1
|
Champie A, Lachance JC, Sastry A, Matteau D, Lloyd CJ, Grenier F, Lamoureux CR, Jeanneau S, Feist AM, Jacques PÉ, Palsson BO, Rodrigue S. Diagnosis and mitigation of the systemic impact of genome reduction in Escherichia coli DGF-298. mBio 2024; 15:e0087324. [PMID: 39207109 PMCID: PMC11481515 DOI: 10.1128/mbio.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Microorganisms with simplified genomes represent interesting cell chassis for systems and synthetic biology. However, genome reduction can lead to undesired traits, such as decreased growth rate and metabolic imbalances. To investigate the impact of genome reduction on Escherichia coli strain DGF-298, a strain in which ~ 36% of the genome has been removed, we reconstructed a strain-specific metabolic model (iAC1061), investigated the regulation of gene expression using iModulon-based transcriptome analysis, and performed adaptive laboratory evolution to let the strain correct potential imbalances that arose during its simplification. The model notably predicted that the removal of all three key pathways for glycolaldehyde disposal in this microorganism would lead to a metabolic bottleneck through folate starvation. Glycolaldehyde is also known to cause self-generation of reactive oxygen species, as evidenced by the increased expression of oxidative stress resistance genes in the SoxS iModulon. The reintroduction of the aldA gene, responsible for one native glycolaldehyde disposal route, alleviated the constitutive oxidative stress response. Our results suggest that systems-level approaches and adaptive laboratory evolution have additive benefits when trying to repair and optimize genome-engineered strains. IMPORTANCE Genomic streamlining can be employed in model organisms to reduce complexity and enhance strain predictability. One of the most striking examples is the bacterial strain Escherichia coli DGF-298, notable for having over one-third of its genome deleted. However, such extensive genome modifications raise the question of how similar this simplified cell remains when compared with its parent, and what are the possible unintended consequences of this simplification. In this study, we used metabolic modeling along with iModulon-based transcriptomic analysis in different growth conditions to assess the impact of genome reduction on metabolism and gene regulation. We observed little impact of genomic reduction on the regulatory network of E. coli DGF-298 and identified a potential metabolic bottleneck leading to the constitutive activity of the SoxS iModulon. We then leveraged the model's predictions to successfully restore SoxS activity to the basal level.
Collapse
Affiliation(s)
- Antoine Champie
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anand Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Dominick Matteau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Colton J. Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Frédéric Grenier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Simon Jeanneau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | | | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sébastien Rodrigue
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Wang B, Wu Y, Lv X, Liu L, Li J, Du G, Chen J, Liu Y. Synergistic regulation of chassis cell growth and screening of promoters, signal peptides and fusion protein linkers for enhanced recombinant protein expression in Bacillus subtilis. Int J Biol Macromol 2024; 280:136037. [PMID: 39332549 DOI: 10.1016/j.ijbiomac.2024.136037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Growth-advantageous microbial chassis cells are beneficial for shortening fermentation period and boosting biomolecule productivity. This study focused on enhancing recombinant proteins synthesis efficiency in Bacillus subtilis by CRISPRi-mediated metabolism regulation for improved cell growth and screening expression elements. Specifically, by repressing odhA gene expression to reallocate cellular resource and overexpressing atpC, atpD and atpG genes to reprogram energy metabolism, the growth-advantageous chassis cell with high specific growth rate of 0.63 h-1 and biomass yield of 0.41 g DCW/g glucose in minimum medium was developed, representing 61.54 % and 46.43 % increasements compared to B. subtilis 168. Subsequently, using screened optimal P566 promoter and (EAAAK)3 protein linker, secretory bovine alpha-lactalbumin (α-LA) titer reached 1.02 mg/L. Finally, to test protein synthesis capability of cells, intracellular GFP, secretory α-LA and α-amylase were expressed with P566 promoter, representing 43.76 %, 75.49 % and 82.98 % increasements. The growth-advantageous B. subtilis chassis cells exhibit their potential to boost bioproduction productivity.
