1
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Jo G, Park Y, Park MH, Hyun H. Rational Design of a Small Molecular Near-Infrared Fluorophore for Improved In Vivo Fluorescence Imaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7227. [PMID: 38005156 PMCID: PMC10672724 DOI: 10.3390/ma16227227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The near-infrared (NIR) fluorescence imaging modality has great potential for application in biomedical imaging research owing to its unique characteristics, such as low tissue autofluorescence and noninvasive visualization with high spatial resolution. Although a variety of NIR fluorophores are continuously reported, the commercially available NIR fluorophores are still limited, owing to complex synthetic processes and poor physicochemical properties. To address this issue, a small molecular NIR fluorophore (SMF800) was designed and developed in the present work to improve in vivo target-specific fluorescence imaging. After conjugation with pamidronate (PAM) and bovine serum albumin (BSA), the SMF800 conjugates exhibited successful in vivo targeting in bone and tumor tissues with low background uptake, respectively. The improved in vivo performance of the SMF800 conjugate demonstrated that the small molecular NIR fluorophore SMF800 can be widely used in a much broader range of imaging applications. The structure of SMF800, which was developed by considering two important physicochemical properties, water solubility and conjugatability, is first introduced. Therefore, this work suggests a simple and rational approach to design small, hydrophilic, and conjugatable NIR fluorophores for targeted bioimaging.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
3
|
Sharma AK. Current Trends in Nanotheranostics: A Concise Review on Bioimaging and Smart Wearable Technology. Nanotheranostics 2023; 7:258-269. [PMID: 37064611 PMCID: PMC10093415 DOI: 10.7150/ntno.82886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The area of interventional nanotheranostics combines the use of interventional procedures with nanotechnology for the detection and treatment of physiological disorders. Using catheters or endoscopes, for example, interventional techniques make use of minimally invasive approaches to diagnose and treat medical disorders. It is feasible to increase the precision of these approaches and potency by integrating nanotechnology. To visualize and target various parts of the body, such as tumors or obstructed blood veins, one can utilize nanoscale probes or therapeutic delivery systems. Interventional nanotheranostics offers targeted, minimally invasive therapies that can reduce side effects and enhance patient outcomes, and it has the potential to alter the way that many medical illnesses are handled. Clinical enrollment and implementation of such laboratory scale theranostics approach in medical practice is promising for the patients where the user can benefit by tracking its physiological state. This review aims to introduce the most recent advancements in the field of clinical imaging and diagnostic techniques as well as newly developed on-body wearable devices to deliver therapeutics and monitor its due alleviation in the biological milieu.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Yan J, Wang Y, Mu Z, Han X, Bi L, Wang X, Song P, Kang Y, Wang L, Zhang X, Wang Y, Zhang H. Gold Nanobipyramid-Mediated Apoptotic Camouflage of Adipocytes for Obesity Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207686. [PMID: 36502507 DOI: 10.1002/adma.202207686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Obesity treatment is a global public health challenge due to inadequate weight loss and weight regain even after endeavors with multimodal treatments. Considering the abundance of resident macrophages in adipose tissues, precise regulation of the interactions between macrophages and adipocytes may provide chances for immunotherapy of obesity. Herein, inspired by the phagocytosis of macrophages to clear apoptotic cells in homeostasis, an immunotherapy strategy for obesity treatment is proposed for the first time through apoptotic camouflage of adipocytes by PA Au BPs to activate macrophages for clearance, where PA Au BPs are gold nanobipyramids engineered with adipose-targeting and apoptotic cell-mimicking functions. During clearance, the macrophage is switched from pro-inflammatory M1 to anti-inflammatory M2, remarkably modulating the immune microenvironment of adipose tissues to prevent weight regain. After inguinal injection with PA Au BPs, the body weights of obese mice are effectively decreased by 24.4% and can be decreased by 33.3% when combined with photothermal lipolysis, and little weight regain is associated with these treatments. This study demonstrates that the strategy of camouflaging adipocytes with apoptotic features holds great potential for obesity immunotherapy.
Collapse
Affiliation(s)
- Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Luopeng Bi
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, 130022, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaqing Kang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lulu Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xueyan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanbo Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, 130022, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Jo G, Kim EJ, Song J, Hyun H. Molecular Tuning of IR-786 for Improved Brown Adipose Tissue Imaging. Int J Mol Sci 2022; 23:ijms232213756. [PMID: 36430234 PMCID: PMC9699178 DOI: 10.3390/ijms232213756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022] Open
Abstract
To overcome the limitations of brown adipose tissue (BAT) imaging with MRI and PET/CT, near-infrared (NIR) fluorescence imaging has been utilized in living animals because it is highly sensitive, noninvasive, nonradioactive, and cost-effective. To date, only a few NIR fluorescent dyes for detecting BAT have been reported based on the structure-inherent targeting strategy. Among them, IR-786, a commercial cyanine dye, was used firstly for quantitative NIR imaging of BAT perfusion in 2003. Owing to the high cytotoxicity, poor water solubility, and strong nonspecific background uptake of IR-786, the chemical structure of IR-786 should be redesigned to be more hydrophilic and less toxic so that it can show more BAT-specific accumulation. Here, we developed a BAT-specific NIR dye, BF800-AM, by incorporating the tyramine linker in the original structure of IR-786. After modifying the physicochemical properties of IR-786, in vivo results showed significant uptake of the newly designed BF800-AM in the BAT with improved signal-to-background ratio. Additional in vivo studies using mouse tumor models revealed that BF800-AM targeting to BAT is independent of tumor tissues, as distinct from IR-786 showing uptake in both tissues. Therefore, BF800-AM can be used for improved noninvasive visualization of BAT mass and activity in living animals.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Eun Jeong Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
- Correspondence: (J.S.); (H.H.); Tel.: +82-61-379-2706 (J.S.); +82-61-379-2652 (H.H.)
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
- Correspondence: (J.S.); (H.H.); Tel.: +82-61-379-2706 (J.S.); +82-61-379-2652 (H.H.)
| |
Collapse
|
6
|
Daquinag AC, Gao Z, Yu Y, Kolonin MG. Endothelial TrkA coordinates vascularization and innervation in thermogenic adipose tissue and can be targeted to control metabolism. Mol Metab 2022; 63:101544. [PMID: 35835372 PMCID: PMC9310128 DOI: 10.1016/j.molmet.2022.101544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Brown adipogenesis and thermogenesis in brown and beige adipose tissue (AT) involve vascular remodeling and sympathetic neuronal guidance. Here, we investigated the molecular mechanism coordinating these processes. METHODS We used mouse models to identify the molecular target of a peptide CPATAERPC homing to the endothelium of brown and beige AT. RESULTS We demonstrate that CPATAERPC mimics nerve growth factor (NGF) and identify a low molecular weight isoform of NGF receptor, TrkA, as the CPATAERPC cell surface target. We show that the expression of truncated endothelial TrkA is selective for brown and subcutaneous AT. Analysis of mice with endothelium-specific TrkA knockout revealed the role of TrkA in neuro-vascular coordination supporting the thermogenic function of brown adipocytes. A hunter-killer peptide D-BAT, composed of CPATAERPC and a pro-apoptotic domain, induced cell death in the endothelium and adipocytes. This resulted in thermogenesis impairment, and predisposed mice to obesity and glucose intolerance. We also tested if this treatment can inhibit the tumor recruitment of lipids mobilized from adipocytes from adjacent AT. Indeed, in a mouse model of breast cancer D-BAT suppressed tumor-associated AT lipolysis, which resulted in reduced fatty acid utilization by cancer cells. CONCLUSION Our study demonstrates that TrkA signaling in the endothelium supports neuro-vascular coordination enabling beige adipogenesis.
