationships between NR2F1-AS1 and miR-483-3p, IGF1 and miR-483-3p were analyzed by dual-luciferase, respectively. RIP assay was applied to verify the interaction between NR2F1-AS1 and miR-483-3p. The relative mRNA expression levels of miR-483-3p, AKT1, PI3K, NR2F1-AS1 and IGF1 were detected by qRT-PCR. PI3K, p-PI3K, AKT, p-AKT and IGF1 protein expression were detected by western blot. RESULTS Compared with THP-1 cells, NR2F1-AS1 and IGF1 were highly expressed in THP1-Aza cells, and the miR-483-3p expression was significantly decreased in THP1-Aza cells. Knockdown of NR2F1-AS1 increased apoptosis and G1 phase, and reduced cells growth, invasion and migration ability of THP1-Aza cells. Dual-luciferase demonstrated that NR2F1-AS1 could bind to miR-483-3p, and miR-483-3p could bind to IGF1. RIP assay verified the interaction between NR2F1-AS1 and miR-483-3p. Compared with the si-NR2F1-AS1 group, miR-483-3p inhibitor or oe-IGF1 treatment reduced the apoptosis and cell cycle, and increased the cell growth, invasion and migration ability of THP-1-Aza cells. CONCLUSION LncRNA NR2F1-AS1 affects the sensitivity of THP-1 cells to azacitidine resistance by regulating the miR-483-3p/IGF1 axis, which may be a potential target for the treatment of acute monocytic leukemia.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shujun Li
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xiao Fu
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xielan Zhao
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jie Peng
- Department of Haematology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
13
|
Wang P, Liang T, Zhan H, Zhu M, Wu M, Qian L, Zhou Y, Ni F. Unique metabolism and protein expression signature in human decidual NK cells. Front Immunol 2023; 14:1136652. [PMID: 36936959 PMCID: PMC10020942 DOI: 10.3389/fimmu.2023.1136652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Human decidual natural killer (dNK) cells are a unique type of tissue-resident NK cells at the maternal-fetal interface. dNK cells are likely to have pivotal roles during pregnancy, including in maternal-fetal immune tolerance, trophoblast invasion, and fetal development. However, detailed insights into these cells are still lacking. In this study, we performed metabolomic and proteomic analyses on human NK cells derived from decidua and peripheral blood. We found that 77 metabolites were significantly changed in dNK cells. Notably, compared to peripheral blood NK (pNK) cells, 29 metabolites involved in glycerophospholipid and glutathione metabolism were significantly decreased in dNK cells. Moreover, we found that 394 proteins were differentially expressed in dNK cells. Pathway analyses and network enrichment analyses identified 110 differentially expressed proteins involved in focal adhesion, cytoskeleton remodeling, oxidoreductase activity, and fatty acid metabolism in dNK cells. The integrated proteomic and metabolomic analyses revealed significant downregulation in glutathione metabolism in dNK cells compared to pNK cells. Our data indicate that human dNK cells have unique metabolism and protein-expression features, likely regulating their function in pregnancy and immunity.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Heqin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingming Zhu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Mingming Wu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Fang Ni,
| |
Collapse
|
14
|
Immunomodulators Containing Epicor, Colostrum, Vitamin D, Zinc, Lactobacilli and Bifidobacterium Reduce Respiratory Exacerbations in Children and Adults with Chronic Pulmonary Diseases. SINUSITIS 2022. [DOI: 10.3390/sinusitis6020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
(1) Background: A number of studies have demonstrated the connection between developing or exacerbating chronic respiratory diseases in adults and children. However, still, few studies focus on reducing exacerbations via immunomodulation. (2) Methods: In this pilot study, a total of 25 pediatric and adult patients with bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD)/persistent bacterial bronchitis (PBB) were included, administered over-the-counter (OTC) immunomodulators and followed up for 6 or 12 months. (3) Results: We observed a decrease in the frequency of exacerbations with slight improvements in functional respiratory indicators in adults on their second and third visits and a reduced number of exacerbations and improved spirometry indices in children with BA, although exacerbations requiring hospital admission remained at a similar rate. (4) Conclusions: We confirmed that the number of exacerbations of underlying chronic respiratory disease in adults and children could be reduced after the administration of OTC immunomodulators, probably by optimizing the immune resistance to common viral infections.
Collapse
|
15
|
Buendía-González FO, Legorreta-Herrera M. The Similarities and Differences between the Effects of Testosterone and DHEA on the Innate and Adaptive Immune Response. Biomolecules 2022; 12:biom12121768. [PMID: 36551196 PMCID: PMC9775255 DOI: 10.3390/biom12121768] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Androgens are steroids that modulate various processes in the body, ranging from reproduction, metabolism, and even immune response. The main androgens are testosterone, dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). These steroids modulate the development and function of immune response cells. Androgens are generally attributed to immunosuppressive effects; however, this is not always the case. Variations in the concentrations of these hormones induce differences in the innate, humoral, and cell-mediated immune response, which is concentration dependent. The androgens at the highest concentration in the organism that bind to the androgen receptor (AR) are DHEA and testosterone. Therefore, in this work, we review the effects of DHEA and testosterone on the immune response. The main findings of this review are that DHEA and testosterone induce similar but also opposite effects on the immune response. Both steroids promote the activation of regulatory T cells, which suppresses the Th17-type response. However, while testosterone suppresses the inflammatory response, DHEA promotes it, and this modulation is important for understanding the involvement of androgens in infectious (bacterial, viral and parasitic) and autoimmune diseases, as well as in the sexual dimorphism that occurs in these diseases.
Collapse
Affiliation(s)
- Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, Ciudad de México 09230, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, Ciudad de México 09230, Mexico
- Correspondence:
| |
Collapse
|
16
|
Flores BCT, Chawla S, Ma N, Sanada C, Kujur PK, Yeung R, Bellon MB, Hukari K, Fowler B, Lynch M, Chinen LTD, Ramalingam N, Sengupta D, Jeffrey SS. Microfluidic live tracking and transcriptomics of cancer-immune cell doublets link intercellular proximity and gene regulation. Commun Biol 2022; 5:1231. [DOI: 10.1038/s42003-022-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractCell–cell communication and physical interactions play a vital role in cancer initiation, homeostasis, progression, and immune response. Here, we report a system that combines live capture of different cell types, co-incubation, time-lapse imaging, and gene expression profiling of doublets using a microfluidic integrated fluidic circuit that enables measurement of physical distances between cells and the associated transcriptional profiles due to cell–cell interactions. We track the temporal variations in natural killer—triple-negative breast cancer cell distances and compare them with terminal cellular transcriptome profiles. The results show the time-bound activities of regulatory modules and allude to the existence of transcriptional memory. Our experimental and bioinformatic approaches serve as a proof of concept for interrogating live-cell interactions at doublet resolution. Together, our findings highlight the use of our approach across different cancers and cell types.
