1
|
Hosford BM, Ramos W, Lamb JR. Combining photocontrolled-cationic and anionic-group-transfer polymerizations using a universal mediator: enabling access to two- and three-mechanism block copolymers. Chem Sci 2024; 15:13523-13530. [PMID: 39183918 PMCID: PMC11339941 DOI: 10.1039/d4sc02511c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
An ongoing challenge in polymer chemistry is accessing diverse block copolymers from multiple polymerization mechanisms and monomer classes. One strategy to accomplish this goal without intermediate compatibilization steps is the use of universal mediators. Thiocarbonyl thio (TCT) functional groups are well-known mediators to combine radical with either cationic or anionic polymerization, but a sequential cationic-anionic universal mediator system has never been reported. Herein, we report a TCT universal mediator that can sequentially perform photocontrolled cationic polymerization and thioacyl anionic group transfer polymerization to access poly(ethyl vinyl ether)-block-poly(thiirane) polymers for the first time. Thermal analyses of these block copolymers provide evidence of microphase separation. The success of this system, along with the established compatibility of radical polymerization, enabled us to further chain extend the cationic-anionic diblock using radical polymerization of N-isopropylacrylamide. The resulting terpolymer represents the first example of a triblock made from three different monomer classes incorporated via three different mechanisms without any end-group modification steps. The development of this simple, sequential synthesis using a universal mediator approach opens up new possibilities by providing facile access to diverse block copolymers of vinyl ethers, thiiranes, and acrylamides.
Collapse
Affiliation(s)
- Brandon M Hosford
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - William Ramos
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
2
|
Han J, Najafi S, Byun Y, Geonzon L, Oh SH, Park J, Koo JM, Kim J, Chung T, Han IK, Chae S, Cho DW, Jang J, Jeong U, Fredrickson GH, Choi SH, Mayumi K, Lee E, Shea JE, Kim YS. Bridge-rich and loop-less hydrogel networks through suppressed micellization of multiblock polyelectrolytes. Nat Commun 2024; 15:6553. [PMID: 39095421 PMCID: PMC11297175 DOI: 10.1038/s41467-024-50902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Most triblock copolymer-based physical hydrogels form three-dimensional networks through micellar packing, and formation of polymer loops represents a topological defect that diminishes hydrogel elasticity. This effect can be mitigated by maximizing the fraction of elastically effective bridges in the hydrogel network. Herein, we report hydrogels constructed by complexing oppositely charged multiblock copolymers designed with a sequence pattern that maximizes the entropic and enthalpic penalty of micellization. These copolymers self-assemble into branched and bridge-rich network units (netmers), instead of forming sparsely interlinked micelles. We find that the storage modulus of the netmer-based hydrogel is 11.5 times higher than that of the micelle-based hydrogel. Complementary coarse grained molecular dynamics simulations reveal that in the netmer-based hydrogels, the numbers of charge-complexed nodes and mechanically reinforcing bridges increase substantially relative to micelle-based hydrogels.
Collapse
Affiliation(s)
- Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
- Materials Research Laboratory, University of California, Santa Barbara, California, USA
| | - Youyoung Byun
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Lester Geonzon
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Seung-Hwan Oh
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Jiwon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Taehun Chung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Dong Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California, USA
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Koichi Mayumi
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA.
- Department of Physics, University of California, Santa Barbara, California, USA.
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
3
|
Clothier GKK, Guimarães TR, Thompson SW, Howard SC, Muir BW, Moad G, Zetterlund PB. Streamlining the Generation of Advanced Polymer Materials Through the Marriage of Automation and Multiblock Copolymer Synthesis in Emulsion. Angew Chem Int Ed Engl 2024; 63:e202320154. [PMID: 38400586 DOI: 10.1002/anie.202320154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Synthetic polymers are of paramount importance in modern life - an incredibly wide range of polymeric materials possessing an impressive variety of properties have been developed to date. The recent emergence of artificial intelligence and automation presents a great opportunity to significantly speed up discovery and development of the next generation of advanced polymeric materials. We have focused on the high-throughput automated synthesis of multiblock copolymers that comprise three or more distinct polymer segments of different monomer composition bonded in linear sequence. The present work has exploited automation to prepare high molar mass multiblock copolymers (typically>100,000 g mol-1) using reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous emulsion. A variety of original multiblock copolymers have been synthesised via a Chemspeed robot, exemplified by a multiblock copolymer comprising thirteen constituent blocks. Moreover, libraries of copolymers of randomized monomer compositions (acrylates, acrylamides, methacrylates, and styrenes), block orders, and block lengths were also generated, thereby demonstrating the robustness of our synthetic approach. One multiblock copolymer contained all four monomer families listed in the pool, which is unprecedented in the literature. The present work demonstrates that automation has the power to render complex and laborious syntheses of such unprecedented materials not just possible, but facile and straightforward, thus representing the way forward to the next generation of complex macromolecular architectures.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R Guimarães
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS (UMR 5629), ENSCPB, Université de Bordeaux, 16 avenue Pey Berland, 33607, Pessac, France
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shaun C Howard
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Benjamin W Muir
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Schröter C, Bangert LD, Börner HG. Enhancing Adhesion Properties of Commodity Polymers through Thiol-Catechol Connectivities: A Case Study on Polymerizing Polystyrene-Telechelics via Thiol-Quinone Michael-Polyaddition. ACS Macro Lett 2024; 13:440-445. [PMID: 38547376 PMCID: PMC11025132 DOI: 10.1021/acsmacrolett.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Segmented block copolymers with adhesive functionality bridges in between are synthesized through the combination of controlled radical polymerization (CRP) and thiol-quinone Michael-polyaddition. CRP provides a set of α,ω-dithiol polystyrenes (PS), which react as telechelics with a low molecular weight bisquinone, resulting in thiol-catechol connectivities (TCCs). By introducing as little as 3 mol % of TCC functionalities, the bonding of the polymer on dry and wet aluminum surfaces is significantly improved while keeping the integrity of the PS segments undisturbed to constitute favorable bulk properties. This improvement is evidenced by reaching up to 3.8 MPa adhesive strength, representing a 600% increase compared to nonfunctional PS.
