1
|
Melo EP, El-Guendouz S, Correia C, Teodoro F, Lopes C, Martel PJ. A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity. Antioxid Redox Signal 2024; 41:181-200. [PMID: 38497737 DOI: 10.1089/ars.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Aims: Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, a and a', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. Results: Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H2O2-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal a active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal a' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The a' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. Innovation and Conclusions: The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.
Collapse
Affiliation(s)
- Eduardo P Melo
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | | - Cátia Correia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Fernando Teodoro
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | - Carlos Lopes
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
| | | |
Collapse
|
2
|
Karoń S, Drozd M, Malinowska E. A Careful Insight into DDI-Type Receptor Layers on the Way to Improvement of Click-Biology-Based Immunosensors. BIOSENSORS 2024; 14:136. [PMID: 38534243 DOI: 10.3390/bios14030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
Protein-based microarrays are important tools for high-throughput medical diagnostics, offering versatile platforms for multiplex immunodetection. However, challenges arise in protein microarrays due to the heterogeneous nature of proteins and, thus, differences in their immobilization conditions. This article advocates DNA-directed immobilization (DDI) as a solution, emphasizing its rapid and cost-effective fabrication of biosensing platforms. Thiolated single-stranded DNA and its analogues, such as ZNA® and PNA probes, were used to immobilize model proteins (anti-CRP antibodies and SARS-CoV nucleoprotein). The study explores factors influencing DDI-based immunosensor performance, including the purity of protein-DNA conjugates and the stability of their duplexes with DNA and analogues. It also provides insight into backfilling agent type and probe surface density. The research reveals that single-component monolayers lack protection against protein adsorption, while mixing the probes with long-chain ligands may hinder DNA-protein conjugate anchoring. Conventional DNA probes offer slightly higher surface density, while ZNA® probes exhibit better binding efficiency. Despite no enhanced stability in different ionic strength media, the cost-effectiveness of DNA probes led to their preference. The findings contribute to advancing microarray technology, paving the way for new generations of DDI-based multiplex platforms for rapid and robust diagnostics.
Collapse
Affiliation(s)
- Sylwia Karoń
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Drozd
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Department of Medical Diagnostics, Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Dolcemascolo R, Heras-Hernández M, Goiriz L, Montagud-Martínez R, Requena-Menéndez A, Ruiz R, Pérez-Ràfols A, Higuera-Rodríguez RA, Pérez-Ropero G, Vranken WF, Martelli T, Kaiser W, Buijs J, Rodrigo G. Repurposing the mammalian RNA-binding protein Musashi-1 as an allosteric translation repressor in bacteria. eLife 2024; 12:RP91777. [PMID: 38363283 PMCID: PMC10942595 DOI: 10.7554/elife.91777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The RNA recognition motif (RRM) is the most common RNA-binding protein domain identified in nature. However, RRM-containing proteins are only prevalent in eukaryotic phyla, in which they play central regulatory roles. Here, we engineered an orthogonal post-transcriptional control system of gene expression in the bacterium Escherichia coli with the mammalian RNA-binding protein Musashi-1, which is a stem cell marker with neurodevelopmental role that contains two canonical RRMs. In the circuit, Musashi-1 is regulated transcriptionally and works as an allosteric translation repressor thanks to a specific interaction with the N-terminal coding region of a messenger RNA and its structural plasticity to respond to fatty acids. We fully characterized the genetic system at the population and single-cell levels showing a significant fold change in reporter expression, and the underlying molecular mechanism by assessing the in vitro binding kinetics and in vivo functionality of a series of RNA mutants. The dynamic response of the system was well recapitulated by a bottom-up mathematical model. Moreover, we applied the post-transcriptional mechanism engineered with Musashi-1 to specifically regulate a gene within an operon, implement combinatorial regulation, and reduce protein expression noise. This work illustrates how RRM-based regulation can be adapted to simple organisms, thereby adding a new regulatory layer in prokaryotes for translation control.
Collapse
Affiliation(s)
- Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | - María Heras-Hernández
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Lucas Goiriz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Applied Mathematics, Polytechnic University of ValenciaValenciaSpain
| | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
- Department of Biotechnology, Polytechnic University of ValenciaValenciaSpain
| | | | - Raúl Ruiz
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| | - Anna Pérez-Ràfols
- Giotto Biotech SRLSesto FiorentinoItaly
- Magnetic Resonance Center (CERM), Department of Chemistry Ugo Schiff, Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), University of FlorenceSesto FiorentinoItaly
| | - R Anahí Higuera-Rodríguez
- Dynamic Biosensors GmbHPlaneggGermany
- Department of Physics, Technical University of MunichGarchingGermany
| | - Guillermo Pérez-Ropero
- Ridgeview Instruments ABUppsalaSweden
- Department of Chemistry – BMC, Uppsala UniversityUppsalaSweden
| | - Wim F Vranken
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles – Vrije Universiteit BrusselBrusselsBelgium
| | | | | | - Jos Buijs
- Ridgeview Instruments ABUppsalaSweden
- Department of Immunology, Genetics, and Pathology, Uppsala UniversityUppsalaSweden
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
4
|
Feng C, Liu X, Sun YF, Ren CL. Double-Stranded DNA Immobilized in Lying-Flat and Upright Orientation on a PNIPAm-Coated Surface: A Theoretical Study. ACS Macro Lett 2024:105-111. [PMID: 38190547 DOI: 10.1021/acsmacrolett.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Surface-immobilized double-stranded DNA (dsDNA) in upright orientation plays an important role in optimizing and understanding DNA-based nanosensors and nanodevices. However, it is difficult to regulate the surface density of upright DNA due to the fact that DNA usually stands vertically at a high packing density but may lie down at a low packing density. We herein report dsDNA immobilized in upright orientation on a poly(N-isopropylacrylamide) (PNIPAm)-coated surface in theory. The theoretical results reveal that the angle of upright DNA relative to the surface is larger than that of DNA immobilized on the bare surface caused by the lying-flat DNA under proper PNIPAm surface coverage at 45 °C. The surface density of upright DNA is significantly influenced by DNA concentration and DNA length. It is envisioned that the density-regulated DNA molecules immobilized in upright orientation in the present work are well suited to bottom-up construction of complex DNA-based nanostructures and nanodevices.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiao Liu
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yang-Feng Sun
- Industrial Technology Center, Chengde Petroleum College, Chengde 067000, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
6
|
Reusch J, Andersen JT, Rant U, Schlothauer T. Insight into the avidity-affinity relationship of the bivalent, pH-dependent interaction between IgG and FcRn. MAbs 2024; 16:2361585. [PMID: 38849969 PMCID: PMC11164218 DOI: 10.1080/19420862.2024.2361585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.
Collapse
Affiliation(s)
- Johannes Reusch
- Dynamic Biosensors GmbH, Munich, Germany
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | | | - Tilman Schlothauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
7
|
Higuera-Rodriguez RA, De Pascali MC, Aziz M, Sattler M, Rant U, Kaiser W. Kinetic FRET Assay to Measure Binding-Induced Conformational Changes of Nucleic Acids. ACS Sens 2023; 8:4597-4606. [PMID: 38060303 PMCID: PMC10749467 DOI: 10.1021/acssensors.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The interaction of small molecules or proteins with RNA or DNA often involves changes in the nucleic acid (NA) folding and structure. A biophysical characterization of these processes helps us to understand the underlying molecular mechanisms. Here, we propose kinFRET (kinetics Förster resonance energy transfer), a real-time ensemble FRET methodology to measure binding and folding kinetics. With kinFRET, the kinetics of conformational changes of NAs (DNA or RNA) upon analyte binding can be directly followed via a FRET signal using a chip-based biosensor. We demonstrate the utility of this approach with two representative examples. First, we monitored the conformational changes of different formats of an aptamer (MN19) upon interaction with small-molecule analytes. Second, we characterized the binding kinetics of RNA recognition by tandem K homology (KH) domains of the human insulin-like growth factor II mRNA-binding protein 3 (IMP3), which reveals distinct kinetic contributions of the two KH domains. Our data demonstrate that kinFRET is well suited to study the kinetics and conformational changes of NA-analyte interactions.