Collapse
|
17
|
Li K, Liu Y, He X, Tao L, Jiang Y, Lan R, Hong Q, Chu M. A Novel SNP in the Promoter Region of IGF1 Associated With Yunshang Black Goat Kidding Number via Promoting Transcription Activity by SP1. Front Cell Dev Biol 2022; 10:873095. [PMID: 35646903 PMCID: PMC9133608 DOI: 10.3389/fcell.2022.873095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
IGF1, a member of the insulin-like growth factor (IGF) superfamily, is also known as the growth-promoting factor (somatomedin C). IGF1 is involved in vertebrate growth and development, immunity, cell metabolism, reproduction, and breeding. However, there are relatively few studies on the relationship between IGF1 and goat reproduction. In this study, a new transcription factor SP1 bound to the IGF1 g. 64943050T>C promoted granulosa cell (GC) proliferation. A mutation g.64943050T>C located in the promoter region of IGF1 was identified. Association analysis revealed that the kidding number in the first and second litters and the average number of first three litters of the CC genotype (2.206 ± 0.044, 2.254 ± 0.056, and 2.251 ± 0.031) were significantly higher than those in the TC genotype (1.832 ± 0.049, 1.982 ± 0.06, and 1.921 ± 0.034) and TT genotype (1.860 ± 0.090, 1.968 ± 0.117, and 1.924 ± 0.062) (p < 0.05). The kidding number in the third litter of the CC genotype (2.355 ± 0.057) was significantly higher than that in the TT genotype (2.000 ± 0.107) (p < 0.05). Then, the function of this mutation was validated by the dual-luciferase reporter assay and EMSA. The results showed that the luciferase activity of IGF1-mutant-C was significantly higher than that of IGF1-Wild-T (p < 0.05). The EMSA also showed that the binding ability of IGF1-mutant-C was higher than that of IGF1-Wild-T (p < 0.05). Subsequently, the transcription factor SP1 was predicted to bind to the mutation of IGF1 (g.64943050T>C). Overexpression of SP1 promotes the expression of IGF1 in the primary granulosa cells (GCs). The results of the CCK-8 assay and the expression of GC proliferation factors (CDK4, cyclin D1, and cyclin D2) demonstrated that SP1 promoted GC proliferation by regulating IGF1 expression. Our results suggested that the IGF1 g.64943050T>C was significantly associated with the kidding number of Yunshang black goats, and SP1 as a transcription factor of IGF1 binding to the mutation T>C regulated the expression of IGF1. Furthermore, SP1 promoted goat GC proliferation by regulating the expression of IGF1, which provides a new insight for the goat fertility trait.
Collapse
Affiliation(s)
- Kunyu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Qionghua Hong, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qionghua Hong, ; Mingxing Chu,
| |
Collapse
|
18
|
Xu X, Zhou Y, Fu B, Wei H. Uterine NK cell functions at maternal-fetal interface. Biol Reprod 2022; 107:327-338. [PMID: 35551350 DOI: 10.1093/biolre/ioac094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/14/2022] Open
Abstract
During pregnancy, maternal decidual tissue interacts with fetal trophoblasts. They constitute the maternal-fetal interface responsible for supplying nutrition to the fetus. Uterine natural killer (uNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy and play critical roles throughout pregnancy. This review provides current knowledge about the functions of uNK cells. uNK cells have been shown to facilitate remodeling of the spiral artery, control the invasion of extravillous trophoblast (EVT) cells, contribute to the induction and maintenance of immune tolerance, protect against pathogen infection, and promote fetal development. Pregnancy-trained memory of uNK cells improves subsequent pregnancy outcomes. In addition, this review describes the distinct functions of three uNK cell subsets: CD27-CD11b-, CD27+ and CD27-CD11b+ uNK cells.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Yonggang Zhou
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Binqing Fu
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China
| |
Collapse
|
19
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
20
|
Das A, Harly C, Ding Y, Bhandoola A. ILC Differentiation from Progenitors in the Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:7-24. [DOI: 10.1007/978-981-16-8387-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Weischendorff S, Sengeløv H, Juul A, Nielsen CH, Ryder LP, Kielsen K, Müller K. Insulin-like growth factor-1 and insulin-like growth factor binding protein-3: impact on early haematopoietic reconstitution following allogeneic haematopoietic stem cell transplantation. Eur J Haematol 2021; 108:190-198. [PMID: 34741538 DOI: 10.1111/ejh.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of the study was to investigate whether high endogenous levels of insulin-like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3) were related to a faster reconstitution of different blood cell populations in the early phase after allogeneic myeloablative haematopoietic stem cell transplantation (HSCT). METHODS We measured IGF-1 and IGFBP-3 by chemiluminescence during the first three weeks after transplantation in 35 adult patients undergoing myeloablative HSCT and calculated area under the curve divided by time (AUC/t) for each patient. RESULTS Circulating levels of IGF-1 and IGFBP-3 correlated with counts of reticulocytes (rs = 0.44, p = .011 and r = 0.41, p = .017, respectively) and thrombocytes (rs = 0.38, p = .030 and rs = 0.56, p = .0008) three weeks post-transplant. Furthermore, high IGFBP-3 levels correlated with absolute lymphocyte counts 3 weeks post-HSCT (rs = 0.54, p = .012) and were associated with shorter time to neutrophil engraftment (rs = -0.35, p = .043). Both IGF-1 and IGFBP-3 levels were associated with the number of circulating natural killer cells one month after HSCT (rs = 0.42, p = .032 and rs = 0.57, p = .0026). CONCLUSION These data indicate that high levels of IGF-1 and IGFBP-3 relate to a faster haematopoietic reconstitution after HSCT and suggest a biological influence of these mediators in haematopoietic homeostasis in these patients.
Collapse
Affiliation(s)
- Sarah Weischendorff
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lars P Ryder
- The Tissue Typing Laboratory, Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Kielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Müller
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Disease, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
23
|
Song XT, Zhang JN, Zhao DW, Zhai YF, Lu Q, Qi MY, Lu MH, Deng SL, Han HB, Yang XQ, Yao YC. Molecular cloning, expression, and functional features of IGF1 splice variants in sheep. Endocr Connect 2021; 10:980-994. [PMID: 34319906 PMCID: PMC8428077 DOI: 10.1530/ec-21-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor 1 (IGF1), also known as somatomedin C, is essential for the regulation of animal growth and development. In many species, the IGF1 gene can be alternatively spliced into multiple transcripts, encoding different pre-pro-IGF1 proteins. However, the exact alternative splicing patterns of IGF1 and the sequence information of different splice variants in sheep are still unclear. In this study, four splice variants (class 1-Ea, class 1-Eb, class 2-Ea, and class 2-Eb) were obtained, but no IGF1 Ec, similar to that found in other species, was discovered. Bioinformatics analysis showed that the four splice variants shared the same mature peptide (70 amino acids) and possessed distinct signal peptides and E peptides. Tissue expression analysis indicated that the four splice variants were broadly expressed in all tested tissues and were most abundantly expressed in the liver. In most tissues and stages, the expression of class 1-Ea was highest, and the expression of other splice variants was low. Overall, levels of the four IGF1 splice variants at the fetal and lamb stages were higher than those at the adult stage. Overexpression of the four splice variants significantly increased fibroblast proliferation and inhibited apoptosis (P < 0.05). In contrast, silencing IGF1 Ea or IGF1 Eb with siRNA significantly inhibited proliferation and promoted apoptosis (P < 0.05). Among the four splice variants, class 1-Ea had a more evident effect on cell proliferation and apoptosis. In summary, the four ovine IGF1 splice variants have different structures and expression patterns and might have different biological functions.