Collapse
Affiliation(s)
- Carolin
M. Schröter
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Lukas D. Bangert
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Hans G. Börner
- Department
of Chemistry, Laboratory
for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
5
|
Deane O, Mandrelier P, Musa OM, Jamali M, Fielding LA, Armes SP. Synthesis and Characterization of All-Acrylic Tetrablock Copolymer Nanoparticles: Waterborne Thermoplastic Elastomers via One-Pot RAFT Aqueous Emulsion Polymerization. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2061-2075. [PMID: 38435050 PMCID: PMC10902817 DOI: 10.1021/acs.chemmater.3c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to prepare well-defined ABCB tetrablock copolymer nanoparticles via sequential monomer addition at 30 °C. The A block comprises water-soluble poly(2-(N-acryloyloxy)ethyl pyrrolidone) (PNAEP), while the B and C blocks comprise poly(t-butyl acrylate) (PtBA) and poly(n-butyl acrylate) (PnBA), respectively. High conversions are achieved at each stage, and the final sterically stabilized spherical nanoparticles can be obtained at 20% w/w solids at pH 3 and at up to 40% w/w solids at pH 7. A relatively long PnBA block is targeted to ensure that the final tetrablock copolymer nanoparticles form highly transparent films on drying such aqueous dispersions at ambient temperature. The kinetics of polymerization and particle growth are studied using 1H nuclear magnetic resonance spectroscopy, dynamic light scattering, and transmission electron microscopy, while gel permeation chromatography analysis confirmed a high blocking efficiency for each stage of the polymerization. Differential scanning calorimetry and small-angle X-ray scattering studies confirm microphase separation between the hard PtBA and soft PnBA blocks, and preliminary mechanical property measurements indicate that such tetrablock copolymer films exhibit promising thermoplastic elastomeric behavior. Finally, it is emphasized that targeting an overall degree of polymerization of more than 1000 for such tetrablock copolymers mitigates the cost, color, and malodor conferred by the RAFT agent.
Collapse
Affiliation(s)
- Oliver
J. Deane
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Pierre Mandrelier
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Mohammed Jamali
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
6
|
Suwannakot P, Zhu L, Tolentino MAK, Du EY, Sexton A, Myers S, Gooding JJ. Electrostatically Cross-Linked Bioinks for Jetting-Based Bioprinting of 3D Cell Cultures. ACS APPLIED BIO MATERIALS 2024; 7:269-283. [PMID: 38113450 DOI: 10.1021/acsabm.3c00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
It has been acknowledged that thousands of drugs that passed two-dimensional (2D) cell culture models and animal studies often fail when entering human clinical trials. Despite the significant development of three-dimensional (3D) models, developing a high-throughput model that can be reproducible on a scale remains challenging. One of the main challenges is precise cell deposition and the formation of a controllable number of spheroids to achieve more reproducible results for drug discovery and treatment applications. Furthermore, when transitioning from manually generated structures to 3D bioprinted structures, the choice of material is limited due to restrictions on materials that are applicable with bioprinters. Herein, we have shown the capability of a fast-cross-linking bioink that can be used to create a single spheroid with varying diameters (660, 1100, and 1340 μm) in a high-throughput manner using a commercialized drop-on-demand bioprinter. Throughout this work, we evaluate the physical properties of printable ink with and without cells, printing optimization, cytocompatibility, cell sedimentation, and homogeneity in ink during the printing process. This work showcases the importance of ink characterization to determine printability and precise cell deposition. The knowledge gained from this work will accelerate the development of next-generation inks compatible with a drop-on-demand 3D bioprinter for various applications such as precision models to mimic diseases, toxicity tests, and the drug development process.
Collapse
Affiliation(s)
- Panthipa Suwannakot
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - Lin Zhu
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - M A Kristine Tolentino
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - Eric Y Du
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| | - Andrew Sexton
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - Sam Myers
- Inventia Life Science Pty Ltd, Sydney, New South Wales 2015, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, New South Wales 2031, Australia
| |
Collapse
|
7
|
Lim J, Matsuoka H, Kinoshita Y, Yusa SI, Saruwatari Y. The Effect of Block Ratio and Structure on the Thermosensitivity of Double and Triple Betaine Block Copolymers. Molecules 2024; 29:390. [PMID: 38257304 PMCID: PMC10820771 DOI: 10.3390/molecules29020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
AB-type and BAB-type betaine block copolymers composed of a carboxybetaine methacrylate and a sulfobetaine methacrylate, PGLBT-b-PSPE and PSPE-b-PGLBT-b-PSPE, respectively, were synthesized by one-pot RAFT polymerization. By optimizing the concentration of the monomer, initiator, and chain transfer agent, block extension with precise ratio control was enabled and a full conversion (~99%) of betaine monomers was achieved at each step. Two sets (total degree of polymerization: ~300 and ~600) of diblock copolymers having four different PGLBT:PSPE ratios were prepared to compare the influence of block ratio and molecular weight on the temperature-responsive behavior in aqueous solution. A turbidimetry and dynamic light scattering study revealed a shift to higher temperatures of the cloud point and micelle formation by increasing the ratio of PSPE, which exhibit upper critical solution temperature (UCST) behavior. PSPE-dominant diblocks created spherical micelles stabilized by PGLBT motifs, and the transition behavior diminished by decreasing the PSPE ratio. No particular change was found in the diblocks that had an identical AB ratio. This trend reappeared in the other set whose entire molecular weight approximately doubled, and each transition point was not recognizably impacted by the total molecular weight. For triblocks, the PSPE double ends provided a higher probability of interchain attractions and resulted in a more turbid solution at higher temperatures, compared to the diblocks which had similar block ratios and molecular weights. The intermediates assumed as network-like soft aggregates eventually rearranged to monodisperse flowerlike micelles. It is expected that the method for obtaining well-defined betaine block copolymers, as well as the relationship of the block ratio and the chain conformation to the temperature-responsive behavior, will be helpful for designing betaine-based polymeric applications.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Yusuke Kinoshita
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd., 7-20 Azuchi-machi, 1chome, Chuo-ku, Osaka 541-0052, Japan;
| |
Collapse
|
8
|
Baker J, Zhang R, Figg CA. Installing a Single Monomer within Acrylic Polymers Using Photoredox Catalysis. J Am Chem Soc 2024; 146:106-111. [PMID: 38128915 PMCID: PMC10785814 DOI: 10.1021/jacs.3c12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Incorporating exactly one monomer at a defined position during a chain polymerization is exceptionally challenging due to the statistical nature of monomer addition. Herein, photoinduced electron/energy transfer (PET) enables the incorporation of exactly one vinyl ether into polyacrylates synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Near-quantitative addition (>96%) of a single vinyl ether is achieved while retaining >99% of the thiocarbonylthio chain ends. Kinetic studies reveal that performing the reactions at 2 °C limits unwanted chain breaking events. Finally, the syntheses of diblock copolymers are reported where molecular weights and dispersities are well-controlled on either side of the vinyl ether. Overall, this report introduces an approach to access acrylic copolymers containing exactly one chemical handle at a defined position, enabling novel macromolecular architectures to probe structure-function properties, introduce sites for de/reconstruction, store information, etc.