Collapse
Affiliation(s)
- R. Anahi Higuera-Rodriguez
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Mareike C. De Pascali
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Masood Aziz
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Helmholtz
Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
| | - Michael Sattler
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Helmholtz
Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
| | - Ulrich Rant
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Wolfgang Kaiser
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| |
Collapse
|
8
|
Gurukandure A, Somasundaram S, Kurian ASN, Khuda N, Easley CJ. Building a Nucleic Acid Nanostructure with DNA-Epitope Conjugates for a Versatile Approach to Electrochemical Protein Detection. Anal Chem 2023; 95:18122-18129. [PMID: 38032341 PMCID: PMC10720615 DOI: 10.1021/acs.analchem.3c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
The recent surge of effort in nucleic-acid-based electrochemical (EC) sensors has been fruitful, yet there remains a need for more generalizable EC platforms for sensing multiple classes of clinically relevant targets. We recently reported a nucleic acid nanostructure for simple, economical, and more generalizable EC readout of a range of analytes, including small molecules, peptides, proteins, and antibodies. The nanostructure is built through on-electrode enzymatic ligation of three oligonucleotides for attachment, binding, and signaling. However, the generalizable detection of larger proteins remains a challenge. Here, we adapted the sensor to quantify larger proteins in a more generic manner through conjugating the protein's minimized antibody-binding epitope to the central DNA strand. This concept was verified using creatine kinase (CK-MM), a biomarker of muscle damage and several disorders for which rapid clinical sensing is important. DNA-epitope conjugates permitted a competitive immunoassay for the CK protein at the electrode via square-wave voltammetry (SWV). Sensing through a signal-off mechanism, the anti-CK antibody limit of detection (LOD) was 5 nM with a response time as low as 3 min. Antibody displacement by native protein analytes gave a signal-on response with the CK sensing range from the LOD of 14 nM up to 100 nM, overlapping with the normal (nonelevated) human clinical range (3-37 nM), and the sensor was validated in 98% human serum. While a need for improved DNA-epitope conjugate purification was identified, overall, this approach allows the quantification of a generic protein- or peptide-binding antibody and should facilitate future quantitative EC readouts of clinically relevant proteins that were previously inaccessible to EC techniques.
Collapse
Affiliation(s)
- Asanka Gurukandure
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Subramaniam Somasundaram
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Amanda S. N. Kurian
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Niamat Khuda
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christopher J. Easley
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
9
|
Li M, Razumtcev A, Turner GA, Hwang Y, Simpson GJ. Fast Diffusion Characterization by Multiphoton Excited Fluorescence Recovery while Photobleaching. Anal Chem 2023; 95:14331-14340. [PMID: 37699550 DOI: 10.1021/acs.analchem.3c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Multiphoton-excited fluorescence recovery while photobleaching (FRWP) is demonstrated as a method for quantitative measurements of rapid molecular diffusion over microsecond to millisecond timescales. Diffusion measurements are crucial in assessing molecular mobility in cell biology, materials science, and pharmacology. Optical and fluorescence microscopy techniques enable non-invasive rapid analysis of molecular diffusion but can be challenging for systems with diffusion coefficients exceeding ∼100 μm2/s. As an example, fluorescence recovery after photobleaching (FRAP) operates on the implicit assumption of a comparatively fast photobleaching step prior to a relatively slow recovery and is not generally applicable for systems exhibiting substantial recovery during photobleaching. These challenges are exacerbated in multiphoton excitation by the lower excitation efficiency and competing effects from local heating. Herein, beam-scanning FRWP with patterned line-bleach illumination is introduced as a technique that addresses FRAP limitations and further extends its application range by measuring faster diffusion events. In FRWP, the recovery of fluorescence is continuously probed after each pass of a fast-scanning mirror, and the upper bound of measurable diffusion rates is, therefore, only limited by the mirror scanning frequency. A theoretical model describing transient fluctuations in fluorescence intensity arising as a result of combined contributions from photobleaching and localized photothermal effect is introduced along with a mathematical framework for quantifying fluorescence intensity temporal curves and recovering room-temperature diffusion coefficients. FRWP is then tested by characterization of normal diffusion of rhodamine-labeled bovine serum albumin, green fluorescence protein, and immunoglobulin G molecules in aqueous solutions of varying viscosity.
Collapse
Affiliation(s)
- Minghe Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Gwendylan A Turner
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Parolo C, Idili A, Heikenfeld J, Plaxco KW. Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. LAB ON A CHIP 2023; 23:1339-1348. [PMID: 36655710 PMCID: PMC10799767 DOI: 10.1039/d2lc00716a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent years have seen continued expansion of the functionality of lab on a chip (LOC) devices. Indeed LOCs now provide scientists and developers with useful and versatile platforms across a myriad of chemical and biological applications. The field still fails, however, to integrate an often important element of bench-top analytics: real-time molecular measurements that can be used to "guide" a chemical response. Here we describe the analytical techniques that could provide LOCs with such real-time molecular monitoring capabilities. It appears to us that, among the approaches that are general (i.e., that are independent of the reactive or optical properties of their targets), sensing strategies relying on binding-induced conformational change of bioreceptors are most likely to succeed in such applications.
Collapse
Affiliation(s)
- Claudio Parolo
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona, 08036, Barcelona, Spain
| | - Andrea Idili
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - Jason Heikenfeld
- Novel Devices Laboratory, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
11
|
The Impact of Nε-Acryloyllysine Piperazides on the Conformational Dynamics of Transglutaminase 2. Int J Mol Sci 2023; 24:ijms24021650. [PMID: 36675164 PMCID: PMC9865645 DOI: 10.3390/ijms24021650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
In addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity. In this context, the ability of such inhibitors to control the conformational dynamics of TGase 2 emerges as an important parameter, and methods to assess this property are in great demand. Herein, we describe the application of the switchSENSE® principle to detect conformational changes caused by three irreversibly binding Nε-acryloyllysine piperazides, which are suitable radiotracer candidates of TGase 2. The switchSENSE® technique is based on DNA levers actuated by alternating electric fields. These levers are immobilized on gold electrodes with one end, and at the other end of the lever, the TGase 2 is covalently bound. A novel computational method is introduced for describing the resulting lever motion to quantify the extent of stimulated conformational TGase 2 changes. Moreover, as a complementary biophysical method, native polyacrylamide gel electrophoresis was performed under similar conditions to validate the results. Both methods prove the occurrence of an irreversible shift in the conformational equilibrium of TGase 2, caused by the binding of the three studied Nε-acryloyllysine piperazides.
Collapse
|
12
|
Shao J, Breuer R, Schmittel M, Ye T. Potential-Dependent Adhesion Forces between dsDNA and Electroactive Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11899-11908. [PMID: 36149766 DOI: 10.1021/acs.langmuir.2c01515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A promising approach to regulating the interactions between polyelectrolytes and materials is the use of electroactive surfaces that can change their charge state. However, common electroactive groups are too unstable to be practical for this purpose. Here we have performed a single molecule force spectroscopy study of the interactions between dsDNA and an 1,1'-biferrocenylene (BFD = bis(fulvalene)diiron)-terminated self-assembled monolayer surface that allows us to reversibly change the charge state. We found that the interaction force between DNA and the surface is correlated to the oxidation state of the BFD groups, which is conveniently controlled by the electrochemical potentials. We discovered that the electroactive SAM produces much stronger interaction forces than its nonelectroactive counterpart. A model based on the Grahame equation was able to quantitatively reproduce the experimentally observed relation between the applied potentials and adhesion forces. Our electroactive surface provides a model system for quantitative studies of the interactions between polyelectrolyte and charged surfaces in liquid. These insights may enable new opportunities for actively manipulating the binding, orientations, and conformations of polyelectrolytes for biosensing, nanomotors, and other applications.
Collapse
Affiliation(s)
- Jingru Shao
- Department of Chemistry & Biochemistry, University of California, Merced, Merced, California 95343, United States
| | - Rochus Breuer
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, D-57068 Siegen, Germany
| | - Tao Ye
- Department of Chemistry & Biochemistry, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
13
|
Zargartalebi H, Yousefi H, Flynn CD, Gomis S, Das J, Young TL, Chien E, Mubareka S, McGeer A, Wang H, Sargent EH, Nezhad AS, Kelley SO. Capillary-Assisted Molecular Pendulum Bioanalysis. J Am Chem Soc 2022; 144:18338-18349. [PMID: 36173381 DOI: 10.1021/jacs.2c06192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of robust biosensing strategies that can be easily implemented in everyday life remains a challenge for the future of modern biosensor research. While several reagentless approaches have attempted to address this challenge, they often achieve user-friendliness through sacrificing sensitivity or universality. While acceptable for certain applications, these trade-offs hinder the widespread adoption of reagentless biosensing technologies. Here, we report a novel approach to reagentless biosensing that achieves high sensitivity, rapid detection, and universality using the SARS-CoV-2 virus as a model target. Universality is achieved by using nanoscale molecular pendulums, which enables reagentless electrochemical biosensing through a variable antibody recognition element. Enhanced sensitivity and rapid detection are accomplished by incorporating the coffee-ring phenomenon into the sensing scheme, allowing for target preconcentration on a ring-shaped electrode. Using this approach, we obtained limits of detection of 1 fg/mL and 20 copies/mL for the SARS-CoV-2 nucleoproteins and viral particles, respectively. In addition, clinical sample analysis showed excellent agreement with Ct values from PCR-positive SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Hossein Zargartalebi
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Connor D Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Surath Gomis
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Tiana L Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Emily Chien
- Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada
| | | | - Allison McGeer
- Department of Microbiology, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hansen Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Amir Sanati Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
14
|
Ramotowska S, Spisz P, Brzeski J, Ciesielska A, Makowski M. Application of the SwitchSense Technique for the Study of Small Molecules’ (Ethidium Bromide and Selected Sulfonamide Derivatives) Affinity to DNA in Real Time. J Phys Chem B 2022; 126:7238-7251. [PMID: 36106569 PMCID: PMC9527753 DOI: 10.1021/acs.jpcb.2c03138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The discovery and introduction of the switchSense technique
in
the chemical laboratory have drawn well-deserved interest owing to
its wide range of applications. Namely, it can be used to determine
the diameter of proteins, alterations in their tertiary structures
(folding), and many other conformational changes that are important
from a biological point of view. The essence of this technique is
based on its ability to study of the interactions between an analyte
and a ligand in real time (in a buffer flow). Its simplicity, on the
other hand, is based on the use of a signaling system that provides
information about the ongoing interactions based on the changes in
the fluorescence intensity. This technique can be extremely advantageous
in the study of new pharmaceuticals. The design of compounds with
biological activity, as well as the determination of their molecular
targets and modes of interactions, is crucial in the search for new
drugs and the fight against drug resistance. This article presents
another possible application of the switchSense technique for the
study of the binding kinetics of small model molecules such as ethidium
bromide (EB) and selected sulfonamide derivatives with DNA in the
static and dynamic modes at three different temperatures (15, 25,
and 37 °C) each. The experimental results remain in very good
agreement with the molecular dynamics docking ones. These physicochemical
insights and applications obtained from the switchSense technique
allow for the design of an effective strategy for molecular interaction
assessments of small but pharmaceutically important molecules with
DNA.