Collapse
Affiliation(s)
- Xu-Ting Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jia-Nan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Duo-Wei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yu-Fei Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mei-Yu Qi
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming-Hai Lu
- Department of Animal Science, Heilongjiang State Farms Science Technology Vocational College, Harbin, China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hong-Bing Han
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Xiu-Qin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Correspondence should be addressed to Y-C Yao or X-Q Yang: or
| | - Yu-Chang Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Correspondence should be addressed to Y-C Yao or X-Q Yang: or
| |
Collapse
|
24
|
Aquilani R, Zuccarelli GC, Maestri R, Boselli M, Dossena M, Baldissarro E, Boschi F, Buonocore D, Verri M. Essential amino acid supplementation is associated with reduced serum C-reactive protein levels and improved circulating lymphocytes in post-acute inflamed elderly patients. Int J Immunopathol Pharmacol 2021; 35:20587384211036823. [PMID: 34387512 PMCID: PMC8366127 DOI: 10.1177/20587384211036823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Persistent systemic inflammation leads to multidistrectual body dysfunctions. Attenuation of inflammation may improve patients’ functional and life prognoses. We hypothesized that essential amino acids (EAAs) given to elderly patients in rehabilitation after acute diseases may be associated with a reduced inflammatory state. Therefore, this retrospective study investigated whether the supplementation of EAAs – modulators of immune competence – was associated with a reduced inflammation rate in elderly patients. Methods The medical records of 282 patients admitted to the rehabilitation (rehab) institute after acute index events (surgery or medical diseases) (age: 81.18 ± 8.58 years; females: 67.9%) were analyzed. Results 46 patients (16.3% of the entire population) had received EAA supplements (S), whereas the remaining 236 patients had not (N-S). Systemic inflammation (I) (serum C-reactive protein (CRP) > 0.5 mg/dL) was present in 67.4% of the I-S group and 57.2% of the I-N-S group. During rehab, the I-S group (but not the I-N-S group) showed a reduction in CRP levels (p = 0.03) and an increase in circulating lymphocytes (p = 0.035), immune cells of the adaptive immune system. C-reactive protein levels remained virtually unchanged in non-inflamed patients who received supplements but increased in non-inflamed patients who did not receive supplements (p = 0.05). Stratified for developed infections, CRP levels reduced in S patients (p = 0.008) but did not in N-S patients. Conclusion EAA supplementation was associated with reduced inflammation in both inflamed and infected patients. In addition, EAA supplementation was associated with increased circulating lymphocytes in inflamed patients.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Ginetto C Zuccarelli
- Geriatric Institute P. Redaelli - Reparti di Riabilitazione Geriatrica e di Mantenimento, Vimodrone (Milano), Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano (PV), Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano (PV), Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Eleonora Baldissarro
- Complex Structure of Recovery and Functional Re-education - ASL 3, Genova, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
26
|
Shokouhifar A, Anani Sarab G, Yazdanifar M, Fereidouni M, Nouri M, Ebrahimi M. Overcoming the UCB HSCs -Derived NK cells Dysfunction through Harnessing RAS/MAPK, IGF-1R and TGF-β Signaling Pathways. Cancer Cell Int 2021; 21:298. [PMID: 34098947 PMCID: PMC8185927 DOI: 10.1186/s12935-021-01983-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background The natural killer (NK) cells differentiated from umbilical cord blood (UCB) hematopoietic stem cells (HSCs) may be more suitable for cell-based immunotherapy compared to the NK cells from adult donors. This is due to the possibility to choose alloreactive donors and potentially more robust in vivo expansion. However, the cytotoxicity of UCB-HSC-derived NK cells against cancer cells might be suboptimal. To overcome this obstacle, we attempted to generate NK cells with potent antitumor activity by targeting RAS/MAPK, IGF-1R and TGF-β signaling pathways using IL-15, IGF-1 and SIS3 respectively. Methods The CD34 + cells were isolated from human UCB mononuclear cells through magnetic activation cell sorting (MACS) with purity of (≥ 90%) and were subjected to differentiate into NK cells. After 21 days of induction with SFTG36 (SCF, FLt-3L, TPO, GM-CSF, IL-3 and IL-6), IS721 (IGF-1, SIS3, IL-7 and IL-21) and IL-15/Hsp70 media, NK cells phenotypes were studied and their cytotoxicity against K562 human erythroleukemia cells and SKOV3 ovarian carcinoma cells was analyzed. Results The NK cells induced in SFTG36/IS721 medium were selected for activation due to their higher expression of CD56 + 16 + CD3 − (93.23% ± 0.75) and mean fluorescence intensity (MFI) of NKG2D + (168.66 ± 20.00) and also a higher fold expansion potential (11.893 ± 1.712) compared to the other groups. These cells once activated with IL-15, demonstrated a higher cytotoxicity against K562 (≥ 90%; P ≤ 0.001) and SKOV3 tumor cells (≥ 65%; P ≤ 0.001) compared to IL-15/Hsp70-activated NK cells. Conclusions The differentiation of ex vivo expanded CD34 + cells through manipulation of RAS/MAPK, IGF-1R and TGF-β signaling pathways is an efficient approach for generating functional NK cells that can be used for cancer immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01983-z.
Collapse
Affiliation(s)
- Alireza Shokouhifar
- Department of Molecular Medicine, Genomic Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mohammad Fereidouni
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoumeh Nouri
- R&D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Marzieh Ebrahimi
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
27
|
Lu J, Li S, Li X, Zhao W, Duan X, Gu X, Xu J, Yu B, Sigal LJ, Dong Z, Xie L, Fang M. Declined miR-181a-5p expression is associated with impaired natural killer cell development and function with aging. Aging Cell 2021; 20:e13353. [PMID: 33780118 PMCID: PMC8135006 DOI: 10.1111/acel.13353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27- CD11b+ ) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR-l8la-5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR-181a-5p inhibited NK cell development in vitro and in vivo. Furthermore, miR-181a-5p is highly conserved in mice and human. MiR-181a-5p promoted the production of IFN-γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR-181a-5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR-181a-5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.
