1
|
Rautela U, Sarkar GC, Chaudhary A, Chatterjee D, Rosh M, Arimbasseri AG, Mukhopadhyay A. A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state. PLoS Genet 2024; 20:e1011453. [PMID: 39546504 PMCID: PMC11602045 DOI: 10.1371/journal.pgen.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
For the optimal survival of a species, an organism coordinates its reproductive decisions with the nutrient availability of its niche. Thus, nutrient-sensing pathways like insulin-IGF-1 signaling (IIS) play an important role in modulating cell division, oogenesis, and reproductive aging. Lowering of the IIS leads to the activation of the downstream FOXO transcription factor (TF) DAF-16 in Caenorhabditis elegans which promotes oocyte quality and delays reproductive aging. However, less is known about how the IIS axis responds to changes in cell cycle proteins, particularly in the somatic tissues. Here, we show a new aspect of the regulation of the germline by this nutrient-sensing axis. First, we show that the canonical G1-S cyclin, Cyclin D/CYD-1, regulates reproductive fidelity from the uterine tissue of wild-type worms. Then, we show that knocking down cyd-1 in the uterine tissue of an IIS receptor mutant arrests oogenesis at the pachytene stage of meiosis-1 in a DAF-16-dependent manner. We observe activated DAF-16-dependent deterioration of the somatic gonadal tissues like the sheath cells, and transcriptional de-regulation of the sperm-to-oocyte switch genes which may be the underlying reason for the absence of oogenesis. Deleting DAF-16 releases the arrest and leads to restoration of the somatic gonad but poor-quality oocytes are produced. Together, our study reveals the unrecognized cell non-autonomous interaction of Cyclin D/CYD-1 and FOXO/DAF-16 in the regulation of oogenesis and reproductive fidelity.
Collapse
Affiliation(s)
- Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ayushi Chaudhary
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Debalina Chatterjee
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohtashim Rosh
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
2
|
Zhang Q, Li Y, Zhu Q, Xie T, Xiao Y, Zhang F, Li N, Deng K, Xin H, Huang X. TRIM65 promotes renal cell carcinoma through ubiquitination and degradation of BTG3. Cell Death Dis 2024; 15:355. [PMID: 38777825 PMCID: PMC11111765 DOI: 10.1038/s41419-024-06741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
As a typical E3 ligase, TRIM65 (tripartite motif containing 65) is involved in the regulation of antiviral innate immunity and the pathogenesis of certain tumors. However, the role of TRIM65 in renal cell carcinoma (RCC) and the underlying mechanism has not been determined yet. In this study, we identified TRIM65 as a novel oncogene in RCC, which enhanced the tumor cell proliferation and anchorage-independent growth abilities both in vitro and in vivo. Moreover, we found that TRIM65-regulated RCC proliferation mainly via direct interaction with BTG3 (BTG anti-proliferation factor 3), which in turn induced the K48-linked ubiquitination and subsequent degradation through K41 amino acid. Furthermore, TRIM65 relieved G2/M phase cell cycle arrest via degradation of BTG3 and regulated downstream factors. Further studies revealed that TRIM65 acts through TRIM65-BTG3-CyclinD1 axis and clinical sample IHC chip data indicated a negative correction between TRIM65 and BTG3. Taken together, our findings demonstrated that TRIM65 promotes RCC cell proliferation via regulation of the cell cycle through degradation of BTG3, suggesting that TRIM65 may be a promising target for RCC therapy.
Collapse
Affiliation(s)
- Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yue Xiao
- First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Feng Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, 330031, China
| | - Keyu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
3
|
Zhang L, Ren Z, Lü J, Mo X, Lin J, Li Y, Ma W, Liu P, Shen Y, Zhao Q, Qian L, Cheng X, Yu Z, Zhang B. Nanoparticles carrying paclitaxel and anti-miR-221 for breast cancer therapy triggered by ultrasound. Cell Death Discov 2023; 9:298. [PMID: 37582832 PMCID: PMC10427607 DOI: 10.1038/s41420-023-01594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Nanomaterials have been well demonstrated to have the potential to be used for tumor cell-targeted drug delivery. Targeted inhibition of miR-221 was proved to promote the sensitivity of triple genitive breast cancer (TNBC) cells to chemo-drugs. In order to improve the chemotherapeutic effect in TNBC, herein, we developed a novel kind of nanoparticles shelled with PLGA and loaded with perfluoropentane (PFP), paclitaxel (PTX), and anti-miR-221 inhibitor, which was named PANP. Ultrasound-triggered vaporization of PFP in PANPs was utilized for real-time imaging track of the nanoparticles in vivo. In addition, macrophages were applied for the internalization of PANPs to form RAW-PANP with strong chemotaxis to accumulate around cancer cells. Nanoparticles with different contents did not cause M2 polarization compared with the control group but caused polarization toward M1. We compared the inherent tumor-homing behavior of macrophages containing different contents with that of normal macrophages and no significant abnormalities were observed. After injection into the tumor-burden mice, RAW-PANPs showed enrichment within tumor tissues. Upon the ultrasound cavitation-triggered burst, PTX was released in the tumor. Meanwhile, the release of anti-miR-221 improved the sensitivity of tumor cells to PTX. As a result, RAW-PANPs showed high efficiency in suppressing TNBC cell proliferation in vitro and inhibiting tumor growth and progression in vivo. The treatments did not induce liver, heart, or kidney injury. In conclusion, the current study not only developed a macrophage-carried, ultrasound-triggered, cancer cell-targeted chemotherapeutic system, but also demonstrated a miRNA-based technique to promote drug sensitivity of cancer cells, which holds strong potential to treat patients with TNBC, especially for those suffering drug-resistance. The innovation of this study is to use macrophages to deliver nanoparticles to the tumors and then use ultrasound locally to burst the nanoparticles to release the miRNA and PTX.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Ultrasound Medicine, Shanghai East Hospital, Nanjing Medical University, 150 Jimo Road, Shanghai, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Ren
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhai Mo
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Lin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yajing Shen
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxin Cheng
- School of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zuoren Yu
- Department of Ultrasound Medicine, Shanghai East Hospital, Nanjing Medical University, 150 Jimo Road, Shanghai, China.
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bo Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Zhao Q, Qian L, Guo Y, Lü J, Li D, Xie H, Wang Q, Ma W, Liu P, Liu Y, Wang T, Wu X, Han J, Yu Z. IL11 signaling mediates piR-2158 suppression of cell stemness and angiogenesis in breast cancer. Theranostics 2023; 13:2337-2349. [PMID: 37153732 PMCID: PMC10157741 DOI: 10.7150/thno.82538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Emerging evidence has indicated the aberrant expression of PIWI-interacting RNAs (piRNAs) in human cancer cells to regulate tumor development and progression by governing cancer cell stemness. Herein, we identified downregulation of piR-2158 in human breast cancer tumors, especially in ALDH+ breast cancer stem cells (BCSCs) from patients and cell lines, which was further validated in two types of genetically engineered mouse models of breast cancer (MMTV-Wnt and MMTV-PyMT). Enforced overexpression of piR-2158 in basal-like or luminal subtypes of breast cancer cells suppressed cell proliferation, migration, epithelial-mesenchymal transition (EMT) and stemness in vitro. Administration of a dual mammary tumor-targeting piRNA delivery system in mice reduced tumor growth in vivo. RNA-seq, ChIP-seq and luciferase reporter assays demonstrated piR-2158 as a transcriptional repressor of IL11 by competing with AP-1 transcription factor subunit FOSL1 to bind the promoter of IL11. STAT3 signaling mediated piR-2158-IL11 regulation of cancer cell stemness and tumor growth. Moreover, by co-culturing of MDA-MB-231 and HUVECs in vitro and CD31 staining of tumor endothelial cells in vivo, we demonstrated inhibition of angiogenesis by piR-2158-IL11 in breast cancer. In conclusion, the current study not only reveals a novel mechanism through which piR-2158 inhibits mammary gland tumorigenesis via regulating cancer stem cells and tumor angiogenesis, but also provides a novel therapeutic strategy in treatment of breast cancer.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Qian
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuefan Guo
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Heying Xie
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medicine, Jinzhou Medical University, Liaoning, China
| | - Qiong Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjing Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pengfei Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- School of Basic Medicine, Jinzhou Medical University, Liaoning, China
| | - Tao Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuebiao Wu
- Shanghai OE Biotech Co., Ltd., Shanghai, China
| | - Junyi Han
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- ✉ Corresponding authors: Zuoren Yu, Ph.D., Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China; . Or Junyi Han, M.D;
| | - Zuoren Yu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- ✉ Corresponding authors: Zuoren Yu, Ph.D., Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China; . Or Junyi Han, M.D;
| |
Collapse
|
6
|
Fishman ES, Han JS, La Torre A. Oscillatory Behaviors of microRNA Networks: Emerging Roles in Retinal Development. Front Cell Dev Biol 2022; 10:831750. [PMID: 35186936 PMCID: PMC8847441 DOI: 10.3389/fcell.2022.831750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023] Open
Abstract
A broad repertoire of transcription factors and other genes display oscillatory patterns of expression, typically ranging from 30 min to 24 h. These oscillations are associated with a variety of biological processes, including the circadian cycle, somite segmentation, cell cycle, and metabolism. These rhythmic behaviors are often prompted by transcriptional feedback loops in which transcriptional activities are inhibited by their corresponding gene target products. Oscillatory transcriptional patterns have been proposed as a mechanism to drive biological clocks, the molecular machinery that transforms temporal information into accurate spatial patterning during development. Notably, several microRNAs (miRNAs) -small non-coding RNA molecules-have been recently shown to both exhibit rhythmic expression patterns and regulate oscillatory activities. Here, we discuss some of these new findings in the context of the developing retina. We propose that miRNA oscillations are a powerful mechanism to coordinate signaling pathways and gene expression, and that addressing the dynamic interplay between miRNA expression and their target genes could be key for a more complete understanding of many developmental processes.
