1
|
Lu C, Qin J, Wu S, Zhang Z, Tang Z, Liu C. Structural optimization, characterization, and evaluation of binding mechanism of aptamers against bovine pregnancy-associated glycoproteins and their application in establishment of a colorimetric aptasensor using Fe-based metal-organic framework as peroxidase mimic tags. Mikrochim Acta 2024; 191:713. [PMID: 39470834 DOI: 10.1007/s00604-024-06775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
A truncated aptamer (designated A24-3) was identified that specifically binds to bovine pregnancy-associated glycoproteins (bPAG9) with a low dissociation constant (2.04 nM) through two truncation approaches. Circular dichroism spectroscopy indicated that A24-3 formed parallel G-quadruplexes, which was subsequently confirmed using nuclear magnetic resonance (NMR) spectroscopy. Furthermore, a molecular dynamics simulation was employed to investigate the recognition mechanism of A24-3 and bPAG9. Interaction analysis showed that A24-3 folded into a parallel G-quadruplex structure with three G-tetrads, primarily through numerous hydrogen bonds and hydrophobic and π-π interactions. Finally, a novel colorimetric aptasensor was developed for detecting bPAG9 using A24-3 and an Fe-based metal-organic framework as target recognition elements and enzyme mimics, respectively. The method demonstrated a broad detection range from 0.5 to 50 ng/mL, with a low detection limit of 0.03 ng mL-1, and exhibited a good recovery (91.0-102%) for bPAG9-spiked serum samples. Additionally, the aptasensor was successfully applied to detecting the pregnancy-specific biomarker bPAGs in serum samples.
Collapse
Affiliation(s)
- Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing, 408100, China
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Jiaxiang Qin
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - ZhenLiang Zhang
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Zonggui Tang
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
2
|
Bi H, Ren K, Wang P, Li E, Han X, Wang W, Yang J, Aydemir I, Tao K, Godley L, Liu Y, Shukla V, Bartom ET, Tang Y, Blanc L, Sukhanova M, Ji P. DDX41 dissolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617891. [PMID: 39464073 PMCID: PMC11507670 DOI: 10.1101/2024.10.14.617891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs). The role of DDX41 in hematopoiesis and how its germline and somatic mutations contribute to MNs remain unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for the development of other hematopoietic lineages. Using stage-specific Cre models for erythropoiesis, we reveal that Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), noncanonical DNA structures that tend to accumulate in the early stages of erythroid precursors. We show that DDX41 co-localizes with G4 on the erythroid genome. DDX41 directly binds to and dissolves G4, which is significantly compromised in MN-associated DDX41 mutants. Accumulation of G4 by DDX41 deficiency induces erythroid genome instability, defects in ribosomal biogenesis, and upregulation of p53. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, which is detrimental to survival since cGas-deficient and hematopoietic-specific Ddx41 knockout mice are viable without detectable hematologic phenotypes, although these mice continue to show erythroid ribosomal defects and upregulation of p53. These findings are further supported by data from a DDX41 mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 dissolver, essential for erythroid genome stability and suppressing the cGAS-STING pathway.
Collapse
|
3
|
Peña Martinez CD, Zeraati M, Rouet R, Mazigi O, Henry JY, Gloss B, Kretzmann JA, Evans CW, Ruggiero E, Zanin I, Marušič M, Plavec J, Richter SN, Bryan TM, Smith NM, Dinger ME, Kummerfeld S, Christ D. Human genomic DNA is widely interspersed with i-motif structures. EMBO J 2024; 43:4786-4804. [PMID: 39210146 PMCID: PMC11480443 DOI: 10.1038/s44318-024-00210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such structures in human genomic DNA have remained unclear. Here we utilise high-affinity i-motif immunoprecipitation followed by sequencing to map i-motifs in the purified genomic DNA of human MCF7, U2OS and HEK293T cells. Validated by biolayer interferometry and circular dichroism spectroscopy, our approach aimed to identify DNA sequences capable of i-motif formation on a genome-wide scale, revealing that such sequences are widely distributed throughout the human genome and are common in genes upregulated in G0/G1 cell cycle phases. Our findings provide experimental evidence for the widespread formation of i-motif structures in human genomic DNA and a foundational resource for future studies of their genomic, structural, and molecular roles.
Collapse
Affiliation(s)
- Cristian David Peña Martinez
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Mahdi Zeraati
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Ohan Mazigi
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Brian Gloss
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Jessica A Kretzmann
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Maja Marušič
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2145, Australia
| | - Nicole M Smith
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
- Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sarah Kummerfeld
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, NSW, 2010, Australia.
| |
Collapse
|
4
|
Štefan U, Brázda V, Plavec J, Marušič M. The influence of G-tract and loop length on the topological variability of putative five and six G-quartet DNA structures in the human genome. Int J Biol Macromol 2024; 280:136008. [PMID: 39326605 DOI: 10.1016/j.ijbiomac.2024.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Local variation of DNA structure and its dynamic nature play an essential role in the regulation of important biological processes. One of the most prominent noncanonical structures are G-quadruplexes, which form in vivo within guanine-rich regions and have been demonstrated to be involved in the regulation of transcription, translation and telomere maintenance. We provide an analysis of G-quadruplex formation in sequences with five and six guanine residues long G-tracts, which have emerged from the investigation of the gapless human genome and are associated with genes related to cancer and neurodegenerative diseases. We systematically explored the effect of G-tract and loop elongations by means of NMR and CD spectroscopy and polyacrylamide electrophoresis. Despite both types of elongation leading up to structural polymorphism, we successfully determined the topologies of four out of eight examined sequences, one of which contributes to a very scarce selection of currently known intramolecular four G-quartet structures in potassium solutions. We demonstrate that examined sequences are incompatible with five or six G-quartet structures with propeller loops, although the compatibility with other loop types cannot be factored out. Lastly, we propose a novel approach towards specific G-quadruplex targeting that could be implemented in structures with more than four G-quartets.
Collapse
Affiliation(s)
- Urša Štefan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Janez Plavec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia
| | - Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Yao Z, Li W, He K, Wang H, Xu Y, Xu X, Wu Q, Wang L. Precise pathogen quantification by CRISPR-Cas: a sweet but tough nut to crack. Crit Rev Microbiol 2024:1-19. [PMID: 39287550 DOI: 10.1080/1040841x.2024.2404041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Pathogen detection is increasingly applied in medical diagnosis, food processing and safety, and environmental monitoring. Rapid, sensitive, and accurate pathogen quantification is the most critical prerequisite for assessing protocols and preventing risks. Among various methods evolved, those based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) have been developed as important pathogen detection strategies due to their distinct advantages of rapid target recognition, programmability, ultra-specificity, and potential for scalability of point-of-care testing (POCT). However, arguments and concerns on the quantitative capability of CRISPR-based strategies are ongoing. Herein, we systematically overview CRISPR-based pathogen quantification strategies according to the principles, properties, and application scenarios. Notably, we review future challenges and perspectives to address the of precise pathogen quantification by CRISPR-Cas. We hope the insights presented in this review will benefit development of CRISPR-based pathogen detection methods.
Collapse
Affiliation(s)
- Zhihao Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanglu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
6
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
7
|
Zhang Z, Mlýnský V, Krepl M, Šponer J, Stadlbauer P. Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations. J Chem Inf Model 2024; 64:3896-3911. [PMID: 38630447 PMCID: PMC11094737 DOI: 10.1021/acs.jcim.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
- CEITEC−Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
- National
Center for Biomolecular Research,
Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| |
Collapse
|
8
|
Zhuk AS, Stepchenkova EI, Zotova IV, Belopolskaya OB, Pavlov YI, Kostroma II, Gritsaev SV, Aksenova AY. G-Quadruplex Forming DNA Sequence Context Is Enriched around Points of Somatic Mutations in a Subset of Multiple Myeloma Patients. Int J Mol Sci 2024; 25:5269. [PMID: 38791307 PMCID: PMC11121618 DOI: 10.3390/ijms25105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, which remains incurable despite recent advances in treatment strategies. Like other forms of cancer, MM is characterized by genomic instability, caused by defects in DNA repair. Along with mutations in DNA repair genes and genotoxic drugs used to treat MM, non-canonical secondary DNA structures (four-stranded G-quadruplex structures) can affect accumulation of somatic mutations and chromosomal abnormalities in the tumor cells of MM patients. Here, we tested the hypothesis that G-quadruplex structures may influence the distribution of somatic mutations in the tumor cells of MM patients. We sequenced exomes of normal and tumor cells of 11 MM patients and analyzed the data for the presence of G4 context around points of somatic mutations. To identify molecular mechanisms that could affect mutational profile of tumors, we also analyzed mutational signatures in tumor cells as well as germline mutations for the presence of specific SNPs in DNA repair genes or in genes regulating G-quadruplex unwinding. In several patients, we found that sites of somatic mutations are frequently located in regions with G4 context. This pattern correlated with specific germline variants found in these patients. We discuss the possible implications of these variants for mutation accumulation and specificity in MM and propose that the extent of G4 context enrichment around somatic mutation sites may be a novel metric characterizing mutational processes in tumors.