Collapse
Affiliation(s)
- Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Pompeia C, Frare EO, Peigneur S, Tytgat J, da Silva ÁP, de Oliveira EB, Pereira A, Kerkis I, Kolonin MG. Synthetic polypeptide crotamine: characterization as a myotoxin and as a target of combinatorial peptides. J Mol Med (Berl) 2022; 100:65-76. [PMID: 34643765 DOI: 10.1007/s00109-021-02140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Crotamine is a rattlesnake-derived toxin that causes fast-twitch muscle paralysis. As a cell-penetrating polypeptide, crotamine has been investigated as an experimental anti-cancer and immunotherapeutic agent. We hypothesized that molecules targeting crotamine could be designed to study its function and intervene in its adverse activities. Here, we characterize synthetic crotamine and show that, like the venom-purified toxin, it induces hindlimb muscle paralysis by affecting muscle contraction and inhibits KCNA3 (Kv1.3) channels. Synthetic crotamine, labeled with a fluorophore, displayed cell penetration, subcellular myofiber distribution, ability to induce myonecrosis, and bind to DNA and heparin. Here, we used this functionally validated synthetic polypeptide to screen a combinatorial phage display library for crotamine-binding cyclic peptides. Selection for tryptophan-rich peptides was observed, binding of which to crotamine was confirmed by ELISA and gel shift assays. One of the peptides (CVWSFWGMYC), synthesized chemically, was shown to bind both synthetic and natural crotamine and to block crotamine-DNA binding. In summary, our study establishes a functional synthetic substitute to the venom-derived toxin and identifies peptides that could further be developed as probes to target crotamine. KEY MESSAGES: Synthetic crotamine was characterized as a functional substitute for venom-derived crotamine based on myotoxic effects. A combinatorial peptide library was screened for crotamine-binding peptides. Tryptophan-rich peptides were shown to bind to crotamine and interfere with its DNA binding. Crotamine myofiber distribution and affinity for tryptophan-rich peptides provide insights on its mechanism of action.
Collapse
Affiliation(s)
- Celine Pompeia
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
- Genetics Laboratory, Instituto Butantan, São Paulo, SP, Brazil
- Currently an Independent Researcher, São Paulo, SP, Brazil
| | | | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | | | | | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, São Paulo, SP, Brazil
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
8
|
Yudasaka M, Okamatsu-Ogura Y, Tanaka T, Saeki K, Kataura H. Cold-induced Conversion of Connective Tissue Skeleton in Brown Adipose Tissues. Acta Histochem Cytochem 2021; 54:131-141. [PMID: 34764522 PMCID: PMC8569133 DOI: 10.1267/ahc.21-00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
Thermogenesis via fatty acid-induced uncoupled mitochondrial respiration is the primary function of brown adipose tissue (BAT). In response to changes in ambient temperatures, the weight and specific gravity of BAT change, depending on the quantity of lipid droplets stored in brown adipocytes (BA). Such conditions should result in the reconstruction of connective tissue skeletons, especially of collagen fiber networks, although the mechanisms have not been clarified. This study showed that, within 4 hr of exposing mice to a cold environment, collagen fibers in the extracellular matrix (ECM) of BAT became discontinuous, twisted, emancipated, and curtailed. Surprisingly, the structure of collagen fibers returned to normal after the mice were kept at room temperature for 19 hr, indicating that the alterations in collagen fiber structures are physiological processes association with adaptation to cold environments. These dynamic changes in connective tissue skeletons were not observed in white adipose tissues, suggesting that they are unique to BAT. Interestingly, the vascular permeability of BAT was also augmented by exposure to cold. Collectively, these findings indicate that dynamic changes in ECM collagen fibers provide high flexibility to BAT, enabling the adjustment of tissue structures and the regulation of vascular permeability, resulting in adaptation to changes in ambient temperatures.
Collapse
Affiliation(s)
- Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Kumiko Saeki
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
9
|
Yang J, Zhang H, Parhat K, Xu H, Li M, Wang X, Ran C. Molecular Imaging of Brown Adipose Tissue Mass. Int J Mol Sci 2021; 22:ijms22179436. [PMID: 34502347 PMCID: PMC8431742 DOI: 10.3390/ijms22179436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Brown adipose tissue (BAT), a uniquely thermogenic tissue that plays an important role in metabolism and energy expenditure, has recently become a revived target in the fight against metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Different from white adipose tissue (WAT), the brown adipocytes have distinctive features including multilocular lipid droplets, a large number of mitochondria, and a high expression of uncoupling protein-1 (UCP-1), as well as abundant capillarity. These histologic characteristics provide an opportunity to differentiate BAT from WAT using imaging modalities, such as PET/CT, SPECT/CT, MRI, NIRF and Ultrasound. However, most of the reported imaging methods were BAT activation dependent, and the imaging signals could be affected by many factors, including environmental temperatures and the states of the sympathetic nervous system. Accurate BAT mass detection methods that are independent of temperature and hormone levels have the capacity to track the development and changes of BAT throughout the lifetime of mammals, and such methods could be very useful for the investigation of potential BAT-related therapies. In this review, we focus on molecular imaging modalities that can detect and quantify BAT mass. In addition, their detection mechanism and limitations will be discussed as well.
Collapse
Affiliation(s)
- Jing Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| | - Haili Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Kadirya Parhat
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Hui Xu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Mingshuang Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Xiangyu Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| |
Collapse
|
10
|
Daquinag AC, Gao Z, Fussell C, Immaraj L, Pasqualini R, Arap W, Akimzhanov AM, Febbraio M, Kolonin MG. Fatty acid mobilization from adipose tissue is mediated by CD36 post-translational modifications and intracellular trafficking. JCI Insight 2021; 6:e147057. [PMID: 34314388 PMCID: PMC8492349 DOI: 10.1172/jci.insight.147057] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
The mechanism controlling long-chain fatty acid (LCFA) mobilization from adipose tissue is not well understood. Here, we investigated how the LCFA transporter CD36 regulates this process. By using tissue-specific KO mouse models, we showed that CD36 in adipocytes and endothelial cells mediated both LCFA deposition into and release from adipose tissue. We demonstrated the role of adipocytic and endothelial CD36 in promoting tumor growth and chemoresistance conferred by adipose tissue–derived LCFAs. We showed that dynamic cysteine S-acylation of CD36 in adipocytes, endothelial cells, and cancer cells mediated intercellular LCFA transport. We demonstrated that lipolysis induction in adipocytes triggered CD36 deacylation and deglycosylation, as well as its dissociation from interacting proteins, prohibitin-1 (PHB) and annexin 2 (ANX2). Our data indicate that lipolysis triggers caveolar endocytosis and translocation of CD36 from the cell membrane to lipid droplets. This study suggests a mechanism for both outside-in and inside-out cellular LCFA transport regulated by CD36 S-acylation and its interactions with PHB and ANX2.
Collapse
Affiliation(s)
- Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Cale Fussell
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Linnet Immaraj
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Renata Pasqualini
- Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, United States of America
| | - Wadih Arap
- Department of Medicine, Rutgers New Jersey Medical School, Newark, United States of America
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, United States of America
| | - Maria Febbraio
- Department of Dentistry, University of Alberta, Edmonton, Canada
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States of America
| |
Collapse
|
11
|
Crandall JP, Wahl RL. Perspectives on Brown Adipose Tissue Imaging: Insights from Preclinical and Clinical Observations from the Last and Current Century. J Nucl Med 2021; 62:34S-43S. [PMID: 34230071 DOI: 10.2967/jnumed.120.246991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) was first described in the 16th century, but until late last century had mainly been considered a tissue with the function of nonshivering thermogenesis, maintaining body temperature in key organs in newborns who have high body surface areas relative to their weight and thus marked radiative heat loss. BAT was believed to have substantially disappeared by adulthood. Molecular imaging with 18F-FDG PET and PET combined with CT, as well as imaging with 131I-metaiodobenzylguanidine (MIBG) beginning late last century have shown BAT to be present and active well into adulthood. This review highlights key aspects of BAT biology, early empiric observations misidentifying BAT, pitfalls in image interpretation, and methods to intentionally reduce BAT uptake, and outlines multiple imaging methods used to identify BAT in vivo. The therapeutic potential of increasing the amount or activity of BAT for weight loss and improvement of glucose and lipid profiles is highlighted as a major opportunity. Molecular imaging can help dissect the physiology of this complex dynamic tissue and offers the potential for addressing challenges separating "active BAT" from "total BAT." Research in BAT has grown extensively, and 18F-FDG PET is the key imaging procedure against which all other BAT imaging methods must be compared. Given the multiple functions of BAT, it is reasonable to consider it a previously unrecognized endocrine tissue and thus an appropriate topic for review in this supplement to The Journal of Nuclear Medicine.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Scheja L, Heeren J. Novel Adipose Tissue Targets to Prevent and Treat Atherosclerosis. Handb Exp Pharmacol 2020; 270:289-310. [PMID: 33373032 DOI: 10.1007/164_2020_363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipose tissue as a major organ of lipid and lipoprotein metabolism has a major impact on metabolic homeostasis and thus influences the development of atherosclerosis and related cardiometabolic diseases. Unhealthy adipose tissue, which is often associated with obesity and systemic insulin resistance, promotes the development of diabetic dyslipidemia and can negatively affect vascular tissue homeostasis by secreting pro-inflammatory peptides and lipids. Conversely, paracrine and endocrine factors that are released from healthy adipose tissue can preserve metabolic balance and a functional vasculature. In this chapter, we describe adipose tissue types relevant for atherosclerosis and address the question how lipid metabolism as well as regulatory molecules produced in these fat depots can be targeted to counteract atherogenic processes in the vessel wall and improve plasma lipids. We discuss the role of adipose tissues in the action of approved drugs with anti-atherogenic activity. In addition, we present potential novel targets and therapeutic approaches aimed at increasing lipoprotein disposal in adipose tissue, boosting the activity of heat-producing (thermogenic) adipocytes, reducing adipose tissue inflammation, and improving or replacing beneficial hormones released from adipose tissues. Furthermore, we describe the future potential of innovative drug delivery technologies.