Collapse
Affiliation(s)
- Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Shan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaopeng Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wenming Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
| | - Xiuling Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Jianqiao Xu
- Department of Respiratory Medicine Chinese PLA General Hospital Beijing China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Luis J. Sigal
- Department of Microbiology and Immunology Thomas Jefferson University Philadelphia PA USA
| | - Zhongjun Dong
- School of Medicine Tsinghua University Beijing China
| | - Lixin Xie
- Department of Respiratory Medicine Chinese PLA General Hospital Beijing China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Institute of Microbiology Chinese Academy of Sciences Beijing China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
- International College University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
28
|
Lo Verso L, Talbot G, Morissette B, Guay F, Matte JJ, Farmer C, Gong J, Wang Q, Bissonnette N, Beaulieu C, Lessard M. The combination of nutraceuticals and functional feeds as additives modulates gut microbiota and blood markers associated with immune response and health in weanling piglets. J Anim Sci 2020; 98:5889921. [PMID: 32783055 PMCID: PMC7419736 DOI: 10.1093/jas/skaa208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the effects of a combination of feed additives with complementary functional properties on the intestinal microbiota, homocysteine, and vitamins E and B status as well as systemic immune response of weanling piglets. At weaning, 32 litters were assigned to one of the following dietary treatments (DT): 1) conventional diet (CTRL); 2) CTRL diet supplemented with antibiotics (ATB); 3) a cocktail of feed additives containing cranberry extract, encapsulated carvacrol, yeast-derived products, and extra vitamins A, D, E, and B complex (CKTL); or 4) CKTL diet with bovine colostrum in replacement of plasma proteins (CKTL + COL). Within each litter, the piglets with lowest and highest birth weights (LBW and HBW, respectively) and two piglets of medium birth weight (MBW) were identified. The MBW piglets were euthanized at 42 d of age in order to characterize the ileal and colonic microbiota. Blood samples were also collected at weaning and at 42 d of age from LBW and HBW piglets to measure insulin-like growth factor-1 (IGF-1), cysteine, homocysteine, and vitamins E, B6, and B12, and to characterize the leukocyte populations. At 42 d of age, cytokine production by stimulated peripheral blood mononuclear cells was also measured. In a second experiment, piglets were reared under commercial conditions to evaluate the effects of the DT on the growth performance. At the indicator species analysis, the highest indicator value (IV) for Succinivibrio dextrinosolvens was found in the CKTL group, whereas the highest IV for Lactobacillus reuteri and Faecalibacterium prausnitzii was evidenced in the CKTL + COL group (P < 0.05). Compared with the other DT, CTRL piglets had higher concentrations of homocysteine, whereas the CKTL and CKTL + COL supplementations increased the concentrations of vitamins E and B12 (P < 0.05). DT had no effect on IGF-1 concentration and on blood leukocytes populations; however, compared with HBW piglets, LBW animals had lower values of IGF-1, whereas the percentages of γδ T lymphocytes and T helper were decreased and increased, respectively (P < 0.05). CKTL + COL also improved the growth performance of piglets reared under commercial conditions (P < 0.05). This study highlights the impact of birth weight on piglet systemic immune defenses and the potential of weaning diet supplemented with feed additives and bovine colostrum to modulate the homocysteine metabolism and the intestinal microbiota.
Collapse
Affiliation(s)
- Luca Lo Verso
- Département des Sciences Animales, Université Laval, Québec, QC, Canada.,Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Bruno Morissette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, Québec, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Chantal Farmer
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Carole Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
29
|
Zhang J, He Y, Yan X, Chen S, He M, Lei Y, Zhang J, Gongol B, Gu M, Miao Y, Bai L, Cui X, Wang X, Zhang Y, Fan F, Li Z, Shen Y, Chou C, Huang H, Malhotra A, Rabinovitch M, Jing Z, Shyy JY. MicroRNA-483 amelioration of experimental pulmonary hypertension. EMBO Mol Med 2020; 12:e11303. [PMID: 32324970 PMCID: PMC7207157 DOI: 10.15252/emmm.201911303] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial dysfunction is critically involved in the pathogenesis of pulmonary arterial hypertension (PAH) and that exogenously administered microRNA may be of therapeutic benefit. Lower levels of miR-483 were found in serum from patients with idiopathic pulmonary arterial hypertension (IPAH), particularly those with more severe disease. RNA-seq and bioinformatics analyses showed that miR-483 targets several PAH-related genes, including transforming growth factor-β (TGF-β), TGF-β receptor 2 (TGFBR2), β-catenin, connective tissue growth factor (CTGF), interleukin-1β (IL-1β), and endothelin-1 (ET-1). Overexpression of miR-483 in ECs inhibited inflammatory and fibrogenic responses, revealed by the decreased expression of TGF-β, TGFBR2, β-catenin, CTGF, IL-1β, and ET-1. In contrast, inhibition of miR-483 increased these genes in ECs. Rats with EC-specific miR-483 overexpression exhibited ameliorated pulmonary hypertension (PH) and reduced right ventricular hypertrophy on challenge with monocrotaline (MCT) or Sugen + hypoxia. A reversal effect was observed in rats that received MCT with inhaled lentivirus overexpressing miR-483. These results indicate that PAH is associated with a reduced level of miR-483 and that miR-483 might reduce experimental PH by inhibition of multiple adverse responses.
Collapse
Affiliation(s)
- Jin Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Yangyang He
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiaosong Yan
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Ming He
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Yuyang Lei
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Jiao Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
- Department of CardiologyFirst Affiliated HospitalXi'an Jiaotong UniversityXianChina
| | - Brendan Gongol
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Mingxia Gu
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Yifei Miao
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Liang Bai
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Xiaopei Cui
- Department of Geriatric MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Xiaojian Wang
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yixin Zhang
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fenling Fan
- Department of CardiologyFirst Affiliated HospitalXi'an Jiaotong UniversityXianChina
| | - Zhao Li
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Yuan Shen
- Department of Epidemiology and Health StatisticsSchool of Public HealthXi'an Jiaotong UniversityXianChina
| | - Chih‐Hung Chou
- Department of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
| | - Hsien‐Da Huang
- Warshel Institute for Computational BiologySchool of Life and Health SciencesThe Chinese University of Hong KongShenzhenChina
| | - Atul Malhotra
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Marlene Rabinovitch
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Zhi‐Cheng Jing
- Department of Cardiology & Key Lab of Pulmonary Vascular MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - John Y‐J Shyy
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| |
Collapse
|
30
|
Directed Differentiation of Mobilized Hematopoietic Stem and Progenitor Cells into Functional NK cells with Enhanced Antitumor Activity. Cells 2020; 9:cells9040811. [PMID: 32230942 PMCID: PMC7226771 DOI: 10.3390/cells9040811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Obtaining sufficient numbers of functional natural killer (NK) cells is crucial for the success of NK-cell-based adoptive immunotherapies. While expansion from peripheral blood (PB) is the current method of choice, ex vivo generation of NK cells from hematopoietic stem and progenitor cells (HSCs) may constitute an attractive alternative. Thereby, HSCs mobilized into peripheral blood (PB-CD34+) represent a valuable starting material, but the rather poor and donor-dependent differentiation of isolated PB-CD34+ cells into NK cells observed in earlier studies still represents a major hurdle. Here, we report a refined approach based on ex vivo culture of PB-CD34+ cells with optimized cytokine cocktails that reliably generates functionally mature NK cells, as assessed by analyzing NK-cell-associated surface markers and cytotoxicity. To further enhance NK cell expansion, we generated K562 feeder cells co-expressing 4-1BB ligand and membrane-anchored IL-15 and IL-21. Co-culture of PB-derived NK cells and NK cells that were ex-vivo-differentiated from HSCs with these feeder cells dramatically improved NK cell expansion, and fully compensated for donor-to-donor variability observed during only cytokine-based propagation. Our findings suggest mobilized PB-CD34+ cells expanded and differentiated according to this two-step protocol as a promising source for the generation of allogeneic NK cells for adoptive cancer immunotherapy.