Collapse
Affiliation(s)
- Sandra Ramotowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Spisz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
15
|
Characterization of binding interactions of SARS-CoV-2 spike protein and DNA-peptide nanostructures. Sci Rep 2022; 12:12828. [PMID: 35896714 PMCID: PMC9328006 DOI: 10.1038/s41598-022-16914-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 12/22/2022] Open
Abstract
Binding interactions of the spike proteins of the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) to a peptide fragment derived from the human angiotensin converting enzyme 2 (hACE2) receptor are investigated. The peptide is employed as capture moiety in enzyme linked immunosorbent assays (ELISA) and quantitative binding interaction measurements that are based on fluorescence proximity sensing (switchSENSE). In both techniques, the peptide is presented on an oligovalent DNA nanostructure, in order to assess the impact of mono- versus trivalent binding modes. As the analyte, the spike protein and several of its subunits are tested as well as inactivated SARS-CoV-2 and pseudo viruses. While binding of the peptide to the full-length spike protein can be observed, the subunits RBD and S1 do not exhibit binding in the employed concentrations. Variations of the amino acid sequence of the recombinant full-length spike proteins furthermore influence binding behavior. The peptide was coupled to DNA nanostructures that form a geometric complement to the trimeric structure of the spike protein binding sites. An increase in binding strength for trimeric peptide presentation compared to single peptide presentation could be generally observed in ELISA and was quantified in switchSENSE measurements. Binding to inactivated wild type viruses could be shown as well as qualitatively different binding behavior of the Alpha and Beta variants compared to the wild type virus strain in pseudo virus models.
Collapse
|
16
|
Equine lactoferrin: Antioxidant properties related to divalent metal chelation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Baumgartner LM, Erbe A, Boyle AL, Rabe M. Controlling amphipathic peptide adsorption by smart switchable germanium interfaces. Phys Chem Chem Phys 2022; 24:4809-4819. [PMID: 35147613 DOI: 10.1039/d1cp03938e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The in situ control of reversible protein adsorption to a surface is a critical step towards biofouling prevention and finds utilisation in bioanalytical applications. In this work, adsorption of peptides is controlled by employing the electrode potential induced, reversible change of germanium (100) surface termination between a hydrophobic, hydrogen terminated and a hydrophilic, hydroxyl terminated surface. This simple but effective 'smart' interface is used to direct adsorption of two peptides models, representing the naturally highly abundant structural motifs of amphipathic helices and coiled-coils. Their structural similarity coincides with their opposite overall charge and hence allows the examination of the influence of charge and hydrophobicity on adsorption. Polarized attenuated total reflection infrared (ATR-IR) spectroscopy at controlled electrode potential has been used to follow the adsorption process at physiological pH in deuterated buffer. The delicate balance of hydrophobic and electrostatic peptide/surface interactions leads to two different processes upon switching that are both observed in situ: reversible adsorption and reversible reorientation. Negatively charged peptide adsorption can be fully controlled by switching to the hydrophobic interface, while the same switch causes the positively charged, helical peptide to tilt down. This principle can be used for 'smart' adsorption control of a wider variety of proteins and peptides and hence find application, as e.g. a bioanalytical tool or functional biosensor.
Collapse
Affiliation(s)
- Laura-Marleen Baumgartner
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| | - Andreas Erbe
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany. .,Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Aimee L Boyle
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Martin Rabe
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany.
| |
Collapse
|
18
|
Jambrec D, Gebala M. DNA Electrostatics: From Theory to Application. ChemElectroChem 2022. [DOI: 10.1002/celc.202101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daliborka Jambrec
- Analytische Chemie – Elektroanalytik & Sensorik Ruhr-Universität Bochum Universitätsstr. 150 D-44780 Bochum Germany
| | - Magdalena Gebala
- Department of Biochemistry Stanford University Stanford 94305, CA USA
| |
Collapse
|
19
|
Ma G, Wan Z, Yang Y, Jing W, Wang S. Three-Dimensional Tracking of Tethered Particles for Probing Nanometer-Scale Single-Molecule Dynamics Using a Plasmonic Microscope. ACS Sens 2021; 6:4234-4243. [PMID: 34786931 DOI: 10.1021/acssensors.1c01927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) tracking of surface-tethered single particles reveals the dynamics of the molecular tether. However, most 3D tracking techniques lack precision, especially in the axial direction, for measuring the dynamics of biomolecules with a spatial scale of several nanometers. Here, we present a plasmonic imaging technique that can track the motion of ∼100 tethered particles in 3D simultaneously with sub-nanometer axial precision and single-digit nanometer lateral precision at millisecond time resolution. By tracking the 3D coordinates of a tethered particle with high spatial resolution, we are able to determine the dynamics of single short DNA and study its interaction with enzymes. We further show that the particle motion pattern can be used to identify specific and nonspecific interactions in immunoassays. We anticipate that our 3D tracking technique can contribute to the understanding of molecular dynamics and interactions at the single-molecule level.
Collapse
Affiliation(s)
- Guangzhong Ma
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
| | - Wenwen Jing
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
20
|
Regulation of cadherin dimerization by chemical fragments as a trigger to inhibit cell adhesion. Commun Biol 2021; 4:1041. [PMID: 34493804 PMCID: PMC8423723 DOI: 10.1038/s42003-021-02575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Many cadherin family proteins are associated with diseases such as cancer. Since cell adhesion requires homodimerization of cadherin molecules, a small-molecule regulator of dimerization would have therapeutic potential. Herein, we describe identification of a P-cadherin-specific chemical fragment that inhibits P-cadherin-mediated cell adhesion. Although the identified molecule is a fragment compound, it binds to a cavity of P-cadherin that has not previously been targeted, indirectly prevents formation of hydrogen bonds necessary for formation of an intermediate called the X dimer and thus modulates the process of X dimerization. Our findings will impact on a strategy for regulation of protein-protein interactions and stepwise assembly of protein complexes using small molecules.
Collapse
|
21
|
Soltermann F, Struwe WB, Kukura P. Label-free methods for optical in vitro characterization of protein-protein interactions. Phys Chem Chem Phys 2021; 23:16488-16500. [PMID: 34342317 PMCID: PMC8359934 DOI: 10.1039/d1cp01072g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions are involved in the regulation and function of the majority of cellular processes. As a result, much effort has been aimed at the development of methodologies capable of quantifying protein-protein interactions, with label-free methods being of particular interest due to the associated simplified workflows and minimisation of label-induced perturbations. Here, we review recent advances in optical technologies providing label-free in vitro measurements of affinities and kinetics. We provide an overview and comparison of existing techniques and their principles, discussing advantages, limitations, and recent applications.
Collapse
Affiliation(s)
- Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Weston B. Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| |
Collapse
|
22
|
El Hajj S, Sepúlveda Rincón CT, Girardet JM, Cakir-Kiefer C, Stefan L, Zapata Montoya JE, Boschi-Muller S, Gaucher C, Canabady-Rochelle L. Electrically Switchable Nanolever Technology for the Screening of Metal-Chelating Peptides in Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8819-8827. [PMID: 34324321 DOI: 10.1021/acs.jafc.1c02199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal-chelating peptides (MCP) are considered as indirect antioxidants due to their capacity to inhibit radical chain reaction and oxidation. Here, we propose a new proof of concept for the screening of MCPs present in protein hydrolysates for valorizing their antioxidant properties by using the emerging time-resolved molecular dynamics technology, switchSENSE. This method unveils possible interactions between MCPs and immobilized nickel ions using fluorescence and electro-switchable DNA chips. The switchSENSE method was first set up on synthetic peptides known for their metal-chelating properties. Then, it was applied to soy and tilapia viscera protein hydrolysates. Their Cu2+-chelation capacity was, in addition, determined by UV-visible spectrophotometry as a reference method. The switchSENSE method has displayed a high sensitivity to evidence the presence of MCPs in both hydrolysates. Hence, we demonstrate for the first time that this newly introduced technology is a convenient methodology to screen protein hydrolysates in order to determine the presence of MCPs before launching time-consuming separations.