Collapse
Affiliation(s)
- Jared
G. Baker
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard Zhang
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - C. Adrian Figg
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Ma Q, Qiao GG, An Z. Visible Light Photoiniferter Polymerization for Dispersity Control in High Molecular Weight Polymers. Angew Chem Int Ed Engl 2023; 62:e202314729. [PMID: 37814139 DOI: 10.1002/anie.202314729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.
Collapse
Affiliation(s)
- Qingchi Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Greg G Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
10
|
Courtney OR, Clouthier SM, Perrier S, Tanaka J, You W. Polymer Functionalization by RAFT Interchange. ACS Macro Lett 2023; 12:1306-1310. [PMID: 37708390 DOI: 10.1021/acsmacrolett.3c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Here, we report a simple approach for end group functionalization of linear polymers and graft copolymers via an interchange process of reversible addition-fragmentation chain transfer (RAFT) polymerization chain transfer agents (CTAs). The high functional group tolerance of the RAFT process allows a library of functionalities to be introduced. Moreover, this approach allows multiple functional groups to be installed simultaneously. Furthermore, as an alternative to end group analysis, we report the utility of the supernatant of the reaction mixture to determine the degree of functionalization.
Collapse
Affiliation(s)
- Owen Reid Courtney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Samantha Marie Clouthier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Joji Tanaka
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
11
|
Jafari VF, Mossayebi Z, Allison-Logan S, Shabani S, Qiao GG. The Power of Automation in Polymer Chemistry: Precision Synthesis of Multiblock Copolymers with Block Sequence Control. Chemistry 2023; 29:e202301767. [PMID: 37401148 DOI: 10.1002/chem.202301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Machines can revolutionize the field of chemistry and material science, driving the development of new chemistries, increasing productivity, and facilitating reaction scale up. The incorporation of automated systems in the field of polymer chemistry has however proven challenging owing to the demanding reaction conditions, rendering the automation setup complex and costly. There is an imminent need for an automation platform which uses fast and simple polymerization protocols, while providing a high level of control on the structure of macromolecules via precision synthesis. This work combines an oxygen tolerant, room temperature polymerization method with a simple liquid handling robot to automatically prepare precise and high order multiblock copolymers with unprecedented livingness even after many chain extensions. The highest number of blocks synthesized in such a system is reported, demonstrating the capabilities of this automated platform for the rapid synthesis and complex polymer structure formation.
Collapse
Affiliation(s)
- Vianna F Jafari
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Zahra Mossayebi
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephanie Allison-Logan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sadegh Shabani
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
12
|
Häfliger F, Truong NP, Wang HS, Anastasaki A. Fate of the RAFT End-Group in the Thermal Depolymerization of Polymethacrylates. ACS Macro Lett 2023; 12:1207-1212. [PMID: 37615956 PMCID: PMC10515620 DOI: 10.1021/acsmacrolett.3c00418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Thermal RAFT depolymerization has recently emerged as a promising methodology for the chemical recycling of polymers. However, while much attention has been given to the regeneration of monomers, the fate of the RAFT end-group after depolymerization has been unexplored. Herein, we identify the dominant small molecules derived from the RAFT end-group of polymethacrylates. The major product was found to be a unimer (DP = 1) RAFT agent, which is not only challenging to synthesize using conventional single-unit monomer insertion strategies, but also a highly active RAFT agent for methyl methacrylate, exhibiting faster consumption and yielding polymers with lower dispersities compared to the original, commercially available 2-cyano-2-propyl dithiobenzoate. Solvent-derived molecules were also identified predominantly at the beginning of the depolymerization, thus suggesting a significant mechanistic contribution from the solvent. Notably, the formation of both the unimer and the solvent-derived products remained consistent regardless of the RAFT agent, monomer, or solvent employed.
Collapse
Affiliation(s)
- Florian Häfliger
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 399 Royal
Parade, Parkville, VIC 3152, Australia
| | - Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Voorter PJ, Dev G, Buckinx AL, Dai J, Subramanian P, Kumar A, Cameron NR, Junkers T. From monomer to micelle: a facile approach to the multi-step synthesis of block copolymers via inline purification. Chem Sci 2023; 14:8466-8473. [PMID: 37592997 PMCID: PMC10430632 DOI: 10.1039/d3sc01819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023] Open
Abstract
A one-pass continuous flow strategy to form block copolymer nanoaggregates directly from monomers is presented. A key development towards such a sophisticated continuous flow setup is a significant improvement in continuous flow dialysis. Often impurities or solvent residues from polymerizations must be removed before block extensions or nanoaggregate formation can be carried out, typically disrupting the workflow. Hence, inline purification systems are required for fully continuous operation and eventual high throughput operation. An inline dialysis purification system is developed and exemplified for amphiphilic block copolymer synthesis from thermal and photoiniferter reversible addition fragmentation chain transfer (RAFT) polymerization. The inline dialysis system is found to be significantly faster than conventional batch dialysis and the kinetics are found to be very predictable with a diffusion velocity coefficient of 4.1 × 10-4 s-1. This is at least 4-5 times faster than conventional dialysis. Moreover, the newly developed setup uses only 57 mL of solvent for purification per gram of polymer, again reducing the required amount by almost an order of magnitude compared to conventional methods. Methyl methacrylate (MMA) or butyl acrylate (BA) was polymerized in a traditional flow reactor as the first block via RAFT polymerization, followed by a 'dialysis loop', which contains a custom-built inline dialysis device. Clearance of residual monomers is monitored via in-line NMR. The purified reaction mixture can then be chain extended in a second reactor stage to obtain block copolymers using poly(ethylene glycol) methyl ether acrylate (PEGMEA) as the second monomer. In the last step, nano-objects are created, again from flow processes. The process is highly tuneable, showing for the chosen model system a variation in nanoaggregate size from 34 nm to 188 nm.