Collapse
Affiliation(s)
- Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
14
|
Li W, Ma J, Jiang Q, Zhang T, Qi Q, Cheng Y. Fast Noninvasive Measurement of Brown Adipose Tissue in Living Mice by Near-Infrared Fluorescence and Photoacoustic Imaging. Anal Chem 2020; 92:3787-3794. [PMID: 32066237 DOI: 10.1021/acs.analchem.9b05162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant brown adipose tissue (BAT) metabolism is linked to obesity as well as other metabolic disorders. However, the paucity of imaging tools limits the study of in vivo BAT metabolism in animal models. The current work evaluated a heptamethine dye (CyHF-8) in living mice as a dual-modality BAT-avid molecular probe for two imaging approaches, including near-infrared fluorescence imaging (NIRF) and photoacoustic imaging (PAI). CyHF-8 exhibited favorable spectral properties in the near-infrared window (786/787/805 nm) and accumulated in the subcellular mitochondria of brown adipocytes. After intravenous injection of CyHF-8, NIRF and PAI were both capable of noninvasively detecting interscapular BAT at early time points in living mice. Quantitative analysis of NIRF and PAI images showed that CyHF-8 signals respond to dynamic BAT changes in mice stimulated by norepinephrine (NE) and in diabetic mice induced by streptozotocin (STZ). In summary, dual-modality NIRF/PAI probe CyHF-8 can be used for both NIRF and PAI to noninvasively assess BAT metabolism in living animals.
Collapse
Affiliation(s)
- Wanyun Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qian Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qingrong Qi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Ding YS, Malik N, Mendoza S, Tuchman D, Del Pozo CH, Diez RL, Schmidt AM. PET imaging study of brown adipose tissue (BAT) activity in mice devoid of receptor for advanced glycation end products (RAGE). J Biosci 2019; 44:93. [PMID: 31502571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown adipose tissue (BAT) is responsible for adaptive thermogenesis. We previously showed that genetic deficiency of receptor for advanced glycation end products (RAGE) prevented the effects of high-fat diet (HFD). This study was to compare BAT activity in RAGE knock out (Ager-/-, RKO) and wild-type (WT) mice after treated with HFD or LFD. [18F]FDG PET-CT imaging under identical cold-stimulated conditions and mean standard uptake values (SUVmean), ratio of SUViBAT/SUVmuscle (SUVR, muscle as the reference region) and percentage ID/g were used for BAT quantification. The results showed that [18F]FDG uptake (e.g., SUVR) in WT-HFD mice was significantly reduced (three-fold) as compared to that in WT-LFD (1.40 +/- 0.07 and 4.03 +/- 0.38; P = 0.004). In contrast, BAT activity in RKO mice was not significantly affected by HFD, with SUVRRKO-LFD: 2.14 +/- 0.10 and SUVRRKO-LFD: 1.52 +/- 0.13 (P = 0.3). The uptake in WT-LFD was almost double of that in RKO-LFD (P = 0.004); however, there was no significant difference between RKO-HFD and WT-HFD mice (P = 0.3). These results, corroborating our previous findings on the measurement of mRNA transcripts for UCP1 in the BAT, suggest that RAGE may contribute to altered energy expenditure and provide a protective effect against HFD by Ager deletion (Ager -/-).
Collapse
Affiliation(s)
- Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, New York, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
PET imaging study of brown adipose tissue (BAT) activity in mice devoid of receptor for advanced glycation end products (RAGE). J Biosci 2019. [DOI: 10.1007/s12038-019-9900-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Zhang Y, Hu X, Hu S, Scotti A, Cai K, Wang J, Zhou X, Yang D, Figini M, Pan L, Shangguan J, Yang J, Zhang Z. Non-invasive Imaging Methods for Brown Adipose Tissue Detection and Function Evaluation. ACTA ACUST UNITED AC 2019; 8. [PMID: 31080698 PMCID: PMC6508884 DOI: 10.4172/2165-8048.1000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brown Adipose Tissue (BAT) has a major role in thermoregulation, producing heat by non-shivering thermogenesis. Primarily found in animals and human infants, the presence of significant brown adipose tissue was identified only recently, and its metabolic role in adults was reconsidered. BAT is believed to have an important role in many metabolic diseases, such as obesity and diabetes, and also to be associated with cancer cachexia. Therefore, it is currently a topic of great interest in the research community, and many groups are investigating the mechanisms underlying BAT metabolism in normal and pathological conditions. However, well established non-invasive methods for assessing BAT distribution and function are still lacking. The purpose of this review is to summarize the current state of the art of these methods, with a particular focus on PET, CT and MRI.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaofei Hu
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian Wang
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Xin Zhou
- Department of Cardiology, Pingjin Hospital, Tianjin, China
| | - Ding Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Abstract
PURPOSE Brown adipose tissue (BAT) in adult humans has been recently rediscovered and intensively investigated as a new potential therapeutic target for obesity and type 2 diabetes (T2D). However, reliable assessment of BAT mass in vivo represents a considerable challenge. The purpose of this investigation is to demonstrate for the first time that human BAT depots can be imaged with a translocator protein (TSPO)-specific positron emission tomography (PET) tracer [11C]PBR28 under thermoneutral conditions. PROCEDURES In this retrospective analysis, we analyzed the images of three healthy volunteers who underwent PET/magnetic resonance (MR) imaging after injection of 14 m Ci of [11C]PBR28 at room temperature. Thirty-minute static PET images were reconstructed from the data obtained 60-90 min after the injection of the tracer. RESULTS [11C]PBR28 uptake in the neck/supraclavicular regions was identified, which was parallel to the known distribution pattern of human BAT depots. These areas co-localized with the areas of hyperintensity and corresponded to fat on T1-weighted MR images. Standardized uptake value (SUV) was used to quantify [11C]PBR28 signal in BAT depots. The average (± SD) SUV(mean) and SUVmax for BAT depots was 2.13 (± 0.33) and 3.19 (± 0.34), respectively, while the average SUV(mean) for muscle and subcutaneous adipose tissue was 0.79 (± 0.1) and 0.18 (± 0.04), respectively. CONCLUSIONS In this brief article, we provide the first evidence suggesting that [11C]PBR28, a widely available TSPO-specific PET tracer, can be used for imaging human BAT mass under thermoneutral conditions.
Collapse
|
19
|
Yudasaka M, Yomogida Y, Zhang M, Nakahara M, Kobayashi N, Tanaka T, Okamatsu-Ogura Y, Saeki K, Kataura H. Fasting-dependent Vascular Permeability Enhancement in Brown Adipose Tissues Evidenced by Using Carbon Nanotubes as Fluorescent Probes. Sci Rep 2018; 8:14446. [PMID: 30262832 PMCID: PMC6160465 DOI: 10.1038/s41598-018-32758-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Brown adipose tissue (BAT), which is composed of thermogenic brown adipocytes (BA) and non-parenchymal components including vasculatures and extracellular matrix, contribute to the maintenance of body temperature. BAT distribution is detected by positron emission tomography-computed tomography (PET/CT) using 18F-fluorodeoxy glucose (18F-FDG) or single-photon-emission computed tomography-computed tomography (SPECT/CT) using [123/125I]-beta-methyl-p-iodophenyl-pentadecanoic acid. Although sympathetic nerve activity and thermogenic capacity of BA is downregulated under fasting conditions in mice, fasting-dependent structural changes and fluid kinetics of BAT remain unknown. Here we show that the fasting induces fine and reversible structural changes in the non-parenchymal region in murine BAT with widened intercellular spaces and deformed collagen bands as revealed by electron microscopy. Interestingly, a newly introduced near infrared fluorescent probe of single-walled carbon nanotubes (CNTs) coated with phospholipid polyethylene glycol (PLPEG) easily demonstrated enhanced vascular permeability in BAT by the fasting. PLPEG-CNTs extravasated and remained in intercellular spaces or further redistributed in parenchymal cells in fasted mice, which is a previously unknown phenomenon. Thus, PLPEG-CNTs provide a powerful tool to trace fluid kinetics in sub-tissue levels.