Collapse
Affiliation(s)
| | | | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Li K, Peng ZY, Gao S, Wang QS, Wang R, Li X, Xiao GD, Zhang J, Ren H, Tang SC, Sun X. M6A associated TSUC7 inhibition contributed to Erlotinib resistance in lung adenocarcinoma through a notch signaling activation dependent way. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:325. [PMID: 34656164 PMCID: PMC8520306 DOI: 10.1186/s13046-021-02137-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Background The small tyrosine kinase inhibitors (TKIs) subversively altered the lung cancer treatments, but patients will inevitably face the therapy resistance and disease recurrence. We aim to explore the potential roles of non-coding RNAs in sensitizing the TKIs effects. Methods: Multiple cellular and molecular detections were applied to confirm the mechanistic regulations and intracellular connections. Results We explored the specific gene features of candidates in association with resistance, and found that m6A controlled the stemness of EMT features through METTL3 and YTHDF2. The miR-146a/Notch signaling was sustained highly activated in a m6A dependent manner, and the m6A regulator of YTHDF2 suppressed TUSC7, both of which contributed to the resistant features. Functionally, the sponge type of TUSC7 regulation of miR-146a inhibited Notch signaling functions, and affected the cancer progression and stem cells’ renewal in Erlotinib resistant PC9 cells (PC9ER) and Erlotinib resistant HCC827 cells (HCC827ER) cells. The Notch signaling functions manipulated the cMYC and DICER inner cytoplasm, and the absence of either cMYC or DICER1 lead to TUSC7 and miR-146a decreasing respectively, formed the closed circle to maintain the balance. Conclusion PC9ER and HCC827ER cells harbored much more stem-like cells, and the resistance could be reversed by Notch signaling inactivation. The intrinsic miR-146 and TUSC7 levels are monitored by m6A effectors, the alternation of either miR-146 or TUSC7 expression could lead to the circling loop to sustain the new homeostasis. Further in clinics, the combined delivery of TKIs and Notch specific inhibitory non-coding RNAs will pave the way for yielding the susceptibility to targeted therapy in lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02137-9.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Zi-Yang Peng
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Shan Gao
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Qing-Shi Wang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Rui Wang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Xiang Li
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China.,Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Guo-Dong Xiao
- Oncology Department, the First Affiliated Hospital of Zhengzhou University, Zheng Zhou City, 450052, Henan Province, China
| | - Jing Zhang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Hong Ren
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China
| | - Shou-Ching Tang
- University of Mississippi Medical Center, Cancer Center and Research Institute, 2500 North State Street, Jackson, MS, 39216, USA.
| | - Xin Sun
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, 710061, Shaanxi Province, China.
| |
Collapse
|
8
|
Su YH, Hsu TW, Chen HA, Su CM, Huang MT, Chuang TH, Leo Su J, Hsieh CL, Chiu CF. ERK-mediated transcriptional activation of Dicer is involved in gemcitabine resistance of pancreatic cancer. J Cell Physiol 2021; 236:4420-4434. [PMID: 33184874 DOI: 10.1002/jcp.30159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Gemcitabine has been a commonly used therapeutic agent for treatment of pancreatic cancer. In the clinic, a growing resistance to gemcitabine has been observed in patients with pancreatic cancer, and investigation of the underlying mechanism of gemcitabine resistance is urgently required. The microRNA (miRNA)-producing enzyme, Dicer, is crucial for the maturation of miRNAs, and is involved in clinical aggressiveness, poor prognosis, and survival outcomes in various cancers, however, the role of Dicer in acquired gemcitabine resistance of pancreatic cancer is still not clear. Here, we found that Dicer expression was significantly increased in gemcitabine-resistant PANC-1 (PANC-1/GEM) cells compared with parental PANC-1 cells and observed a high level of Dicer correlated with increased risk of pancreatic cancer. Suppression of Dicer obviously decreased gemcitabine resistance in PANC-1/GEM cells; consistently, overexpression of Dicer in PANC-1 cells increased gemcitabine resistance. Moreover, we identified that transcriptional factor Sp1 targeted the promoter region of Dicer and found ERK/Sp1 signaling regulated Dicer expression in PANC-1/GEM cells, as well as positively correlated with pancreatic cancer progression and suggest that targeting the ERK/Sp1/Dicer pathway has potential therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice, Inbred NOD
- Mice, SCID
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Ribonuclease III/genetics
- Ribonuclease III/metabolism
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcriptional Activation
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Yen-Hao Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tung-Wei Hsu
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-An Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Su
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - J Leo Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Ling Hsieh
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Kashyap D, Garg VK, Sandberg EN, Goel N, Bishayee A. Oncogenic and Tumor Suppressive Components of the Cell Cycle in Breast Cancer Progression and Prognosis. Pharmaceutics 2021; 13:pharmaceutics13040569. [PMID: 33920506 PMCID: PMC8072616 DOI: 10.3390/pharmaceutics13040569] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer, a disease of inappropriate cell proliferation, is strongly interconnected with the cell cycle. All cancers consist of an abnormal accumulation of neoplastic cells, which are propagated toward uncontrolled cell division and proliferation in response to mitogenic signals. Mitogenic stimuli include genetic and epigenetic changes in cell cycle regulatory genes and other genes which regulate the cell cycle. This suggests that multiple, distinct pathways of genetic alterations lead to cancer development. Products of both oncogenes (including cyclin-dependent kinase (CDKs) and cyclins) and tumor suppressor genes (including cyclin-dependent kinase inhibitors) regulate cell cycle machinery and promote or suppress cell cycle progression, respectively. The identification of cyclins and CDKs help to explain and understand the molecular mechanisms of cell cycle machinery. During breast cancer tumorigenesis, cyclins A, B, C, D1, and E; cyclin-dependent kinase (CDKs); and CDK-inhibitor proteins p16, p21, p27, and p53 are known to play significant roles in cell cycle control and are tightly regulated in normal breast epithelial cells. Following mitogenic stimuli, these components are deregulated, which promotes neoplastic transformation of breast epithelial cells. Multiple studies implicate the roles of both types of components-oncogenic CDKs and cyclins, along with tumor-suppressing cyclin-dependent inhibitors-in breast cancer initiation and progression. Numerous clinical studies have confirmed that there is a prognostic significance for screening for these described components, regarding patient outcomes and their responses to therapy. The aim of this review article is to summarize the roles of oncogenic and tumor-suppressive components of the cell cycle in breast cancer progression and prognosis.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India;
| | | | - Elise N. Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Neelam Goel
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, Punjab, India
- Correspondence: (N.G.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (N.G.); or (A.B.)
| |
Collapse
|
10
|
Song Q, Zhang F, Wang K, Chen Z, Li Q, Liu Z, Shen H. MiR-874-3p plays a protective role in intervertebral disc degeneration by suppressing MMP2 and MMP3. Eur J Pharmacol 2021; 895:173891. [PMID: 33482178 DOI: 10.1016/j.ejphar.2021.173891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Intervertebral disc degeneration (IDD) is a spinal degenerative disease and one of the most important causes of musculoskeletal disability. Matrix metalloproteinase (MMP)-mediated extracellular matrix degradation is the core process of IDD. The regulators of MMPs in the intervertebral disc are still not fully known. In this study, using quantitative reverse transcription PCR, luciferase reporter assay, Western blotting, immunofluorescence, flow cytometry, and Cell Counting Kit-8 assay, we found that the miR-874-3p expression level was significantly decreased in IDD patients. MiR-874-3p could target and repress MMP2 and MMP3 expression in nucleus pulposus cells. These results could improve the understanding of IDD and provide a possible diagnostic marker and treatment candidate for IDD. The miR-874-3p/MMP2/MMP3 axis might also provide direction for future cancer and inflammation investigations.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedic, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Li
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zude Liu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Tai Z, Ma J, Ding J, Pan H, Chai R, Zhu C, Cui Z, Chen Z, Zhu Q. Aptamer-Functionalized Dendrimer Delivery of Plasmid-Encoding lncRNA MEG3 Enhances Gene Therapy in Castration-Resistant Prostate Cancer. Int J Nanomedicine 2020; 15:10305-10320. [PMID: 33376323 PMCID: PMC7759727 DOI: 10.2147/ijn.s282107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose The clinical management of patients with castration-resistant prostate cancer (CRPC) is difficult. However, novel treatment methods are gradually being introduced. Considering the adverse effects of traditional treatments, recent studies have investigated gene therapy as a method to combat CRPC; but, the application of long non-coding (lnc) RNA in gene therapy remains scarce, despite their promise. Therefore, it is imperative to develop a system that can efficiently deliver lncRNA for the treatment of CRPC. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA MEG3 (pMEG3) in CRPC cells. Materials and Methods An EpDT3 aptamer-linked poly(amidoamine) (PAMAM) dendrimer targeting EpCAM was used to deliver pMEG3 in CRPC cells. The PAMAM-PEG-EpDT3/pMEG3 nanoparticles (NPs) were tested using in vitro cellular assays including cellular uptake, entry, and CCK-8 measurement, and tumor growth inhibition, histological assessment, and safety evaluations in in vivo animal models. Results The EpDT3 aptamer promoted endocytosis of PAMAM and PAMAM-PEG-EpDT3/pMEG3 NPs in CRPC cells. PAMAM-PEG-EpDT3/pMEG3 NPs exhibited a significant anti-CRPC effect, both in vivo and in vitro, when compared to that of unfunctionalized PAMAM-PEG/pMEG3 NPs. Conclusion PAMAM-PEG-EpDT3/pMEG3 NPs can potentially improve gene therapy in CRPC cells.