Collapse
Affiliation(s)
- Pieter-Jan Voorter
- Polymer Reaction Design Group, School of Chemistry, Monash University 19 Rainforest Walk, Building 23 Clayton VIC 3800 Australia
- Department of Materials Science and Engineering, Monash University 14 Alliance Lane Clayton Victoria 3800 Australia
| | - Gayathri Dev
- Polymer Reaction Design Group, School of Chemistry, Monash University 19 Rainforest Walk, Building 23 Clayton VIC 3800 Australia
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Axel-Laurenz Buckinx
- Polymer Reaction Design Group, School of Chemistry, Monash University 19 Rainforest Walk, Building 23 Clayton VIC 3800 Australia
- Dulux Australia 1956 Dandenong Road Clayton VIC 3168 Australia
| | - Jinhuo Dai
- Dulux Australia 1956 Dandenong Road Clayton VIC 3168 Australia
| | | | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University 14 Alliance Lane Clayton Victoria 3800 Australia
- School of Engineering, Warwick University Coventry CV4 7AL UK
| | - Tanja Junkers
- Polymer Reaction Design Group, School of Chemistry, Monash University 19 Rainforest Walk, Building 23 Clayton VIC 3800 Australia
| |
Collapse
|
14
|
Patel R, Colmenares S, Webb MA. Sequence Patterning, Morphology, and Dispersity in Single-Chain Nanoparticles: Insights from Simulation and Machine Learning. ACS POLYMERS AU 2023; 3:284-294. [PMID: 37334192 PMCID: PMC10273411 DOI: 10.1021/acspolymersau.3c00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Single-chain nanoparticles (SCNPs) are intriguing materials inspired by proteins that consist of a single precursor polymer chain that has collapsed into a stable structure. In many prospective applications, such as catalysis, the utility of a single-chain nanoparticle will intricately depend on the formation of a mostly specific structure or morphology. However, it is not generally well understood how to reliably control the morphology of single-chain nanoparticles. To address this knowledge gap, we simulate the formation of 7680 distinct single-chain nanoparticles from precursor chains that span a wide range of, in principle, tunable patterning characteristics of cross-linking moieties. Using a combination of molecular simulation and machine learning analyses, we show how the overall fraction of functionalization and blockiness of cross-linking moieties biases the formation of certain local and global morphological characteristics. Importantly, we illustrate and quantify the dispersity of morphologies that arise due to the stochastic nature of collapse from a well-defined sequence as well as from the ensemble of sequences that correspond to a given specification of precursor parameters. Moreover, we also examine the efficacy of precise sequence control in achieving morphological outcomes in different regimes of precursor parameters. Overall, this work critically assesses how precursor chains might be feasibly tailored to achieve given SCNP morphologies and provides a platform to pursue future sequence-based design.
Collapse
|
15
|
Clothier GKK, Guimarães TR, Thompson SW, Rho JY, Perrier S, Moad G, Zetterlund PB. Multiblock copolymer synthesis via RAFT emulsion polymerization. Chem Soc Rev 2023; 52:3438-3469. [PMID: 37093560 DOI: 10.1039/d2cs00115b] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A multiblock copolymer is a polymer of a specific structure that consists of multiple covalently linked segments, each comprising a different monomer type. The control of the monomer sequence has often been described as the "holy grail" of synthetic polymer chemistry, with the ultimate goal being synthetic access to polymers of a "perfect" structure, where each monomeric building block is placed at a desired position along the polymer chain. Given that polymer properties are intimately linked to the microstructure and monomer distribution along the constituent chains, it goes without saying that there exist seemingly endless opportunities in terms of fine-tuning the properties of such materials by careful consideration of the length of each block, the number and order of blocks, and the inclusion of monomers with specific functional groups. The area of multiblock copolymer synthesis remains relatively unexplored, in particular with regard to structure-property relationships, and there are currently significant opportunities for the design and synthesis of advanced materials. The present review focuses on the synthesis of multiblock copolymers via reversible addition-fragmentation chain transfer (RAFT) polymerization implemented as aqueous emulsion polymerization. RAFT emulsion polymerization offers intriguing opportunities not only for the advanced synthesis of multiblock copolymers, but also provides access to polymeric nanoparticles of specific morphologies. Precise multiblock copolymer synthesis coupled with self-assembly offers material morphology control on length scales ranging from a few nanometers to a micrometer. It is imperative that polymer chemists interact with physicists and material scientists to maximize the impact of these materials of the future.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Thiago R Guimarães
- MACROARC, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Julia Y Rho
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Quo Vadis Carbanionic Polymerization? ACS POLYMERS AU 2023; 3:158-181. [PMID: 37065716 PMCID: PMC10103213 DOI: 10.1021/acspolymersau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.
Collapse
Affiliation(s)
- Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Zhang Z, Xiong Y, Yang P, Li Y, Tang R, Nie X, Chen G, Wang LH, Hong CY, You YZ. Easy Access to Diverse Multiblock Copolymers with On-Demand Blocks via Thioester-Relayed In-Chain Cascade Copolymerization. Angew Chem Int Ed Engl 2023; 62:e202216685. [PMID: 36786232 DOI: 10.1002/anie.202216685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Multiblock copolymers are envisioned as promising materials with enhanced properties and functionality compared with their diblock/triblock counterparts. However, the current approaches can construct multiblock copolymers with a limited number of blocks but tedious procedures. Here, we report a thioester-relayed in-chain cascade copolymerization strategy for the easy preparation of multiblock copolymers with on-demand blocks, in which thioester groups with on-demand numbers are built in the polymer backbone by controlled/living polymerizations. These thioester groups further serve as the in-chain initiating centers to trigger the acyl group transfer ring-opening polymerization of episulfides independently and concurrently to extend the polymer backbone into multiblock structures. The compositions, number of blocks, and block degree of polymerization can be easily regulated. This strategy can offer easy access to a library of multiblock copolymers with ≈100 blocks in only 2 to 4 steps.