Collapse
Affiliation(s)
- Sarah El Hajj
- Université de Lorraine, CNRS, LRGP, Nancy F-54000, France
- Université de Lorraine, CITHEFOR, Vandoeuvre Les Nancy F-54505, France
| | - Cindy Tatiana Sepúlveda Rincón
- Université de Lorraine, CNRS, LRGP, Nancy F-54000, France
- Nutrition & Food Technology Group, Universidad de Antioquia, Medellín 050010, Colombia
| | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, Nancy F-54000, France
| | | | | | - Caroline Gaucher
- Université de Lorraine, CITHEFOR, Vandoeuvre Les Nancy F-54505, France
| | | |
Collapse
|
23
|
Kast F, Schwill M, Stüber JC, Pfundstein S, Nagy-Davidescu G, Rodríguez JMM, Seehusen F, Richter CP, Honegger A, Hartmann KP, Weber TG, Kroener F, Ernst P, Piehler J, Plückthun A. Engineering an anti-HER2 biparatopic antibody with a multimodal mechanism of action. Nat Commun 2021; 12:3790. [PMID: 34145240 PMCID: PMC8213836 DOI: 10.1038/s41467-021-23948-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
The receptor tyrosine kinase HER2 acts as oncogenic driver in numerous cancers. Usually, the gene is amplified, resulting in receptor overexpression, massively increased signaling and unchecked proliferation. However, tumors become frequently addicted to oncogenes and hence are druggable by targeted interventions. Here, we design an anti-HER2 biparatopic and tetravalent IgG fusion with a multimodal mechanism of action. The molecule first induces HER2 clustering into inactive complexes, evidenced by reduced mobility of surface HER2. However, in contrast to our earlier binders based on DARPins, clusters of HER2 are thereafter robustly internalized and quantitatively degraded. This multimodal mechanism of action is found only in few of the tetravalent constructs investigated, which must target specific epitopes on HER2 in a defined geometric arrangement. The inhibitory effect of our antibody as single agent surpasses the combination of trastuzumab and pertuzumab as well as its parental mAbs in vitro and it is effective in a xenograft model.
Collapse
Affiliation(s)
- Florian Kast
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- TOLREMO therapeutics AG, Muttenz, Switzerland
| | - Jakob C Stüber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Roche Innovation Center Munich, Penzberg, Germany
| | - Svende Pfundstein
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | | | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | | | | | | | | | - Patrick Ernst
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Dean's Office and Coordination Office of the Academic Medicine Zurich, University of Zurich, Zurich, Switzerland
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Espinosa JR, Galván M, Quiñones AS, Ayala JL, Ávila V, Durón SM. Electrochemical Resistive DNA Biosensor for the Detection of HPV Type 16. Molecules 2021; 26:molecules26113436. [PMID: 34198893 PMCID: PMC8200989 DOI: 10.3390/molecules26113436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a low-cost and rapid electrochemical resistive DNA biosensor based on the current relaxation method is described. A DNA probe, complementary to the specific human papillomavirus type 16 (HPV-16) sequence, was immobilized onto a screen-printed gold electrode. DNA hybridization was detected by applying a potential step of 30 mV to the system, composed of an external capacitor and the modified electrode DNA/gold, for 750 µs and then relaxed back to the OCP, at which point the voltage and current discharging curves are registered for 25 ms. From the discharging curves, the potential and current relaxation were evaluated, and by using Ohm's law, the charge transfer resistance through the DNA-modified electrode was calculated. The presence of a complementary sequence was detected by the change in resistance when the ssDNA is transformed in dsDNA due to the hybridization event. The target DNA concentration was detected in the range of 5 to 20 nM. The results showed a good fit to the regression equation ΔRtotal(Ω)=2.99 × [DNA]+81.55, and a detection limit of 2.39 nM was obtained. As the sensing approach uses a direct current, the electronic architecture of the biosensor is simple and allows for the separation of faradic and nonfaradaic contributions. The simple electrochemical resistive biosensor reported here is a good candidate for the point-of-care diagnosis of HPV at a low cost and in a short detection time.
Collapse
Affiliation(s)
- José R. Espinosa
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Col. Centro, Av. Ramón López Velarde 801. Zacatecas, Zacatecas C.P. 98000, Mexico
- Unidad Académica de Ingeniería I, Ingeniería Mecánica, Universidad Autónoma de Zacatecas, Col. Centro, Av. Ramón López Velarde 801. Zacatecas, Zacatecas C.P. 98000, Mexico
- Correspondence: (J.R.E.); (S.M.D.); Tel.:+52−4929256690 (ext. 4655) (S.M.D.)
| | - Marisol Galván
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
| | - Arturo S. Quiñones
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
| | - Jorge L. Ayala
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
| | - Verónica Ávila
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Ingeniería Ambiental, Zacatecas C.P. 98160, Mexico;
| | - Sergio M. Durón
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Edif. 6, Km 6 carr. Zacatecas-Guadalajara, Zacatecas C.P. 98160, Mexico; (M.G.); (A.S.Q.); (J.L.A.)
- Correspondence: (J.R.E.); (S.M.D.); Tel.:+52−4929256690 (ext. 4655) (S.M.D.)
| |
Collapse
|
25
|
Abstract
The continuous monitoring of proteins is a current challenge in medical diagnostics. A new electrochemical approach aiming to address this has been described. The method uses antibodies as a recognition element to achieve the real-time measurement of proteins in saliva in the mouth.
Collapse
Affiliation(s)
- Kevin J Cash
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO, USA
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA.
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
26
|
Reagentless biomolecular analysis using a molecular pendulum. Nat Chem 2021; 13:428-434. [PMID: 33686229 DOI: 10.1038/s41557-021-00644-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
The development of reagentless sensors that can detect molecular analytes in biological fluids could enable a broad range of applications in personalized health monitoring. However, only a limited set of molecular inputs can currently be detected using reagentless sensors. Here, we report a sensing mechanism that is compatible with the analysis of proteins that are important physiological markers of stress, allergy, cardiovascular health, inflammation and cancer. The sensing method is based on the motion of an inverted molecular pendulum that exhibits field-induced transport modulated by the presence of a bound analyte. We measure the sensor's electric field-mediated transport using the electron-transfer kinetics of an attached reporter molecule. Using time-resolved electrochemical measurements that enable unidirectional motion of our sensor, the presence of an analyte bound to our sensor complex can be tracked continuously in real time. We show that this sensing approach is compatible with making measurements in blood, saliva, urine, tears and sweat and that the sensors can collect data in situ in living animals.
Collapse
|
27
|
Müller-Landau H, Varela PF. Standard operation procedure for switchSENSE DRX systems. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:389-400. [PMID: 33772617 DOI: 10.1007/s00249-021-01519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
There is currently a large panel of technologies available to address molecular interactions in vitro. Each technology presents individual advantages and drawbacks, and it becomes challenging to choose which technology will be best suited for a molecular interaction of interest. Approaches can be broadly categorized as either microfluidic surface-bound methods (such as Surface Plasmon Resonance (SPR) or switchSENSE) or in-solution methods (such as Isothermal Titration Calorimetry (ITC) or MicroScale Thermophoresis (MST)). In-solution methods are advantageous in terms of sample preparation and ease of use as none of the binding partners are subjected to immobilization. On the other hand, surface-based techniques require only small amounts of immobilized interaction partner and provide off-rate characterization as unbound analytes can be removed from the surface to observe analyte dissociation. Here, a standard operating procedure (SOP) for the switchSENSE method is presented, which aims to guide new users through the process of a switchSENSE measurement, covering sample preparation, instrument and biochip handling as well as data acquisition and analysis. This guide will help researchers decide whether switchSENSE is the right method for their application as well as supporting novice users to get the most information out of a switchSENSE measurement. switchSENSE technology offers the unique advantage of a controlled DNA-based ligand surface within a microfluidic channel which allows the user to distribute specifically up to two different ligand molecules on the surface at a customized density and ratio. The technology offers multi-parameter characterization of binding kinetics, affinity, enzymatic activity, and changes in protein conformation.
Collapse
Affiliation(s)
| | - Paloma Fernández Varela
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Yousefi H, Mahmud A, Chang D, Das J, Gomis S, Chen JB, Wang H, Been T, Yip L, Coomes E, Li Z, Mubareka S, McGeer A, Christie N, Gray-Owen S, Cochrane A, Rini JM, Sargent EH, Kelley SO. Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. J Am Chem Soc 2021; 143:1722-1727. [PMID: 33481575 PMCID: PMC7857138 DOI: 10.1021/jacs.0c10810] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 02/07/2023]
Abstract
The development of new methods for direct viral detection using streamlined and ideally reagent-free assays is a timely and important, but challenging, problem. The challenge of combatting the COVID-19 pandemic has been exacerbated by the lack of rapid and effective methods to identify viral pathogens like SARS-CoV-2 on-demand. Existing gold standard nucleic acid-based approaches require enzymatic amplification to achieve clinically relevant levels of sensitivity and are not typically used outside of a laboratory setting. Here, we report reagent-free viral sensing that directly reads out the presence of viral particles in 5 minutes using only a sensor-modified electrode chip. The approach relies on a class of electrode-tethered sensors bearing an analyte-binding antibody displayed on a negatively charged DNA linker that also features a tethered redox probe. When a positive potential is applied, the sensor is transported to the electrode surface. Using chronoamperometry, the presence of viral particles and proteins can be detected as these species increase the hydrodynamic drag on the sensor. This report is the first virus-detecting assay that uses the kinetic response of a probe/virus complex to analyze the complexation state of the antibody. We demonstrate the performance of this sensing approach as a means to detect, within 5 min, the presence of the SARS-CoV-2 virus and its associated spike protein in test samples and in unprocessed patient saliva.