Collapse
Affiliation(s)
- Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China.,Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Jianing Ding
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Rongrong Chai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Congcong Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Zhen Cui
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| |
Collapse
|
12
|
Montalto FI, De Amicis F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020; 9:cells9122648. [PMID: 33317149 PMCID: PMC7763888 DOI: 10.3390/cells9122648] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin D1, an important regulator of cell cycle, carries out a central role in the pathogenesis of cancer determining uncontrolled cellular proliferation. In normal cells, Cyclin D1 expression levels are strictly regulated, conversely, in cancer, its activity is intensified in various manners. Different studies demonstrate that CCDN1 gene is amplified in several tumor types considering it as a negative prognostic marker of this pathology. Cyclin D1 is known for its role in the nucleus, but recent clinical studies associate the amount located in the cytoplasmic membrane with tumor invasion and metastasis. Cyclin D1 has also other functions: it governs the expression of specific miRNAs and it plays a crucial role in the tumor-stroma interactions potentiating most of the cancer hallmarks. In the present review, we will summarize the current scientific evidences that highlight the involvement of Cyclin D1 in the pathogenesis of different types of cancer, best of all in breast cancer. We will also focus on recent insights regarding the Cyclin D1 as molecular bridge between cell cycle control, adhesion, invasion, and tumor/stroma/immune-system interplay in cancer.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-984-496204
| |
Collapse
|
13
|
Cyclin D1 promotes secretion of pro-oncogenic immuno-miRNAs and piRNAs. Clin Sci (Lond) 2020; 134:791-805. [PMID: 32219337 DOI: 10.1042/cs20191318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023]
Abstract
The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.
Collapse
|
14
|
Abstract
The mammalian cell cycle is driven by a complex of cyclins and their associated cyclin-dependent kinases (CDKs). Abnormal dysregulation of cyclin-CDK is a hallmark of cancer. D-type cyclins and their associated CDKs (CDK4 and CDK6) are key components of cell cycle machinery in driving G1 to S phase transition via phosphorylating and inactivating the retinoblastoma protein (RB). A body of evidence shows that the cyclin Ds-CDKs axis plays a critical role in cancer through various aspects, such as control of proliferation, senescence, migration, apoptosis, and angiogenesis. CDK4/6 dual-inhibitors show significant efficacy in pre-clinical or clinical cancer therapies either as single agents or in combination with hormone, chemotherapy, irradiation or immune treatments. Of note, as the associated partner of D-type cyclins, CDK6 shows multiple distinct functions from CDK4 in cancer. Depletion of the individual CDK may provide a therapeutic strategy for patients with cancer.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo W Leone
- Department of Biochemistry & Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
15
|
Dai L, Qiao J, Yin J, Goldstein A, Lin HY, Post SR, Qin Z. Kaposi Sarcoma-Associated Herpesvirus and Staphylococcus aureus Coinfection in Oral Cavities of HIV-Positive Patients: A Unique Niche for Oncogenic Virus Lytic Reactivation. J Infect Dis 2020; 221:1331-1341. [PMID: 31111897 PMCID: PMC7325796 DOI: 10.1093/infdis/jiz249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023] Open
Abstract
Collectively, viruses are the principal cause of cancers arising in patients with immune dysfunction, including human immunodeficiency virus (HIV)-positive patients. Kaposi sarcoma (KS) etiologically linked to Kaposi sarcoma-associated herpesvirus (KSHV) continues to be the most common AIDS-associated tumor. The involvement of the oral cavity represents one of the most common clinical manifestations of this tumor. HIV infection incurs an increased risk among individuals with periodontal diseases and oral carriage of a variety of pathogenic bacteria. However, whether interactions involving periodontal bacteria and oncogenic viruses in the local environment facilitate replication or maintenance of these viruses in the oral cavity of HIV-positive patients remain largely unknown. We previously showed that pathogen-associated molecular patterns (PAMPs) from specific periodontal bacteria promoted KSHV entry into oral cells and subsequent establishment of latency. In the current study, we demonstrate that Staphylococcus aureus, one of common pathogens causing infection in HIV-positive patients, and its PAMPs can effectively induce KSHV lytic reactivation from infected oral cells, through the Toll-like receptor reactive oxygen species and cyclin D1-Dicer-viral microRNA axis. This investigation provides further clinical evidence about the relevance of coinfection due to these 2 pathogens in the oral cavities of a cohort HIV-positive patients and reveals novel mechanisms through which these coinfecting pathogens potentially promote virus-associated cancer development in the unique niche of immunocompromised patients.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| | - Jing Qiao
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai China
| | - Jun Yin
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai China
| | - Alana Goldstein
- Departments of Diagnostic Sciences, School of Dentistry, New Orleans
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans
| | - Steven R Post
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock
| |
Collapse
|
16
|
Li S, Li Q, Lü J, Zhao Q, Li D, Shen L, Wang Z, Liu J, Xie D, Cho WC, Xu S, Yu Z. Targeted Inhibition of miR-221/222 Promotes Cell Sensitivity to Cisplatin in Triple-Negative Breast Cancer MDA-MB-231 Cells. Front Genet 2020; 10:1278. [PMID: 32010177 PMCID: PMC6971202 DOI: 10.3389/fgene.2019.01278] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin has been widely used in the treatment of a various types of cancers including triple-negative breast cancer (TNBC) by damaging DNA and inducing apoptosis. However, its anti-cancer effects are often limited due to chemo-resistance, which is one of the main reasons causing cancer relapse and metastasis. To overcome resistance, cisplatin is often used in combination with other drugs or molecules. Our study found that the targeted inhibition of miR-221/222 in MDA-MB-231 cells promoted cisplatin-induced cell apoptosis, and increased the cell sensitivity to cisplatin in vitro. Much higher expression levels of miR-221/222 were detected in the cisplatin-resistant MDA-MB-231 cells and in cisplatin-resistant breast cancer patients. The combination chemotherapy of cisplatin with anti-miR-221/222 showed much higher efficiency in suppressing tumor growth in the mice transplanted with MDA-MB-231 cells. In addition, anti-miR-221 and anti-miR-222 showed synergetic effects on improving sensitivity to cisplatin in MDA-MB-231 cells. Suppression of SOCS1-STAT3-Bcl-2 pathway and activation of p53-Pten signaling both contribute to anti-miR-221/222-induced sensitivity to cisplatin in MDA-MB-231 cells. These findings suggest the potential of a novel approach for the combination chemotherapy of cisplatin with small non-coding RNA in treatment of human TNBC.
Collapse
Affiliation(s)
- Shujun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Maternal and Children Health Management, The Third Hospital of BaoGang Group, Baotou, China
| | - Qun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Shen
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjun Liu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongping Xie
- Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Abstract
The cell cycle is tightly regulated by cyclins and their catalytic moieties, the cyclin-dependent kinases (CDKs). Cyclin D1, in association with CDK4/6, acts as a mitogenic sensor and integrates extracellular mitogenic signals and cell cycle progression. When deregulated (overexpressed, accumulated, inappropriately located), cyclin D1 becomes an oncogene and is recognized as a driver of solid tumors and hemopathies. Recent studies on the oncogenic roles of cyclin D1 reported non-canonical functions dependent on the partners of cyclin D1 and its location within tumor cells or tissues. Support for these new functions was provided by various mouse models of oncogenesis. Finally, proteomic and transcriptomic data identified complex cyclin D1 networks. This review focuses on these aspects of cyclin D1 pathophysiology, which may be crucial for targeted therapy.Abbreviations: aa, amino acid; AR, androgen receptor; ATM, ataxia telangectasia mutant; ATR, ATM and Rad3-related; CDK, cyclin-dependent kinase; ChREBP, carbohydrate response element binding protein; CIP, CDK-interacting protein; CHK1/2, checkpoint kinase 1/2; CKI, CDK inhibitor; DDR, DNA damage response; DMP1, cyclin D-binding myb-like protein; DSB, double-strand DNA break; DNA-PK, DNA-dependent protein kinase; ER, estrogen receptor; FASN, fatty acid synthase; GSK3β, glycogen synthase-3β; HAT, histone acetyltransferase; HDAC, histone deacetylase; HK2, hexokinase 2; HNF4α, and hepatocyte nuclear factor 4α; HR, homologous recombination; IR, ionizing radiation; KIP, kinase inhibitory protein; MCL, mantle cell lymphoma; NHEJ, non-homologous end-joining; PCAF, p300/CREB binding-associated protein; PGC1α, PPARγ co-activator 1α; PEST, proline-glutamic acid-serine-threonine, PK, pyruvate kinase; PPAR, peroxisome proliferator-activated receptor; RB1, retinoblastoma protein; ROS, reactive oxygen species; SRC, steroid receptor coactivator; STAT, signal transducer and activator of transcription; TGFβ, transforming growth factor β; UPS, ubiquitin-proteasome system; USP22, ubiquitin-specific peptidase 22; XPO1 (or CRM1) exportin 1.