Collapse
Affiliation(s)
- Anna S. Zhuk
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Institute of Applied Computer Science, ITMO University, 197101 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Irina V. Zotova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Olesya B. Belopolskaya
- Resource Center “Bio-Bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia;
- The Laboratory of Genogeography, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ivan I. Kostroma
- City Hospital No. 15, 198205 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | | | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.S.Z.); (I.V.Z.)
| |
Collapse
|
9
|
Galli S, Flint G, Růžičková L, Di Antonio M. Genome-wide mapping of G-quadruplex DNA: a step-by-step guide to select the most effective method. RSC Chem Biol 2024; 5:426-438. [PMID: 38725910 PMCID: PMC11078208 DOI: 10.1039/d4cb00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
The development of methods that enabled genome-wide mapping of DNA G-quadruplex structures in chromatin has played a critical role in providing evidence to support the formation of these structures in living cells. Over the past decade, a variety of methods aimed at mapping G-quadruplexes have been reported in the literature. In this critical review, we have sought to provide a technical overview on the relative strengths and weaknesses of the genomics approaches currently available, offering step-by-step guidance to assessing experimental needs and selecting the most appropriate method to achieve effective genome-wide mapping of DNA G-quadruplexes.
Collapse
Affiliation(s)
- Silvia Galli
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
| | - Gem Flint
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
- Institute of Chemical Biology, Molecular Science Research Hub 82 Wood Lane London UK
| | - Lucie Růžičková
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
- Institute of Chemical Biology, Molecular Science Research Hub 82 Wood Lane London UK
- The Francis Crick Institute 1 Midland Road London UK
| |
Collapse
|
10
|
Aderinto SO, John T, Onawole A, Galleh RP, Thomas JA. Iridium(III)-based minor groove binding complexes as DNA photocleavage agents. Dalton Trans 2024; 53:7282-7291. [PMID: 38466178 DOI: 10.1039/d4dt00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.
Collapse
Affiliation(s)
- Stephen O Aderinto
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abdulmujeeb Onawole
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
11
|
Wang C, Xu G, Liu X, Jiang L, Zhou X, Liu M, Li C. 19F Nuclear Magnetic Resonance Fingerprinting Technique for Identifying and Quantifying G-Quadruplex Topology in Human Telomeric Overhangs. J Am Chem Soc 2024; 146:4741-4751. [PMID: 38346932 DOI: 10.1021/jacs.3c12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures with diverse topological features and biological roles. Human telomeric (Htelo) overhangs consisting of TTAGGG repeats can fold into G4s that adopt different topologies under physiological conditions. These G4s are potential targets for anticancer drugs. Despite intensive research, the existence and topology of G4s at Htelo overhangs in vivo are still unclear because there is no method to distinguish and quantify the topology of Htelo overhangs with native lengths that can form more than three tandem G4s in living cells. Herein, we present a novel 19F chemical shift fingerprinting technique to identify and quantify the topology of the Htelo overhangs up to five G-quadruplexes (G4s) and 120 nucleotides long both in vitro and in living cells. Our results show that longer overhang sequences tend to form stable G4s at the 5'- and 3'-ends, while the interior G4s are dynamic and "sliding" along the sequence, with TTA or 1-3 TTAGGG repeats as a linker. Each G4 in the longer overhang is conformationally heterogeneous, but the predominant ones are hybrid-2, two- or three-tetrad antiparallel, and hybrid-1 at the 5'-terminal, interior, and 3'-terminal, respectively. Additionally, we observed a distinct behavior of different lengths of telomeric sequences in living cells, suggesting that the overhang length and protein accessibility are related to its function. This technique provides a powerful tool for quickly identifying the folding topology and relative population of long Htelo overhangs, which may provide valuable insights into telomere functionality and be beneficial for structure-based anticancer drug development targeting G4s.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
12
|
Gumina JM, Richardson AE, Shojiv MH, Chambers AE, Sandwith SN, Reisinger MA, Karns TJ, Osborne TL, Alashi HN, Anderson QT, Sharlow ME, Seiler DC, Rogers EM, Bartosik AR, Smaldino MA, Vaughn JP, Wang YH, Smaldino PJ, Haney RA. Differential Gene Expression following DHX36/ G4R1 Knockout Is Associated with G-Quadruplex Content and Cancer. Int J Mol Sci 2024; 25:1753. [PMID: 38339029 PMCID: PMC10855491 DOI: 10.3390/ijms25031753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
G-quadruplexes (G4s) are secondary DNA and RNA structures stabilized by positive cations in a central channel formed by stacked tetrads of Hoogsteen base-paired guanines. G4s form from G-rich sequences across the genome, whose biased distribution in regulatory regions points towards a gene-regulatory role. G4s can themselves be regulated by helicases, such as DHX36 (aliases: G4R1 and RHAU), which possess the necessary activity to resolve these stable structures. G4s have been shown to both positively and negatively regulate gene expression when stabilized by ligands, or through the loss of helicase activity. Using DHX36 knockout Jurkat cell lines, we identified widespread, although often subtle, effects on gene expression that are associated with the presence or number of observed G-quadruplexes in promoters or gene regions. Genes that significantly change their expression, particularly those that show a significant increase in RNA abundance under DHX36 knockout, are associated with a range of cellular functions and processes, including numerous transcription factors and oncogenes, and are linked to several cancers. Our work highlights the direct and indirect role of DHX36 in the transcriptome of T-lymphocyte leukemia cells and the potential for DHX36 dysregulation in cancer.
Collapse
Affiliation(s)
- Joseph M. Gumina
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | - Taylor J. Karns
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Tyler L. Osborne
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Hasna N. Alashi
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | | | - Dylan C. Seiler
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Evan M. Rogers
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Anna R. Bartosik
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | - Yuh-Hwa Wang
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Robert A. Haney
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| |
Collapse
|
13
|
Jana J, Vianney YM, Weisz K. Impact of loop length and duplex extensions on the design of hybrid-type G-quadruplexes. Chem Commun (Camb) 2024; 60:854-857. [PMID: 38131370 DOI: 10.1039/d3cc05625b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A G-rich core sequence G3-TCA-G3-T1,2-G3-T1,2-G3 can be designed to fold into a parallel or into two different (3+1) hybrid-type G-quadruplexes, among them an elusive topology with one lateral followed by two propeller loops. Favored folds can be rationalized based on the number of intervening thymidines and on additional complementary flanking sequences.
Collapse
Affiliation(s)
- Jagannath Jana
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff Str. 4, Greifswald D-17489, Germany.
| | - Yoanes Maria Vianney
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff Str. 4, Greifswald D-17489, Germany.
| | - Klaus Weisz
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff Str. 4, Greifswald D-17489, Germany.
| |
Collapse
|
14
|
Qu X, Lin Z, Jayawickramarajah J, Alsager JS, Schmidt E, Nephew KP, Fang F, Balasubramanian S, Shan B. G-quadruplex is critical to epigenetic activation of the lncRNA HOTAIR in cancer cells. iScience 2023; 26:108559. [PMID: 38144452 PMCID: PMC10746524 DOI: 10.1016/j.isci.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
The cancer-promoting lncRNA HOTAIR has multiple isoforms. Which isoform of HOTAIR accounts for its expression and functions in cancer is unknown. Unlike HOTAIR's canonical intergenic isoform NR_003716 (HOTAIR-C), the novel isoform NR_047517 (HOTAIR-N) forms an overlapping antisense transcription locus with HOXC11. We identified HOTAIR-N as the dominant isoform that regulates the gene expression programs and networks for cell proliferation, survival, and death in cancer cells. The CpG island in the HOTAIR-N promoter was marked with epigenetic markers for active transcription. We identified a G-quadruplex (G4) motif rich region in the HOTAIR-N CpG island. Our findings indicate that G4s in HOTAIR-N CpG island is critical for expression of HOTAIR-N in cancer cells. Disruption of G4 may represent a novel therapeutic approach for cancer. The transcriptomes regulated by HOTAIR-N and Bloom in cancer cells as provided herein are important resources for the exploration of lncRNA, DNA helicases, and G4 in cancer.