Collapse
Affiliation(s)
- Hanie Yousefi
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Alam Mahmud
- The
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S
3G4, Canada
| | - Dingran Chang
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jagotamoy Das
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Surath Gomis
- The
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S
3G4, Canada
| | - Jenise B. Chen
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Hansen Wang
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Terek Been
- Department
of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lily Yip
- Sunnybrook
Research Institute, Toronto, ON M4N 3N5, Canada
| | - Eric Coomes
- Division
of Infectious Disease, Department of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Zhijie Li
- Department
of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Allison McGeer
- Department
of Microbiology, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Natasha Christie
- Combined
Containment Level 3 Unit, University of
Toronto, Toronto, ON M5S 1A8, Canada
| | - Scott Gray-Owen
- Department
of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Combined
Containment Level 3 Unit, University of
Toronto, Toronto, ON M5S 1A8, Canada
| | - Alan Cochrane
- Department
of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James M. Rini
- Department
of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department
of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Edward H. Sargent
- The
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S
3G4, Canada
| | - Shana O. Kelley
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department
of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
29
|
Diversity of Omega Glutathione Transferases in mushroom-forming fungi revealed by phylogenetic, transcriptomic, biochemical and structural approaches. Fungal Genet Biol 2021; 148:103506. [PMID: 33450403 DOI: 10.1016/j.fgb.2020.103506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
The Omega class of glutathione transferases (GSTs) forms a distinct class within the cytosolic GST superfamily because most of them possess a catalytic cysteine residue. The human GST Omega 1 isoform was first characterized twenty years ago, but it took years of work to clarify the roles of the human isoforms. Concerning the kingdom of fungi, little is known about the cellular functions of Omega glutathione transferases (GSTOs), although they are widely represented in some of these organisms. In this study, we re-assess the phylogeny and the classification of GSTOs based on 240 genomes of mushroom-forming fungi (Agaricomycetes). We observe that the number of GSTOs is not only extended in the order of Polyporales but also in other orders such as Boletales. Our analysis leads to a new classification in which the fungal GSTOs are divided into two Types A and B. The catalytic residue of Type-A is either cysteine or serine, while that of Type-B is cysteine. The present study focuses on Trametes versicolor GSTO isoforms that possess a catalytic cysteine residue. Transcriptomic data show that Type-A GSTOs are constitutive enzymes while Type-B are inducible ones. The crystallographic analysis reveals substantial structural differences between the two types while they have similar biochemical profiles in the tested conditions. Additionally, these enzymes have the ability to bind antioxidant molecules such as wood polyphenols in two possible binding sites as observed from X-ray structures. The multiplication of GSTOs could allow fungal organisms to adapt more easily to new environments.
Collapse
|
30
|
Schenckbecher E, Bec G, Sakamoto T, Meyer B, Ennifar E. Biophysical Studies of the Binding of Viral RNA with the 80S Ribosome Using switchSENSE. Methods Mol Biol 2021; 2263:341-350. [PMID: 33877606 DOI: 10.1007/978-1-0716-1197-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Translation initiation, in both eukaryotes and bacteria, requires essential elements such as mRNA, ribosome , initiator tRNA, and a set of initiation factors. For each domain of life, canonical mechanisms and signals are observed to initiate protein synthesis. However, other initiation mechanism can be used, especially in viral mRNAs. Some viruses hijack cellular machinery to translate some of their mRNAs through a noncanonical initiation pathway using internal ribosome entry site (IRES), a highly structured RNAs which can directly recruit the ribosome with a restricted set of initiation factors, and in some cases even without cap and initiator tRNA. In this chapter, we describe the use of biosensors relying on electro-switchable nanolevers using the switchSENSE® technology, to investigate kinetics of the intergenic (IGR) IRES of the cricket paralysis virus (CrPV) binding to 80S yeast ribosome . This study provides a proof of concept for the application of this method on large complexes.
Collapse
MESH Headings
- Biophysical Phenomena
- Biosensing Techniques/methods
- Dicistroviridae/physiology
- Internal Ribosome Entry Sites
- Kinetics
- Models, Molecular
- Proof of Concept Study
- Protein Biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Emma Schenckbecher
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, Strasbourg, France
| | - Guillaume Bec
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, Strasbourg, France
| | - Taiichi Sakamoto
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, Strasbourg, France
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Benoit Meyer
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, Strasbourg, France
| | - Eric Ennifar
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
31
|
Bchini R, Girardet JM, Sormani R, Gelhaye E, Morel-Rouhier M. Oxidized glutathione promotes association between eukaryotic translation elongation factor 1Bγ and Ure2p glutathione transferase from Phanerochaete chrysosporium. FEBS J 2020; 288:2956-2969. [PMID: 33124131 DOI: 10.1111/febs.15614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 11/27/2022]
Abstract
The eukaryotic translation elongation factor 1Bγ (eEF1Bγ) is an atypical member of the glutathione transferase (GST) superfamily. Contrary to more classical GSTs having a role in toxic compound detoxification, eEF1Bγ is suggested to act as a scaffold protein, anchoring the elongation factor complex EF1B to the endoplasmic reticulum. In this study, we show that eEF1Bγ from the basidiomycete Phanerochaete chrysosporium is fully active as a glutathione transferase in vitro and undergoes conformational changes upon binding of oxidized glutathione. Using real-time analyses of biomolecular interactions, we show that GSSG allows eEF1Bγ to physically interact with other GSTs from the Ure2p class, opening new perspectives for a better understanding of the role of eEF1Bγ in cellular oxidative stress response.
Collapse
|
32
|
Staffler R, Pasternack R, Hils M, Kaiser W, Möller FM. Nucleotide binding kinetics and conformational change analysis of tissue transglutaminase with switchSENSE. Anal Biochem 2020; 605:113719. [PMID: 32697952 DOI: 10.1016/j.ab.2020.113719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023]
Abstract
Function, activity, and interactions of proteins crucially depend on their three-dimensional structure and are often regulated by effector binding and environmental changes. Tissue transglutaminase (Transglutaminase 2, TG2) is a multifunctional protein, allosterically regulated by nucleotides and Ca2+ ions, which trigger opposing conformational changes. Here we introduce switchSENSE as a versatile tool for TG2 characterization and provide novel insights into protein conformation as well as analyte binding kinetics. For the first time, we succeeded in measuring the kinetic rate constants and affinities (kon, koff, KD) for guanosine nucleotides (GMP, GDP, GTP, GTPγS). Further, the conformational changes induced by GDP, Ca2+ and the covalent inhibitor Z-DON were observed by changes in TG2's hydrodynamic diameter. We confirmed the well-known compaction by guanosine nucleotides and extension by Ca2+, and provide evidence for TG2 conformations so far not described by structural analysis. Moreover, we analyze the influence of the peptidic Z-DON inhibitor and the R580A mutation on the conformational responsiveness of TG2 to its natural effectors. In summary, this work shows how the combination of structural and kinetic information obtained by switchSENSE opens new perspectives for the characterization of conformationally active proteins and their interactions with ligands, e.g. potential drug candidates.
Collapse
Affiliation(s)
- Regina Staffler
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152, Martinsried, Germany
| | | | - Martin Hils
- Zedira GmbH, Roesslerstrasse 83, 64293, Darmstadt, Germany
| | - Wolfgang Kaiser
- Dynamic Biosensors GmbH, Lochhamer Str. 15, 82152, Martinsried, Germany
| | | |
Collapse
|
33
|
Vicente CM, Girardet JM, Hôtel L, Aigle B. Molecular Dynamics to Elucidate the DNA-Binding Activity of AlpZ, a Member of the Gamma-Butyrolactone Receptor Family in Streptomyces ambofaciens. Front Microbiol 2020; 11:1255. [PMID: 32714286 PMCID: PMC7343708 DOI: 10.3389/fmicb.2020.01255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cláudia M. Vicente
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- *Correspondence: Cláudia M. Vicente,
| | | | | | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Bertrand Aigle,
| |
Collapse
|
34
|
Daub H, Traxler L, Ismajli F, Groitl B, Itzen A, Rant U. The trimer to monomer transition of Tumor Necrosis Factor-Alpha is a dynamic process that is significantly altered by therapeutic antibodies. Sci Rep 2020; 10:9265. [PMID: 32518229 PMCID: PMC7283243 DOI: 10.1038/s41598-020-66123-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
The cytokine tumor necrosis factor-alpha (TNF-α) readily forms homotrimers at sub-nM concentrations to promote inflammation. For the treatment of inflammatory diseases with upregulated levels of TNF-α, a number of therapeutic antibodies are currently used as scavengers to reduce the active TNF-α concentration in patients. Despite their clinical success, the mode-of-action of different antibody formats with regard to a stabilization of the trimeric state is not entirely understood. Here, we use a biosensor with dynamic nanolevers to analyze the monomeric and trimeric states of TNF-α together with the binding kinetics of therapeutic biologics. The intrinsic trimer-to-monomer decay rate k = 1.7 × 10−3 s−1 could be measured directly using a microfluidic system, and antibody binding affinities were analyzed in the pM range. Trimer stabilization effects are quantified for Adalimumab, Infliximab, Etanercept, Certolizumab, Golimumab for bivalent and monovalent binding formats. Clear differences in trimer stabilization are observed, which may provide a deeper insight into the mode-of-action of TNF-α scavengers.