Collapse
Affiliation(s)
- Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan. .,Graduate School of Science and Technology, Meijo University, Nagoya, 468-85002, Japan.
| | - Yohei Yomogida
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Minfang Zhang
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masako Nakahara
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Norihiko Kobayashi
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yuko Okamatsu-Ogura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kumiko Saeki
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
20
|
Guo Y, Li Y, Yang Y, Tang S, Zhang Y, Xiong L. Multiscale Imaging of Brown Adipose Tissue in Living Mice/Rats with Fluorescent Polymer Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20884-20896. [PMID: 29893119 DOI: 10.1021/acsami.8b06094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brown adipose tissue (BAT) has been identified as a promising target for the treatment of obesity, diabetes, and relevant metabolism disorders because of the adaptive thermogenesis ability of this tissue. Visualizing BAT may provide an essential tool for pathology study, drug screening, and efficacy evaluation. Owing to limitations of current nuclear and magnetic resonance imaging approaches for BAT detection, fluorescence imaging has advantages in large-scale preclinical research on small animals. Here, fast BAT imaging in mice is conducted based on polymer dots as fluorescent probes. As early as 5 min after the intravenous injection of polymer dots, extensive fluorescence is detected in the interscapular BAT and axillar BAT. In addition, axillar and inguinal white adipose tissues (WAT) are recognized. The real-time in vivo behavior of polymer dots in rodents is monitored using the probe-based confocal laser endomicroscopy imaging, and the preferred accumulation in BAT over WAT is confirmed by histological assays. Moreover, the whole study is conducted without a low temperature or pharmaceutical stimulation. The imaging efficacy is verified at the cellular, histological, and whole-body levels, and the present results indicate that fluorescent polymer dots may be a promising tool for the visualization of BAT in living subjects.
Collapse
Affiliation(s)
- Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yidian Yang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , P. R. China
| | - Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| |
Collapse
|
21
|
Chan XHD, Balasundaram G, Attia ABE, Goggi JL, Ramasamy B, Han W, Olivo M, Sugii S. Multimodal imaging approach to monitor browning of adipose tissue in vivo. J Lipid Res 2018; 59:1071-1078. [PMID: 29654114 PMCID: PMC5983400 DOI: 10.1194/jlr.d083410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery that white adipocytes can undergo a browning process to become metabolically active beige cells has attracted significant interest in the fight against obesity. However, the study of adipose browning has been impeded by a lack of imaging tools that allow longitudinal and noninvasive monitoring of this process in vivo. Here, we report a preclinical imaging approach to detect development of beige adipocytes during adrenergic stimulation. In this approach, we expressed near-infrared fluorescent protein, iRFP720, driven under an uncoupling protein-1 (Ucp1) promoter in mice by viral transduction, and used multispectral optoacoustic imaging technology with ultrasound tomography (MSOT-US) to assess adipose beiging during adrenergic stimulation. We observed increased photoacoustic signal at 720 nm, coupled with attenuated lipid signals in stimulated animals. As a proof of concept, we validated our approach against hybrid positron emission tomography combined with magnetic resonance (PET/MR) imaging modality, and quantified the extent of adipose browning by MRI-guided segmentation of 2-deoxy-2-18F-fluoro-d-glucose uptake signals. The browning extent detected by MSOT-US and PET/MR are well correlated with Ucp1 induction. Taken together, these systems offer great opportunities for preclinical screening aimed at identifying compounds that promote adipose browning and translation of these discoveries into clinical studies of humans.
Collapse
Affiliation(s)
- Xin Hui Derryn Chan
- Fat Metabolism and Stem Cell Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Ghayathri Balasundaram
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Julian L Goggi
- Isotopic Molecular Imaging Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boominathan Ramasamy
- Isotopic Molecular Imaging Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.
| |
Collapse
|
22
|
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018; 47:3574-3620. [PMID: 29479622 PMCID: PMC6386136 DOI: 10.1039/c7cs00877e] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide- and protein-nanoparticle conjugates have emerged as powerful tools for biomedical applications, enabling the treatment, diagnosis, and prevention of disease. In this review, we focus on the key roles played by peptides and proteins in improving, controlling, and defining the performance of nanotechnologies. Within this framework, we provide a comprehensive overview of the key sequences and structures utilised to provide biological and physical stability to nano-constructs, direct particles to their target and influence their cellular and tissue distribution, induce and control biological responses, and form polypeptide self-assembled nanoparticles. In doing so, we highlight the great advances made by the field, as well as the challenges still faced in achieving the clinical translation of peptide- and protein-functionalised nano-drug delivery vehicles, imaging species, and active therapeutics.
Collapse
Affiliation(s)
- Christopher D Spicer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden.
| | | | | | | |
Collapse
|
23
|
Abstract
The phenomenal advances in pharmaceutical sciences over the last few decades have led to the development of new therapeutics like peptides, proteins, RNAs, DNAs and highly potent small molecules. Fruitful applications of these therapeutics have been challenged by several anatomical and physiological barriers that limit adequate drug disposition at the site-of-action and by off-target drug distribution to undesired tissues, which together result in the reduced effectiveness and increased side effects of therapeutic agents. As such, the development of drug delivery and targeting systems has been recognised as a cornerstone for future drug development. Research in pharmaceutical sciences is now devoted to tackling delivery challenges through engineering delivery systems that move beyond conventional dosage forms and regimens into state-of-the-art targeted drug delivery tailored toward specific therapeutic needs. Modern drug delivery systems comprise passive and active targeting approaches. While passive targeting relies on the natural course of distribution of drugs or drug carriers in the body, as governed by their physicochemical properties, active targeting often exploits targeting moieties that home preferentially into target tissues. Here, we provide an overview of theories of and approaches to passive and active drug delivery. As the design of drug delivery is dependent on the unique structure of target tissues and organs, we present our discussion in an organ-specific manner with the aim to inspire the development of new strategies for curing disease with high accuracy and efficiency.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- a Department of Pharmaceutical Technology, College of Pharmacy , Jordon University of Science and Technology , Irbid , Jordan
| | - Dexi Liu
- b Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy , University of Georgia , Athens , GA , USA
| |
Collapse
|
24
|
Law J, Chalmers J, Morris DE, Robinson L, Budge H, Symonds ME. The use of infrared thermography in the measurement and characterization of brown adipose tissue activation. Temperature (Austin) 2018; 5:147-161. [PMID: 30393752 DOI: 10.1080/23328940.2017.1397085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
Abstract
Interest in brown adipose tissue has increased in recent years as a potential target for novel obesity, diabetes and metabolic disease treatments. One of the significant limitations to rapid progress has been the difficulty in measuring brown adipose tissue activity, especially in humans. Infrared thermography (IRT) is being increasingly recognized as a valid and complementary method to standard imaging modalities, such as positron emission tomography-computed tomography (PET/CT). In contrast to PET/CT, it is non-invasive, cheap and quick, allowing, for the first time, the possibility of large studies of brown adipose tissue (BAT) on healthy populations and children. Variations in study protocols and analysis methods currently limit direct comparison between studies but IRT following appropriate BAT stimulation consistently shows a change in supraclavicular skin temperature and a close association with results from BAT measurements from other methods.
Collapse
Affiliation(s)
- James Law
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jane Chalmers
- Nottingham Digestive Diseases Centre, University of Nottingham and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham
| | - David E Morris
- Department of Electrical & Electronic Engineering, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Lindsay Robinson
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Helen Budge
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics & Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, University of Nottingham and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham
| |
Collapse
|
25
|
Yang J, Yang J, Ran C. Spectral Unmixing Imaging for Differentiating Brown Adipose Tissue Mass and Its Activation. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:6134186. [PMID: 29531505 PMCID: PMC5817366 DOI: 10.1155/2018/6134186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Recent large-scale clinical analysis indicates that brown adipose tissue (BAT) mass levels inversely correlate with body-mass index (BMI), suggesting that BAT is associated with metabolic disorders such as obesity and diabetes. PET imaging with 18F-FDG is the most commonly used method for visualizing BAT. However, this method is not able to differentiate between BAT mass and BAT activation. This task, in fact, presents a tremendous challenge with no currently existing methods to separate BAT mass and BAT activation. Our previous results indicated that BAT could be successfully imaged in mice with near infrared fluorescent (NIRF) curcumin analogues. However, the results from conventional NIRF imaging could not reflect what portion of the NIRF signal from BAT activation contributed to the signal observed. To solve this problem, we used spectral unmixing to separate/unmix NIRF signal from oil droplets in BAT, which represents its mass and NIRF signal from blood, which represents BAT activation. In this report, results from our proof-of-concept investigation demonstrated that spectral unmixing could be used to separate NIRF signal from BAT mass and BAT activation.