Collapse
Affiliation(s)
- Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhen Lin
- Deparmtent of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - John S. Alsager
- Department of Biomedical Sciences, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Emily Schmidt
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Kenneth P. Nephew
- Medical Sciences, Cell and Molecular Cancer Biology Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Fang Fang
- Medical Sciences, Cell and Molecular Cancer Biology Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Bin Shan
- Department of Biomedical Sciences, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
15
|
Galer P, Wang B, Plavec J, Šket P. Unveiling the structural mechanism of a G-quadruplex pH-Driven switch. Biochimie 2023; 214:73-82. [PMID: 37573019 DOI: 10.1016/j.biochi.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
The human telomere oligonucleotide, d[TAGGG(TTAGGG)2TTAGG] (TAGGG), can adopt two distinct 2-G-quartet G-quadruplex structures at pH 7.0 and 5.0, referred to as the TD and KDH+ forms, respectively. By using a combination of NMR and computational techniques, we determined high-resolution structures of both forms, which revealed unique loop architectures, base triples, and base pairs that play a crucial role in the pH-driven structural transformation of TAGGG. Our study demonstrated that TAGGG represents a reversible pH-driven switch system where the stability and pH-induced structural transformation of the G-quadruplexes are influenced by the terminal residues and base triples. Gaining insight into the factors that regulate the formation of G-quadruplexes and their pH-sensitive structural equilibrium holds great potential for the rational design of novel DNA based pH-driven switches. These advancements in understanding create exciting opportunities for applications in the field of nanotechnology, specifically in the development of bio-nano-motors.
Collapse
Affiliation(s)
- Petra Galer
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Turcotte MA, Bolduc F, Vannutelli A, Mitteaux J, Monchaud D, Perreault JP. Development of a highly optimized procedure for the discovery of RNA G-quadruplexes by combining several strategies. Biochimie 2023; 214:24-32. [PMID: 37479077 DOI: 10.1016/j.biochi.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
RNA G-quadruplexes (rG4s) are non-canonical secondary structures that are formed by the self-association of guanine quartets and that are stabilized by monovalent cations (e.g. potassium). rG4s are key elements in several post-transcriptional regulation mechanisms, including both messenger RNA (mRNA) and microRNA processing, mRNA transport and translation, to name but a few examples. Over the past few years, multiple high-throughput approaches have been developed in order to identify rG4s, including bioinformatic prediction, in vitro assays and affinity capture experiments coupled to RNA sequencing. Each individual approach had its limits, and thus yielded only a fraction of the potential rG4 that are further confirmed (i.e., there is a significant level of false positive). This report aims to benefit from the strengths of several existing approaches to identify rG4s with a high potential of being folded in cells. Briefly, rG4s were pulled-down from cell lysates using the biotinylated biomimetic G4 ligand BioTASQ and the sequences thus isolated were then identified by RNA sequencing. Then, a novel bioinformatic pipeline that included DESeq2 to identify rG4 enriched transcripts, MACS2 to identify rG4 peaks, rG4-seq to increase rG4 formation probability and G4RNA Screener to detect putative rG4s was performed. This workflow uncovers new rG4 candidates whose rG4-folding was then confirmed in vitro using an array of established biophysical methods. Clearly, this workflow led to the identification of novel rG4s in a highly specific and reliable manner.
Collapse
Affiliation(s)
- Marc-Antoine Turcotte
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - François Bolduc
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Anaïs Vannutelli
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada.
| |
Collapse
|
17
|
Mao X, Zhang X, Chao Z, Qiu D, Wei S, Luo R, Chen D, Zhang Y, Chen Y, Yang Y, Monchaud D, Ju H, Mergny JL, Lei J, Zhou J. A Versatile G-Quadruplex (G4)-Coated Upconverted Metal-Organic Framework for Hypoxic Tumor Therapy. Adv Healthc Mater 2023; 12:e2300561. [PMID: 37402245 DOI: 10.1002/adhm.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
Given the complexity of the tumor microenvironment, multiple strategies are being explored to tackle hypoxic tumors. The most efficient strategies combine several therapeutic modalities and typically requires the development of multifunctional nanocomposites through sophisticated synthetic procedures. Herein, the G-quadruplex (G4)-forming sequence AS1411-A (d[(G2 T)4 TG(TG2 )4 A]) is used for both its anti-tumor and biocatalytic properties when combined with hemin, increasing the production of O2 ca. two-fold as compared to the parent AS1411 sequence. The AS1411-A/hemin complex (GH) is grafted on the surface and pores of a core-shell upconverted metal-organic framework (UMOF) to generate a UMGH nanoplatform. Compared with UMOF, UMGH exhibits enhanced colloidal stability, increased tumor cell targeting and improved O2 production (8.5-fold) in situ. When irradiated by near-infrared (NIR) light, the UMGH antitumor properties are bolstered by photodynamic therapy (PDT), thanks to its ability to convert O2 into singlet oxygen (1 O2 ). Combined with the antiproliferative activity of AS1411-A, this novel approach lays the foundation for a new type of G4-based nanomedicine.
Collapse
Affiliation(s)
- Xuanxiang Mao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shijiong Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, uB, Dijon, 21078, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
18
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
19
|
El-Khoury R, Roman M, Assi HA, Moye AL, Bryan T, Damha M. Telomeric i-motifs and C-strands inhibit parallel G-quadruplex extension by telomerase. Nucleic Acids Res 2023; 51:10395-10410. [PMID: 37742080 PMCID: PMC10602923 DOI: 10.1093/nar/gkad764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
Telomeric C-rich repeated DNA sequences fold into tetrahelical i-motif structures in vitro at acidic pH. While studies have suggested that i-motifs may form in cells, little is known about their potential role in human telomere biology. In this study, we explore the effect of telomeric C-strands and i-motifs on the ability of human telomerase to extend G-rich substrates. To promote i-motif formation at neutral pH, we use telomeric sequences where the cytidines have been substituted with 2'-fluoroarabinocytidine. Using FRET-based studies, we show that the stabilized i-motifs resist hybridization to concomitant parallel G-quadruplexes, implying that both structures could exist simultaneously at telomeric termini. Moreover, through telomerase activity assays, we show that both unstructured telomeric C-strands and telomeric i-motifs can inhibit the activity and processivity of telomerase extension of parallel G-quadruplexes and linear telomeric DNA. The data suggest at least three modes of inhibition by C-strands and i-motifs: direct hybridization to the substrate DNA, hybridization to nascent product DNA resulting in early telomerase dissociation, and interference with the unique mechanism of telomerase unwinding and extension of a G-quadruplex. Overall, this study highlights a potential inhibitory role for the telomeric C-strand in telomere maintenance.
Collapse
Affiliation(s)
- Roberto El-Khoury
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Morgane Roman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Aaron L Moye
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
20
|
Roy L, Roy A, Bose D, Banerjee N, Chatterjee S. Unraveling the structural aspects of the G-quadruplex in SMO promoter and elucidating its contribution in transcriptional regulation. J Biomol Struct Dyn 2023:1-16. [PMID: 37878583 DOI: 10.1080/07391102.2023.2268200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
We located a 25 nt G-rich sequence in the promoter region of SMO oncogene. We performed an array of biophysical and biochemical assays and confirmed the formation of a parallel G quadruplex (SMO1-GQ) by the identified sequence. SMO1-GQ is highly conserved in primates. For a comprehensive characterization of the SMO quadruplex structure, we have performed spectroscopic and in silico analysis with established GQ binder small molecules TMPyP4 and BRACO-19. We observed comparatively higher stable interaction of BRACO-19 with SMO1-GQ. Structure-based, rational drug design against SMO1-GQ to target SMO oncogene requires a detailed molecular anatomy of the G-quadruplex. We structurally characterised the SMO1-GQ using DMS footprinting assay and molecular modelling, docking, and MD simulation to identify the probable atomic regions that interact with either of the small molecules. We further investigated SMO1-GQ in vivo by performing chromatin immunoprecipitation (ChIP) assay. ChIP data revealed that this gene element functions as a scaffold for a number of transcription factors: specificity protein (Sp1), nucleolin (NCL), non-metastatic cell 2 (NM23-H2), cellular nucleic acid binding protein (CNBP), and heterogeneous nuclear ribonucleoprotein K (hnRNPK) which reflects the SMO1-P1 G-quadruplex to be the master regulator of SMO1 transcriptional activity. The strong binding interaction detected between SMO1-GQ and BRACO-19 contemplates the potential of the G quadruplex as a promising anti-cancer druggable target to downregulate SMO1 oncogene driven cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Debopriya Bose
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
21
|
Matos-Rodrigues G, Hisey JA, Nussenzweig A, Mirkin SM. Detection of alternative DNA structures and its implications for human disease. Mol Cell 2023; 83:3622-3641. [PMID: 37863029 DOI: 10.1016/j.molcel.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.