Collapse
|
31
|
Oherle K, Acker E, Bonfield M, Wang T, Gray J, Lang I, Bridges J, Lewkowich I, Xu Y, Ahlfeld S, Zacharias W, Alenghat T, Deshmukh H. Insulin-like Growth Factor 1 Supports a Pulmonary Niche that Promotes Type 3 Innate Lymphoid Cell Development in Newborn Lungs. Immunity 2020; 52:275-294.e9. [PMID: 32075728 PMCID: PMC7382307 DOI: 10.1016/j.immuni.2020.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 05/16/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Type 3 innate lymphoid cells (ILC3s) are critical for lung defense against bacterial pneumonia in the neonatal period, but the signals that guide pulmonary ILC3 development remain unclear. Here, we demonstrated that pulmonary ILC3s descended from ILC precursors that populated a niche defined by fibroblasts in the developing lung. Alveolar fibroblasts produced insulin-like growth factor 1 (IGF1), which instructed expansion and maturation of pulmonary ILC precursors. Conditional ablation of IGF1 in alveolar fibroblasts or deletion of the IGF-1 receptor from ILC precursors interrupted ILC3 biogenesis and rendered newborn mice susceptible to pneumonia. Premature infants with bronchopulmonary dysplasia, characterized by interrupted postnatal alveolar development and increased morbidity to respiratory infections, had reduced IGF1 concentrations and pulmonary ILC3 numbers. These findings indicate that the newborn period is a critical window in pulmonary immunity development, and disrupted lung development in prematurely born infants may have enduring effects on host resistance to respiratory infections.
Collapse
Affiliation(s)
- Katherine Oherle
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Elizabeth Acker
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Madeline Bonfield
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Timothy Wang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Ian Lang
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - James Bridges
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yan Xu
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shawn Ahlfeld
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - William Zacharias
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hitesh Deshmukh
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
32
|
Short-term starvation reduces IGF-1 levels to sensitize lung tumors to PD-1 immune checkpoint blockade. ACTA ACUST UNITED AC 2020; 1:75-85. [DOI: 10.1038/s43018-019-0007-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/14/2019] [Indexed: 01/31/2023]
|
33
|
IGF1 Knockdown Hinders Myocardial Development through Energy Metabolism Dysfunction Caused by ROS-Dependent FOXO Activation in the Chicken Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7838754. [PMID: 31949883 PMCID: PMC6948330 DOI: 10.1155/2019/7838754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factor 1 (IGF1) is a multifunctional cellular regulatory factor that can regulate cell growth and development by mediating growth hormone stimulation. However, the mechanism of IGF1 dysfunction in cardiomyocyte development is seldom reported. To study this, we employed the models of IGF1 knockdown in chicken embryo in vivo and in cardiomyocytes in vitro. We detected the antioxidant capacity, PI3K/Akt pathway, energy metabolism-related genes, and myocardial development-related genes. Our results revealed that the low expression of IGF1 can significantly suppress the antioxidant capacity and increase the ROS (P < 0.05) levels, activating the AMPK and PI3K pathway by inhibiting the expression of IRS1. We also found that myocardial energy metabolism is blocked through IGF1, GLUT, and IGFBP inhibition, further inducing myocardial developmental disorder by inhibiting Mesp1, GATA, Nkx2.5, and MyoD expression. Altogether, we conclude that low IGF1 expression can hinder myocardial development through the dysfunction of energy metabolism caused by ROS-dependent FOXO activation.
Collapse
|
34
|
LEVITON A, ALLRED EN, FICHOROVA RN, VANDERVEEN DK, O’SHEA TM, KUBAN K, DAMMANN O. Early Postnatal IGF-1 and IGFBP-1 Blood Levels in Extremely Preterm Infants: Relationships with Indicators of Placental Insufficiency and with Systemic Inflammation. Am J Perinatol 2019; 36:1442-1452. [PMID: 30685870 PMCID: PMC7252600 DOI: 10.1055/s-0038-1677472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To evaluate to what extent indicators of placenta insufficiency are associated with low concentrations of insulin-like growth factor 1 (IGF-1) and IGF-1-binding protein-1 (IGFBP-1) in neonatal blood, and to what extent the concentrations of these growth factors are associated with concentrations of proteins with inflammatory, neurotrophic, or angiogenic properties. STUDY DESIGN Using multiplex immunoassays, we measured the concentrations of IGF-1 and IGFBP-1, as well as 25 other proteins in blood spots collected weekly from ≥ 880 infants born before the 28th week of gestation, and sought correlates of concentrations in the top and bottom quartiles for gestational age and day the specimen was collected. RESULTS Medically indicated delivery and severe fetal growth restriction (sFGR) were associated with low concentrations of IGF-1 on the first postnatal day and with high concentrations of IGFBP-1 on almost all days. Elevated concentrations of IGF-1 and IGFBP-1 were accompanied by elevated concentrations of many other proteins with inflammatory, neurotrophic, or angiogenic properties. CONCLUSION Disorders associated with impaired placenta implantation and sFGR appear to account for a relative paucity of IGF-1 on the first postnatal day. Elevated concentrations of IGF-1 and especially IGFBP-1 were associated with same-day elevated concentrations of inflammatory, neurotrophic, and angiogenic proteins.