Collapse
Affiliation(s)
- Jing Yang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- School of Pharmacy, Soochow University, Suzhou 215006, China
| | - Jian Yang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Center for Drug Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chongzhao Ran
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
26
|
Gao Z, Daquinag AC, Su F, Snyder B, Kolonin MG. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 2018; 145:dev.155861. [PMID: 29158445 DOI: 10.1242/dev.155861] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
The relative abundance of thermogenic beige adipocytes and lipid-storing white adipocytes in adipose tissue underlie its metabolic activity. The roles of adipocyte progenitor cells, which express PDGFRα or PDGFRβ, in adipose tissue function have remained unclear. Here, by defining the developmental timing of PDGFRα and PDGFRβ expression in mouse subcutaneous and visceral adipose depots, we uncover depot specificity of pre-adipocyte delineation. We demonstrate that PDGFRα expression precedes PDGFRβ expression in all subcutaneous but in only a fraction of visceral adipose stromal cells. We show that high-fat diet feeding or thermoneutrality in early postnatal development can induce PDGFRβ+ lineage recruitment to generate white adipocytes. In contrast, the contribution of PDGFRβ+ lineage to beige adipocytes is minimal. We provide evidence that human adipose tissue also contains distinct progenitor populations differentiating into beige or white adipocytes, depending on PDGFRβ expression. Based on PDGFRα or PDGFRβ deletion and ectopic expression experiments, we conclude that the PDGFRα/PDGFRβ signaling balance determines progenitor commitment to beige (PDGFRα) or white (PDGFRβ) adipogenesis. Our study suggests that adipocyte lineage specification and metabolism can be modulated through PDGFR signaling.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fei Su
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Brad Snyder
- Department of Surgery, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Cao Y, Matsubara T, Zhao C, Gao W, Peng L, Shan J, Liu Z, Yuan F, Tang L, Li P, Guan Z, Fang Z, Lu X, Huang H, Yang Q. Antisense oligonucleotide and thyroid hormone conjugates for obesity treatment. Sci Rep 2017; 7:9307. [PMID: 28839185 PMCID: PMC5571112 DOI: 10.1038/s41598-017-09598-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
Using the principle of antibody-drug conjugates that deliver highly potent cytotoxic agents to cancer cells for cancer therapy, we here report the synthesis of antisense-oligonucleotides (ASO) and thyroid hormone T3 conjugates for obesity treatment. ASOs primarily target fat and liver with poor penetrance to other organs. Pharmacological T3 treatment increases energy expenditure and causes weight loss, but is contraindicated for obesity treatment due to systemic effects on multiple organs. We hypothesize that ASO-T3 conjugates may knock down target genes and enrich T3 action in fat and liver. Two established ASOs are tested. Nicotinamide N-methyltransferase (NNMT)-ASO prevents diet-induced obesity in mice. Apolipoprotein B (ApoB)-ASO is an FDA approved drug for treating familial hypercholesterolemia. NNMT-ASO and ApoB-ASO are chemically conjugated with T3 using a non-cleavable sulfo-SMCC linker. Both NNMT-ASO-T3 (NAT3) and ApoB-ASO-T3 (AAT3) enhance thyroid hormone receptor activity. Treating obese mice with NAT3 or AAT3 decreases adiposity and increases lean mass. ASO-T3 enhances white fat browning, decreases genes for fatty acid synthesis in liver, and shows limited effects on T3 target genes in heart and muscle. Furthermore, AAT3 augments LDL cholesterol-lowering effects of ApoB-ASO. Therefore, ASO and hormone/drug conjugation may provide a novel strategy for obesity and hyperlipidemia treatment.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA
| | - Tomoko Matsubara
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.,Japan Society for the Promotion of Science, Tokyo, 1020083, Japan
| | - Can Zhao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Gao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Linxiu Peng
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengxia Liu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Geriatrics, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Fang Yuan
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lingyi Tang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.,Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Peixin Li
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.,Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Guan
- Department of Chemistry, University of California, Irvine, 92697, California, USA
| | - Zhuyuan Fang
- Department of Cardiology, the First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Hu Huang
- Department of Kinesiology & Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, USA.
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and Metabolism, University of California Irvine, Irvine, California, 92697, USA.
| |
Collapse
|
28
|
Yang J, Yang J, Wang L, Moore A, Liang SH, Ran C. Synthesis-free PET imaging of brown adipose tissue and TSPO via combination of disulfiram and 64CuCl 2. Sci Rep 2017; 7:8298. [PMID: 28811616 PMCID: PMC5557754 DOI: 10.1038/s41598-017-09018-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022] Open
Abstract
PET imaging is a widely applicable but a very expensive technology. On-site synthesis is one important contributor to the high cost. In this report, we demonstrated the feasibility of a synthesis-free method for PET imaging of brown adipose tissue (BAT) and translocator protein 18 kDa (TSPO) via a combination of disulfiram, an FDA approved drug for alcoholism, and 64CuCl2 (termed 64Cu-Dis). In this method, a step-wise injection protocol of 64CuCl2 and disulfiram was used to accomplish the purpose of synthesis-free. Specifically, disulfiram, an inactive 64Cu ligand, was first injected to allow it to metabolize into diethyldithiocarbamate (DDC), a strong 64Cu ligand, which can chelate 64CuCl2 from the following injection to form the actual PET tracer in situ. Our blocking studies, western blot, and tissue histological imaging suggested that the observed BAT contrast was due to 64Cu-Dis binding to TSPO, which was further confirmed as a specific biomarker for BAT imaging using [18F]-F-DPA, a TSPO-specific PET tracer. Our studies, for the first time, demonstrated that TSPO could serve as a potential imaging biomarker for BAT. We believe that our strategy could be extended to other targets while significantly reducing the cost of PET imaging.
Collapse
Affiliation(s)
- Jing Yang
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 01890, USA.,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China
| | - Jian Yang
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 01890, USA.,School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Anna Moore
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 01890, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging & Gordon Center for Medical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Chongzhao Ran
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 01890, USA.
| |
Collapse
|
29
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
30
|
Sampath SC, Sampath SC, Bredella MA, Cypess AM, Torriani M. Imaging of Brown Adipose Tissue: State of the Art. Radiology 2017; 280:4-19. [PMID: 27322970 DOI: 10.1148/radiol.2016150390] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The rates of diabetes, obesity, and metabolic disease have reached epidemic proportions worldwide. In recent years there has been renewed interest in combating these diseases not only by modifying energy intake and lifestyle factors, but also by inducing endogenous energy expenditure. This approach has largely been stimulated by the recent recognition that brown adipose tissue (BAT)-long known to promote heat production and energy expenditure in infants and hibernating mammals-also exists in adult humans. This landmark finding relied on the use of clinical fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography, and imaging techniques continue to play a crucial and increasingly central role in understanding BAT physiology and function. Herein, the authors review the origins of BAT imaging, discuss current preclinical and clinical strategies for imaging BAT, and discuss imaging methods that will provide crucial insight into metabolic disease and how it may be treated by modulating BAT activity. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Srihari C Sampath
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Srinath C Sampath
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Miriam A Bredella
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Aaron M Cypess
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Martin Torriani
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| |
Collapse
|
31
|
Daquinag AC, Dadbin A, Snyder B, Wang X, Sahin AA, Ueno NT, Kolonin MG. Non-glycanated Decorin Is a Drug Target on Human Adipose Stromal Cells. MOLECULAR THERAPY-ONCOLYTICS 2017; 6:1-9. [PMID: 28607949 PMCID: PMC5458115 DOI: 10.1016/j.omto.2017.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022]
Abstract
Adipose stromal cells (ASCs) have been identified as a mesenchymal cell population recruited from white adipose tissue (WAT) by tumors and supporting cancer progression. We have previously reported the existence of a non-glycanated decorin isoform (ngDCN) marking mouse ASCs. We identified a peptide CSWKYWFGEC that binds to ngDCN and hence can serve as a vehicle for ASC-directed therapy delivery. We used hunter-killer peptides composed of CSWKYWFGEC and a pro-apoptotic moiety to deplete ASCs and suppress growth of mouse tumors. Here, we report the discovery of the human non-glycanated decorin isoform. We show that CSWKYWFGEC can be used as a probe to identify ASCs in human WAT and tumors. We demonstrate that human ngDCN is expressed on ASC surface. Finally, we validate ngDCN as a molecular target for pharmacological depletion of human ASCs with hunter-killer peptides. We propose that ngDCN-targeting agents could be developed for obesity and cancer treatment.