Collapse
Affiliation(s)
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
22
|
Vianney YM, Schröder N, Jana J, Chojetzki G, Weisz K. Showcasing Different G-Quadruplex Folds of a G-Rich Sequence: Between Rule-Based Prediction and Butterfly Effect. J Am Chem Soc 2023; 145:22194-22205. [PMID: 37751488 DOI: 10.1021/jacs.3c08336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In better understanding the interactions of G-quadruplexes in a cellular or noncellular environment, a reliable sequence-based prediction of their three-dimensional fold would be extremely useful, yet is often limited by their remarkable structural diversity. A G-rich sequence related to a promoter sequence of the PDGFR-β nuclease hypersensitivity element (NHE) comprises a G3-G3-G2-G4-G3 pattern of five G-runs with two to four G residues. Although the predominant formation of three-layered canonical G-quadruplexes with uninterrupted G-columns can be expected, minimal base substitutions in a non-G-tract domain were shown to guide folding into either a basket-type antiparallel quadruplex, a parallel-stranded quadruplex with an interrupted G-column, a quadruplex with a V-shaped loop, or a (3+1) hybrid quadruplex. A 3D NMR structure for each of the different folds was determined. Supported by thermodynamic profiling on additional sequence variants, formed topologies were rationalized by the identification and assessment of specific critical interactions of loop and overhang residues, giving valuable insights into their contribution to favor a particular conformer. The variability of such tertiary interactions, together with only small differences in quadruplex free energies, emphasizes current limits for a reliable sequence-dependent prediction of favored topologies from sequences with multiple irregularly positioned G-tracts.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Nina Schröder
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Jagannath Jana
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Gregor Chojetzki
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff Str. 4, D-17489 Greifswald, Germany
| |
Collapse
|
23
|
Wang Y, Li C, Guo K, Hao X, Hou J, Zhang F, Jin R, Kang C, Gao L. Oxidation-responsive G-quadruplex ligand for selective inhibition of the proliferation of tumour cells. Bioorg Chem 2023; 139:106746. [PMID: 37506624 DOI: 10.1016/j.bioorg.2023.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Tumour cells show a higher level of reactive oxygen species (ROS) than normal cells. On the basis of this difference, we designed an oxidation-responsive G-quadruplex proligand PDS-B by installing borolanylbenzyls on a well-known pyridostatin (PDS) ligand PDS-S to response high level ROS in tumour cells. The rapid oxidative degradation of the proligand to its active form PDS-S in the presence of H2O2 confirms the oxidation-responsive design. According to Förster resonance energy transfer (FRET) assays, circular dichroism (CD) spectra and confocal fluorescence imaging, PDS-B stabilizes telomeric G4 structures after oxidation with H2O2 or intracellular ROS. Apoptosis assays and cell cycle assays showed significant selectivity of PDS-B in inhibiting the proliferation of tumour cells over normal cells through responses to a high level of ROS in the formers. Further assays confirmed higher level of relative Caspase-3 activity in tumour cells than normal cells, consequently the enhanced apoptosis of the tumour cells induced by PDS-B. In summary, the results demonstrate a modification approach to solve the poor selectivity of the G4 ligand in tumour cells and cytotoxicity in normal cells.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Chunjie Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Kai Guo
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xueyu Hao
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingwei Hou
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Feng Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Rizhe Jin
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chuanqing Kang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China.
| | - Lianxun Gao
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
24
|
Mizumoto A, Yokoyama Y, Miyoshi T, Takikawa M, Ishikawa F, Sadaie M. DHX36 maintains genomic integrity by unwinding G-quadruplexes. Genes Cells 2023; 28:694-708. [PMID: 37632696 PMCID: PMC11447921 DOI: 10.1111/gtc.13061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
The guanine-rich stretch of single-stranded DNA (ssDNA) forms a G-quadruplex (G4) in a fraction of genic and intergenic chromosomal regions. The probability of G4 formation increases during events causing ssDNA generation, such as transcription and replication. In turn, G4 abrogates these events, leading to DNA damage. DHX36 unwinds G4-DNA in vitro and in human cells. However, its spatial correlation with G4-DNA in vivo and its role in genome maintenance remain unclear. Here, we demonstrate a connection between DHX36 and G4-DNA and its implications for genomic integrity. The nuclear localization of DHX36 overlapped with that of G4-DNA, RNA polymerase II, and a splicing-related factor. Depletion of DHX36 resulted in accumulated DNA damage, slower cell growth, and enhanced cell growth inhibition upon treatment with a G4-stabilizing compound; DHX36 expression reversed these defects. In contrast, the reversal upon expression of DHX36 mutants that could not bind G4 was imperfect. Thus, DHX36 may suppress DNA damage by promoting the clearance of G4-DNA for cell growth and survival. Our findings deepen the understanding of G4 resolution in the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Ayaka Mizumoto
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Therapeutic Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuta Yokoyama
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of Science, NodaChibaJapan
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Stress Response, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Laboratory for Retrotransposon DynamicsRIKEN Center for Integrative Medical SciencesYokohamaJapan
| | - Masahiro Takikawa
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of Science, NodaChibaJapan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Stress Response, Radiation Biology Center, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Mahito Sadaie
- Department of Gene Mechanisms, Graduate School of BiostudiesKyoto UniversityKyotoJapan
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of Science, NodaChibaJapan
| |
Collapse
|
25
|
Mou X, Kwok CK. Peptides Selected by G4-mRNA Display-Seq Enable RNA G-Quadruplex Recognition and Gene Regulation. J Am Chem Soc 2023; 145:18693-18697. [PMID: 37582058 DOI: 10.1021/jacs.3c04534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
G-quadruplexes (G4s) are noncanonical secondary structures that play critical roles in both chemistry and biology. Although several approaches have been developed for G4 targeting, such as chemicals and antibodies, there is currently no general and efficient platform for G4-specific peptides. In this study, we developed a new platform, G4-mRNA display-Seq, for selecting peptides that specifically recognize the G4 target of interest. By using an RNA G4 (rG4) found in human telomerase RNA (hTERC) as the target, we have identified a novel short peptide, namely, peptide 11 (pep11), which displays high affinity and selectivity to hTERC rG4. Furthermore, we designed tandem and cyclic versions of pep11 and found that both modified versions exhibit stronger binding affinity with preferential rG4 selectivity. Notably, we have demonstrated that these peptides can negatively regulate gene expression by targeting rG4. Our results provide a universal platform for the discovery of G4-targeting peptides and demonstrate the ability of these peptides to regulate G4-mediated gene functions.
Collapse
Affiliation(s)
- Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
26
|
Sarkar S, Bisoi A, Singh PC. Antimalarial Drugs Induce the Selective Folding of Human Telomeric G-Quadruplex in a Cancer-Mimicking Microenvironment. J Phys Chem B 2023; 127:6648-6655. [PMID: 37467470 DOI: 10.1021/acs.jpcb.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Regulating the equilibrium between the duplex form of DNA and G-quadruplex (Gq) and stabilizing the folded Gq are the critical factors for any drug to be effective in cancer therapy due to the direct involvement of Gq in controlling the transcription process. Antimalarial drugs are in the trial stage for different types of cancer diseases; however, the plausible mechanism of action of these drug molecules is not well known. Hence, we investigate the plausible role of antimalarial drugs in the folding and stabilization of Gq-forming DNA sequences from the telomere and promoter gene regions by varying the salt (KCl) concentrations, mimicking the in vitro cancerous and normal cell microenvironments. The study reveals that antimalarial drugs fold and stabilize specifically to telomere Gq-forming sequences in the cancerous microenvironment than the DNA sequences located in the promoter region of the gene. Antimalarial drugs are not only able to fold Gq but also efficiently protect them from unfolding by their complementary strands, hence significantly biasing the equilibrium toward the Gq formation from the duplex. In contrast, in a normal cell microenvironment, K+ controls the folding of telomeres, and the role of antimalarial drugs is not prominent. This study suggests that the action of antimalarial drugs is sensitive to the cancer microenvironment as well as selective to the Gq-forming region.