Collapse
Affiliation(s)
- Alan LEVITON
- Departments of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth N. ALLRED
- Departments of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Raina N. FICHOROVA
- Departments of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Deborah K. VANDERVEEN
- Departments of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - T. Michael O’SHEA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Karl KUBAN
- Division of Neurology, Department of Pediatrics, Boston Medical Center and Boston University, Boston, MA, USA
| | - Olaf DAMMANN
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA,Perinatal Neuropidemiology Unit, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
35
|
Saultz JN, Freud AG, Mundy-Bosse BL. MicroRNA regulation of natural killer cell development and function in leukemia. Mol Immunol 2019; 115:12-20. [PMID: 30100210 DOI: 10.1016/j.molimm.2018.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are now recognized as important regulators of all cellular processes, including immune function and cancer survival. These evolutionary preserved, single-stranded, non-coding RNA molecules mediate important functional effects primarily through post-transcriptional regulation of protein expression. MiRNAs are known to mediate multiple oncogenic pathways in tumor cells, both tumor promoting and tumor suppressing. In addition to a direct tumor cell effect, miRNAs have also been shown to play a critical role in immune cell development, function and survival. Here we expand on previous reports to evaluate miRNA regulation in natural killer (NK) cells primarily in humans and focus on their influence on NK cell development and function in the setting of hematologic malignancies. In addition, we highlight the most recent miRNA discoveries in hematologic malignancies and discuss areas of future exploration relevant to the translational field of innate immunology and miRNA-based therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer N Saultz
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
36
|
Shokri MR, Bozorgmehr M, Ghanavatinejad A, Falak R, Aleahmad M, Kazemnejad S, Shokri F, Zarnani AH. Human menstrual blood-derived stromal/stem cells modulate functional features of natural killer cells. Sci Rep 2019; 9:10007. [PMID: 31292483 PMCID: PMC6620360 DOI: 10.1038/s41598-019-46316-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Although natural killer (NK) cells play a crucial role in the maintenance of a successful pregnancy, their cytotoxic activity should be tightly controlled. We hypothesized that endometrial mesenchymal stromal/stem cells (eMSCs) could potentially attenuate the functional features of NK cells. Herein, we assessed immunomodulatory effects of menstrual blood-derived stromal/stem cells (MenSCs), as a surrogate for eMSCs, on NK cells function. Our results showed that MenSCs induced proliferation of NK cells. However, IFN-γ/IL-1β pretreated MenSCs significantly inhibited NK cell proliferation. Of 41 growth factors tested, MenSCs produced lower levels of insulin-like growth factor binding proteins (IGFBPs) 1-4, VEGF-A, β-NGF, and M-CSF compared to bone marrow-derived mesenchymal stem cells (BMSCs). MenSCs displayed high activity of IDO upon IFN-γ treatment. The antiproliferative potential of IFN-γ/IL-1β-pretreated MenSCs was mediated through IL-6 and TGF-β. MenSCs impaired the cytotoxic activity of NK cells on K562 cells, consistent with the lower expression of perforin, granzymes A, and B. We also observed that in vitro decidualization of MenSCs in the presence of IFN-γ reduced the inhibitory effect of MenSCs on NK cell cytotoxicity against K562 target cells. Additionally, MenSCs were found to be prone to NK cell-mediated lysis in an MHC-independent manner. Our findings imply that dysregulation of NK cells in such pregnancy-related disorders as miscarriage may stem from dysfunctioning of eMSCs.
Collapse
Affiliation(s)
- Mohammad-Reza Shokri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Alireza Ghanavatinejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Front Immunol 2019; 10:1205. [PMID: 31214177 PMCID: PMC6554437 DOI: 10.3389/fimmu.2019.01205] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has been firmly established as a new milestone for cancer therapy, with the development of multiple immune cells as therapeutic tools. Natural killer (NK) cells are innate immune cells endowed with potent cytolytic activity against tumors, and meanwhile act as regulatory cells for the immune system. The efficacy of NK cell-mediated immunotherapy can be enhanced by immune stimulants such as cytokines and antibodies, and adoptive transfer of activated NK cells expanded ex vivo. In addition, NK cells can arm themselves with chimeric antigen receptors (CARs), which may greatly enhance their anti-tumor activity. Most recently, extracellular vesicles (EVs) derived from NK cells show promising anti-tumor effects in preclinical studies. Herein, we carefully review the current progress in these NK cell-based immunotherapeutic strategies (NK cells combined with stimulants, adoptive transfer of NK cells, CAR-NK cells, and NK EVs) for the treatment of cancers, and discussed the challenges and opportunities for opening a new horizon for cancer immunotherapy.
Collapse
Affiliation(s)
- Weilei Hu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongsheng Huang
- Department of Surgery & Clinical Research Institute of Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Center for Cancer Biology and Innovative Therapeutics, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Meihua Sui
- Department of Surgery & Clinical Research Institute of Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Center for Cancer Biology and Innovative Therapeutics, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, China
| | - Yibing Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Valipour B, Velaei K, Abedelahi A, Karimipour M, Darabi M, Charoudeh HN. NK cells: An attractive candidate for cancer therapy. J Cell Physiol 2019; 234:19352-19365. [DOI: 10.1002/jcp.28657] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Valipour
- Stem Cell Research Centre Tabriz University of Medical Sciences Tabriz Iran
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Darabi
- Biochemistry Department, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
39
|
Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:cancers11040461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E2, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
|
40
|
Shelby RD, Cromeens B, Rager TM, Besner GE. Influence of Growth Factors on the Development of Necrotizing Enterocolitis. Clin Perinatol 2019; 46:51-64. [PMID: 30771819 PMCID: PMC6380490 DOI: 10.1016/j.clp.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth factors have important roles in gastrointestinal tract development, maintenance, and response to injury. Various experiments have been used to demonstrate growth factor influence in multiple disease processes. These studies demonstrated enhancement of mucosal proliferation, intestinal motility, immune modulation, and many other beneficial effects. Select growth factors, including epidermal growth factor and heparin-binding epidermal growth factor like growth factor, demonstrate some beneficial effects in experimental and clinical intestinal injury demonstrated in necrotizing enterocolitis. The roles of glucagon-like peptide 2, insulin-like growth factor 1, erythropoietin, growth hormone, and hepatocyte growth factor in necrotizing enterocolitis are summarized in this article.