Collapse
Affiliation(s)
- Alexes C Daquinag
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ali Dadbin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brad Snyder
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
32
|
Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat. Sci Rep 2017; 7:44760. [PMID: 28317858 PMCID: PMC5357894 DOI: 10.1038/srep44760] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
Near-infrared photoluminescent single-walled carbon nanotubes (CNTs) are expected to provide effectual bio-imaging tools, although, as yet, only limited applications have been reported. Here, we report that CNTs coated with an amphiphilic and biocompatible polymer, poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate; PMB), generate high-quality images of brown fat. Brown fat is a heat-productive adipose tissue, which is attracting increasing attention as a new therapeutic target for obesity-associated metabolic disorders. Its brown colour is mainly attributed to densely packed capillaries, which facilitate its high heat-exchanging efficiency. Currently, positron emission tomography-computed tomography is the only practical technique to identify brown fat distribution in the living body; however, it is expensive to use. By virtue of their high affinity to apolipoproteins and exemption from macrophage phagocytosis, PMB-CNTs selectively accumulate on capillary endothelial cells but not larger vessels in adipose tissue. Therefore, the image brightness of adipose tissue can directly reflect the capillary density, and indirectly the thermogenic capability and brownness. PMB-CNTs provide clearer images than conventional organic dyes, as the high level of transmitted light passes through the body with less light scattering. Thus, PMB-CNT-based imaging methods could open a new phase in thermogenic adipose tissue research.
Collapse
|
33
|
Sakurai Y, Kajimoto K, Harashima H. Anti-angiogenic nanotherapy via active targeting systems to tumors and adipose tissue vasculature. Biomater Sci 2017; 3:1253-65. [PMID: 26261854 DOI: 10.1039/c5bm00113g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sophisticated drug delivery systems (DDS) are required for delivering drugs, especially macromolecules such as nucleic acids or proteins, to their sites of action. Therefore it is a prerequisite that future DDS are designed to selectively target a tissue. In this review, we focus on systems that actively target the vasculature in tumors or adipose tissues. For targeting tumor vasculatur, a new strategy referred to as dual-targeting is proposed that uses a combination of a receptor specific ligand and a cell penetrating peptide, which can induce the synergistic enhancement of tissue selectivity under in vivo conditions. A novel pH-sensitive cationic lipid was designed to enhance the endosomal release of encapsulated compounds such as siRNA as well as to improve the stability in blood circulation after intravenous administration. A cyclic RGD peptide is used as an active targeting ligand. For targeting adipose vasculature, prohibitin, which is expressed on the surface of adipose endothelial cells, was targeted with KGGRAKD peptides on the surface of PEGylated nanoparticles. Prohibitin targeted nanoparticles (PTNP) encapsulating Cytochrome c (CytC) can selectively target adipose vasculature by optimizing the lengths of the PEG linkers and can deliver CytC to adipose endothelial cells. PTNP can successfully induce anti-obese effects as well as apoptosis by delivering CytC to the cytosol in endothelial cells. Unexpectedly, the EPR (enhanced permeability and retention) effect, which is usually observed in tumor tissue, was also observed in the adipose vasculature, especially in obese mice, where PEGylated nanoparticles can pass through the endothelial barriers in adipose tissue. We believe that these achievements in active targeting will allow a greatly expanded use of DDS for nanomedicines.
Collapse
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | | | | |
Collapse
|
34
|
Zhao Y, Gu X, Zhang N, Kolonin MG, An Z, Sun K. Divergent functions of endotrophin on different cell populations in adipose tissue. Am J Physiol Endocrinol Metab 2016; 311:E952-E963. [PMID: 27729337 PMCID: PMC6189636 DOI: 10.1152/ajpendo.00314.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Endotrophin is a cleavage product of collagen 6 (Col6) in adipose tissue (AT). Previously, we demonstrated that endotrophin serves as a costimulator to trigger fibrosis and inflammation within the unhealthy AT milieu. However, how endotrophin affects lipid storage and breakdown in AT and how different cell types in AT respond to endotrophin stimulation remain unknown. In the current study, by using a doxycycline-inducible mouse model, we observed significant upregulation of adipogenic genes in the white AT (WAT) of endotrophin transgenic mice. We further showed that the mice exhibited inhibited lipolysis and accelerated hypertrophy and hyperplasia in WAT. To investigate the effects of endotrophin in vitro, we incubated different cell types from AT with conditioned medium from endotrophin-overexpressing 293T cells. We found that endotrophin activated multiple pathological pathways in different cell types. Particularly in 3T3-L1 adipocytes, endotrophin triggered a fibrotic program by upregulating collagen genes and promoted abnormal lipid accumulation by downregulating hormone-sensitive lipolysis gene and decreasing HSL phosphorylation levels. In macrophages isolated from WAT, endotrophin stimulated higher expression of the collagen-linking enzyme lysyl oxidase and M1 proinflammatory marker genes. In the stromal vascular fraction isolated from WAT, endotrophin induced upregulation of both profibrotic and proinflammatory genes. In conclusion, our study provides a new perspective on the effect of endotrophin in abnormal lipid accumulation and a mechanistic insight into the roles played by adipocytes and a variety of other cell types in AT in shaping the unhealthy microenvironment upon endotrophin treatment.
Collapse
Affiliation(s)
- Yueshui Zhao
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Xue Gu
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Ningyan Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mikhail G Kolonin
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas; and
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas; and
| |
Collapse
|
35
|
Deng Q, Chen H, Liu Y, Xiao F, Guo L, Liu D, Cheng X, Zhao M, Wang X, Xie S, Qi S, Yin Z, Gao J, Chen X, Wang J, Guo N, Ma Y, Shi M. Psychological stress promotes neutrophil infiltration in colon tissue through adrenergic signaling in DSS-induced colitis model. Brain Behav Immun 2016; 57:243-254. [PMID: 27133786 DOI: 10.1016/j.bbi.2016.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition. Psychological stress has been postulated to affect the clinical symptoms and recurrence of IBD. The exact molecular mechanisms are not fully understood. In the present study, we demonstrate that psychological stress promotes neutrophil infiltration into colon tissues in dextran sulfate sodium (DSS)-induced colitis model. The psychological stress resulted in abnormal expression of the proinflammatory cytokines (IL-1β, IL-6, IL-17A, and IL-22) and neutrophil chemokines (CXCL1 and CXCL2) and overactivation of the STAT3 inflammatory signaling pathway. Under chronic unpredictable stress, the adrenergic nervous system was markedly activated, as the expression of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, in bone marrow and colonic epithelium was enhanced, especially in the myenteric ganglia. The β-AR agonist isoproterenol mimicked the effects of psychological stress on neutrophilia, neutrophil infiltration, and colonic damage in DSS-induced colitis. The β1-AR/β2-AR inhibitor propranolol reduced the numbers of the neutrophils in the circulation, suppressed neutrophil infiltration into colonic tissues, and attenuated the colonic tissue damage promoted by chronic stress. Propranolol also abolished stress-induced upregulation of proinflammatory cytokines and neutrophil chemokines. Our data reveal a close linkage between the β1-AR/β2-AR activation and neutrophil trafficking and also suggest the critical roles of adrenergic nervous system in exacerbation of inflammation and damage of colonic tissues in experimental colitis. The current study provides a new insight into the mechanisms underlying the association of psychological stress with excessive inflammatory response and pathophysiological consequences in IBD. The findings also suggest a potential application of neuroprotective agents to prevent relapsing immune activation in the treatment of IBD.