Collapse
Affiliation(s)
- Guergana Tchakarska
- Department of Human Genetics, McGill University Health Centre, McGill University, Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
18
|
Tong R, Zhang J, Wang C, Li X, Yu T, Wang L. LncRNA PTCSC3 inhibits the proliferation, invasion and migration of cervical cancer cells via sponging miR-574-5p. Clin Exp Pharmacol Physiol 2019; 47:439-448. [PMID: 31587336 DOI: 10.1111/1440-1681.13186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
Abstract
Dysregulation of long non-coding RNA papillary thyroid carcinoma susceptibility candidate 3 (lncRNA PTCSC3) has been found to correlate with various types of cancers. Quantitative RT-PCR showed a down-regulation of PTCSC3 in cervical cancer tissues compared with normal cervical tissues. The present study aimed to investigate the role of lncRNA PTCSC3 in cervical cancer and the underlying mechanisms. PTCSC3 was overexpressed in cervical cancer cell lines C-33A and Hela by transfection with pcDNA3.1-lncRNA PTCSC3 expressing plasmid. Overexpression of lncRNA PTCSC3 inhibited cell proliferation, induced cell cycle arrest, and suppressed cell invasion and migration using CCK8 assay, flow cytometry, Transwell assay and wound healing examination, respectively. Western blotting analysis showed that PTCSC3 overexpression decreased the expression of cyclinD1, matrix metalloproteinases 9 (MMP9), N-cadherin and β-catenin and increased E-cadherin expression. Further, PTCSC3 negatively regulated miR-574-5p expression and dual-luciferase assay verified the binding activity between miR-574-5p and lncRNA PTCSC3. Enforced up-regulation of miR-574-5p abolished the inhibitory effect of lncRNA PTCSC3 on cervical cancer cell proliferation, invasiveness and mobility. Taken together, lncRNA PTCSC3 inhibited cell growth and metastasis via sponging miR-574-5p in cervical cancer. Therefore, we demonstrate the tumour-suppressive function of lncRNA PTCSC3 in cervical cancer and suggest that PTCSC3 is a potential therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Rui Tong
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Chunyan Wang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xuemei Li
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Tingting Yu
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Ling Wang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Fairchild CLA, Cheema SK, Wong J, Hino K, Simó S, La Torre A. Let-7 regulates cell cycle dynamics in the developing cerebral cortex and retina. Sci Rep 2019; 9:15336. [PMID: 31653921 PMCID: PMC6814839 DOI: 10.1038/s41598-019-51703-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
In the neural progenitors of the developing central nervous system (CNS), cell proliferation is tightly controlled and coordinated with cell fate decisions. Progenitors divide rapidly during early development and their cell cycle lengthens progressively as development advances to eventually give rise to a tissue of the correct size and cellular composition. However, our understanding of the molecules linking cell cycle progression to developmental time is incomplete. Here, we show that the microRNA (miRNA) let-7 accumulates in neural progenitors over time throughout the developing CNS. Intriguingly, we find that the level and activity of let-7 oscillate as neural progenitors progress through the cell cycle by in situ hybridization and fluorescent miRNA sensor analyses. We also show that let-7 mediates cell cycle dynamics: increasing the level of let-7 promotes cell cycle exit and lengthens the S/G2 phase of the cell cycle, while let-7 knock down shortens the cell cycle in neural progenitors. Together, our findings suggest that let-7 may link cell proliferation to developmental time and regulate the progressive cell cycle lengthening that occurs during development.
Collapse
Affiliation(s)
- Corinne L A Fairchild
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California - Davis, Davis, CA, USA.
| |
Collapse
|
20
|
Qi Y, Wang D, Huang W, Wang B, Huang D, Xiong F, Chen X, Chen Y. CyclinD1 inhibits dicer and crucial miRNA expression by chromatin modification to promote the progression of intrahepatic cholangiocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:413. [PMID: 31590696 PMCID: PMC6781400 DOI: 10.1186/s13046-019-1415-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
Background CyclinD1 is crucial for cell cycling and can regulate the expression of Dicer, a crucial regulator of microRNA maturation. However, little is known on how CyclinD1 regulates Dicer and miRNA expression, and the progression of intrahepatic cholangiocarcinoma (ICC). Methods The expression of CyclinD1 and Dicer in non-tumor cholangiocytes, ICC cells and tissues as well as their association with clinicopathological characteristics and survival were examined. The potential mechanisms by which CyclinD1 regulates Dicer and relative miRNA expression were determined by immunoprecipitation, ChIP sequence, BSP and luciferase reporter assays following induction of CyclinD1 over-expression or silencing and Dicer silencing. The impact of CyclinD1 and/or Dicer silencing on the growth of ICC was tested in vivo. Results Up-regulated CyclinD1 was associated with down-regulated Dicer expression in ICC tissues and poorer overall survival in patients with ICC. CyclinD1 interacted with the nuclear H3K9me3 and SUV39H1 and bound to the Dicer promoter to increase its CpG island methylation in ICC cells. Functionally, CyclinD1 silencing inhibited the malignancy of ICC cells, which were mitigated partially by Dicer silencing in ICC cells. Dicer silencing down-regulated miR-1914-5p and miR-541-5p expression, which targeted and promoted CyclinD1 and CDK6 expression in ICC cells. Conclusions Our findings uncover that CyclinD1 inhibits Dicer expression by chromatin modification to reduce miR-1914-5p/miR-541-5p expression, which positively-feedback enhances CyclinD1 and CDK6 expression and progression of ICC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1415-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongqiang Qi
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenhua Huang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Di Huang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoping Chen
- Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
21
|
Lee SS, Min H, Ha JY, Kim BH, Choi MS, Kim S. Dysregulation of the miRNA biogenesis components DICER1, DROSHA, DGCR8 and AGO2 in clear cell renal cell carcinoma in both a Korean cohort and the cancer genome atlas kidney clear cell carcinoma cohort. Oncol Lett 2019; 18:4337-4345. [PMID: 31516620 DOI: 10.3892/ol.2019.10759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Impairment of microRNA (miRNA) biogenesis may be involved in clear cell renal cell carcinoma (ccRCC). The objective of the present study was to investigate the mRNA levels of important miRNA machinery components, DICER1, DROSHA, DiGeroge syndrome critical region gene 8 (DGCR8), and Argonaute 2 (AGO2), and their correlations with clinicopathological characteristics of ccRCC using mRNA expression data from The Cancer Genome Atlas kidney clear cell carcinoma (TCGA KIRC) cohort and a Korean ccRCC cohort. mRNA levels of DICER1, DROSHA, and DGCR8 were significantly decreased in both cohorts. However, AGO2 was significantly downregulated only in the Korean ccRCC cohort. Additionally, positive correlations were observed between the altered mRNA levels of DICER1 and DROSHA as well as DROSHA and DGCR8 in both cohorts. In the TCGA KIRC cohort, alterations in the mRNA levels of DICER1 were significantly correlated with histological grade. Furthermore, the altered mRNA levels of DGCR8 showed significant associations with sex and histologic grades. However, in the Korean ccRCC cohort, no factors were significantly associated with any clinicopathological parameters, including sex, age, T stage, Fuhrman grade/The International Society of Urological Pathology grade, lymphovascular invasion, and peri-renal fat invasion. Taken together, these findings indicate that DICER1, DROSHA, DGCR8 and AGO2 are significantly dysregulated in ccRCC, suggesting that they are important in the pathophysiology of this malignancy.
Collapse
Affiliation(s)
- Sang Su Lee
- Department of Internal Medicine, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Hyeonji Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yong Ha
- Department of Urology, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Byung Hoon Kim
- Department of Urology, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Mi Sun Choi
- Department of Pathology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
22
|
Abstract
A complex network precisely regulates the cell cycle through the G1, S, G2, and M phases and is the basis for cell division under physiological and pathological conditions. On the one hand, the transition from one phase to another as well as the progression within each phase is driven by the specific cyclin-dependent kinases (CDKs; e.g., CDK1, CDK2, CDK4, CDK6, and CDK7), together with their exclusive partner cyclins (e.g., cyclin A1, B1, D1–3, and E1). On the other hand, these phases are negatively regulated by endogenous CDK inhibitors such as p16ink4a, p18ink4c, p19ink4d, p21cip1, and p27kip1. In addition, several checkpoints control the commitment of cells to replicate DNA and undergo mitosis, thereby avoiding the passage of genomic errors to daughter cells. CDKs are often constitutively activated in cancer, which is characterized by the uncontrolled proliferation of transformed cells, due to genetic and epigenetic abnormalities in the genes involved in the cell cycle. Moreover, several oncogenes and defective tumor suppressors promote malignant changes by stimulating cell cycle entry and progression or disrupting DNA damage responses, including the cell cycle checkpoints, DNA repair mechanisms, and apoptosis. Thus, genes or proteins related to cell cycle regulation remain the main targets of interest in the treatment of various cancer types, including hematologic malignancies. In this context, advances in the understanding of the cell cycle regulatory machinery provide a basis for the development of novel therapeutic approaches. The present article summarizes the pathways as well as their genetic and epigenetic alterations that regulate the cell cycle; moreover, it discusses the various approved or potential therapeutic targets associated with the cell cycle, focusing on hematologic malignancies.
Collapse
|
23
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
24
|
Zhang X, Wu M, Chong QY, Zhang W, Qian P, Yan H, Qian W, Zhang M, Lobie PE, Zhu T. Amplification of hsa-miR-191/425 locus promotes breast cancer proliferation and metastasis by targeting DICER1. Carcinogenesis 2019; 39:1506-1516. [PMID: 30084985 DOI: 10.1093/carcin/bgy102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
The dysregulation of micro RNAs (miRNAs) is a crucial characteristic of human cancers. Herein, we observed frequent amplification of the MIR191/425 locus in breast cancer, which is correlated with poor survival outcome. We demonstrated that the miR-191/425 cluster binds the 3' untranslated region of the DICER1 transcript and posttranscriptionally represses DICER1 expression, thereby impairing global miRNAs biogenesis. Functionally, the forced expression of miR-191 or miR-425 stimulated the proliferation, survival, migration and invasion of breast cancer cells, whereas the inhibition of miR-191 or miR-425 suppressed these oncogenic behaviors of breast cancer cells, in a manner dependent on miR-191/425-mediated downregulation of DICER1. Furthermore, the miR-191/425 cluster promoted breast tumor growth, invasion and metastasis in vivo. The let-7 family of miRNAs was downregulated upon forced expression of miR-191 or miR-425, with a corresponding increase in the levels of let-7 target, high-mobility group AT-hook 2 (HMGA2). The forced expression of let-7 partially abrogated the miR-191/425-mediated oncogenic effects in breast cancer cells, suggestive of let-7 as a downstream effector of the miR-191/425-DICER1 axis. Collectively, we proposed that the inhibition of global miRNA processing, through miR-191/425-mediated downregulation of DICER1, promotes breast cancer progression.