Collapse
Affiliation(s)
- Rita D. Shelby
- Surgical Research Fellow, Department of Pediatric Surgery, Nationwide Children’s Hospital, Center for Perinatal Research, the Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Barrett Cromeens
- Surgical Research Fellow, Department of Pediatric Surgery, Nationwide Children’s Hospital, Center for Perinatal Research, the Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Terrance M Rager
- Surgical Research Fellow, Department of Pediatric Surgery, Nationwide Children’s Hospital, Center for Perinatal Research, the Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| | - Gail E. Besner
- Chief, Department of Pediatric Surgery, H. William Clatworthy, Jr. Professor of Surgery, Department of Pediatric Surgery, Nationwide Children’s Hospital, Center for Perinatal Research, the Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
41
|
Kwon HJ, Lee H, Choi GE, Kwon SJ, Song AY, Kim SJ, Choi WS, Hwang SH, Kim SC, Kim HS. Ginsenoside F1 Promotes Cytotoxic Activity of NK Cells via Insulin-Like Growth Factor-1-Dependent Mechanism. Front Immunol 2018; 9:2785. [PMID: 30546365 PMCID: PMC6279892 DOI: 10.3389/fimmu.2018.02785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ginsenosides are the principal active components of ginseng and are considered attractive candidates for combination cancer therapy because they can kill tumors and have favorable safety profiles. However, the overall benefit of ginsenosides remains unclear, particularly in cancer immunosurveillance, considering the controversial results showing repression or promotion of immune responses. Here we identify a potentiating role of ginsenoside F1 (G-F1) in cancer surveillance by natural killer (NK) cells. Among 15 different ginsenosides, G-F1 most potently enhanced NK cell cytotoxicity in response to diverse activating receptors and cancer cells. G-F1 also improved cancer surveillance in mouse models of lymphoma clearance and metastatic melanoma that rely on NK cell activity. G-F1-treated NK cells exhibited elevated cytotoxic potential such as upregulation of cytotoxic mediators and of activation signals upon stimulation. NK cell potentiation by G-F1 was antagonized by insulin-like growth factor (IGF)-1 blockade and recapitulated by IGF-1 treatment, suggesting the involvement of IGF-1. Thus, our results suggest that G-F1 enhances NK cell function and may have chemotherapeutic potential in NK cell-based immunotherapy. We anticipate our results to be a starting point for further comprehensive studies of ginsenosides in the immune cells mediating cancer surveillance and the development of putative therapeutics.
Collapse
Affiliation(s)
- Hyung-Joon Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Heejae Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, South Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ah Young Song
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - So Jeong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo Seon Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.,Department of Microbiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
42
|
Meng M, Li L, Li R, Wang W, Chen Y, Xie Y, Han R, Zhu K, Huang W, Yang L, Li S, Shi J, Tan W, Gao H, Zhao Y, Yang L, Tan J, Hou Z. A dynamic transcriptomic atlas of cytokine-induced killer cells. J Biol Chem 2018; 293:19600-19612. [PMID: 30333226 PMCID: PMC6314136 DOI: 10.1074/jbc.ra118.003280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
Several clinical immunotherapy trials with cytokine-induced killer (CIK) cells have been reported. However, molecular evidence of cell expansion, acquisition of tumor cytotoxicity, and safety of CIK cells is required before putting them to clinical use. Here, we performed dynamic transcriptomic analyses of CIKs generated from primary peripheral blood mononuclear cells exposed to interferon-γ, OKT3, and interleukin-2. CIK mRNAs were extracted and sequenced at days 0, 1, 7, and 14 and subjected to bioinformatics analyses. Using weighted correlation network analysis (WGCNA), we identified two major gene modules that mediate immune cell activation and mitosis. We found that activation and cytotoxicity of CIK cells likely rely on cluster of differentiation 8 (CD8) and its protein partner LCK proto-oncogene, Src family tyrosine kinase (LCK). A time-course series analysis revealed that CIK cells have relatively low immunogenicity because of decreased expression of some self-antigens. Importantly, we identified several crucial activating receptors and auxiliary adhesion receptors expressed on CIK cells that may function as tumor sensors. Interestingly, cytotoxicity-associated genes, including those encoding PRF1, GZMB, FASL, and several cytokines, were up-regulated in mature CIK cells. Most immune-checkpoint molecules and inflammatory tumor-promoting factors were down-regulated in the CIK cells, suggesting efficacy and safety in future clinical trials. Notably, insulin-like growth factor 1 (IGF-1) was highly expressed in CIK cells and may promote cytotoxicity, although it also could facilitate tumorigenesis. The transcriptomic atlas of CIK cells presented here may inform efforts to improve CIK-associated tumor cytotoxicity and safety in clinical trials.
Collapse
Affiliation(s)
- Mingyao Meng
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Lin Li
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Ruhong Li
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Wenju Wang
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Yang Chen
- the Ministry of Education (MOE) Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanhua Xie
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Rui Han
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Kai Zhu
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Wenwen Huang
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Lili Yang
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Shuo Li
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Jianlin Shi
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Weiwei Tan
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Hui Gao
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Yiyi Zhao
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Li Yang
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China.,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Jing Tan
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China, .,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| | - Zongliu Hou
- From the Yan'an Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan, China, .,the Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan, China, and
| |
Collapse
|
43
|
Yang C, Shen C, Feng T, Li H. Noncoding RNA in NK cells. J Leukoc Biol 2018; 105:63-71. [PMID: 30265761 DOI: 10.1002/jlb.1ru0518-197rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Noncoding RNAs (ncRNA) are important regulators that modulate cell proliferation, apoptosis, the cell cycle, and DNA methylation. NK cells mediate the immune response via the secretion of various cytokines and are important innate immune cells in the human immune system. Recent studies have found that ncRNA plays an important role in NK cell development and function. With recent advances in bioinformatics and next-generation sequencing, novel ncRNAs have been identified, allowing us to more fully appreciate its functions in NK cell biology. In this review, we summarize and discuss the latest studies on the functions and regulatory mechanisms of long noncoding RNA (lncRNA) and microRNA in NK cells from the viewpoint of epigenetic mechanisms to help us clearly understand ncRNA in NK cells.
Collapse
Affiliation(s)
- Chuan Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chongyang Shen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
IGF-1 facilitates thrombopoiesis primarily through Akt activation. Blood 2018; 132:210-222. [DOI: 10.1182/blood-2018-01-825927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Key Points
IGF-1 has the ability to promote megakaryocyte differentiation, PPF, and platelet release. The effect of IGF-1 on thrombopoiesis is mediated primarily by AKT activation with the assistance of SRC-3.
Collapse
|
45
|
The microRNA expression signature of CD4+ T cells in the transition of brucellosis into chronicity. PLoS One 2018; 13:e0198659. [PMID: 29897958 PMCID: PMC5999269 DOI: 10.1371/journal.pone.0198659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Brucellosis is a serious infectious disease that continues to be a significant cause of morbidity worldwide and across all ages. Despite early diagnosis and treatment, 10–30% of patients develop chronic brucellosis. Although there have been recent advances in our knowledge of Brucella virulence factors and hosts’ immune response to the infection, there is a lack of clear data regarding how the infection bypasses the immune system and becomes chronic. The present study investigated immunological factors and their roles in the transition of brucellosis from an acute to a chronic infection in CD4+ T cells. CD4+ T cells sorted from peripheral blood samples of patients with acute or chronic brucellosis and healthy controls using flow cytometry as well as more than 2000 miRNAs were screened using the GeneSpring GX (Agilent) 13.0 miRNA microarray software and were validated using reverse transcription polymerase chain reaction (RT-qPCR). Compared to acute cases, the expression levels of 28 miRNAs were significantly altered in chronic cases. Apart from one miRNA (miR-4649-3p), 27 miRNAs were not expressed in the acute cases (p <0.05, fold change> 2). According to KEGG pathway analysis, these miRNAs are involved in the regulation of target genes that were previously involved in the MAPK signalling pathway, regulation of the actin cytoskeleton, endocytosis, and protein processing in the endoplasmic reticulum. This indicates the potential role of these miRNAs in the development of chronic brucellosis. We suggest that these miRNAs can be used as markers to determine the transition of the disease into chronicity. This is the first study of miRNA expression that analyses human CD4+ T cells to clarify the mechanism of chronicity in brucellosis.