Collapse
Affiliation(s)
- Herwin Daub
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany. .,Center for Integrated Protein Science Munich, Technische Universität München, Department Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany.
| | - Lukas Traxler
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Fjolla Ismajli
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Bastian Groitl
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich, Technische Universität München, Department Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany.,Department of Biochemistry and Signaltransduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Ulrich Rant
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany
| |
Collapse
|
35
|
Wenskowsky L, Wagner M, Reusch J, Schreuder H, Matter H, Opatz T, Petry SM. Resolving Binding Events on the Multifunctional Human Serum Albumin. ChemMedChem 2020; 15:738-743. [PMID: 32162429 PMCID: PMC7318646 DOI: 10.1002/cmdc.202000069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Indexed: 12/29/2022]
Abstract
Physiological processes rely on initial recognition events between cellular components and other molecules or modalities. Biomolecules can have multiple sites or mode of interaction with other molecular entities, so that a resolution of the individual binding events in terms of spatial localization as well as association and dissociation kinetics is required for a meaningful description. Here we describe a trichromatic fluorescent binding- and displacement assay for simultaneous monitoring of three individual binding sites in the important transporter and binding protein human serum albumin. Independent investigations of binding events by X-ray crystallography and time-resolved dynamics measurements (switchSENSE technology) confirm the validity of the assay, the localization of binding sites and furthermore reveal conformational changes associated with ligand binding. The described assay system allows for the detailed characterization of albumin-binding drugs and is therefore well-suited for prediction of drug-drug and drug-food interactions. Moreover, conformational changes, usually associated with binding events, can also be analyzed.
Collapse
Affiliation(s)
- Lea Wenskowsky
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | - Michael Wagner
- Sanofi-Aventis Deutschland GmbHIndustriepark Höchst65926Frankfurt am MainGermany
| | - Johannes Reusch
- Dynamic Biosensors GmbHLochhamer Straße 1582152Martinsried/PlaneggGermany
| | - Herman Schreuder
- Sanofi-Aventis Deutschland GmbHIndustriepark Höchst65926Frankfurt am MainGermany
| | - Hans Matter
- Sanofi-Aventis Deutschland GmbHIndustriepark Höchst65926Frankfurt am MainGermany
| | - Till Opatz
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | | |
Collapse
|
36
|
Schiedel M, Daub H, Itzen A, Jung M. Validation of the Slow Off-Kinetics of Sirtuin-Rearranging Ligands (SirReals) by Means of Label-Free Electrically Switchable Nanolever Technology. Chembiochem 2020; 21:1161-1166. [PMID: 31692222 PMCID: PMC7217041 DOI: 10.1002/cbic.201900527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
We have discovered the sirtuin-rearranging ligands (SirReals) to be highly potent and selective inhibitors of the NAD+ -dependent lysine deacetylase Sirt2. Using a biotinylated SirReal in combination with biolayer interferometry, we previously observed a slow dissociation rate of the inhibitor-enzyme complex; this had been postulated to be the key to the high affinity and selectivity of SirReals. However, to attach biotin to the SirReal core, we introduced a triazole as a linking moiety; this was shown by X-ray co-crystallography to interact with Arg97 of the cofactor binding loop. Herein, we aim to elucidate whether the observed long residence time of the SirReals is induced mainly by triazole incorporation or is an inherent characteristic of the SirReal inhibitor core. We used the novel label-free switchSENSE® technology, which is based on electrically switchable DNA nanolevers, to prove that the long residence time of the SirReals is indeed caused by the core scaffold.
Collapse
Affiliation(s)
- Matthias Schiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany.,Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| | - Herwin Daub
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, 82152, Martinsried, Germany.,Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstrasse 4, 85748, Garching, Germany.,Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
37
|
Ma G, Wan Z, Zhu H, Tao N. Roles of entropic and solvent damping forces in the dynamics of polymer tethered nanoparticles and implications for single molecule sensing. Chem Sci 2019; 11:1283-1289. [PMID: 33376589 PMCID: PMC7747464 DOI: 10.1039/c9sc05434k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023] Open
Abstract
Tethering a particle to a surface with a single molecule allows detection of the molecule and analysis of molecular conformations and interactions.
Tethering a particle to a surface with a single molecule allows detection of the molecule and analysis of molecular conformations and interactions. Understanding the dynamics of the system is critical to all applications. Here we present a plasmonic imaging study of two important forces that govern the dynamics. One is entropic force arising from the conformational change of the molecular tether, and the other is solvent damping on the particle and the molecule. We measure the response of the particle by driving it into oscillation with an alternating electric field. By varying the field frequency, we study the dynamics on different time scales. We also vary the type of the tether molecule (DNA and polyethylene glycol), size of the particle, and viscosity of the solvent, and describe the observations with a model. The study allows us to derive a single parameter to predict the relative importance of the entropic and damping forces. The findings provide insights into single molecule studies using not only tethered particles, but also other approaches, including force spectroscopy using atomic force microscopy and nanopores.
Collapse
Affiliation(s)
- Guangzhong Ma
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA .
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA . .,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , USA
| | - Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Nongjian Tao
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA . .,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , USA
| |
Collapse
|
38
|
CMT disease severity correlates with mutation-induced open conformation of histidyl-tRNA synthetase, not aminoacylation loss, in patient cells. Proc Natl Acad Sci U S A 2019; 116:19440-19448. [PMID: 31501329 DOI: 10.1073/pnas.1908288116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aminoacyl-transfer RNA (tRNA) synthetases (aaRSs) are the largest protein family causatively linked to neurodegenerative Charcot-Marie-Tooth (CMT) disease. Dominant mutations cause the disease, and studies of CMT disease-causing mutant glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase (TyrRS) showed their mutations create neomorphic structures consistent with a gain-of-function mechanism. In contrast, based on a haploid yeast model, loss of aminoacylation function was reported for CMT disease mutants in histidyl-tRNA synthetase (HisRS). However, neither that nor prior work of any CMT disease-causing aaRS investigated the aminoacylation status of tRNAs in the cellular milieu of actual patients. Using an assay that interrogated aminoacylation levels in patient cells, we investigated a HisRS-linked CMT disease family with the most severe disease phenotype. Strikingly, no difference in charged tRNA levels between normal and diseased family members was found. In confirmation, recombinant versions of 4 other HisRS CMT disease-causing mutants showed no correlation between activity loss in vitro and severity of phenotype in vivo. Indeed, a mutation having the most detrimental impact on activity was associated with a mild disease phenotype. In further work, using 3 independent biophysical analyses, structural opening (relaxation) of mutant HisRSs at the dimer interface best correlated with disease severity. In fact, the HisRS mutation in the severely afflicted patient family caused the largest degree of structural relaxation. These data suggest that HisRS-linked CMT disease arises from open conformation-induced mechanisms distinct from loss of aminoacylation.
Collapse
|
39
|
Kaminska I, Bohlen J, Rocchetti S, Selbach F, Acuna GP, Tinnefeld P. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners. NANO LETTERS 2019; 19:4257-4262. [PMID: 31251640 DOI: 10.1021/acs.nanolett.9b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite the thorough investigation of graphene since 2004, altering its surface chemistry and reproducible functionalization remain challenging. This hinders fabrication of more complex hybrid materials with controlled architectures, and as a consequence the development of sensitive and reliable sensors and biological assays. In this contribution, we introduce DNA origami structures as nanopositioners for placing single dye molecules at controlled distances from graphene. The measurements of fluorescence intensity and lifetime of single emitters carried out for distances ranging from 3 to 58 nm confirmed the d-4 dependence of the excitation energy transfer to graphene. Moreover, we determined the characteristic distance for 50% efficiency of the energy transfer from single dyes to graphene to be 17.7 nm. Using pyrene molecules as a glue to immobilize DNA origami nanostructures of various shape on graphene opens new possibilities to develop graphene-based biophysics and biosensing.