Collapse
Affiliation(s)
- Xiao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Mingming Wu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Weijie Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Pengxu Qian
- Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Hangzhou, P.R. China.,Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Hong Yan
- Department of Pathology, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wenchang Qian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Peter E Lobie
- Cancer Science Institute of Singapore, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P.R. China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
25
|
Piroozian F, Bagheri Varkiyani H, Koolivand M, Ansari M, Afsa M, AtashAbParvar A, MalekZadeh K. The impact of variations in transcription of DICER and AGO2 on exacerbation of childhood B-cell lineage acute lymphoblastic leukaemia. Int J Exp Pathol 2019; 100:184-191. [PMID: 31090156 DOI: 10.1111/iep.12316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/02/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022] Open
Abstract
The expression of microRNA in eukaryotic cells is subject to tightly regulated processing. The altered expression of microRNAs in a number of cancers suggests their contribution to disease pathogenesis, where processing pathways may be involved in disease pathogenesis. In the present study, we evaluated changes in the profile of two main components of microRNA biogenesis, AGO2 and DICER, and assessed their correlation with disease progression in childhood acute lymphoblastic leukaemia (ALL). To achieve this aim, 25 patients afflicted with ALL were included in the study along with 25 healthy subjects as control. The expression level of AGO2 and DICER was evaluated by real-time PCR. The results revealed an increase in the expression of DICER and a decrease in AGO2 in patients. The correlation between the alteration levels of these genes with pathologic events was also studied. This increase or decrease proved to be directly correlated with the progression of the disease particularly in L1 to L2. According to the obtained results, it can be deduced that dysregulation in transcription of DICER and AGO2, involved in the formation of mature microRNAs in cytoplasm of ALL cancer cells, is a part of the pathological molecular mechanism implicated in the exacerbation of this malignancy. Therefore, the genes involved in microRNAs biogenesis that have been studied here could be considered as candidate prognostic markers especially in childhood ALL which will help towards a better understanding of the molecular basis of ALL.
Collapse
Affiliation(s)
- Fatemeh Piroozian
- Department of Medical Genetic, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hoda Bagheri Varkiyani
- Department of Pathology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohsen Koolivand
- Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Ansari
- Department of Pathology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoomeh Afsa
- Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali AtashAbParvar
- Department of Pathology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh MalekZadeh
- Department of Medical Genetic, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
26
|
Madadkhani S, Aghakhanpour RB, Singh JP, Bagheri R, Chae KH, Song Z, Najafpour MM. A trimetallic organometallic precursor for efficient water oxidation. Sci Rep 2019; 9:3734. [PMID: 30842566 PMCID: PMC6403308 DOI: 10.1038/s41598-019-40236-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/12/2019] [Indexed: 11/23/2022] Open
Abstract
Herein, we report an iron/nickel/zinc mixed oxide as a catalyst for the electrochemical water oxidation. This catalyst was synthesized by a straightforward method for the synthesis of an iron/nickel/zinc mixed oxide through the calcination of a Fe/Ni/Zn organometallic compound. The calcined product contains Fe and Ni as crucial ions for water oxidation, accompanied by the presence of Zn ions. The removal of Zn ions from the mixed oxide provides more active sites on the surface of the catalyst. The composition of the compound was characterized by some common methods and found to be an efficient water-oxidizing catalyst. The catalyst on FTO at pH = 13 yields a current density of 12 mA/cm2 at 1.2 V (vs. Ag│AgCl). After 5 hours at 1.1 V, the electrode not only shows no decrease in performance, but also shows an increase from 4 to 7 mA/cm2 in the water oxidation activity. Tafel plot, for the electrode at pH = 13 in KOH solution (0.1 M) showed linearity for the graph of lg j vs. V with both relatively low (220.4 mV per decade) and high overpotentials (903.7 mV per decade).
Collapse
Affiliation(s)
- Sepideh Madadkhani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Reza Babadi Aghakhanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Jitendra Pal Singh
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Robabeh Bagheri
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Zhenlun Song
- Surface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo, 315201, China
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran. .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
27
|
Lin Z, Zhou Z, Guo H, He Y, Pang X, Zhang X, Liu Y, Ao X, Li P, Wang J. Long noncoding RNA gastric cancer-related lncRNA1 mediates gastric malignancy through miRNA-885-3p and cyclin-dependent kinase 4. Cell Death Dis 2018; 9:607. [PMID: 29789536 PMCID: PMC5964145 DOI: 10.1038/s41419-018-0643-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 01/17/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancy and the third leading cancer-related death in China. Long noncoding RNAs (lncRNAs) have been implicated in numerous tumors, including GC, however, the mechanism of many functional lncRNAs is still unclear. In this study, we identified the abundantly expressed lncRNA, RP11-290F20.3, in GC cells and patient tumor tissues. We named this lncRNA as GC-related lncRNA1 (GCRL1), which could regulate gastric cell proliferation and metastasis, both in vitro and in vivo. Mechanistically, miRNA-885-3p (miR-885-3p) could inhibit the cell proliferation and metastasis in GC by negatively regulating the expression of cyclin-dependent kinase 4 (CDK4) at the post-transcriptional level. Further, GCRL1 promoted the cell proliferation and metastasis by sponging miR-885-3p and hence, positively regulating CDK4 in GC cells. Taken together, our results demonstrate a novel regulatory axis of malignant cell proliferation and invasion in GC, comprising GCRL1, miR-885-3p, and CDK4, which may serve as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Zhijuan Lin
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.,Key Lab for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Zhixia Zhou
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Hang Guo
- Department of Anesthesiology, PLA Army General Hospital, Beijing, 100700, China
| | - Yuqi He
- Department of Gastroenterology, PLA Army General Hospital, Beijing, 100700, China
| | - Xin Pang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261041, China
| | - Ying Liu
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiang Ao
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.
| | - Jianxun Wang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
28
|
Teoh JP, Bayoumi AS, Aonuma T, Xu Y, Johnson JA, Su H, Weintraub NL, Tang Y, Kim IM. β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. J Mol Cell Cardiol 2018; 118:225-236. [PMID: 29627294 DOI: 10.1016/j.yjmcc.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize β-adrenergic receptor (βAR) signaling, β-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the β-arrestin-biased βAR ligand carvedilol, we previously showed that β-arrestin1 (not β-arrestin2)-biased β1AR (not β2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes β-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE Here, we investigate whether β-arrestin-mediated βAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a β-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on β2ARs and β1ARs, respectively. Mechanistically, β-arrestin 1 or 2 regulates maturation of three newly identified βAR/β-arrestin-responsive miRs (β-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of β-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, β-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS Our findings indicate a novel role for βAR-mediated β-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Tatsuya Aonuma
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Yanyan Xu
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - John A Johnson
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
29
|
Barbier J, Chen X, Sanchez G, Cai M, Helsmoortel M, Higuchi T, Giraud P, Contreras X, Yuan G, Feng Z, Nait-Saidi R, Deas O, Bluy L, Judde JG, Rouquier S, Ritchie W, Sakamoto S, Xie D, Kiernan R. An NF90/NF110-mediated feedback amplification loop regulates dicer expression and controls ovarian carcinoma progression. Cell Res 2018; 28:556-571. [PMID: 29563539 DOI: 10.1038/s41422-018-0016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/16/2023] Open
Abstract
Reduced expression of DICER, a key enzyme in the miRNA pathway, is frequently associated with aggressive, invasive disease, and poor survival in various malignancies. Regulation of DICER expression is, however, poorly understood. Here, we show that NF90/NF110 facilitates DICER expression by controlling the processing of a miRNA, miR-3173, which is embedded in DICER pre-mRNA. As miR-3173 in turn targets NF90, a feedback amplification loop controlling DICER expression is established. In a nude mouse model, NF90 overexpression reduced proliferation of ovarian cancer cells and significantly reduced tumor size and metastasis, whereas overexpression of miR-3173 dramatically increased metastasis in an NF90- and DICER-dependent manner. Clinically, low NF90 expression and high miR-3173-3p expression were found to be independent prognostic markers of poor survival in a cohort of ovarian carcinoma patients. These findings suggest that, by facilitating DICER expression, NF90 can act as a suppressor of ovarian carcinoma.