Collapse
Affiliation(s)
- Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peng Yang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA-02115, USA
| | - Rui Tang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuan Nie
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Long-Hai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Wan Y, He J, Zhang Y. An Arbitrarily Regulated Monomer Sequence in Multi-Block Copolymer Synthesis by Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2023; 62:e202218248. [PMID: 36577704 DOI: 10.1002/anie.202218248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Rapid access to sequence-controlled multi-block copolymers (multi-BCPs) remains as a challenging task in the polymer synthesis. Here we employ a Lewis pair (LP) composed of organophosphorus superbase and bulky organoaluminum to effectively copolymerize the mixture of methacrylate, cyclic acrylate, and two acrylates, into well-defined di-, tri-, tetra- and even a hepta-BCP in one-pot one-step manner. The combined livingness, dual-initiation and CSC feature of Lewis pair polymerization enable us to achieve not only a trihexaconta-BCP with the highest record in 8 steps by using four-component monomer mixture as building blocks, but also the arbitrarily-regulated monomer sequence in multi-BCP, simply by changing the composition and adding order of the monomer mixtures, thus demonstrating the powerful capability of our strategy in improving the efficiency and enriching the composition of multi-BCP synthesis.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| |
Collapse
|
19
|
Han H, Seale JSW, Feng L, Qiu Y, Stoddart JF. Sequence‐controlled synthesis of rotaxanes. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Han Han
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - James S. W. Seale
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - Liang Feng
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - Yunyan Qiu
- Department of Chemistry National University of Singapore Singapore Republic of Singapore
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois USA
- School of Chemistry University of New South Wales Sydney Australia
- Department of Chemistry, Stoddart Institute of Molecular Science Zhejiang University Hangzhou China
- ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| |
Collapse
|
20
|
Lehnen AC, Gurke J, Bapolisi AM, Reifarth M, Bekir M, Hartlieb M. Xanthate-supported photo-iniferter (XPI)-RAFT polymerization: facile and rapid access to complex macromolecules. Chem Sci 2023; 14:593-603. [PMID: 36741515 PMCID: PMC9847670 DOI: 10.1039/d2sc05197d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Xanthate-supported photo-iniferter (XPI)-reversible addition-fragmentation chain-transfer (RAFT) polymerization is introduced as a fast and versatile photo-polymerization strategy. Small amounts of xanthate are added to conventional RAFT polymerizations to act as a photo-iniferter under light irradiation. Radical exchange is facilitated by the main CTA ensuring control over the molecular weight distribution, while xanthate enables an efficient photo-(re)activation. The photo-active moiety is thus introduced into the polymer as an end group, which makes chain extension of the produced polymers possible directly by irradiation. This is in sharp contrast to conventional photo-initiators, or photo electron transfer (PET)-RAFT polymerizations, where radical generation depends on the added small molecules. In contrast to regular photo-iniferter-RAFT polymerization, photo-activation is decoupled from polymerization control, rendering XPI-RAFT an elegant tool for the fabrication of defined and complex macromolecules. The method is oxygen tolerant and robust and was used to perform screenings in a well-plate format, and it was even possible to produce multiblock copolymers in a coffee mug under open-to-air conditions. XPI-RAFT does not rely on highly specialized equipment and qualifies as a universal tool for the straightforward synthesis of complex macromolecules. The method is user-friendly and broadens the scope of what can be achieved with photo-polymerization techniques.
Collapse
Affiliation(s)
- Anne-Catherine Lehnen
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Johannes Gurke
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Alain M Bapolisi
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Martin Reifarth
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| | - Marek Bekir
- University of Potsdam, Institute of Physics and Astronomy Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
| | - Matthias Hartlieb
- University of Potsdam, Institute of Chemistry Karl-Liebknecht-Straße 24-25 D-14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research (IAP) Geiselbergstraße 69 D-14476 Potsdam Germany
| |
Collapse
|
21
|
Dhiraj HS, Ishizuka F, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose induced self‐assembly of hydrophobic boronic acid‐substituted polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harpal S. Dhiraj
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| |
Collapse
|
22
|
Dhiraj HS, Ishizuka F, Saeed M, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose responsive boronic acid-substituted amphiphilic block copolymer nanoparticles of high aspect ratio. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Han J, Lee J, Kim S, Lee A, Park HG, Kim YS. Mucus-inspired organogel as an efficient absorbent and retention agent for volatile organic compounds. NANOSCALE 2022; 15:101-108. [PMID: 36448562 DOI: 10.1039/d2nr05522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nasal mucus plays a key role in the sense of smell by absorbing and transporting chemicals to olfactory receptors. Inspired by the physical properties of mucus that enable it to transport molecules despite its high viscosity, we developed a polymeric organogel with similar viscosity and analyzed its general performance. Through qualitative and quantitative analysis, we confirmed that the matrix viscosity mainly affects the absorption and retention of volatile organic compounds (VOCs) and not their diffusion inside the matrix. Additionally, the vapor pressure of VOCs influences the absorption and retention efficiencies of the matrix. Finally, a detailed understanding of the properties of mucus along with the use of sol-gel transition enabled us to create an efficient VOC absorbent and retention agent.
Collapse
Affiliation(s)
- Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Jemin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Seonghyeon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Anna Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Hyung Gyu Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
24
|
Wang HS, Truong NP, Jones GR, Anastasaki A. Investigating the Effect of End-Group, Molecular Weight, and Solvents on the Catalyst-Free Depolymerization of RAFT Polymers: Possibility to Reverse the Polymerization of Heat-Sensitive Polymers. ACS Macro Lett 2022; 11:1212-1216. [PMID: 36174124 PMCID: PMC9583609 DOI: 10.1021/acsmacrolett.2c00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2022]
Abstract
Reversing reversible deactivation radical polymerization (RDRP) to regenerate the original monomer is an attractive prospect for both fundamental research and industry. However, current depolymerization strategies are often applied to highly heat-tolerant polymers with a specific end-group and can only be performed in a specific solvent. Herein, we depolymerize a variety of poly(methyl methacrylate) materials made by reversible addition-fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate). The effect of the nature of the solvent on the depolymerization conversion was also investigated, and key solvents such as dioxane, xylene, toluene, and dimethylformamide were shown to facilitate efficient depolymerization reactions. Notably, our approach could selectively regenerate pure heat-sensitive monomers (e.g., tert-butyl methacrylate and glycidyl methacrylate) in the absence of previously reported side reactions. This work pushes the boundaries of reversing RAFT polymerization and considerably expands the chemical toolbox for recovering starting materials under relatively mild conditions.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Glen R. Jones
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Chernikova EV, Mineeva KO. Reversible Deactivation Radical Copolymerization: Synthesis of Copolymers with Controlled Unit Sequence. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Dau H, Jones GR, Tsogtgerel E, Nguyen D, Keyes A, Liu YS, Rauf H, Ordonez E, Puchelle V, Basbug Alhan H, Zhao C, Harth E. Linear Block Copolymer Synthesis. Chem Rev 2022; 122:14471-14553. [PMID: 35960550 DOI: 10.1021/acs.chemrev.2c00189] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Block copolymers form the basis of the most ubiquitous materials such as thermoplastic elastomers, bridge interphases in polymer blends, and are fundamental for the development of high-performance materials. The driving force to further advance these materials is the accessibility of block copolymers, which have a wide variety in composition, functional group content, and precision of their structure. To advance and broaden the application of block copolymers will depend on the nature of combined segmented blocks, guided through the combination of polymerization techniques to reach a high versatility in block copolymer architecture and function. This review provides the most comprehensive overview of techniques to prepare linear block copolymers and is intended to serve as a guideline on how polymerization techniques can work together to result in desired block combinations. As the review will give an account of the relevant procedures and access areas, the sections will include orthogonal approaches or sequentially combined polymerization techniques, which increases the synthetic options for these materials.