Collapse
Affiliation(s)
- Bin Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Liu Z, Zhao Q, Xu C, Song H. Compensatory evolution of chromosomes and plasmids counteracts the plasmid fitness cost. Ecol Evol 2024; 14:e70121. [PMID: 39170056 PMCID: PMC11336059 DOI: 10.1002/ece3.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Plasmids incur a fitness cost that has the potential to restrict the dissemination of resistance in bacterial pathogens. However, bacteria can overcome this disadvantage by compensatory evolution to maintain their resistance. Compensatory evolution can occur via both chromosomes and plasmids, but there are a few reviews regarding this topic, and most of them focus on plasmids. In this review, we provide a comprehensive overview of the currently reported mechanisms underlying compensatory evolution on chromosomes and plasmids, elucidate key targets regulating plasmid fitness cost, and discuss future challenges in this field. We found that compensatory evolution on chromosomes primarily arises from mutations in transcriptional regulatory factors, whereas compensatory evolution of plasmids predominantly involves three pathways: plasmid copy number regulation, conjugation transfer efficiency, and expression of antimicrobial resistance (AMR) genes. Furthermore, the importance of reasonable selection of research subjects and effective integration of diverse advanced research methods is also emphasized in our future study on compensatory mechanisms. Overall, this review establishes a theoretical framework that aims to provide innovative ideas for minimizing the emergence and spread of AMR genes.
Collapse
Affiliation(s)
- Ziyi Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Qiuyun Zhao
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
4
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Sitompul SN, Diaz Garcia LA, Price J, Tee KL, Wong TS. Fast-track adaptive laboratory evolution of Cupriavidus necator H16 with divalent metal cations. Biotechnol J 2024; 19:e2300577. [PMID: 38987216 DOI: 10.1002/biot.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Microbial strain improvement through adaptive laboratory evolution (ALE) has been a key strategy in biotechnology for enhancing desired phenotypic traits. In this Biotech Method paper, we present an accelerated ALE (aALE) workflow and its successful implementation in evolving Cupriavidus necator H16 for enhanced tolerance toward elevated glycerol concentrations. The method involves the deliberate induction of genetic diversity through controlled exposure to divalent metal cations, enabling the rapid identification of improved variants. Through this approach, we observed the emergence of robust variants capable of growing in high glycerol concentration environments, demonstrating the efficacy of our aALE workflow. When cultivated in 10% v/v glycerol, the adapted variant Mn-C2-B11, selected through aALE, achieved a final OD600 value of 56.0 and a dry cell weight of 15.2 g L-1, compared to the wild type (WT) strain's final OD600 of 39.1 and dry cell weight of 8.4 g L-1. At an even higher glycerol concentration of 15% v/v, Mn-C2-B11 reached a final OD600 of 48.9 and a dry cell weight of 12.7 g L-1, in contrast to the WT strain's final OD600 of 9.0 and dry cell weight of 3.1 g L-1. Higher glycerol consumption by Mn-C2-B11 was also confirmed by high-performance liquid chromatography (HPLC) analysis. This adapted variant consumed 34.5 times more glycerol compared to the WT strain at 10% v/v glycerol. Our method offers several advantages over other reported ALE approaches, including its independence from genetically modified strains, specialized genetic tools, and potentially carcinogenic DNA-modifying agents. By utilizing divalent metal cations as mutagens, we offer a safer, more efficient, and cost-effective alternative for expansion of genetic diversity. With its ability to foster rapid microbial evolution, aALE serves as a valuable addition to the ALE toolbox, holding significant promise for the advancement of microbial strain engineering and bioprocess optimization.