Collapse
|
46
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
47
|
Liu J, Jin Y, Feng X, Zou S, Lv G, Zhang Z, Yang Z. Solubility-enhanced gMYL6 fused with a hexa-lysine tag promotes the cytotoxicity of human NK cells. Immunol Lett 2018; 198:66-73. [PMID: 29679602 DOI: 10.1016/j.imlet.2018.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/15/2018] [Indexed: 11/25/2022]
Abstract
Goat myosin light chain 6 (gMYL6) is a constituent of certain extracted immunization-induced goat anti-cancer bioactive peptides (ACBPs). However, little is known about its activity onto NK cells which are the basic cellular attackers in cancer immunotherapy for patients with malignancies. Because of the complicated extraction process and low yield of gMYL6 out of the goat ACBPs' mixture, the Nano-flow liquid chromatography and C-terminal polycationic tag expression strategy were used to identify and enrich the peptide to investigate its bioactivity against cancers/tumors. The solubility-enhanced gMYL6 fused with a hexa-lysine tag showed a capacity of promoting the NK cells' cytotoxicity, making it a novel promising heterogeneous peptide cytokine against cancers.
Collapse
Affiliation(s)
- Juanjuan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaozhou Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sen Zou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangxin Lv
- North China University of Science and Technology, Tangshan, China
| | - Zhifei Zhang
- North China University of Science and Technology, Tangshan, China.
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
48
|
Xiong Q, Chen J, Li FL, Zhao S, Wan X, Yang X, Li J, Luo D, Wang Z, Lv X, Gao R. Co-expression of mFat-1 and pig IGF-1 genes by recombinant plasmids in modified chitosan nanoparticles and its synergistic effect on mouse immunity. Sci Rep 2017; 7:17136. [PMID: 29215025 PMCID: PMC5719438 DOI: 10.1038/s41598-017-17341-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/20/2017] [Indexed: 01/09/2023] Open
Abstract
To develop a cost-effective molecular regulator to improve growth metabolism and immunity of animals, a recombinant plasmid co-expressing fatty acid desaturase (mFat-1) and pig insulin growth like factor 1 (IGF-1) genes was constructed by the 2 A self-cleavage technique. After entrapment within modified chitosan nanoparticles (chitosan modified with polyethyleneglycol–polyethylenimine, CPP), the recombinant plasmid was injected intramuscularly into mice. Compared with controls, co-expression of mFat-1 and IGF-1 significantly raised the level of serum IGF-1, and increased the liver and muscle docosa hexaenoic acid (DHA) content. Th and Tc cell levels were also elevated, as were expression levels of serum IL-4 and IL-6 genes. These results demonstrate that the immunity and metabolism of an animal can be effectively improved by co-expression of mFat-1 and IGF-1 genes in vivo, which may contribute to further development of novel immunomodulators with beneficial effects on growth metabolism and immunity.
Collapse
Affiliation(s)
- Qi Xiong
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jianlin Chen
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.,School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Fei-Lin Li
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Shiji Zhao
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiaoping Wan
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xiao Yang
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jianglin Li
- Center for Animal Disease Control of Sichuan Province, Chengdu, 610035, China
| | - Danyu Luo
- Chengdu Foreign Language School, Chengdu, 610060, Sichuan, China
| | - Zezhou Wang
- Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan, China.
| | - Xuebin Lv
- Center for Animal Disease Control of Sichuan Province, Chengdu, 610035, China.
| | - Rong Gao
- Key Laboratory of Bio-resource and Eco-Environment of Education Ministry, Key Laboratory of Animal Disease Prevention and Food Safety of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
49
|
Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nat Commun 2017; 8:595. [PMID: 28928383 PMCID: PMC5605703 DOI: 10.1038/s41467-017-00661-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Controlled invasion is essential during many physiological processes, whereas its deregulation is a hallmark of cancer. Here we demonstrate that embryonic, induced pluripotent and amniotic fluid stem cells share the property to induce the invasion of primary somatic cells of various origins through insulin-like growth factor I (IGF-I)- or II (IGF-II)-mediated paracrine activation of mechanistic target of rapamycin complex 1 (mTORC1). We propose a model in which downstream of mTORC1 this stem cell-induced invasion is mediated by hypoxia-inducible factor 1-alpha (HIF-1α)-regulated matrix metalloproteinases. Manipulating the IGF signalling pathway in the context of teratoma formation experiments demonstrates that human stem cells use this mechanism to induce invasion and thereby attract cells from the microenvironment in vivo. In this study we have identified a so far unknown feature of human stem cells, which might play a role for the development of stem cell-derived tumours.Cell invasion is required for several physiological processes but it is unknown if stem cells induce invasiveness in other cells. Here, the authors show that human stem cells secrete insulin-like growth factor, which in turn activates the mTORC1 pathway, initiating invasive behaviour and attracting other cells.
Collapse
|
50
|
Zhou Y, Xu X, Tian Z, Wei H. "Multi-Omics" Analyses of the Development and Function of Natural Killer Cells. Front Immunol 2017; 8:1095. [PMID: 28928751 PMCID: PMC5591885 DOI: 10.3389/fimmu.2017.01095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
For over four decades, our understanding of natural killer (NK) cells has evolved from the original description of cluster of differentiation (CD)56+CD3− to establishing NK cells as an important subset of innate lymphocytes in the host’s surveillance against viral infections and malignancy. The progress of research on the fundamental properties and therapeutic prospects for translational medicine using NK cells excites immunologists and clinicians. Over the past decade, numerous advances in “-omics”-scale methods and new technological approaches have addressed many essential questions in the biology of NK cells. We now have further understanding of the overall molecular mechanisms of action that determine the development, function, plasticity, diversity, and immune reactivity of NK cells. These findings are summarized here, and our view on how to study NK cells using “multi-omics” is highlighted. We also describe “-omics” analyses of the relationships between NK cells and viral infection, tumorigenesis, and autoimmune diseases. Ultimately, a deeper and more comprehensive understanding of NK cells in multiple conditions will provide more effective strategies to manipulate NK cells for the treatment of human disease.
Collapse
Affiliation(s)
- Yonggang Zhou
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- School of Life Science and Medical Center, Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|