Collapse
Affiliation(s)
- Huong Dau
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Glen R Jones
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Enkhjargal Tsogtgerel
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Dung Nguyen
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Anthony Keyes
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Yu-Sheng Liu
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hasaan Rauf
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Estela Ordonez
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Valentin Puchelle
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Hatice Basbug Alhan
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Chenying Zhao
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| | - Eva Harth
- Department of Chemistry, University of Houston, Center for Excellence in Chemistry, CEPC, Houston, Texas 77004, United States
| |
Collapse
|
27
|
Foster H, Stenzel MH, Chapman R. PET-RAFT Enables Efficient and Automated Multiblock Star Synthesis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Foster
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Robert Chapman
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
28
|
Antonopoulou MN, Whitfield R, Truong NP, Anastasaki A. Controlling polymer dispersity using switchable RAFT agents: Unravelling the effect of the organic content and degree of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Wang HS, Truong NP, Pei Z, Coote ML, Anastasaki A. Reversing RAFT Polymerization: Near-Quantitative Monomer Generation Via a Catalyst-Free Depolymerization Approach. J Am Chem Soc 2022; 144:4678-4684. [PMID: 35213149 PMCID: PMC8931752 DOI: 10.1021/jacs.2c00963] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
The ability to reverse controlled radical polymerization and regenerate the monomer would be highly beneficial for both fundamental research and applications, yet this has remained very challenging to achieve. Herein, we report a near-quantitative (up to 92%) and catalyst-free depolymerization of various linear, bulky, cross-linked, and functional polymethacrylates made by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Key to our approach is to exploit the high end-group fidelity of RAFT polymers to generate chain-end radicals at 120 °C. These radicals trigger a rapid unzipping of both conventional (e.g., poly(methyl methacrylate)) and bulky (e.g., poly(oligo(ethylene glycol) methyl ether methacrylate)) polymers. Importantly, the depolymerization product can be utilized to either reconstruct the linear polymer or create an entirely new insoluble gel that can also be subjected to depolymerization. This work expands the potential of polymers made by controlled radical polymerization, pushes the boundaries of depolymerization, offers intriguing mechanistic aspects, and enables new applications.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| | - Zhipeng Pei
- Research
School of Chemistry, Australian National
University, Canberra 2601, Australian Capital Territory, Australia
| | - Michelle L. Coote
- Research
School of Chemistry, Australian National
University, Canberra 2601, Australian Capital Territory, Australia
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
| |
Collapse
|
31
|
Clothier GKK, Guimarães TR, Moad G, Zetterlund PB. Expanding the Scope of RAFT Multiblock Copolymer Synthesis Using the Nanoreactor Concept: The Critical Importance of Initiator Hydrophobicity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Glenn K. K. Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC 3169, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Xia X, Suzuki R, Gao T, Isono T, Satoh T. One-step synthesis of sequence-controlled multiblock polymers with up to 11 segments from monomer mixture. Nat Commun 2022; 13:163. [PMID: 35013294 PMCID: PMC8748456 DOI: 10.1038/s41467-021-27830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Switchable polymerization holds considerable potential for the synthesis of highly sequence-controlled multiblock. To date, this method has been limited to three-component systems, which enables the straightforward synthesis of multiblock polymers with less than five blocks. Herein, we report a self-switchable polymerization enabled by simple alkali metal carboxylate catalysts that directly polymerize six-component mixtures into multiblock polymers consisting of up to 11 blocks. Without an external trigger, the catalyst polymerization spontaneously connects five catalytic cycles in an orderly manner, involving four anhydride/epoxide ring-opening copolymerizations and one L-lactide ring-opening polymerization, creating a one-step synthetic pathway. Following this autotandem catalysis, reasonable combinations of different catalytic cycles allow the direct preparation of diverse, sequence-controlled, multiblock copolymers even containing various hyperbranched architectures. This method shows considerable promise in the synthesis of sequentially and architecturally complex polymers, with high monomer sequence control that provides the potential for designing materials.
Collapse
Affiliation(s)
- Xiaochao Xia
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China.
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| |
Collapse
|
33
|
Alshehri IH, Pahovnik D, Žagar E, Shipp DA. Stepwise Gradient Copolymers of n-Butyl Acrylate and Isobornyl Acrylate by Emulsion RAFT Copolymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ishah H. Alshehri
- Department of Chemistry & Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5665, United States
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Devon A. Shipp
- Department of Chemistry & Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5665, United States
| |
Collapse
|
34
|
Boeck P, Archer N, Tanaka J, You W. Reversible Addition-Fragmentation Chain Transfer Step-Growth Polymerization with Commercially Available Inexpensive Bis-Maleimides. Polym Chem 2022. [DOI: 10.1039/d2py00236a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, commercially available N-aromatic substituted bismaleimides were used in RAFT step-growth polymerization for the first time. In our initial report (J. Am. Chem. Soc. 2021, 143 (39), 15918-15923), maleimide precursors...
Collapse
|
35
|
Ma C, Han T, Niu N, Al-Shok L, Efstathiou S, Lester D, Huband S, Haddleton D. Well-defined polyacrylamides with AIE properties via rapid Cu-mediated living radical polymerization in aqueous solution: thermoresponsive nanoparticles for bioimaging. Polym Chem 2022. [DOI: 10.1039/d1py01432c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a requirement for the development of methods for the preparation of well-controlled polymers with aggregation-induced emission (AIE) properties.