Collapse
Affiliation(s)
- Jérôme Barbier
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Xin Chen
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Gabriel Sanchez
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Marion Helsmoortel
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Pierre Giraud
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Xavier Contreras
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Gangjun Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zihao Feng
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Rima Nait-Saidi
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - Olivier Deas
- XenTech SAS, 4 rue Pierre Fontaine, Evry, 91000, France
| | - Lisa Bluy
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | | | - Sylvie Rouquier
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine, CNRS, University of Montpellier, Machine Learning and Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, 34396, France
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi University, Kochi, 783-8505, Japan
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Rosemary Kiernan
- Institut de Génétique Humaine, CNRS, University of Montpellier, Gene Regulation Laboratory, 141 rue de la cardonille, Montpellier, France.
| |
Collapse
|
30
|
Wang G, Gormley M, Qiao J, Zhao Q, Wang M, Di Sante G, Deng S, Dong L, Pestell T, Ju X, Casimiro MC, Addya S, Ertel A, Tozeren A, Li Q, Yu Z, Pestell RG. Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome. Theranostics 2018; 8:2251-2263. [PMID: 29721077 PMCID: PMC5928887 DOI: 10.7150/thno.23877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/25/2017] [Indexed: 01/03/2023] Open
Abstract
Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes. Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3'UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression. Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/β-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Michael Gormley
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Jing Qiao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qian Zhao
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Shengqiong Deng
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200120, China
| | - Lin Dong
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Tim Pestell
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Xiaoming Ju
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Mathew C. Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Adam Ertel
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10 th St. Philadelphia PA 19107
| | - Ayden Tozeren
- Center for Integrated Bioinformatics, Drexel University, Philadelphia, PA 19104
- School of Biomedical Engineering, Systems and Health Sciences, Drexel University, Philadelphia, PA 19104
| | - Qinchuan Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center and Lankenau Institute for Medical Research, 100 East Lancaster Avenue, Suite, 222, Wynnewood, PA. 19096
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
31
|
Gazon H, Belrose G, Terol M, Meniane JC, Mesnard JM, Césaire R, Peloponese JM. Impaired expression of DICER and some microRNAs in HBZ expressing cells from acute adult T-cell leukemia patients. Oncotarget 2017; 7:30258-75. [PMID: 26849145 PMCID: PMC5058679 DOI: 10.18632/oncotarget.7162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Global dysregulation of microRNAs (miRNAs), a class of non-coding RNAs that regulate genes expression, is a common feature of human tumors. Profiling of cellular miRNAs on Adult T cell Leukemia (ATL) cells by Yamagishi et al. showed a strong decrease in expression for 96.7% of cellular miRNAs in ATL cells. However, the mechanisms that regulate the expression of miRNAs in ATL cells are still largely unknown. In this study, we compared the expression of 12 miRs previously described for being overexpress by Tax and the expression of several key components of the miRNAs biogenesis pathways in different HBZ expressing cell lines as well as in primary CD4 (+) cells from acute ATL patients. We showed that the expression of miRNAs and Dicer1 were downregulated in cells lines expressing HBZ as well as in fresh CD4 (+) cells from acute ATL patients. Using qRT-PCR, western blotting analysis and Chromatin Immunoprecipitation, we showed that dicer transcription was regulated by c-Jun and JunD, two AP-1 transcription factors. We also demonstrated that HBZ affects the expression of Dicer by removing JunD from the proximal promoter. Furthermore, we showed that at therapeutic concentration of 1mM, Valproate (VPA) an HDAC inhibitors often used in cancer treatment, rescue Dicer expression and miRNAs maturation. These results might offer a rationale for clinical studies of new combined therapy in an effort to improve the outcome of patients with acute ATL.
Collapse
Affiliation(s)
- Hélène Gazon
- CPBS, CNRS UMR 5236, Université Montpellier 1, Montpellier, France.,Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | - Gildas Belrose
- Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | - Marie Terol
- CPBS, CNRS UMR 5236, Université Montpellier 1, Montpellier, France.,Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | - Jean-Come Meniane
- Service Hématologie Clinique, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | | | - Raymond Césaire
- Laboratoire de Virologie-Immunologie JE2503, Centre Hospitalier et Universitaire de Martinique, Fort de France, Martinique
| | | |
Collapse
|
32
|
Penha RCC, Sepe R, De Martino M, Esposito F, Pellecchia S, Raia M, Del Vecchio L, Decaussin-Petrucci M, De Vita G, Pinto LFR, Fusco A. Role of Dicer1 in thyroid cell proliferation and differentiation. Cell Cycle 2017; 16:2282-2289. [PMID: 28933615 DOI: 10.1080/15384101.2017.1380127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.
Collapse
Affiliation(s)
- Ricardo Cortez Cardoso Penha
- a Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , Naples , Italy.,b Instituto Nacional de Câncer - INCA, Centro de Pesquisas (CPQ) , Rio de Janeiro , RJ , Brazil
| | - Romina Sepe
- a Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Marco De Martino
- a Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Francesco Esposito
- a Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Simona Pellecchia
- a Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , Naples , Italy
| | - Maddalena Raia
- c CEINGE-Biotecnologie Avanzate, Università di Napoli Federico II , Naples , Italy
| | - Luigi Del Vecchio
- c CEINGE-Biotecnologie Avanzate, Università di Napoli Federico II , Naples , Italy.,d Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Naples , Italy
| | | | - Gabriella De Vita
- d Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Naples , Italy
| | | | - Alfredo Fusco
- a Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II" , Naples , Italy.,b Instituto Nacional de Câncer - INCA, Centro de Pesquisas (CPQ) , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
33
|
Cao Y, Qiao J, Lin Z, Zabaleta J, Dai L, Qin Z. Up-regulation of tumor suppressor genes by exogenous dhC16-Cer contributes to its anti-cancer activity in primary effusion lymphoma. Oncotarget 2017; 8:15220-15229. [PMID: 28146424 PMCID: PMC5362481 DOI: 10.18632/oncotarget.14838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/11/2017] [Indexed: 11/28/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides “killing” PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors.
Collapse
Affiliation(s)
- Yueyu Cao
- Department of Oncology, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Qiao
- Department of Pediatrics, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhen Lin
- Department of Pathology, Tulane University Health Sciences Center, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Jovanny Zabaleta
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Lu Dai
- Department of Oncology, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Zhiqiang Qin
- Department of Oncology, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Genetics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Pestell TG, Jiao X, Kumar M, Peck AR, Prisco M, Deng S, Li Z, Ertel A, Casimiro MC, Ju X, Di Rocco A, Di Sante G, Katiyar S, Shupp A, Lisanti MP, Jain P, Wu K, Rui H, Hooper DC, Yu Z, Goldman AR, Speicher DW, Laury-Kleintop L, Pestell RG. Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget 2017; 8:81754-81775. [PMID: 29137220 PMCID: PMC5669846 DOI: 10.18632/oncotarget.19953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022] Open
Abstract
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.
Collapse
Affiliation(s)
- Timothy G Pestell
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Mukesh Kumar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marco Prisco
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Shengqiong Deng
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiping Li
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Adam Ertel
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Xiaoming Ju
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Sanjay Katiyar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Alison Shupp
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Salford, Greater Manchester, England, UK
| | - Pooja Jain
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Douglas C Hooper
- Department of Microbiology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
35
|
Devasthanam AS, Tomasi TB. Dicer protein levels elevated by mild hyperthermia promote a pro-survival phenotype. Oncotarget 2017; 8:67001-67016. [PMID: 28978012 PMCID: PMC5620152 DOI: 10.18632/oncotarget.17433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/31/2017] [Indexed: 01/30/2023] Open
Abstract
Cellular exposure to mild stress (39.5°C - 41.5°C) induces thermotolerance, rendering cells resistant to a subsequent heat shock (>42°C) insult. We found that mild hyperthermia at 39.5°C leads to elevations in dicer, a protein well-known for its role in microRNA processing and for its role in cellular stress responses. However, whether elevated dicer protein levels play a role in sustaining a thermotolerant phenotype has, to our knowledge, not been reported. Here we demonstrate that elevated dicer protein is linked to a thermotolerant phenotype in the cervical carcinoma cell line HeLa and in murine embryonic fibroblasts (MEF), and demonstrate that dicer plays a role in mediating PKR and eIF2α phosphorylation. These findings suggest that dicer's role in thermotolerance may be to relay signals to key ER stress pathway components. Moreover, utilizing a MEF cell line defective in microRNA processing, we suggest that dicer's influence on PKR and eIF2α phosphorylation is likely distinct from its microRNA processing role. ATF4 and CHOP are well characterized stress response factors proximal to eIF2α. Evidence is presented that elevated dicer protein in thermotolerant cells differentially modulates ATF4 and CHOP levels to promote a pro-survival phenotype. This work contributes new information on dicer's role in cellular stress responses by defining a pro-survival phenotype in heat stress resistant cells which is sustained, at least in part, by elevated dicer protein levels. Our results suggest an ancillary role for dicer in the cellular stress pathways activated by mild hyperthermia that is likely distinct from its role in microRNA processing.
Collapse
Affiliation(s)
- Anand S Devasthanam
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Thomas B Tomasi
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Medicine, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.,Department of Microbiology and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| |
Collapse
|
36
|
Profile of Yi-Han Chen. SCIENCE CHINA. LIFE SCIENCES 2017; 60:345-347. [PMID: 28349305 DOI: 10.1007/s11427-017-9007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
37
|
Yang SJ, Yang SY, Wang DD, Chen X, Shen HY, Zhang XH, Zhong SL, Tang JH, Zhao JH. The miR-30 family: Versatile players in breast cancer. Tumour Biol 2017; 39:1010428317692204. [PMID: 28347244 DOI: 10.1177/1010428317692204] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The microRNA family, miR-30, plays diverse roles in regulating key aspects of neoplastic transformation, metastasis, and clinical outcomes in different types of tumors. Accumulating evidence proves that miR-30 family is pivotal in the breast cancer development by controlling critical signaling pathways and relevant oncogenes. Here, we review the roles of miR-30 family members in the tumorigenesis, metastasis, and drug resistance of breast cancer, and their application to predict the prognosis of breast cancer patients. We think miR-30 family members would be promising biomarkers for breast cancer and may bring a novel insight in molecular targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Su-Jin Yang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Su-Yu Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hong-Yu Shen
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Xiao-Hui Zhang
- The Fourth Clinical School of Nanjing Medical University, Nanjing, China
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
38
|
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl) 2016; 94:1313-1326. [PMID: 27695879 PMCID: PMC5145738 DOI: 10.1007/s00109-016-1475-3] [Citation(s) in RCA: 469] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022]
Abstract
Mammalian cells encode three D cyclins (D1, D2, and D3) that coordinately function as allosteric regulators of cyclin-dependent kinase 4 (CDK4) and CDK6 to regulate cell cycle transition from G1 to S phase. Cyclin expression, accumulation, and degradation, as well as assembly and activation of CDK4/CDK6 are governed by growth factor stimulation. Cyclin D1 is more frequently dysregulated than cyclin D2 or D3 in human cancers, and as such, it has been more extensively characterized. Overexpression of cyclin D1 results in dysregulated CDK activity, rapid cell growth under conditions of restricted mitogenic signaling, bypass of key cellular checkpoints, and ultimately, neoplastic growth. This review discusses cyclin D1 transcriptional, translational, and post-translational regulations and its biological function with a particular focus on the mechanisms that result in its dysregulation in human cancers.