Collapse
Affiliation(s)
- Sunipa Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Asim Bisoi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
27
|
Hosseini M, Palmer A, Manka W, Grady PGS, Patchigolla V, Bi J, O'Neill RJ, Chi Z, Aguiar D. Deep statistical modelling of nanopore sequencing translocation times reveals latent non-B DNA structures. Bioinformatics 2023; 39:i242-i251. [PMID: 37387144 DOI: 10.1093/bioinformatics/btad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Non-canonical (or non-B) DNA are genomic regions whose three-dimensional conformation deviates from the canonical double helix. Non-B DNA play an important role in basic cellular processes and are associated with genomic instability, gene regulation, and oncogenesis. Experimental methods are low-throughput and can detect only a limited set of non-B DNA structures, while computational methods rely on non-B DNA base motifs, which are necessary but not sufficient indicators of non-B structures. Oxford Nanopore sequencing is an efficient and low-cost platform, but it is currently unknown whether nanopore reads can be used for identifying non-B structures. RESULTS We build the first computational pipeline to predict non-B DNA structures from nanopore sequencing. We formalize non-B detection as a novelty detection problem and develop the GoFAE-DND, an autoencoder that uses goodness-of-fit (GoF) tests as a regularizer. A discriminative loss encourages non-B DNA to be poorly reconstructed and optimizing Gaussian GoF tests allows for the computation of P-values that indicate non-B structures. Based on whole genome nanopore sequencing of NA12878, we show that there exist significant differences between the timing of DNA translocation for non-B DNA bases compared with B-DNA. We demonstrate the efficacy of our approach through comparisons with novelty detection methods using experimental data and data synthesized from a new translocation time simulator. Experimental validations suggest that reliable detection of non-B DNA from nanopore sequencing is achievable. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/bayesomicslab/ONT-nonb-GoFAE-DND.
Collapse
Affiliation(s)
- Marjan Hosseini
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Aaron Palmer
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - William Manka
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Patrick G S Grady
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3003, United States
| | - Venkata Patchigolla
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Jinbo Bi
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3003, United States
| | - Zhiyi Chi
- Department of Statistics, University of Connecticut, Storrs, CT 06269-4120, United States
| | - Derek Aguiar
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States
| |
Collapse
|
28
|
Patidar RK, Tiwari K, Tiwari R, Ranjan N. Promoter G-Quadruplex Binding Styryl Benzothiazolium Derivative for Applications in Ligand Affinity Ranking and as Ethidium Bromide Substitute in Gel Staining. ACS APPLIED BIO MATERIALS 2023. [PMID: 37229607 DOI: 10.1021/acsabm.3c00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fluorescent compounds that can preferentially interact with certain nucleic acids are of great importance in new drug discovery in a multitude of functions including fluorescence-based displacement assays and gel staining. Here, we report the discovery of an orange emissive styryl-benzothiazolium derivative (compound 4) which interacts preferentially with Pu22 G-quadruplex DNA among a pool of nucleic acid structures containing G-quadruplex, duplex, and single-stranded DNA structures as well as RNA structures. Fluorescence-based binding analysis revealed that compound 4 interacts with Pu22 G-quadruplex DNA in a 1:1 DNA to ligand binding stoichiometry. The association constant (Ka) for this interaction was found to be 1.12 (±0.15) × 106 M-1. Circular dichroism studies showed that the binding of the probe does not cause changes in the overall parallel G-quadruplex conformation; however, signs of higher-order complex formation were seen in the form of exciton splitting in the chromophore absorption region. UV-visible spectroscopy studies confirmed the stacking nature of the interaction of the fluorescent probe with the G-quadruplex which was further complemented by heat capacity measurement studies. Finally, we have shown that this fluorescent probe can be used toward G-quadruplex-based fluorescence displacement assays for ligand affinity ranking and as a substitute for ethidium bromide in gel staining.
Collapse
Affiliation(s)
- Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Khushboo Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| |
Collapse
|
29
|
Gao C, Deng J, Anwar N, Umer M, Chen J, Wu Q, Dong X, Xu H, He Y, Wang Z. Molecular crowding promotes the aggregation of parallel structured G-quadruplexes. Int J Biol Macromol 2023; 240:124442. [PMID: 37062387 DOI: 10.1016/j.ijbiomac.2023.124442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
G-quadruplexes are widely distributed in cells and are usually essential in mediating biological processes. The intracellular environment is often in a state of molecular crowding, and the current research considerably focuses on the effect of molecular crowding on the conformation of telomeric G-quadruplexes. However, G-quadruplex-forming oligonucleotides are primarily located in the promoter region of the proto-oncogene and on mRNA inside the cell and are reported to fold into parallel structures. Thus, studying the interaction mechanism between ligands and parallel structured G-quadruplexes under crowding conditions is crucial for the design of drugs targeting G-quadruplexes. In our study, molecular crowding was simulated through polyethylene glycol with an average molecular weight of 200 (PEG200) to investigate the parallel structure of the canonical G-quadruplexes c-KIT1, c-MYC, and 32KRAS and their interactions with ligands. Circular dichroism (CD) spectral scanning, fluorescence resonance energy transfer (FRET), and native polyacrylamide gel electrophoresis (PAGE) analysis revealed that molecular crowding failed to induce oligonucleotides to form parallel G-quadruplex structures in the explored model sequences while induced telomeric G-rich sequences to form antiparallel G-quadruplexes in solution without K+. Molecular crowding did not induce changes in their parallel structures but promoted the formation of G-quadruplex aggregates. Moreover, to some extent, molecular crowding also induced a looser structure of the monomer G-quadruplexes. Further studies showed that molecular crowding did not alter the binding stoichiometry of the ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate (RHPS4) to c-KIT1, while it inhibited its interaction with parallel structured G-quadruplexes. This work provides new insights into developing anticancer drugs targeting parallel structured G-quadruplexes.
Collapse
Affiliation(s)
- Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 40074, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
30
|
Fang J, Xie C, Tao Y, Wei D. An overview of single-molecule techniques and applications in the study of nucleic acid structure and function. Biochimie 2023; 206:1-11. [PMID: 36179939 DOI: 10.1016/j.biochi.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acids are an indispensable component in all known life forms. The biological processes are regulated by Nucleic acids, which associate to form special high-order structures. since the high-level structures of nucleic acids are related to gene expression in cancer cells or viruses, it is very likely to become a potential drug target. Traditional biochemical methods are limited to distinguish the conformational distribution and dynamic transition process of single nucleic acid structure. The ligands based on the intermediate and transition states between different conformations are not designed by traditional biochemical methods. The single-molecule techniques enable real-time observation of the individual nucleic acid behavior due to its high resolution. Here, we introduce the application of single-molecule techniques in the study of small molecules to recognize nucleic acid structures, such as single-molecule FRET, magnetic tweezers, optical tweezers and atomic force microscopy. At the same time, we also introduce the specific advantages of single-molecule technology compared with traditional biochemical methods and some problems arisen in current research.
Collapse
Affiliation(s)
- Junkang Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Congbao Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanfei Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Huazhong Agricultural University, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
31
|
Song C, Liu C, Chen J, Ma Z, Tang S, Pan R, Suo X, Yan Z, Lee HK, Shen W. Self-Generation of Distinguishable Fluorescent Probes via a One-Pot Process for Multiple MicroRNA Detection by Liquid Chromatography. Anal Chem 2023; 95:4113-4121. [PMID: 36787427 DOI: 10.1021/acs.analchem.2c04941] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
To address the challenge of signal production and separation for multiple microRNA (miRNA) detection, in this work, a "one-pot" process to self-generate distinguishable fluorescent probes was developed. Based on a long and short probe amplification strategy, the generated G-quadruplex fluorescent dye-free probes can be separated and detected by a high-performance liquid chromatography-fluorescence platform. The free hairpin probes enriched in guanine with different lengths and base sequences were designed and could be opened by the target miRNAs (miRNA-10b, miRNA-21, and miRNA-210). Cleaved G-quadruplex probes with fluorescent signal could be generated in a one-pot process after a duplex-specific nuclease-based cleavage, and the detection of multiple miRNAs could be realized in one run. No solid nanomaterials were applied in the assay, which avoided the blocking of the column. Moreover, without modification of expensive fluorescein, the experimental cost was greatly reduced. The one-pot reaction process also eliminated tedious preparation steps and suggested feasibility of automation. The limits of detection of miRNA-10b, miRNA-21, and miRNA-210 were 2.19, 2.20, and 2.75 fM, respectively. Notably, this method was successfully applied to multiplex detection of miRNAs in serum samples from breast cancer patients within 30 min.
Collapse
Affiliation(s)
- Chang Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| | - Ruirong Pan
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, P. R. China
| | - Xiaocen Suo
- Testing Center of Yangzhou University, Yangzhou 225000, Jiangsu Province, P. R. China
| | - Zuowei Yan
- ACD/Labs, (Advanced Chemistry Development, Inc.), Pudong 201210, Shanghai, P. R. China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, P. R. China
| |
Collapse
|
32
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
33
|
Kristoffersen E, Coletta A, Lund L, Schiøtt B, Birkedal V. Inhibited complete folding of consecutive human telomeric G-quadruplexes. Nucleic Acids Res 2023; 51:1571-1582. [PMID: 36715345 PMCID: PMC9976873 DOI: 10.1093/nar/gkad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Noncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging. We investigated the folding of consecutive G-quadruplexes in both potassium- and sodium-containing solutions using single-molecule FRET spectroscopy, circular dichroism, thermal melting and molecular dynamics simulations. Our observations show coexistence of partially and fully folded DNA, the latter consisting of consecutive G-quadruplexes. Following the folding process over hours in sodium-containing buffers revealed fast G-quadruplex folding but slow establishment of thermodynamic equilibrium. We find that full consecutive G-quadruplex formation is inhibited by the many DNA structures randomly nucleating on the DNA, some of which are off-path conformations that need to unfold to allow full folding. Our study allows describing consecutive G-quadruplex formation in both nonequilibrium and equilibrium conditions by a unified picture, where, due to the many possible DNA conformations, full folding with consecutive G-quadruplexes as beads on a string is not necessarily achieved.