Collapse
Affiliation(s)
- I Kaminska
- Institute of Physical Chemistry of the Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - J Bohlen
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - S Rocchetti
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - F Selbach
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| | - G P Acuna
- Department of Physics , Université de Fribourg , Ch. du Musée 3 , CH-1700 Fribourg , Switzerland
| | - P Tinnefeld
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , 80539 München , Germany
| |
Collapse
|
40
|
Lakemeyer M, Bertosin E, Möller F, Balogh D, Strasser R, Dietz H, Sieber SA. Tailored Peptide Phenyl Esters Block ClpXP Proteolysis by an Unusual Breakdown into a Heptamer–Hexamer Assembly. Angew Chem Int Ed Engl 2019; 58:7127-7132. [DOI: 10.1002/anie.201901056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Markus Lakemeyer
- Center for Integrated Protein Science (CIPSM) at theDepartment of ChemistryTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Eva Bertosin
- Physics Department and Institute for Advanced StudyTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| | | | - Dóra Balogh
- Center for Integrated Protein Science (CIPSM) at theDepartment of ChemistryTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH Lochhamerstr. 15 82152 Planegg Germany
| | - Hendrik Dietz
- Physics Department and Institute for Advanced StudyTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Stephan A. Sieber
- Center for Integrated Protein Science (CIPSM) at theDepartment of ChemistryTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
41
|
Lakemeyer M, Bertosin E, Möller F, Balogh D, Strasser R, Dietz H, Sieber SA. Blockade der ClpXP‐vermittelten Proteolyse mit maßgeschneiderten Peptid‐Phenylestern durch den ungewöhnlichen Zerfall in eine Heptamer‐Hexamer‐Anordnung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Markus Lakemeyer
- Center for Integrated Protein Science (CIPSM) amDepartment ChemieTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Eva Bertosin
- Physik Department und Institute for Advanced StudyTechnische Universität München Am Coulombwall 4a 85748 Garching Deutschland
| | - Friederike Möller
- Dynamic Biosensors GmbH Lochhamerstraße 15 82152 Planegg Deutschland
| | - Dóra Balogh
- Center for Integrated Protein Science (CIPSM) amDepartment ChemieTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| | - Ralf Strasser
- Dynamic Biosensors GmbH Lochhamerstraße 15 82152 Planegg Deutschland
| | - Hendrik Dietz
- Physik Department und Institute for Advanced StudyTechnische Universität München Am Coulombwall 4a 85748 Garching Deutschland
| | - Stephan A. Sieber
- Center for Integrated Protein Science (CIPSM) amDepartment ChemieTechnische Universität München Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
42
|
Häußermann K, Young G, Kukura P, Dietz H. Dissecting FOXP2 Oligomerization and DNA Binding. Angew Chem Int Ed Engl 2019; 58:7662-7667. [PMID: 30887622 PMCID: PMC6986896 DOI: 10.1002/anie.201901734] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 01/17/2023]
Abstract
Protein–protein and protein–substrate interactions are critical to function and often depend on factors that are difficult to disentangle. Herein, a combined biochemical and biophysical approach, based on electrically switchable DNA biochips and single‐molecule mass analysis, was used to characterize the DNA binding and protein oligomerization of the transcription factor, forkhead box protein P2 (FOXP2). FOXP2 contains domains commonly involved in nucleic‐acid binding and protein oligomerization, such as a C2H2‐zinc finger (ZF), and a leucine zipper (LZ), whose roles in FOXP2 remain largely unknown. We found that the LZ mediates FOXP2 dimerization via coiled‐coil formation but also contributes to DNA binding. The ZF contributes to protein dimerization when the LZ coiled‐coil is intact, but it is not involved in DNA binding. The forkhead domain (FHD) is the key driver of DNA binding. Our data contributes to understanding the mechanisms behind the transcriptional activity of FOXP2.
Collapse
Affiliation(s)
- Katharina Häußermann
- Physik Department & Munich School of Bioengineering, Technische Universität München, Am Coulombwall 4a, 85784, Garching, Germany
| | - Gavin Young
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Hendrik Dietz
- Physik Department & Munich School of Bioengineering, Technische Universität München, Am Coulombwall 4a, 85784, Garching, Germany
| |
Collapse
|
43
|
Häußermann K, Young G, Kukura P, Dietz H. Dissecting FOXP2 Oligomerization and DNA Binding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Katharina Häußermann
- Physik Department & Munich School of BioengineeringTechnische Universität München Am Coulombwall 4a 85784 Garching Germany
| | - Gavin Young
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Philipp Kukura
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Hendrik Dietz
- Physik Department & Munich School of BioengineeringTechnische Universität München Am Coulombwall 4a 85784 Garching Germany
| |
Collapse
|
44
|
Denichenko P, Mogilevsky M, Cléry A, Welte T, Biran J, Shimshon O, Barnabas GD, Danan-Gotthold M, Kumar S, Yavin E, Levanon EY, Allain FH, Geiger T, Levkowitz G, Karni R. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat Commun 2019; 10:1590. [PMID: 30962446 PMCID: PMC6453957 DOI: 10.1038/s41467-019-09523-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Alternative splicing, a fundamental step in gene expression, is deregulated in many diseases. Splicing factors (SFs), which regulate this process, are up- or down regulated or mutated in several diseases including cancer. To date, there are no inhibitors that directly inhibit the activity of SFs. We designed decoy oligonucleotides, composed of several repeats of a RNA motif, which is recognized by a single SF. Here we show that decoy oligonucleotides targeting splicing factors RBFOX1/2, SRSF1 and PTBP1, can specifically bind to their respective SFs and inhibit their splicing and biological activities both in vitro and in vivo. These decoy oligonucleotides present an approach to specifically downregulate SF activity in conditions where SFs are either up-regulated or hyperactive. Alternative splicing, critical for gene expression, is deregulated in many diseases. Here the authors develop decoy oligonucleotides to specifically downregulate splicing factors activity.
Collapse
Affiliation(s)
- Polina Denichenko
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, ETH Zurich, Hönggerbergring 64, 8093, Zurich, Switzerland
| | - Thomas Welte
- Dynamic Biosensors, GmbH, Lochhamer Strasse 15, 82152, Martinsried/Planegg, Germany
| | - Jakob Biran
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Odelia Shimshon
- Department of Medicinal Chemistry, Institute for Drug Research, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Miri Danan-Gotthold
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Saran Kumar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Eylon Yavin
- Department of Medicinal Chemistry, Institute for Drug Research, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Frédéric H Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, Hönggerbergring 64, 8093, Zurich, Switzerland
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 9112001, Israel.
| |
Collapse
|
45
|
Webster MW, Chen YH, Stowell JAW, Alhusaini N, Sweet T, Graveley BR, Coller J, Passmore LA. mRNA Deadenylation Is Coupled to Translation Rates by the Differential Activities of Ccr4-Not Nucleases. Mol Cell 2019; 70:1089-1100.e8. [PMID: 29932902 PMCID: PMC6024076 DOI: 10.1016/j.molcel.2018.05.033] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023]
Abstract
Translation and decay of eukaryotic mRNAs is controlled by shortening of the poly(A) tail and release of the poly(A)-binding protein Pab1/PABP. The Ccr4-Not complex contains two exonucleases—Ccr4 and Caf1/Pop2—that mediate mRNA deadenylation. Here, using a fully reconstituted biochemical system with proteins from the fission yeast Schizosaccharomyces pombe, we show that Pab1 interacts with Ccr4-Not, stimulates deadenylation, and differentiates the roles of the nuclease enzymes. Surprisingly, Pab1 release relies on Ccr4 activity. In agreement with this, in vivo experiments in budding yeast show that Ccr4 is a general deadenylase that acts on all mRNAs. In contrast, Caf1 only trims poly(A) not bound by Pab1. As a consequence, Caf1 is a specialized deadenylase required for the selective deadenylation of transcripts with lower rates of translation elongation and reduced Pab1 occupancy. These findings reveal a coupling between the rates of translation and deadenylation that is dependent on Pab1 and Ccr4-Not. Poly(A)-binding protein is efficiently released by Ccr4-Not nuclease activity Ccr4, but not Caf1, removes poly(A) tails bound to Pab1 Ccr4 acts on all transcripts and Caf1 acts on transcripts with low codon optimality Deadenylation by Ccr4-Not connects translation with mRNA stability
Collapse
Affiliation(s)
| | - Ying-Hsin Chen
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | - Najwa Alhusaini
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Thomas Sweet
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | - Brenton R Graveley
- Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jeff Coller
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106-4960, USA.