Collapse
Affiliation(s)
- Que Deng
- Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Hongyu Chen
- Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Yanjun Liu
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004, PR China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Liang Guo
- Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Dan Liu
- Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Xiang Cheng
- Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Min Zhao
- Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Xiaomeng Wang
- Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Shuai Xie
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004, PR China
| | - Siyong Qi
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing 100048, PR China
| | - Zhaoyang Yin
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing 100048, PR China
| | - Jiangping Gao
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing 100048, PR China
| | - Xintian Chen
- Department of Cancer Biotherapy, Cancer Institute, Tangshan People's Hospital, Tangshan 063001, PR China
| | - Jiangong Wang
- Department of Cancer Biotherapy, Cancer Institute, Tangshan People's Hospital, Tangshan 063001, PR China
| | - Ning Guo
- Institute of Basic Medical Sciences, Beijing 100850, PR China.
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004, PR China.
| | - Ming Shi
- Institute of Basic Medical Sciences, Beijing 100850, PR China.
| |
Collapse
|
36
|
Salameh A, Daquinag AC, Staquicini DI, An Z, Hajjar KA, Pasqualini R, Arap W, Kolonin MG. Prohibitin/annexin 2 interaction regulates fatty acid transport in adipose tissue. JCI Insight 2016; 1. [PMID: 27468426 DOI: 10.1172/jci.insight.86351] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases.
Collapse
Affiliation(s)
- Ahmad Salameh
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alexes C Daquinag
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniela I Staquicini
- University of New Mexico Comprehensive Cancer Center and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Zhiqiang An
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Katherine A Hajjar
- Departments of Pediatrics, Cell and Developmental Biology, and Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center and Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
37
|
Hettich M, Braun F, Bartholomä MD, Schirmbeck R, Niedermann G. High-Resolution PET Imaging with Therapeutic Antibody-based PD-1/PD-L1 Checkpoint Tracers. Am J Cancer Res 2016; 6:1629-40. [PMID: 27446497 PMCID: PMC4955062 DOI: 10.7150/thno.15253] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
Checkpoint-blocking antibodies like those targeting the PD-1/PD-L1 pathway have revolutionized oncology. We developed radiotracers based on therapeutic checkpoint-blocking antibodies permitting sensitive and high-resolution PET imaging of both PD-1 and PD-L1 in immunocompetent mice. ImmunoPET of naive mice revealed similar overall expression patterns for PD-1 and PD-L1 in secondary lymphoid organs (spleen and lymph nodes). Interestingly, PD-L1 was also detected in brown adipose tissue (BAT), confirming the notion that BAT is immunologically relevant. Under pathophysiological conditions, strong expression of the receptor/ligand pair was also found in non-lymphoid tissues. Both were specifically detected in malignant tumors. PD-1 was readily detected after combined immunoradiotherapy causing massive tumor infiltration by PD-1+ lymphocytes. PD-L1 tracer uptake was reduced in PD-L1 knockout tumors. Moreover, monitoring the expression changes of PD-L1 in response to its main inducer, the effector T cell cytokine IFN-γ, revealed robust upregulation in the lung. This suggests that T cell responses in the lung, a vital organ continuously exposed to a variety of antigens, are strongly restrained by the PD-1 checkpoint. In turn, this could explain the association of PD-1 checkpoint inhibition with potentially fatal immune-mediated pneumonitis and partially also its efficacy in lung cancer.
Collapse
|
38
|
Zhang T, Tseng C, Zhang Y, Sirin O, Corn PG, Li-Ning-Tapia EM, Troncoso P, Davis J, Pettaway C, Ward J, Frazier ML, Logothetis C, Kolonin MG. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat Commun 2016; 7:11674. [PMID: 27241286 PMCID: PMC4895055 DOI: 10.1038/ncomms11674] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/19/2016] [Indexed: 12/25/2022] Open
Abstract
White adipose tissue (WAT) overgrowth in obesity is linked with increased aggressiveness of certain cancers. Adipose stromal cells (ASCs) can become mobilized from WAT, recruited by tumours and promote cancer progression. Mechanisms underlying ASC trafficking are unclear. Here we demonstrate that chemokines CXCL1 and CXCL8 chemoattract ASC by signalling through their receptors, CXCR1 and CXCR2, in cell culture models. We further show that obese patients with prostate cancer have increased epithelial CXCL1 expression. Concomitantly, we observe that cells with ASC phenotype are mobilized and infiltrate tumours in obese patients. Using mouse models, we show that the CXCL1 chemokine gradient is required for the obesity-dependent tumour ASC recruitment, vascularization and tumour growth promotion. We demonstrate that αSMA expression in ASCs is induced by chemokine signalling and mediates the stimulatory effects of ASCs on endothelial cells. Our data suggest that ASC recruitment to tumours, driven by CXCL1 and CXCL8, promotes prostate cancer progression. Adipose stromal cells (ASC) have been shown to migrate to tumours and promote tumour growth. Using animal models and human tissue samples, the authors show here that ASC recruitment to prostate cancers is mediated by the chemokine CXCL1, which is secreted from tumour cells, and acts on CXCR1 on ASCs.
Collapse
Affiliation(s)
- Tao Zhang
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Chieh Tseng
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yan Zhang
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Olga Sirin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elsa M Li-Ning-Tapia
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John Davis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Curtis Pettaway
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John Ward
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marsha L Frazier
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
39
|
Role of P38 MAPK on MMP Activity in Photothrombotic Stroke Mice as Measured using an Ultrafast MMP Activatable Probe. Sci Rep 2015; 5:16951. [PMID: 26581247 PMCID: PMC4652271 DOI: 10.1038/srep16951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/22/2015] [Indexed: 12/24/2022] Open
Abstract
Matrix metalloproteinases (MMPs) exert a dual effect in ischemic stroke and thus represent an ideal target for detection and therapy. However, to date, all clinical trials of MMP inhibitors have failed, and alternative drug candidates and therapeutic targets are urgently required. Nonetheless, further investigations are limited by the lack of non-invasive imaging techniques. Here, we report a novel, fast and ultrasensitive MMP activatable optical imaging probe for the dynamic visualization of MMP activity in photothrombotic stroke mice. This probe provides a significant signal enhancement in as little as 15 min, with the highest signal intensity occurring at 1 h post-injection, and shows high sensitivity in measuring MMP activity alterations, which makes it specifically suitable for the real-time visualization of MMP activity and drug discovery in preclinical research. Moreover, using this probe, we successfully demonstrate that the regulation of the p38 mitogen-activated protein kinase (MAPK) signal pathway is capable of modulating MMP activity after stroke, revealing a novel regulatory mechanism of postischemic brain damage and overcoming the limitations of traditional therapeutic strategies associated with MMP inhibitors by using a non-invasive molecular imaging method.
Collapse
|
40
|
Zhang X, Tian Y, Zhang H, Kavishwar A, Lynes M, Brownell AL, Sun H, Tseng YH, Moore A, Ran C. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning. Sci Rep 2015; 5:13116. [PMID: 26269357 PMCID: PMC4534785 DOI: 10.1038/srep13116] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 07/16/2015] [Indexed: 01/10/2023] Open
Abstract
Manipulation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can be promising new approaches to counter metabolic disorder diseases in humans. Imaging probes that could consistently monitor BAT mass and browning of WAT are highly desirable. In the course of our imaging probe screening, we found that BAT could be imaged with curcumin analogues in mice. However, the poor BAT selectivity over WAT and short emissions of the lead probes promoted further lead optimization. Limited uptake mechanism studies suggested that CD36/FAT (fatty acid transporter) probably contributed to the facilitated uptake of the probes. By increasing the stereo-hindrance of the lead compound, we designed CRANAD-29 to extend the emission and increase the facilitated uptake, thus increasing its BAT selectivity. Our data demonstrated that CRANAD-29 had significantly improved selectivity for BAT over WAT, and could be used for imaging BAT mass change in a streptozotocin-induced diabetic mouse model, as well as for monitoring BAT activation under cold exposure. In addition, CRANAD-29 could be used for monitoring the browning of subcutaneous WAT (sWAT) induced by β3-adrenoceptor agonist CL-316, 243.