Collapse
Affiliation(s)
- Emil Laust Kristoffersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Andrea Coletta
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Line Mørkholt Lund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Birgit Schiøtt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark,Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | |
Collapse
|
34
|
Ragupathi A, Singh M, Perez AM, Zhang D. Targeting the BRCA1/ 2 deficient cancer with PARP inhibitors: Clinical outcomes and mechanistic insights. Front Cell Dev Biol 2023; 11:1133472. [PMID: 37035242 PMCID: PMC10073599 DOI: 10.3389/fcell.2023.1133472] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
BRCA1 and BRCA2 play a critical role in a variety of molecular processes related to DNA metabolism, including homologous recombination and mediating the replication stress response. Individuals with mutations in the BRCA1 and BRCA2 (BRCA1/2) genes have a significantly higher risk of developing various types of cancers, especially cancers of the breast, ovary, pancreas, and prostate. Currently, the Food and Drug Administration (FDA) has approved four PARP inhibitors (PARPi) to treat cancers with BRCA1/2 mutations. In this review, we will first summarize the clinical outcomes of the four FDA-approved PARPi in treating BRCA1/2 deficient cancers. We will then discuss evidence supporting the hypothesis that the cytotoxic effect of PARPi is likely due to inducing excessive replication stress at the difficult-to-replicate (DTR) genomic regions in BRCA1/2 mutated tumors. Finally, we will discuss the ongoing preclinical and clinical studies on how to combine the PARPi with immuno-oncology drugs to further improve clinical outcomes.
Collapse
|
35
|
Amrane S, Jaubert C, Bedrat A, Rundstadler T, Recordon-Pinson P, Aknin C, Guédin A, De Rache A, Bartolucci L, Diene I, Lemoine F, Gascuel O, Pratviel G, Mergny JL, Andreola ML. Deciphering RNA G-quadruplex function during the early steps of HIV-1 infection. Nucleic Acids Res 2022; 50:12328-12343. [PMID: 36453997 PMCID: PMC9757044 DOI: 10.1093/nar/gkac1030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/27/2022] [Accepted: 10/29/2022] [Indexed: 12/02/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures formed by the stacking of G-tetrads. Here we investigated their formation and function during HIV-1 infection. Using bioinformatics and biophysics analyses we first searched for evolutionary conserved G4-forming sequences in HIV-1 genome. We identified 10 G4s with conservation rates higher than those of HIV-1 regulatory sequences such as RRE and TAR. We then used porphyrin-based G4-binders to probe the formation of the G4s during infection of human cells by native HIV-1. The G4-binders efficiently inhibited HIV-1 infectivity, which is attributed to the formation of G4 structures during HIV-1 replication. Using a qRT-PCR approach, we showed that the formation of viral G4s occurs during the first 2 h post-infection and their stabilization by the G4-binders prevents initiation of reverse transcription. We also used a G4-RNA pull-down approach, based on a G4-specific biotinylated probe, to allow the direct detection and identification of viral G4-RNA in infected cells. Most of the detected G4-RNAs contain crucial regulatory elements such as the PPT and cPPT sequences as well as the U3 region. Hence, these G4s would function in the early stages of infection when the viral RNA genome is being processed for the reverse transcription step.
Collapse
Affiliation(s)
- Samir Amrane
- To whom correspondence should be addressed. Tel : +33 5 4000 2224;
| | - Chloé Jaubert
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Amina Bedrat
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Tiffany Rundstadler
- Université de Toulouse, UPS, INPT, Toulouse, France,Laboratoire de Chimie de Coordination, CNRS UPR 8241, Toulouse, France
| | | | - Cindy Aknin
- Université de Bordeaux, Bordeaux, France,MFP laboratory, UMR5234, CNRS, Bordeaux, France
| | - Aurore Guédin
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Aurore De Rache
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Laura Bartolucci
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Ibra Diene
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France
| | - Frédéric Lemoine
- Institut Pasteur, Université de Paris, Unité de Bioinformatique Évolutive, F-75015 Paris, France,Institut Pasteur, Université de Paris, Hub de bioinformatique et biostatistiques, F-75015 Paris, France
| | - Olivier Gascuel
- Institut Pasteur, Université de Paris, Unité de Bioinformatique Évolutive, F-75015 Paris, France,Institut de Systématique, Évolution, Biodiversité (ISYEB, UMR 7205 - CNRS, Muséum National d’Histoire Naturelle, SU, EPHE UA), F-75005 Paris, France
| | - Geneviève Pratviel
- Université de Toulouse, UPS, INPT, Toulouse, France,Laboratoire de Chimie de Coordination, CNRS UPR 8241, Toulouse, France
| | - Jean-Louis Mergny
- Université de Bordeaux, Bordeaux, France,ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, Bordeaux, France,Laboratoire d’Optique & Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Marie-Line Andreola
- Université de Bordeaux, Bordeaux, France,MFP laboratory, UMR5234, CNRS, Bordeaux, France
| |
Collapse
|
36
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
37
|
Ajoge HO, Kohio HP, Paparisto E, Coleman MD, Wong K, Tom SK, Bain KL, Berry CC, Arts EJ, Barr SD. G-Quadruplex DNA and Other Non-Canonical B-Form DNA Motifs Influence Productive and Latent HIV-1 Integration and Reactivation Potential. Viruses 2022; 14:2494. [PMID: 36423103 PMCID: PMC9692945 DOI: 10.3390/v14112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The integration of the HIV-1 genome into the host genome is an essential step in the life cycle of the virus and it plays a critical role in the expression, long-term persistence, and reactivation of HIV expression. To better understand the local genomic environment surrounding HIV-1 proviruses, we assessed the influence of non-canonical B-form DNA (non-B DNA) on the HIV-1 integration site selection. We showed that productively and latently infected cells exhibit different integration site biases towards non-B DNA motifs. We identified a correlation between the integration sites of the latent proviruses and non-B DNA features known to potently influence gene expression (e.g., cruciform, guanine-quadruplex (G4), triplex, and Z-DNA). The reactivation potential of latent proviruses with latency reversal agents also correlated with their proximity to specific non-B DNA motifs. The perturbation of G4 structures in vitro using G4 structure-destabilizing or -stabilizing ligands resulted in a significant reduction in integration within 100 base pairs of G4 motifs. The stabilization of G4 structures increased the integration within 300-500 base pairs from G4 motifs, increased integration near transcription start sites, and increased the proportion of latently infected cells. Moreover, we showed that host lens epithelium-derived growth factor (LEDGF)/p75 and cleavage and polyadenylation specificity factor 6 (CPSF6) influenced the distribution of integration sites near several non-B DNA motifs, especially G4 DNA. Our findings identify non-B DNA motifs as important factors that influence productive and latent HIV-1 integration and the reactivation potential of latent proviruses.
Collapse
Affiliation(s)
- Hannah O. Ajoge
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Hinissan P. Kohio
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Ermela Paparisto
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Macon D. Coleman
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Kemen Wong
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Sean K. Tom
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Katie L. Bain
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Charles C. Berry
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric J. Arts
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| | - Stephen D. Barr
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada
| |
Collapse
|
38
|
Zhao L, Ahmed F, Zeng Y, Xu W, Xiong H. Recent Developments in G-Quadruplex Binding Ligands and Specific Beacons on Smart Fluorescent Sensor for Targeting Metal Ions and Biological Analytes. ACS Sens 2022; 7:2833-2856. [PMID: 36112358 DOI: 10.1021/acssensors.2c00992] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The G-quadruplex structure is crucial in several biological processes, including DNA replication, transcription, and genomic maintenance. G-quadruplex-based fluorescent probes have recently gained popularity because of their ease of use, low cost, excellent selectivity, and sensitivity. This review summarizes the latest applications of G-quadruplex structures as detectors of genome-wide, enantioselective catalysts, disease therapeutics, promising drug targets, and smart fluorescence probes. In every section, sensing of G-quadruplex and employing G4 for the detection of other analytes were introduced, respectively. Since the discovery of the G-quadruplex structure, several studies have been conducted to investigate its conformations, biological potential, stability, reactivity, selectivity for chemical modification, and optical properties. The formation mechanism and advancements for detecting different metal ions (Na+, K+, Ag+, Tl+, Cu+/Cu2+, Hg2+, and Pb2+) and biomolecules (AMP, ATP, DNA/RNA, microRNA, thrombin, T4 PNK, RNase H, ALP, CEA, lipocalin 1, and UDG) using fluorescent sensors based on G-quadruplex modification, such as dye labels, artificial nucleobase moieties, dye complexes, intercalating dyes, and bioconjugated nanomaterials (AgNCs, GO, QDs, CDs, and MOF) is described herein. To investigate these extremely efficient responsive agents for diagnostic and therapeutic applications in medicine, fluorescence sensors based on G-quadruplexes have also been employed as a quantitative visualization technique.