Collapse
Affiliation(s)
- Shuo Qie
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas St, Charleston, SC, 29425, USA.
| |
Collapse
|
39
|
Sun X, Jiang S, Liu J, Wang H, Zhang Y, Tang SC, Wang J, Du N, Xu C, Wang C, Qin S, Zhang J, Liu D, Zhang Y, Li X, Wang J, Dong J, Wang X, Xu S, Tao Z, Xu F, Zhou J, Wang T, Ren H. MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1. Oncotarget 2016; 6:32944-54. [PMID: 26460550 PMCID: PMC4741741 DOI: 10.18632/oncotarget.5079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, β-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75–1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or β-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and β-catenin. The knockdown of either SOX2 or β-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75–1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75–1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/β-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal.
Collapse
Affiliation(s)
- Xin Sun
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shiwen Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, China
| | - Jian Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Huangzhen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yiwen Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shou-Ching Tang
- Breast Cancer Program and Interdisciplinary Translational Research Team, Georgia Regents University Cancer Center, Augusta, Georgia, 30912, United States.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jichang Wang
- Neurosurgery Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chongwen Xu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chenguang Wang
- Institute of Radiation Medicine, the Chinese Academy of Medical Sciences, Nankai District, Tianjing 300192, China
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Dapeng Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xiaojun Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jiansheng Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jun Dong
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xin Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Cancer Institute and Hospital Affiliated to Tianjin Medical University, Tianjin, 300060, China
| | - Fei Xu
- Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Zhou
- Department of Breast Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510182, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| |
Collapse
|
40
|
Chang TY, Chen HA, Chiu CF, Chang YW, Kuo TC, Tseng PC, Wang W, Hung MC, Su JL. Dicer Elicits Paclitaxel Chemosensitization and Suppresses Cancer Stemness in Breast Cancer by Repressing AXL. Cancer Res 2016; 76:3916-28. [PMID: 27216190 DOI: 10.1158/0008-5472.can-15-2555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
Abstract
Paclitaxel is a standard-of-care chemotherapy for breast cancer, despite the increasing recognition of its poor effectiveness in the treatment of patients with advanced disease. Here, we report that adenovirus-type 5 E1A-mediated elevation of the miRNA-processing enzyme Dicer is sufficient to enhance paclitaxel sensitization and reduce cancer stem-like cell properties in this setting. Elevating Dicer expression increased levels of the AXL kinase targeting miRNA miR-494, thereby repressing AXL expression to increase paclitaxel sensitivity. We found that Dicer expression was regulated at the transcription level by E1A, through activation of an MAPK14/CEBPα pathway. Our findings define a mechanism of E1A-mediated chemosensitization for paclitaxel, which is based upon the suppression of breast cancer stem-like cells, with potential implications for the diagnosis and treatment of breast cancer patients. Cancer Res; 76(13); 3916-28. ©2016 AACR.
Collapse
Affiliation(s)
- Ting-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hsin-An Chen
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Feng Chiu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Wen Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tsang-Chih Kuo
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Tseng
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Weu Wang
- Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan. Department of Biotechnology, Asia University, Taichung, Taiwan. Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan. Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol 2016; 17:280-92. [PMID: 27033256 DOI: 10.1038/nrm.2016.27] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The roles of cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), as core components of the machinery that drives cell cycle progression are well established. Increasing evidence indicates that mammalian cyclins and CDKs also carry out important functions in other cellular processes, such as transcription, DNA damage repair, control of cell death, differentiation, the immune response and metabolism. Some of these non-canonical functions are performed by cyclins or CDKs, independently of their respective cell cycle partners, suggesting that there was a substantial divergence in the functions of these proteins during evolution.
Collapse
|
42
|
Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther 2016; 23:83-9. [PMID: 26987290 DOI: 10.1038/cgt.2016.3] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
Let-7 miRNAs are involved in carcinogenesis and tumor progression through their roles in maintaining differentiation and normal development. However, there is little research focusing on the effects of let-7 on Wnt-activated self-renewal of breast cancer stem cells. By analyzing the expression levels of let-7 family members in clinical tissues, we found that higher expression levels of let-7b and let-7c were correlated with better clinical prognosis of patients with estrogen receptor (ER)α-positive breast tumor. Further, we found that only let-7c was inversely correlated with ERα expression, and there is corelationship between let-7c and Wnt signaling in clinical tissues. Aldehyde dehydrogenase (ALDH)1 sorting and mammosphere formation assays showed that let-7c inhibited the self-renewal of stem cells in ERα-positive breast cancer. Let-7c decreased ERα expression through directly binding to the 3'UTR (untranslated region), and let-7c inhibited the estrogen-induced activation of Wnt signaling. Depletion of ERα abolished let-7c functions in stem cell signatures, which further confirmed that let-7c inhibited estrogen-induced Wnt activity through decreasing ERα expression. Taken together, our findings identified a biochemical and functional link between let-7c with ERα/Wnt signaling in breast cancer stem cells.
Collapse
|
43
|
Lo PK, Wolfson B, Zhou X, Duru N, Gernapudi R, Zhou Q. Noncoding RNAs in breast cancer. Brief Funct Genomics 2015; 15:200-21. [PMID: 26685283 DOI: 10.1093/bfgp/elv055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian transcriptome has recently been revealed to encompass a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. MicroRNAs (miRNAs), the best studied of the short noncoding RNAs (sncRNAs), have been extensively characterized with regard to their biogenesis, function and importance in tumorigenesis. Another class of sncRNAs called piwi-interacting RNAs (piRNAs) has also gained attention recently in cancer research owing to their critical role in stem cell regulation. Long noncoding RNAs (lncRNAs) of >200 nucleotides in length have recently emerged as key regulators of developmental processes, including mammary gland development. lncRNA dysregulation has also been implicated in the development of various cancers, including breast cancer. In this review, we describe and discuss the roles of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the initiation and progression of breast tumorigenesis, with a focus on outlining the molecular mechanisms of oncogenic and tumor-suppressor ncRNAs. Moreover, the current and potential future applications of ncRNAs to clinical breast cancer research are also discussed, with an emphasis on ncRNA-based diagnosis, prognosis and future therapeutics.
Collapse
|
44
|
Abstract
Cyclin D1 binds and activates cyclin-dependent kinases 4/6 (Cdk4/6) to phosphorylate the retinoblastoma (RB) family proteins, relieving E2F/DPs from the negative restraint of RB proteins and histone deacetylases. The cyclin D-Cdk4/6 complexes activate cyclin E/Cdk2 through titration of the Cdk inhibitors p21Cip1/p27Kip1. Cyclin E/Cdk2 further phosphorylates RBs, thereby activating E2F/DPs, and cells enter the S phase of the cell cycle. Cyclin D-Cdk4/6 also phosphorylates MEP50 subunit of the protein arginine methyltransferase 5 (PRMT5), which cooperates with cyclin D1 to drive lymphomagenesis in vivo. Activated PRMPT5 causes arginine methylation of p53 to suppress expression of pro-apoptotic and anti-proliferative target genes, explaining the molecular mechanism for tumorigenesis. Cyclin D1 physically interacts with transcription factors such as estrogen receptor, androgen receptor, and Myb family proteins to regulate gene expression in Cdk-independent fashion. Dmp1 is a Myb-like protein that quenches the oncogenic signals from activated Ras or HER2 by inducing Arf/p53-dependent cell cycle arrest. Cyclin D1 binds to Dmp1α to activate both Arf and Ink4a promoters to induce cell cycle arrest or apoptosis in non-transformed cells to prevent them from neoplastic transformation. Dmp1-deficiency significantly accelerates mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Cyclin D1 interferes with ligand activation of PPARγ involved in cellular differentiation; it also physically interacts with histone deacetylases (HDACs) and p300 to repress gene expression. It has also been shown that cyclin D1 accelerates tumorigenesis through transcriptional activation of miR-17/20 and Dicer1 which, in turn, represses cyclin D1 expression. Identification of cyclin D1-binding proteins/promoters will be essential for further clarification of its biological activities.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
45
|
Figueroa JD, Yang H, Garcia-Closas M, Davis S, Meltzer P, Lissowska J, Horne HN, Sherman ME, Lee M. Integrated analysis of DNA methylation, immunohistochemistry and mRNA expression, data identifies a methylation expression index (MEI) robustly associated with survival of ER-positive breast cancer patients. Breast Cancer Res Treat 2015; 150:457-466. [PMID: 25773928 DOI: 10.1007/s10549-015-3314-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Identification of prognostic gene expression signatures may enable improved decisions about management of breast cancer. To identify a prognostic signature for breast cancer, we performed DNA methylation profiling and identified methylation markers that were associated with expression of ER, PR, HER2, CK5/6, and EGFR proteins. Methylation markers that were correlated with corresponding mRNA expression levels were identified using 208 invasive tumors from a population-based case-control study conducted in Poland. Using this approach, we defined the methylation expression index (MEI) signature that was based on a weighted sum of mRNA levels of 57 genes. Classification of cases as low or high MEI scores was related to survival using Cox regression models. In the Polish study, women with ER-positive low MEI cancers had reduced survival at a median of 5.20 years of follow-up, HR = 2.85 95 % CI = 1.25-6.47. Low MEI was also related to decreased survival in four independent datasets totaling over 2500 ER-positive breast cancers. These results suggest that integrated analysis of tumor expression markers, DNA methylation, and mRNA data may be an important approach for identifying breast cancer prognostic signatures. Prospective assessment of MEI along with other prognostic signatures should be evaluated in future studies.