Collapse
Affiliation(s)
- Congkai Ma
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Niu Niu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas Al-Shok
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry, CV4 7AL, UK
| | - Steven Huband
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - David Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
36
|
Lehnen AC, Kurki J, Hartlieb M. The difference between photo-iniferter and conventional RAFT polymerization: high livingness enables the straightforward synthesis of multiblock copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01530c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-iniferter (PI)-RAFT polymerization, the direct activation of chain transfer agents via light, is a fascinating polymerization technique, as it overcomes some restriction of conventional RAFT polymerization. As such, we elucidated...
Collapse
|
37
|
Thompson SW, Guimarães TR, Zetterlund PB. Multiblock copolymer synthesis via aqueous RAFT polymerization-induced self-assembly (PISA). Polym Chem 2022. [DOI: 10.1039/d2py01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing RAFT PISA emulsion polymerization to synthesize high molecular weight hexablock multiblock copolymers.
Collapse
Affiliation(s)
- Steven W. Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R. Guimarães
- School of Chemistry and Physics, Queensland University of Technology (OUT), Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Nagao M, Yamaguchi A, Matsubara T, Hoshino Y, Sato T, Miura Y. De Novo Design of Star-Shaped Glycoligands with Synthetic Polymer Structures toward an Influenza Hemagglutinin Inhibitor. Biomacromolecules 2021; 23:1232-1241. [PMID: 34968049 DOI: 10.1021/acs.biomac.1c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic polymers with well-defined structures allow the development of nanomaterials with additional functions beyond biopolymers. Herein, we demonstrate de novo design of star-shaped glycoligands to interact with hemagglutinin (HA) using well-defined synthetic polymers with the aim of developing an effective inhibitor for the influenza virus. Prior to the synthesis, the length of the star polymer chains was predicted using the Gaussian model of synthetic polymers, and the degree of polymerization required to achieve multivalent binding to three carbohydrate recognition domains (CRDs) of HA was estimated. The star polymer with the predicted degree of polymerization was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, and 6'-sialyllactose was conjugated as the glycoepitope for HA. The designed glycoligand exhibited the strongest interaction with HA as a result of multivalent binding. This finding demonstrated that the biological function of the synthetic polymer could be controlled by precisely defining the polymer structures.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Yamaguchi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Alsubaie FM, Alothman OY, Fouad H, Mourad AHI. ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2021; 14:116. [PMID: 35012138 PMCID: PMC8747352 DOI: 10.3390/polym14010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The aqueous Cu(0)-mediated reversible deactivation radical polymerization (RDRP) of triblock copolymers with two block sequences at 0.0 °C is reported herein. Well-defined triblock copolymers initiated from PHEAA or PDMA, containing (A) 2-hydroxyethyl acrylamide (HEAA), (B) N-isopropylacrylamide (NIPAM) and (C) N, N-dimethylacrylamide (DMA), were synthesized. The ultrafast one-pot synthesis of sequence-controlled triblock copolymers via iterative sequential monomer addition after full conversion, without any purification steps throughout the monomer additions, was performed. The narrow dispersities of the triblock copolymers proved the high degree of end-group fidelity of the starting macroinitiator and the absence of any significant undesirable side reactions. Controlled chain length and extremely narrow molecular weight distributions (dispersity ~1.10) were achieved, and quantitative conversion was attained in as little as 52 min. The full disproportionation of CuBr in the presence of Me6TREN in water prior to both monomer and initiator addition was crucially exploited to produce a well-defined ABC-type triblock copolymer. In addition, the undesirable side reaction that could influence the living nature of the system was investigated. The ability to incorporate several functional monomers without affecting the living nature of the polymerization proves the versatility of this approach.
Collapse
Affiliation(s)
- Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Othman Y. Alothman
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hassan Fouad
- Applied Medical Science Department, Community College, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo 11792, Egypt
| | - Abdel-Hamid I. Mourad
- Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirate University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Centre, United Arab Emirate University, Al Ain P.O. Box 15551, United Arab Emirates
- Mechanical Design Department, Faculty of Engineering, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
40
|
Liu R, Yang C, Huang Z, French R, Gu Z, Cheng J, Guo K, Xu J. Unraveling Sequence Effect on Glass Transition Temperatures of Discrete Unconjugated Oligomers. Macromol Rapid Commun 2021; 43:e2100666. [PMID: 34850490 DOI: 10.1002/marc.202100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Sequence plays a critical role in enabling unique properties and functions of natural biomolecules, which has promoted the rapid advancement of synthetic sequence-defined polymers in recent decades. Particularly, investigation of short chain sequence-defined oligomers (also called discrete oligomers) on their properties has become a hot topic. However, most studies have focused on discrete oligomers with conjugated structures. In contrast, unconjugated oligomers remain relatively underexplored. In this study, three pairs of discrete oligomers with the same composition but different sequence for each pair are employed for investigating their glass transition temperatures (Tg s). The resultant Tg s of sequenced oligomers in each pair are found to be significantly different (up to 11.6 °C), attributable to variations in molecular packing as demonstrated by molecular dynamics and density function theory simulations. Intermolecular interaction is demonstrated to have less impact on Tg s than intramolecular interaction. The mechanistic investigation into two model dimers suggests that monomer sequence caused the difference in intramolecular rotational flexibility of the sequenced oligomers. In addition, despite having different monomer sequence and Tg s, the oligomers have very similar solubility parameters, which supports their potential use as effective oligomeric plasticizers to tune the Tg s of bulk polymer materials.
Collapse
Affiliation(s)
- Ruizhe Liu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Chao Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zixuan Huang
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rohan French
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
41
|
Concurrent control over sequence and dispersity in multiblock copolymers. Nat Chem 2021; 14:304-312. [PMID: 34845344 DOI: 10.1038/s41557-021-00818-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Controlling monomer sequence and dispersity in synthetic macromolecules is a major goal in polymer science as both parameters determine materials' properties and functions. However, synthetic approaches that can simultaneously control both sequence and dispersity remain experimentally unattainable. Here we report a simple, one pot and rapid synthesis of sequence-controlled multiblocks with on-demand control over dispersity while maintaining a high livingness, and good agreement between theoretical and experimental molecular weights and quantitative yields. Key to our approach is the regulation in the activity of the chain transfer agent during a controlled radical polymerization that enables the preparation of multiblocks with gradually ascending (Ɖ = 1.16 → 1.60), descending (Ɖ = 1.66 → 1.22), alternating low and high dispersity values (Ɖ = 1.17 → 1.61 → 1.24 → 1.70 → 1.26) or any combination thereof. We further demonstrate the potential of our methodology through the synthesis of highly ordered pentablock, octablock and decablock copolymers, which yield multiblocks with concurrent control over both sequence and dispersity.