Collapse
Affiliation(s)
- Long Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
39
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
40
|
Feng Y, Luo Z, Huang R, Yang X, Cheng X, Zhang W. Epigenomic Features and Potential Functions of K+ and Na+ Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2022; 23:ijms23158404. [PMID: 35955535 PMCID: PMC9368837 DOI: 10.3390/ijms23158404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
DNA G-quadruplexes (G4s) are non-canonical four-stranded DNA structures involved in various biological processes in eukaryotes. Molecularly crowded solutions and monovalent cations have been reported to stabilize in vitro and in vivo G4 formation. However, how K+ and Na+ affect G4 formation genome-wide is still unclear in plants. Here, we conducted BG4-DNA-IP-seq, DNA immunoprecipitation with anti-BG4 antibody coupled with sequencing, under K+ and Na+ + PEG conditions in vitro. We found that K+-specific IP-G4s had a longer peak size, more GC and PQS content, and distinct AT and GC skews compared to Na+-specific IP-G4s. Moreover, K+- and Na+-specific IP-G4s exhibited differential subgenomic enrichment and distinct putative functional motifs for the binding of certain trans-factors. More importantly, we found that K+-specific IP-G4s were more associated with active marks, such as active histone marks, and low DNA methylation levels, as compared to Na+-specific IP-G4s; thus, K+-specific IP-G4s in combination with active chromatin features facilitate the expression of overlapping genes. In addition, K+- and Na+-specific IP-G4 overlapping genes exhibited differential GO (gene ontology) terms, suggesting they may have distinct biological relevance in rice. Thus, our study, for the first time, explores the effects of K+ and Na+ on global G4 formation in vitro, thereby providing valuable resources for functional G4 studies in rice. It will provide certain G4 loci for the biotechnological engineering of rice in the future.
Collapse
Affiliation(s)
- Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Zhenyu Luo
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Ranran Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Xueming Yang
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (Y.F.); (Z.L.); (R.H.); (X.C.)
- Correspondence: ; Tel.: +86-25-84396610; Fax: +86-25-84396302
| |
Collapse
|
41
|
Iida K, Suzuki N, Sasaki A, Ishida S, Arai T. Development of a novel light-up probe for detection of G-quadruplexes in stress granules. Sci Rep 2022; 12:12892. [PMID: 35902691 PMCID: PMC9334577 DOI: 10.1038/s41598-022-17230-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
G-quadruplexes (G4s) regulate various biological processes in cells. However, cellular imaging of dynamically forming G4s in biomolecular condensates using small molecules has been poorly investigated. Herein, we present a fluorescent light-up probe with the ability to selectively stabilize G4s and enhance fluorescence upon G4 binding. The foci of the probe were mainly observed in the nucleoli. These were co-localized with anti-fibrillarin antibodies and anti-G4 antibodies (BG4). Moreover, we tested detection of G4 in stress granules using the developed probe. Stress granules were induced through treatment with not only thapsigargin, but also known G4 ligands (pyridostatin, RHPS4, and BRACO-19). In the stress granules, co-localization between the probe, BG4, and stress granule markers (TIA1 and G3BP1) was detected. We present a practical light-up probe for G4s in stress granules, providing potential targets for G4 ligands.
Collapse
Affiliation(s)
- Keisuke Iida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan.
| | - Natsumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| | - Ayano Sasaki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| | - Shunsuke Ishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba , 263-8522, Japan
| |
Collapse
|
42
|
OGG1 in Lung—More than Base Excision Repair. Antioxidants (Basel) 2022; 11:antiox11050933. [PMID: 35624797 PMCID: PMC9138115 DOI: 10.3390/antiox11050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
As the organ executing gas exchange and directly facing the external environment, the lungs are challenged continuously by various stimuli, causing the disequilibration of redox homeostasis and leading to pulmonary diseases. The breakdown of oxidants/antioxidants system happens when the overproduction of free radicals results in an excess over the limitation of cleaning capability, which could lead to the oxidative modification of macromolecules including nucleic acids. The most common type of oxidative base, 8-oxoG, is considered the marker of DNA oxidative damage. The appearance of 8-oxoG could lead to base mismatch and its accumulation might end up as tumorigenesis. The base 8-oxoG was corrected by base excision repair initiated by 8-oxoguanine DNA glycosylase-1 (OGG1), which recognizes 8-oxoG from the genome and excises it from the DNA double strand, generating an AP site for further processing. Aside from its function in DNA damage repairment, it has been reported that OGG1 takes part in the regulation of gene expression, derived from its DNA binding characteristic, and showed impacts on inflammation. Researchers believe that OGG1 could be the potential therapy target for relative disease. This review intends to make an overall summary of the mechanism through which OGG1 regulates gene expression and the role of OGG1 in pulmonary diseases.
Collapse
|
43
|
Georgakopoulos-Soares I, Parada GE, Wong HY, Medhi R, Furlan G, Munita R, Miska EA, Kwok CK, Hemberg M. Alternative splicing modulation by G-quadruplexes. Nat Commun 2022; 13:2404. [PMID: 35504902 PMCID: PMC9065059 DOI: 10.1038/s41467-022-30071-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is central to metazoan gene regulation, but the regulatory mechanisms are incompletely understood. Here, we show that G-quadruplex (G4) motifs are enriched ~3-fold near splice junctions. The importance of G4s in RNA is emphasised by a higher enrichment for the non-template strand. RNA-seq data from mouse and human neurons reveals an enrichment of G4s at exons that were skipped following depolarisation induced by potassium chloride. We validate the formation of stable RNA G4s for three candidate splice sites by circular dichroism spectroscopy, UV-melting and fluorescence measurements. Moreover, we find that sQTLs are enriched at G4s, and a minigene experiment provides further support for their role in promoting exon inclusion. Analysis of >1,800 high-throughput experiments reveals multiple RNA binding proteins associated with G4s. Finally, exploration of G4 motifs across eleven species shows strong enrichment at splice sites in mammals and birds, suggesting an evolutionary conserved splice regulatory mechanism. Here the authors shows that G-quadruplexes, non-canonical DNA/RNA structures, can have a direct impact on alternative splicing and that binding of splicing regulators is affected by their presence.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Guillermo E Parada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5A 1A8, Canada
| | - Hei Yuen Wong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ragini Medhi
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Giulia Furlan
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Eric A Miska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK. .,Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Venkata Suseela Y, Sengupta P, Roychowdhury T, Panda S, Talukdar S, Chattopadhyay S, Chatterjee S, Govindaraju T. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS BIO & MED CHEM AU 2022; 2:125-139. [PMID: 37101746 PMCID: PMC10114666 DOI: 10.1021/acsbiomedchemau.1c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
G-Quadruplex (GQ) nucleic acids are promising therapeutic targets in anticancer research due to their structural robustness, polymorphism, and gene-regulatory functions. Here, we presented the structure-activity relationship of carbazole-based monocyanine ligands using region-specific functionalization with benzothiazole (TCA and TCZ), lepidine (LCA and LCZ), and quinaldine (QCA and QCZ) acceptor moieties and evaluated their binding profiles with different oncogenic GQs. Their differential turn-on fluorescence emission upon GQ binding confirmed the GQ-to-duplex selectivity of all carbazole ligands, while the isothermal titration calorimetry results showed selective interactions of TCZ and TCA to c-MYC and BCL-2 GQs, respectively. The aldehyde group in TCA favors stacking interactions with the tetrad of BCL-2 GQ, whereas TCZ provides selective groove interactions with c-MYC GQ. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) showed that these molecules interfere with the recruitment of specific transcription factors at c-MYC and BCL-2 promoters and stabilize the promoter GQ structures to inhibit their constitutive transcription in cancer cells. Their intrinsic turn-on fluorescence response with longer lifetimes upon GQ binding allowed real-time visualization of GQ structures at subcellular compartments. Confocal microscopy revealed the uptake of these ligands in the nucleoli, resulting in nucleolar stress. ChIP studies further confirmed the inhibition of Nucleolin occupancy at multiple GQ-enriched regions of ribosomal DNA (rDNA) promoters, which arrested rRNA biogenesis. Therefore, carbazole ligands act as the "double-edged swords" to arrest c-MYC and BCL-2 overexpression as well as rRNA biogenesis, triggering synergistic inhibition of multiple oncogenic pathways and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yelisetty Venkata Suseela
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Pallabi Sengupta
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Panda
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Sangita Talukdar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Samit Chattopadhyay
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
45
|