Collapse
Affiliation(s)
| | - Howard Yang
- National Cancer Institute, NIH, HHS, Bethesda, MD
| | | | - Sean Davis
- National Cancer Institute, NIH, HHS, Bethesda, MD
| | - Paul Meltzer
- National Cancer Institute, NIH, HHS, Bethesda, MD
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, Cancer Center and M. Sklodowska-Curie Institute of Oncology, Warsaw, Poland
| | | | | | - Maxwell Lee
- National Cancer Institute, NIH, HHS, Bethesda, MD
| |
Collapse
|
46
|
Sun X, Tang SC, Xu C, Wang C, Qin S, Du N, Liu J, Zhang Y, Li X, Luo G, Zhou J, Xu F, Ren H. DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1. J Cell Mol Med 2015; 19:1357-65. [PMID: 25702703 PMCID: PMC4459849 DOI: 10.1111/jcmm.12522] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
Let-7 miRNAs act as tumour suppressors by directly binding to the 3′UTRs of downstream gene products. The regulatory role of let-7 in downstream gene expression has gained much interest in the cancer research community, as it controls multiple biological functions and determines cell fates. For example, one target of the let-7 family is cyclin D1, which promotes G0/S cell cycle progression and oncogenesis, was correlated with endoribonuclease DICER1, another target of let-7. Down-regulated let-7 has been identified in many types of tumours, suggesting a feedback loop may exist between let-7 and cyclin D1. A potential player in the proposed feedback relationship is Dicer, a central regulator of miRNA expression through sequence-specific silencing. We first identified that DICER1 is the key downstream gene for cyclin D1-induced let-7 expression. In addition, we found that let-7 miRNAs expression decreased because of the p53-induced cell death response, with deregulated cyclin D1. Our results also showed that cyclin D1 is required for Nutlin-3 and TAX-induced let-7 expression in cancer repression and the cell death response. For the first time, we provide evidence that let-7 and cyclin D1 form a feedback loop in regulating therapy response of cancer cells and cancer stem cells, and importantly, that alteration of let-7 expression, mainly caused by cyclin D1, is a sensitive indicator for better chemotherapies response.
Collapse
Affiliation(s)
- Xin Sun
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shou-Ching Tang
- Georgia Regents University Cancer Center, Augusta, GA, USA.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chongwen Xu
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chenguang Wang
- Institute of Radiation Medicine, The Chinese Academy of Medical Sciences, Nankai District, Tianjin, China.,Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sida Qin
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ning Du
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian Liu
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yiwen Zhang
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiang Li
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Gang Luo
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jie Zhou
- Department of Breast Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Fei Xu
- Department of Radioation Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Hong Ren
- Oncology Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
47
|
Arancio W, Carina V, Pizzolanti G, Tomasello L, Pitrone M, Baiamonte C, Amato MC, Giordano C. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis. Int J Endocrinol 2015; 2015:439370. [PMID: 25705224 PMCID: PMC4326218 DOI: 10.1155/2015/439370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
It has been suggested that cancer stem cells (CSC) may play a central role in oncogenesis, especially in undifferentiated tumours. Anaplastic thyroid carcinoma (ATC) has characteristics suggestive of a tumour enriched in CSC. Previous studies suggested that the stem cell factor SOX2 has a preeminent hierarchical role in determining the characteristics of stem cells in SW1736 ATC cell line. In detail, silencing SOX2 in SW1736 is able to suppress the expression of the stem markers analysed, strongly sensitizing the line to treatment with chemotherapeutic agents. Therefore, in order to further investigate the role of SOX2 in ATC, a competing endogenous RNA (ceRNA) analysis was conducted in order to isolate new functional partners of SOX2. Among the interactors, of particular interest are genes involved in the biogenesis of miRNAs (DICER1, RNASEN, and EIF2C2), in the control cell cycle (TP53, CCND1), and in mitochondrial activity (COX8A). The data suggest that stemness, microRNA biogenesis and functions, p53 regulatory network, cyclin D1, and cell cycle control, together with mitochondrial activity, might be coregulated.
Collapse
Affiliation(s)
- Walter Arancio
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- *Walter Arancio:
| | - Valeria Carina
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Istituto Ortopedico Rizzoli (IOR), Section of Biology and Genetics, Department of Pathobiology and Medical and Forensic Biotechnology (Di.Bi.Me.F.), University of Palermo, Via Divisi 83, 90100 Palermo, Italy
| | - Giuseppe Pizzolanti
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Laura Tomasello
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Maria Pitrone
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Concetta Baiamonte
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Marco Calogero Amato
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Carla Giordano
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| |
Collapse
|
48
|
Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Adv Drug Deliv Rev 2015; 81:161-8. [PMID: 24819217 DOI: 10.1016/j.addr.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/18/2014] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
For more than a decade, the understanding of RNA interference (RNAi) has been a growing field of interest. Micro-RNAs (miRNAs) are small regulatory RNAs that play an important role in disease development and progression and therefore represent a potential new class of therapeutic targets. However, delivery of RNAi-based oligonucleotides is one of the most challenging hurdles to RNAi-based drug development. Electropermeabilization (EP) is recognized as a successful non-viral method to transfer nucleic acids into living cells both in vitro and in vivo. EP is the direct application of electric pulses to cells or tissues that transiently permeabilize plasma membranes, allowing the efficient delivery of exogenous molecules. The present review focused on the mechanism of RNAi-based oligonucleotides electrotransfer, from cellular uptake to intracellular distribution. Biophysical theories on oligonucleotide electrotransfer will be also presented. The advantages and few drawbacks of EP-mediated delivery will also be discussed.
Collapse
|
49
|
Ali A, Shah AS, Ahmad A. Gain-of-function of mutant p53: mutant p53 enhances cancer progression by inhibiting KLF17 expression in invasive breast carcinoma cells. Cancer Lett 2014; 354:87-96. [PMID: 25111898 DOI: 10.1016/j.canlet.2014.07.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/04/2014] [Accepted: 07/30/2014] [Indexed: 01/02/2023]
Abstract
Kruppel-like-factor 17 (KLF17) is a negative regulator of metastasis and epithelial-mesenchymal-transition (EMT). However, its expression is downregulated in metastatic breast cancer that contains p53 mutations. Here, we show that mutant-p53 plays a key role to suppress KLF17 and thereby enhances cancer progression, which defines novel gain-of-function (GOF) of mutant-p53. Mutant-p53 interacts with KLF17 and antagonizes KLF17 mediated EMT genes transcription. Depletion of KLF17 promotes cell viability, decreases apoptosis and induces drug resistance in metastatic breast cancer cells. KLF17 suppresses cell migration and invasion by decreasing CD44, PAI-1 and Cyclin-D1 expressions. Taken together, our results show that KLF17 is important for the suppression of metastasis and could be a potential therapeutic target during chemotherapy.
Collapse
Affiliation(s)
- Amjad Ali
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Abdus Saboor Shah
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Ayaz Ahmad
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|
50
|
Tian F, Wang Y, Seiler M, Hu Z. Functional characterization of breast cancer using pathway profiles. BMC Med Genomics 2014; 7:45. [PMID: 25041817 PMCID: PMC4113668 DOI: 10.1186/1755-8794-7-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 07/09/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The molecular characteristics of human diseases are often represented by a list of genes termed "signature genes". A significant challenge facing this approach is that of reproducibility: signatures developed on a set of patients may fail to perform well on different sets of patients. As diseases are resulted from perturbed cellular functions, irrespective of the particular genes that contribute to the function, it may be more appropriate to characterize diseases based on these perturbed cellular functions. METHODS We proposed a profile-based approach to characterize a disease using a binary vector whose elements indicate whether a given function is perturbed based on the enrichment analysis of expression data between normal and tumor tissues. Using breast cancer and its four primary clinically relevant subtypes as examples, this approach is evaluated based on the reproducibility, accuracy and resolution of the resulting pathway profiles. RESULTS Pathway profiles for breast cancer and its subtypes are constructed based on data obtained from microarray and RNA-Seq data sets provided by The Cancer Genome Atlas (TCGA), and an additional microarray data set provided by The European Genome-phenome Archive (EGA). An average reproducibility of 68% is achieved between different data sets (TCGA microarray vs. EGA microarray data) and 67% average reproducibility is achieved between different technologies (TCGA microarray vs. TCGA RNA-Seq data). Among the enriched pathways, 74% of them are known to be associated with breast cancer or other cancers. About 40% of the identified pathways are enriched in all four subtypes, with 4, 2, 4, and 7 pathways enriched only in luminal A, luminal B, triple-negative, and HER2+ subtypes, respectively. Comparison of profiles between subtypes, as well as other diseases, shows that luminal A and luminal B subtypes are more similar to the HER2+ subtype than to the triple-negative subtype, and subtypes of breast cancer are more likely to be closer to each other than to other diseases. CONCLUSIONS Our results demonstrate that pathway profiles can successfully characterize both common and distinct functional characteristics of four subtypes of breast cancer and other related diseases, with acceptable reproducibility, high accuracy and reasonable resolution.
Collapse
Affiliation(s)
- Feng Tian
- Center for Advanced Genomic Technology, Boston University, Boston, MA 02215, USA
| | - Yajie Wang
- Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
- Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Michael Seiler
- Center for Advanced Genomic Technology, Boston University, Boston, MA 02215, USA
| | - Zhenjun Hu
- Center for Advanced Genomic Technology, Boston University, Boston, MA 02215, USA
| |
Collapse
|