Collapse
|
42
|
Zhang Y, Tang Y, Zhang J, Harrisson S. Amphiphilic Asymmetric Diblock Copolymer with pH-Responsive Fluorescent Properties. ACS Macro Lett 2021; 10:1346-1352. [PMID: 35549021 DOI: 10.1021/acsmacrolett.1c00553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive polymers with changeable fluorescent properties have numerous applications in sensing, bioimaging, and detection. Here we describe the facile synthesis of a pH-responsive amphiphilic asymmetric diblock copolymer of acrylic acid and butyl acrylate that incorporates a polarity-sensitive fluorophore. The asymmetric structure enhances the stimuli-responsive behavior: as the environmental pH decreases, the fluorescent intensity of the asymmetric diblock copolymer gradually increases, whereas its symmetric block counterpart shows limited and stepwise change. Besides, this remarkable difference was demonstrated to be concentration-independent, as similar emission behavior was found for both polymers at lower concentrations. These results indicate that the fluorescence properties of the copolymer can be adjusted by rationally designing the copolymer structure. This work provides a novel and general strategy for the design and synthesis of polymeric materials with encapsulated structures showing stimuli-responsive fluorescent properties to be applied as fluorescent probes with a smoothly varying response curve rather than the simple on-off switch that is typical of block copolymer systems.
Collapse
Affiliation(s)
- Yanyao Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Yusheng Tang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Junliang Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, People’s Republic of China
| | - Simon Harrisson
- LCPO UMR 5629, Université Bordeaux/CNRS/Ecole Nationale Supérieure de Chimie, de Biologie and de Physique, 16 Avenue Pey-Berland, 33607 Pessac Cedex, France
| |
Collapse
|
43
|
Hartlieb M. Photo-Iniferter RAFT Polymerization. Macromol Rapid Commun 2021; 43:e2100514. [PMID: 34750911 DOI: 10.1002/marc.202100514] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
44
|
Zhao W, Li F, Li C, He J, Zhang Y, Chen C. Lewis Pair Catalyzed Regioselective Polymerization of (E,E)-Alkyl Sorbates for the Synthesis of (AB) n Sequenced Polymers. Angew Chem Int Ed Engl 2021; 60:24306-24311. [PMID: 34510679 DOI: 10.1002/anie.202111336] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 01/17/2023]
Abstract
In this contribution, Lewis pairs (LPs) composed of N-heterocyclic olefins (NHOs) with different steric hindrance and nucleophilicity as Lewis bases (LBs) and Al-based compounds with comparable acidity but different steric hindrance as Lewis acids (LAs) were applied for 1,4-selective polymerization of (E,E)-methyl sorbate (MS) and (E,E)-ethyl sorbate (ES). The effects of steric hindrance, electron-donating ability, and acidity of LPs on MS and ES polymerization were systematically investigated. High catalytic activity and high initiation efficiency can be achieved, leading to the formation of PMS with 100 % 1,4-selectivity, tunable molecular weight (Mw up to 333 kg mol-1 ), and narrow molecular weight distribution (MWD). Block copolymerization of ES and methyl methacrylate (MMA) was also realized. Meanwhile, this system can be applied to other homologous conjugated diene substrates. Furthermore, simple chemical reactions can efficiently convert PMS to different polymers with strict (AB)n sequence structures, such as poly(sorbic acid), poly(propylene-alt-methyl acrylate), poly(propylene-alt-acrylic acid), poly(propylene-alt-allyl alcohol), and poly(ethylene-alt-2-butylene).
Collapse
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Fukuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Chengkai Li
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
45
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion‐like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Graeme Moad
- CSIRO Manufacturing Bag 10 Clayton South VIC 3169 Australia
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
46
|
A comparison of RAFT and ATRP methods for controlled radical polymerization. Nat Rev Chem 2021; 5:859-869. [PMID: 37117386 DOI: 10.1038/s41570-021-00328-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/08/2022]
Abstract
Reversible addition-fragmentation chain-transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) are the two most common controlled radical polymerization methods. Both methods afford functional polymers with a predefined length, composition, dispersity and end group. Further, RAFT and ATRP tame radicals by reversibly converting active polymeric radicals into dormant chains. However, the mechanisms by which the ATRP and RAFT methods control chain growth are distinct, so each method presents unique opportunities and challenges, depending on the desired application. This Perspective compares RAFT and ATRP by identifying their mechanistic strengths and weaknesses, and their latest synthetic applications.
Collapse
|
47
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion-like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021; 60:23281-23288. [PMID: 34411397 DOI: 10.1002/anie.202108159] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Synthesis of multicompositional polymeric nanoparticles of diameters 100-150 nm comprising well-defined multiblock copolymers reaching from the particle surface to the particle core was conducted using surfactant-free aqueous macroRAFT emulsion polymerization. The imposed constraints on chain mobility as well as chemical incompatibility between the blocks result in microphase separation, leading to formation of an onion-like multilayered particle morphology with individual layer thicknesses of approximately 20 nm. The approach provides considerable versatility in particle morphology design as the composition of individual layers as well as the number of layers can be tailored as desired, offering more complex particle design compared to approaches relying on self-assembly of preformed diblock copolymers within particles. Microphase separation can occur in these systems under conditions where the corresponding bulk system would not theoretically result in microphase separation.
Collapse
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thiago R Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
48
|
Zhao W, Li F, Li C, He J, Zhang Y, Chen C. Lewis Pair Catalyzed Regioselective Polymerization of (
E
,
E
)‐Alkyl Sorbates for the Synthesis of (AB)
n
Sequenced Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Fukuan Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Chengkai Li
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
49
|
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Study on Significance of Receptor Targeting in Killing of Intracellular Bacteria with Membrane‐Impermeable Antibiotics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|