| | | |
Collapse
|
46
|
Yang Y, Back CR, Gräwert MA, Wahid AA, Denton H, Kildani R, Paulin J, Wörner K, Kaiser W, Svergun DI, Sartbaeva A, Watts AG, Marchbank KJ, van den Elsen JMH. Utilization of Staphylococcal Immune Evasion Protein Sbi as a Novel Vaccine Adjuvant. Front Immunol 2019; 9:3139. [PMID: 30687332 PMCID: PMC6336717 DOI: 10.3389/fimmu.2018.03139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
Co-ligation of the B cell antigen receptor with complement receptor 2 on B-cells via a C3d-opsonised antigen complex significantly lowers the threshold required for B cell activation. Consequently, fusions of antigens with C3d polymers have shown great potential in vaccine design. However, these linear arrays of C3d multimers do not mimic the natural opsonisation of antigens with C3d. Here we investigate the potential of using the unique complement activating characteristics of Staphylococcal immune-evasion protein Sbi to develop a pro-vaccine approach that spontaneously coats antigens with C3 degradation products in a natural way. We show that Sbi rapidly triggers the alternative complement pathway through recruitment of complement regulators, forming tripartite complexes that act as competitive antagonists of factor H, resulting in enhanced complement consumption. These functional results are corroborated by the structure of the complement activating Sbi-III-IV:C3d:FHR-1 complex. Finally, we demonstrate that Sbi, fused with Mycobacterium tuberculosis antigen Ag85b, causes efficient opsonisation with C3 fragments, thereby enhancing the immune response significantly beyond that of Ag85b alone, providing proof of concept for our pro-vaccine approach.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Catherine R Back
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Melissa A Gräwert
- Hamburg Unit, European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Ayla A Wahid
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Harriet Denton
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Rebecca Kildani
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Joshua Paulin
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | | | - Dmitri I Svergun
- Hamburg Unit, European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Asel Sartbaeva
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Andrew G Watts
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | |
Collapse
|
47
|
Webster MW, Stowell JA, Passmore LA. RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. eLife 2019; 8:40670. [PMID: 30601114 PMCID: PMC6340701 DOI: 10.7554/elife.40670] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
The Ccr4-Not complex removes mRNA poly(A) tails to regulate eukaryotic mRNA stability and translation. RNA-binding proteins contribute to specificity by interacting with both Ccr4-Not and target mRNAs, but this is not fully understood. Here, we reconstitute accelerated and selective deadenylation of RNAs containing AU-rich elements (AREs) and Pumilio-response elements (PREs). We find that the fission yeast homologues of Tristetraprolin/TTP and Pumilio/Puf (Zfs1 and Puf3) interact with Ccr4-Not via multiple regions within low-complexity sequences, suggestive of a multipartite interface that extends beyond previously defined interactions. Using a two-color assay to simultaneously monitor poly(A) tail removal from different RNAs, we demonstrate that Puf3 can distinguish between RNAs of very similar sequence. Analysis of binding kinetics reveals that this is primarily due to differences in dissociation rate constants. Consequently, motif quality is a major determinant of mRNA stability for Puf3 targets in vivo and can be used for the prediction of mRNA targets. When a cell needs to make a particular protein, it first copies the instructions from the matching gene into a molecule known as a messenger RNA (or an mRNA for short). The more mRNA copies it makes, the more protein it can produce. A simple way to control protein production is to raise or lower the number of these mRNA messages, and living cells have lots of ways to make this happen. One method involves codes built into the mRNAs themselves. The mRNAs can carry short sequences of genetic letters that can trigger their own destruction. Known as “destabilising motifs”, these sequences attract the attention of a group of proteins called Ccr4-Not. Together these proteins shorten the end of the mRNAs, preparing the molecules for degradation. But how does Ccr4-Not choose which mRNAs to target? Different mRNAs carry different destabilising motifs. This means that when groups of mRNAs all carry the same motif, the cell can destroy them all together. This allows the cell to switch networks of related genes off together without affecting the mRNAs it still needs. What is puzzling is that the destabilising motifs that control different groups of mRNAs can be very similar, and scientists do not yet know how Ccr4-Not can tell the difference, or what triggers it to start breaking down groups of mRNAs. To find out, Webster et al. recreated the system in the laboratory using purified molecules. The test-tube system confirmed previous suggestions that a protein called Puf3 forms a bridge between Ccr4-Not and mRNAs. It acts as a tether, recognising a destabilising motif and linking it to Ccr4-Not. Labelling different mRNAs with two colours of fluorescent dye showed how Puf3 helps the cell to choose which to destroy. Puf3 allows Ccr4-Not to select specific mRNAs from a mixture of molecules. Puf3 could distinguish between mRNAs that differed in a single letter of genetic code. When it matched with the wrong mRNA, it disconnected much faster than when it matched with the right one, preventing Ccr4-Not from linking up. The ability to destroy specific mRNA messages is critical for cell survival. It happens when cells divide, during immune responses such as inflammation, and in early development. Understanding the targets of tethers like Puf3 could help scientists to predict which genes will switch off and when. This could reveal genes that work together, helping to unravel their roles inside cells.
Collapse
Affiliation(s)
| | | | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
48
|
Hampel PA, Strasser R, Fischer F, Rant U. Assembly and Characterization of a Slingshot DNA Nanostructure for the Analysis of Bivalent and Bispecific Analytes with Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14796-14801. [PMID: 30269507 DOI: 10.1021/acs.langmuir.8b02124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The characterization of novel therapeutic antibodies with multivalent or multispecific binding sites requires new measurement modalities for biosensors, to discriminate the engagement of antigens via one, two, or even more binding moieties. The presentation of antigens on a sensor surface in a well-controlled spatial arrangement is a prerequisite for the successful interpretation of binding kinetics measurements of multivalent analytes, but the adjustment of defined distances between immobilized ligands is difficult to achieve in state-of-the-art biosensor systems. Here, we introduce a simple DNA nanostructure resembling a slingshot, which can be configured with two identical or two different antigens (bivalent or bispecific), which are spaced at a defined distance. We characterize the slingshot structure with a chip-based biosensor using electrically switchable DNA nanolevers and demonstrate that bivalent and monovalent antibodies selectively interact with slingshots that have been functionalized with two identical or two different antigens, respectively. The dissociation kinetics are quantified in real-time measurements and we show that the slingshot structure enables a clear differentiation between affinity and avidity effects.
Collapse
Affiliation(s)
- Paul A Hampel
- Dynamic Biosensors GmbH , Martinsried 82152 , Germany
- Technische Universität München , Munich 80333 , Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH , Martinsried 82152 , Germany
| | - Frank Fischer
- Dynamic Biosensors GmbH , Martinsried 82152 , Germany
| | - Ulrich Rant
- Dynamic Biosensors GmbH , Martinsried 82152 , Germany
| |
Collapse
|
49
|
Kyriakou E, Schmidt S, Dodd GT, Pfuhlmann K, Simonds SE, Lenhart D, Geerlof A, Schriever SC, De Angelis M, Schramm KW, Plettenburg O, Cowley MA, Tiganis T, Tschöp MH, Pfluger PT, Sattler M, Messias AC. Celastrol Promotes Weight Loss in Diet-Induced Obesity by Inhibiting the Protein Tyrosine Phosphatases PTP1B and TCPTP in the Hypothalamus. J Med Chem 2018; 61:11144-11157. [PMID: 30525586 DOI: 10.1021/acs.jmedchem.8b01224] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 μg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Stefanie Schmidt
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia
| | - Katrin Pfuhlmann
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Division of Metabolic Diseases , Technische Universität München , 80333 Munich , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Stephanie E Simonds
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Physiology , Monash University , Victoria 3800 , Australia
| | - Dominik Lenhart
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany.,Institute of Medicinal Chemistry , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Arie Geerlof
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Meri De Angelis
- Molecular EXposomics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Karl-Werner Schramm
- Molecular EXposomics , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute of Organic Chemistry , Leibniz Universität Hannover , 30167 Hannover , Germany
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Physiology , Monash University , Victoria 3800 , Australia
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology , Monash University , Victoria 3800 , Australia.,Peter MacCallum Cancer Centre , Melbourne , Victoria 3000 , Australia
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Division of Metabolic Diseases , Technische Universität München , 80333 Munich , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Institute for Diabetes and Obesity , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,German Center for Diabetes Research (DZD) , 85764 Neuherberg , Germany
| | - Michael Sattler
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| | - Ana C Messias
- Institute of Structural Biology , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry , Technical University of Munich , 85747 Garching , Germany
| |
Collapse
|
50
|
Nemoz C, Ropars V, Frit P, Gontier A, Drevet P, Yu J, Guerois R, Pitois A, Comte A, Delteil C, Barboule N, Legrand P, Baconnais S, Yin Y, Tadi S, Barbet-Massin E, Berger I, Le Cam E, Modesti M, Rothenberg E, Calsou P, Charbonnier JB. XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nat Struct Mol Biol 2018; 25:971-980. [PMID: 30291363 PMCID: PMC6234012 DOI: 10.1038/s41594-018-0133-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to the ends of DNA double-strand breaks and recruits factors of the non-homologous end-joining (NHEJ) repair pathway through molecular interactions that remain unclear. We have determined crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBM motifs bind remote sites of the Ku80 α/β domain. The X-KBM occupies an internal pocket formed by an unprecedented large outward rotation of the Ku80 α/β domain. We observe independent recruitment of the APLF-interacting protein XRCC4 and of XLF to laser-irradiated sites via binding of A- and X-KBMs, respectively, to Ku80. Finally, we show that mutation of the X-KBM and A-KBM binding sites in Ku80 compromises both the efficiency and accuracy of end joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchor points to build the intricate interaction network required for NHEJ.
Collapse
Affiliation(s)
- Clement Nemoz
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Amandine Gontier
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Drevet
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurelien Pitois
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Audrey Comte
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christine Delteil
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France
| | - Pierre Legrand
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
| | - Sonia Baconnais
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yandong Yin
- New York University School of Medicine, Perlmutter Cancer Center, New York, USA
| | - Satish Tadi
- Cancer Research Center of Marseille, CNRS UMR 7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | | | - Imre Berger
- BrisSynBio Centre, School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Eric Le Cam
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR 7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Eli Rothenberg
- New York University School of Medicine, Perlmutter Cancer Center, New York, USA
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre le Cancer 2018, Toulouse, France.
| | - Jean Baptiste Charbonnier
- Institute for Integrative Biology of the Cell, Institute Joliot, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|