Collapse
Affiliation(s)
- Xueli Zhang
- 1] Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA [2] School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China [3] Department of pharmacy, ZhongDa Hospital, Southeast University, Nanjing 210009, China
| | - Yanli Tian
- 1] Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA [2] Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongbin Zhang
- Joslin Diabetes Center, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA 02215
| | - Amol Kavishwar
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Matthew Lynes
- Joslin Diabetes Center, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA 02215
| | - Anna-Liisa Brownell
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Hongbin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA 02215
| | - Anna Moore
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Chongzhao Ran
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Rice DR, White AG, Leevy WM, Smith BD. Fluorescence Imaging of Interscapular Brown Adipose Tissue in Living Mice. J Mater Chem B 2015; 3:1979-1989. [PMID: 26015867 DOI: 10.1039/c4tb01914h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brown adipose tissue (BAT) plays a key role in energy expenditure and heat generation and is a promising target for diagnosing and treating obesity, diabetes and related metabolism disorders. While several nuclear and magnetic resonance imaging methods are established for detecting human BAT, there are no convenient protocols for high throughput imaging of BAT in small animal models. Here we disclose a simple but effective method for non-invasive optical imaging of interscapular BAT in mice using a micellar formulation of the commercially available deep-red fluorescent probe, SRFluor680. Whole-body fluorescence imaging of living mice shows extensive accumulation of the fluorescent probe in the interscapular BAT and ex vivo analysis shows 3.5-fold selectivity for interscapular BAT over interscapular WAT. Additional imaging studies indicate that SRFluor680 uptake is independent of mouse species and BAT metabolic state. The results are consistent with an unusual pharmacokinetic process that involves irreversible translocation of the lipophilic SRFluor680 from the micelle nanocarrier into the adipocytes within the BAT. Multimodal PET/CT and planar fluorescence/X-ray imaging of the same living animal shows co-localization of BAT mass signal reported by the fluorescent probe and BAT metabolism signal reported by the PET agent, 18F-FDG. The results indicate a path towards a new, dual probe molecular imaging paradigm that allows separate and independent non-invasive visualization of BAT mass and BAT metabolism in a living subject.
Collapse
Affiliation(s)
- Douglas R Rice
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| | - Alexander G White
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| | - W Matthew Leevy
- Department of Biological Science, Galvin Life Sciences, University of Notre Dame, Notre Dame, 46556 IN, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, 46556 IN, USA
| |
Collapse
|
42
|
Sakurai Y, Kajimoto K, Hatakeyama H, Harashima H. Advances in an active and passive targeting to tumor and adipose tissues. Expert Opin Drug Deliv 2014; 12:41-52. [PMID: 25376864 DOI: 10.1517/17425247.2015.955847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Data reported during the last decade of the twentieth century indicate that passive targeting is an efficient strategy for delivering nanocarrier systems to tumor tissues. The focus of this review is on active targeting as a next-generation strategy for extending the capacity of a drug delivery system (DDS). AREAS COVERED Tumor vasculature targeting was achieved using arginine- glycine-aspartic acid, asparagine-glycine-arginine and other peptides, which are well-known peptides, as ligand against tumor vasculature. An efficient system for delivering small interfering RNA to the tumor vasculature involved the use of a multifunctional envelope-type nanodevice based on a pH-modified cationic lipid and targeting ligands. The active-targeting system was extended from tumor delivery to adipose tissue delivery, where endothelial cells are tightly linked and are impermeable to nanocarriers. In mice, prohibitin-targeted nanoparticles can be used to successfully deliver macromolecules to induce anti-obese effects. Finally, the successful delivery of nanocarriers to adipose tissue in obese mice via the enhanced permeability and retention-effect is reported, which can be achieved in tumor tissue. EXPERT OPINION Unlike tumor tissues, only a few reports have appeared on how liposomal carriers accumulate in adipose tissues after systemic injection. This finding, as well as active targeting to the adipose vasculature, promises to extend the capacity of DDS to adipose tissue. Since the site of action of nucleic acids is the cytosol, the intracellular trafficking of carriers and their cargoes as well as cellular uptake must be taken into consideration.
Collapse
Affiliation(s)
- Yu Sakurai
- Hokkaido University, Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences , Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060-0812 , Japan
| | | | | | | |
Collapse
|
43
|
Siefker J, Karande P, Coppens MO. Packaging biological cargoes in mesoporous materials: opportunities for drug delivery. Expert Opin Drug Deliv 2014; 11:1781-93. [PMID: 25016923 PMCID: PMC4245185 DOI: 10.1517/17425247.2014.938636] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants. AREAS COVERED Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments. EXPERT OPINION The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed.
Collapse
Affiliation(s)
- Justin Siefker
- University College London, Department of Chemical Engineering and EPSRC Frontier Engineering Centre for Nature Inspired Engineering,
Torrington Place, London, WC1E 7JE, UK
| | - Pankaj Karande
- Rensselaer Polytechnic Institute, Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies,
110 Eighth Street, Troy, NY 12180, USA+1 518 276 4459;
| | - Marc-Olivier Coppens
- University College London, Department of Chemical Engineering and EPSRC Frontier Engineering Centre for Nature Inspired Engineering,
Torrington Place, London, WC1E 7JE, UK+44 20 7679 7369; +44 20 7383 2348;
| |
Collapse
|
44
|
Daquinag AC, Tseng C, Salameh A, Zhang Y, Amaya-Manzanares F, Dadbin A, Florez F, Xu Y, Tong Q, Kolonin MG. Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death Differ 2014; 22:351-63. [PMID: 25342467 PMCID: PMC4291494 DOI: 10.1038/cdd.2014.148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/29/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity.
Collapse
Affiliation(s)
- A C Daquinag
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - C Tseng
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - A Salameh
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Y Zhang
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - F Amaya-Manzanares
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - A Dadbin
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - F Florez
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Y Xu
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Q Tong
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M G Kolonin
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
45
|
Abstract
As part of a current worldwide effort to understand the physiology of human BAT (hBAT) and whether its thermogenic activity can be manipulated to treat obesity, the workshop "Exploring the Roles of Brown Fat in Humans" was convened at the National Institutes of Health on February 25-26, 2014. Presentations and discussion indicated that hBAT and its physiological roles are highly complex, and research is needed to understand the health impact of hBAT beyond thermogenesis and body weight regulation, and to define its interactions with core physiological processes like glucose homeostasis, cachexia, physical activity, bone structure, sleep, and circadian rhythms.
Collapse
Affiliation(s)
- Aaron M Cypess
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carol R Haft
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Maren R Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Houchun H Hu
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
46
|
Pfeifer A, Hoffmann LS. Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol 2014; 55:207-27. [PMID: 25149919 DOI: 10.1146/annurev-pharmtox-010814-124346] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany;
| | | |
Collapse
|
47
|
Wang H, Chen YE, Eitzman DT. Imaging body fat: techniques and cardiometabolic implications. Arterioscler Thromb Vasc Biol 2014; 34:2217-23. [PMID: 25147343 DOI: 10.1161/atvbaha.114.303036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a worldwide epidemic and is associated with multiple comorbidities. The mechanisms underlying the relationship between obesity and adverse health outcomes remain poorly understood. This may be because of several factors including the crude measures used to estimate adiposity, the striking heterogeneity between adipose tissue depots, and the influence of fat accumulation in multiple organs. To advance our understanding of fat stores and associated comorbidities in humans, it will be necessary to image adiposity throughout the body and ultimately also assess its functionality. Large clinical studies are demonstrating the prognostic importance of adipose tissue imaging. Newer techniques capable of imaging fat metabolism and other functions of adipose tissue may provide additional prognostic use and may be useful in guiding therapeutic interventions.
Collapse
Affiliation(s)
- H Wang
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor
| | - Y E Chen
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor
| | - Daniel T Eitzman
- From the Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor.
| |
Collapse
|
48
|
Kolonin MG. How brown is brown fat that we can see? Adipocyte 2014; 3:155-9. [PMID: 24719791 DOI: 10.4161/adip.27747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/30/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
There are many unanswered questions related to the heterogeneity of adipose tissue depots and the paucity of their function, development, and organization at the cellular level. Much effort has been directed at studying white adipose tissue (WAT), the driver of obesity and the associated metabolic disease. In recent years, the importance of brown adipose tissue (BAT) has also been appreciated. While BAT depots are prominent in many small mammal species, their detection in adult humans has been technically challenging and the identity of brown human adipocytes found within depots of WAT has remained controversial. We recently reported a peptide probe that binds to BAT vasculature and, when coupled with a near-infrared fluorophore, can be used to detect BAT in whole body imaging. This probe reliably discriminates between endothelium associated with brown or brown-like (beige/brite) adipocytes and endothelium of visceral WAT. Improved probes based on this approach could aid in assessing human adipose tissue body distribution and remodeling, which is a process underlying various pathologies. This commentary aims at discussing open questions that need to be addressed before full clinical advantage can be taken from adipose tissue imaging, as well as its metabolic activation strategies.
Collapse
|