Umar MI, Chan CY, Kwok CK. Development of RNA G-quadruplex (rG4)-targeting L-RNA aptamers by rG4-SELEX. Nat Protoc 2022; 17:1385-1414. [PMID: 35444329 DOI: 10.1038/s41596-022-00679-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022]
Abstract
RNA G-quadruplex (rG4)-SELEX is a method that generates L-RNA aptamers to target an rG4 structure of interest, which can be applied to inhibit G-quadruplex-mediated interactions that have important roles in gene regulation and function. Here we present a Protocol Extension substantially modifying an existing SELEX protocol to describe in detail the procedures involved in performing rG4-SELEX to identify rG4-specific binders that can effectively suppress rG4-peptide and rG4-protein associations. This Protocol Extension improves the speed of aptamer discovery and identification, offering a suite of techniques to characterize the aptamer secondary structure and monitor binding affinity and specificity, and demonstrating the utility of the L-RNA aptamer. The previous protocol mainly describes the identification of RNA aptamers against proteins of interest, whereas in this Protocol Extension we present the development of an unnatural RNA aptamer against an RNA structure of interest, with the potential to be applicable to other nucleic acid motifs or biomolecules. rG4-SELEX starts with a random D-RNA library incubated with the L-rG4 target of interest, followed by binding, washing and elution of the library. Enriched D-aptamer candidates are sequenced and structurally characterized. Then, the L-aptamer is synthesized and used for different applications. rG4-SELEX can be carried out by an experienced molecular biologist with a basic understanding of nucleic acids. The development of rG4-targeting L-RNA aptamers expands the current rG4 toolkit to explore innovative rG4-related applications, and opens new doors to discovering novel rG4 biology in the near future. The duration of each selection cycle as outlined in the protocol is ~2 d.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA
| | - Chun-Yin Chan
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Institut für Chemische Epigenetik München (ICEM), Ludwig-Maximilians-Universtität München, Munich, Germany
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
46
|
Rider SD, Gadgil RY, Hitch DC, Damewood FJ, Zavada N, Shanahan M, Alhawach V, Shrestha R, Shin-Ya K, Leffak M. Stable G-quadruplex DNA structures promote replication-dependent genome instability. J Biol Chem 2022; 298:101947. [PMID: 35447109 PMCID: PMC9142560 DOI: 10.1016/j.jbc.2022.101947] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 10/27/2022] Open
Abstract
G-quadruplex (G4)-prone structures are abundant in mammalian genomes, where they have been shown to influence DNA replication, transcription, and genome stability. In this article, we constructed cells with a single ectopic homopurine/homopyrimidine repeat tract derived from the polycystic kidney disease type 1 (PKD1) locus, which is capable of forming triplex (H3) and G4 DNA structures. We show that ligand stabilization of these G4 structures results in deletions of the G4 consensus sequence, as well as kilobase deletions spanning the G4 and ectopic sites. Furthermore, we show that DNA double-strand breaks at the ectopic site are dependent on the nuclease Mus81. Hypermutagenesis during sister chromatid repair extends several kilobases from the G4 site and breaks at the G4 site resulting in microhomology-mediated translocations. To determine whether H3 or G4 structures are responsible for homopurine/homopyrimidine tract instability, we derived constructs and cell lines from the PKD1 repeat, which can only form H3 or G4 structures. Under normal growth conditions, we found that G4 cell lines lost the G4 consensus sequence early during clonal outgrowth, whereas H3 cells showed DNA instability early during outgrowth but only lost reporter gene expression after prolonged growth. Thus, both the H3 and G4 non-B conformation DNAs exhibit genomic instability, but they respond differently to endogenous replication stress. Our results show that the outcomes of replication-dependent double-strand breaks at non-B-DNAs model the instability observed in microhomology-mediated break-induced replication (BIR). Marked variability in the frequency of mutagenesis during BIR suggests possible dynamic heterogeneity in the BIR replisome.
Collapse
Affiliation(s)
- S Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - French J Damewood
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Nathen Zavada
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Matilyn Shanahan
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Kazuo Shin-Ya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
47
|
Frasson I, Pirota V, Richter SN, Doria F. Multimeric G-quadruplexes: A review on their biological roles and targeting. Int J Biol Macromol 2022; 204:89-102. [PMID: 35124022 DOI: 10.1016/j.ijbiomac.2022.01.197] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
In human cells, nucleic acids adopt several non-canonical structures that regulate key cellular processes. Among them, G-quadruplexes (G4s) are stable structures that form in guanine-rich regions in vitro and in cells. G4 folded/unfolded state shapes numerous cellular processes, including genome replication, transcription, and translation. Moreover, G4 folding is involved in genomic instability. G4s have been described to multimerize, forming high-order structures in both DNA and/or RNA strands. Multimeric G4s can be formed by adjacent intramolecular G4s joined by stacking interactions or connected by short loops. Multimeric G4s can also originate from the assembly of guanines embedded on independent DNA or RNA strands. Notably, crucial regions of the human genome, such as the 3'-terminal overhang of the telomeric DNA as well as the open reading frame of genes involved in the preservation of neuron viability in the human central and peripheral nervous system are prone to form multimeric G4s. The biological importance of such structures has been recently described, with multimeric G4s playing potentially protective or deleterious effects in the pathogenic cascade of various diseases. Here, we portray the multifaceted scenario of multimeric G4s, in terms of structural properties, biological roles, and targeting strategies.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy; G4-INTERACT, USERN, v. le Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
48
|
Georgakopoulos-Soares I, Victorino J, Parada GE, Agarwal V, Zhao J, Wong HY, Umar MI, Elor O, Muhwezi A, An JY, Sanders SJ, Kwok CK, Inoue F, Hemberg M, Ahituv N. High-throughput characterization of the role of non-B DNA motifs on promoter function. CELL GENOMICS 2022; 2:100111. [PMID: 35573091 PMCID: PMC9105345 DOI: 10.1016/j.xgen.2022.100111] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/21/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
lternative DNA conformations, termed non-B DNA structures, can affect transcription, but the underlying mechanisms and their functional impact have not been systematically characterized. Here, we used computational genomic analyses coupled with massively parallel reporter assays (MPRAs) to show that certain non-B DNA structures have a substantial effect on gene expression. Genomic analyses found that non-B DNA structures at promoters harbor an excess of germline variants. Analysis of multiple MPRAs, including a promoter library specifically designed to perturb non-B DNA structures, functionally validated that Z-DNA can significantly affect promoter activity. We also observed that biophysical properties of non-B DNA motifs, such as the length of Z-DNA motifs and the orientation of G-quadruplex structures relative to transcriptional direction, have a significant effect on promoter activity. Combined, their higher mutation rate and functional effect on transcription implicate a subset of non-B DNA motifs as major drivers of human gene-expression-associated phenotypes.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Guillermo E. Parada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | - Jingjing Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Hei Yuen Wong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Mubarak Ishaq Umar
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Orry Elor
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Allan Muhwezi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Joon-Yong An
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Stephan J. Sanders
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
49
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
50
|
The Dynamic Regulation of G-Quadruplex DNA Structures by Cytosine Methylation. Int J Mol Sci 2022; 23:ijms23052407. [PMID: 35269551 PMCID: PMC8910436 DOI: 10.3390/ijms23052407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
It is well known that certain non B-DNA structures, including G-quadruplexes, are key elements that can regulate gene expression. Here, we explore the theory that DNA modifications, such as methylation of cytosine, could act as a dynamic switch by promoting or alleviating the structural formation of G-quadruplex structures in DNA or RNA. The interaction between epigenetic DNA modifications, G4 formation, and the 3D architecture of the genome is a complex and developing area of research. Although there is growing evidence for such interactions, a great deal still remains to be discovered. In vivo, the potential effect that cytosine methylation may have on the formation of DNA structures has remained largely unresearched, despite this being a potential mechanism through which epigenetic factors could regulate gene activity. Such interactions could represent novel mechanisms for important biological functions, including altering nucleosome positioning or regulation of gene expression. Furthermore, promotion of strand-specific G-quadruplex formation in differentially methylated genes could have a dynamic role in directing X-inactivation or the control of imprinting, and would be a worthwhile focus for future research.
Collapse
|