Collapse
Affiliation(s)
| | | | - Joseph Price
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
| | - Kang Lan Tee
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, UK
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, UK
- Evolutor Ltd, The Innovation Centre, Sheffield, UK
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science & Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| |
Collapse
|
6
|
Watanabe S, Nsofor CA, Thitiananpakorn K, Tan XE, Aiba Y, Takenouchi R, Kiga K, Sasahara T, Miyanaga K, Veeranarayanan S, Shimamori Y, Lian AYS, Nguyen TM, Nguyen HM, Alessa O, Kumwenda GP, Jayathilake S, Revilleza JEC, Baranwal P, Nishikawa Y, Li FY, Kawaguchi T, Sankaranarayanan S, Arbaah M, Zhang Y, Maniruzzaman, Liu Y, Sarah H, Li J, Sugano T, Ho TMD, Batbold A, Nayanjin T, Cui L. Metabolic remodeling by RNA polymerase gene mutations is associated with reduced β-lactam susceptibility in oxacillin-susceptible MRSA. mBio 2024; 15:e0033924. [PMID: 38988221 PMCID: PMC11237739 DOI: 10.1128/mbio.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 07/12/2024] Open
Abstract
The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to β-lactam antibiotics, these strains can easily acquire reduced β-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced β-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to β-lactam in OS-MRSA. IMPORTANCE The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to β-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced β-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to β-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Chijioke A Nsofor
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- Department of Biotechnology, School of Biological Sciences, Federal University of Technology Owerri Nigeria, Owerri, Nigeria
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Remi Takenouchi
- School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yuzuki Shimamori
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Adeline Yeo Syin Lian
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Thuy Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Ola Alessa
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | | | - Sarangi Jayathilake
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | | | - Priyanka Baranwal
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yutaro Nishikawa
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Sowmiya Sankaranarayanan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Mahmoud Arbaah
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yuancheng Zhang
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Maniruzzaman
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yi Liu
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Hossain Sarah
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Junjie Li
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Takashi Sugano
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Thi My Duyen Ho
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Anujin Batbold
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Tergel Nayanjin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Kim K, Choe D, Kang M, Cho SH, Cho S, Jeong KJ, Palsson B, Cho BK. Serial adaptive laboratory evolution enhances mixed carbon metabolic capacity of Escherichia coli. Metab Eng 2024; 83:160-171. [PMID: 38636729 DOI: 10.1016/j.ymben.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/31/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Microbes have inherent capacities for utilizing various carbon sources, however they often exhibit sub-par fitness due to low metabolic efficiency. To test whether a bacterial strain can optimally utilize multiple carbon sources, Escherichia coli was serially evolved in L-lactate and glycerol. This yielded two end-point strains that evolved first in L-lactate then in glycerol, and vice versa. The end-point strains displayed a universal growth advantage on single and a mixture of adaptive carbon sources, enabled by a concerted action of carbon source-specialists and generalist mutants. The combination of just four variants of glpK, ppsA, ydcI, and rph-pyrE, accounted for more than 80% of end-point strain fitness. In addition, machine learning analysis revealed a coordinated activity of transcriptional regulators imparting condition-specific regulation of gene expression. The effectiveness of the serial adaptive laboratory evolution (ALE) scheme in bioproduction applications was assessed under single and mixed-carbon culture conditions, in which serial ALE strain exhibited superior productivity of acetoin compared to ancestral strains. Together, systems-level analysis elucidated the molecular basis of serial evolution, which hold potential utility in bioproduction applications.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Donghui Choe
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Dvořák P, Burýšková B, Popelářová B, Ebert BE, Botka T, Bujdoš D, Sánchez-Pascuala A, Schöttler H, Hayen H, de Lorenzo V, Blank LM, Benešík M. Synthetically-primed adaptation of Pseudomonas putida to a non-native substrate D-xylose. Nat Commun 2024; 15:2666. [PMID: 38531855 DOI: 10.1038/s41467-024-46812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Barbora Burýšková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Cnr College Rd & Cooper Rd, St Lucia, QLD, QLD 4072, Australia
| | - Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Dalimil Bujdoš
- APC Microbiome Ireland, University College Cork, College Rd, Cork, T12 YT20, Ireland
- School of Microbiology, University College Cork, College Rd, Cork, T12 Y337, Ireland
| | - Alberto Sánchez-Pascuala
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Hannah Schöttler
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Martin Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
9
|
Ben Nissan R, Milshtein E, Pahl V, de Pins B, Jona G, Levi D, Yung H, Nir N, Ezra D, Gleizer S, Link H, Noor E, Milo R. Autotrophic growth of Escherichia coli is achieved by a small number of genetic changes. eLife 2024; 12:RP88793. [PMID: 38381041 PMCID: PMC10942610 DOI: 10.7554/elife.88793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Synthetic autotrophy is a promising avenue to sustainable bioproduction from CO2. Here, we use iterative laboratory evolution to generate several distinct autotrophic strains. Utilising this genetic diversity, we identify that just three mutations are sufficient for Escherichia coli to grow autotrophically, when introduced alongside non-native energy (formate dehydrogenase) and carbon-fixing (RuBisCO, phosphoribulokinase, carbonic anhydrase) modules. The mutated genes are involved in glycolysis (pgi), central-carbon regulation (crp), and RNA transcription (rpoB). The pgi mutation reduces the enzyme's activity, thereby stabilising the carbon-fixing cycle by capping a major branching flux. For the other two mutations, we observe down-regulation of several metabolic pathways and increased expression of native genes associated with the carbon-fixing module (rpiB) and the energy module (fdoGH), as well as an increased ratio of NADH/NAD+ - the cycle's electron-donor. This study demonstrates the malleability of metabolism and its capacity to switch trophic modes using only a small number of genetic changes and could facilitate transforming other heterotrophic organisms into autotrophs.
Collapse
Affiliation(s)
- Roee Ben Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Eliya Milshtein
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Vanessa Pahl
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of TübingenTübingenGermany
| | - Benoit de Pins
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Dikla Levi
- Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Hadas Yung
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Noga Nir
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Dolev Ezra
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of TübingenTübingenGermany
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
10
|
Ruan S, Li Y, Lu F, Liu X, Zhou A, Ma H. Low-intensity ultrasound-assisted adaptive laboratory evolution of Bacillus velezensis for enhanced production of peptides. ULTRASONICS SONOCHEMISTRY 2024; 103:106805. [PMID: 38354424 PMCID: PMC10876604 DOI: 10.1016/j.ultsonch.2024.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This work aimed to explore low-intensity ultrasound-assisted adaptive laboratory evolution (US-ALE) of Bacillus velezensis and fermentation performance of mutant strains were investigated by nitrogen transformation metabolism. Results showed ultrasound accelerated the process of adaptive evolution and enhanced cell dry weight, amylase and protease activity of mutant strains, accompanied with the improved transformation abilities of NO-3-N to NH4+-N. Compared with original strain, the total peptide-N, peptide-N (<3 kDa) and autolytic peptide-N of mutant strains increased by the maximum 23.17%, 66.07% and 30.30%, respectively, based on ideal fermentation medium. According to the actual liquid-state fermentation of soybean meal and corn gluten meal with mutant strains, the highest peptide yields of 50.63% and 23.67% were noticed in mutant strain US-ALE-BV3, accompanied with the improved amino acid composition by bacterial autolysis technology. Thus, this study showed that low-intensity ultrasound could accelerate the process of adaptive evolution and US-ALE will provide more possibilities for modifying fermentation strains.
Collapse
Affiliation(s)
- Siyu Ruan
- College of Tea and Food Science Technology, Jiangsu Polytechnic College of Agriculture and Forestry, 19 Wenchangdong Road, Jurong, Jiangsu 212400, PR China
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Feng Lu
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Xiaoshuang Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Anqi Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
11
|
Salas-Orozco MF, Lorenzo-Leal AC, de Alba Montero I, Marín NP, Santana MAC, Bach H. Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102715. [PMID: 37907198 DOI: 10.1016/j.nano.2023.102715] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023]
Abstract
The emergency of antibiotic-resistant bacteria in severe infections is increasing, especially in nosocomial environments. The ESKAPE group is of special importance in the groups of multi-resistant bacteria due to its high capacity to generate resistance to antibiotics and bactericides. Therefore, metal-based nanomaterials are an attractive alternative to combat them because they have been demonstrated to damage biomolecules in the bacterial cells. However, there is a concern about bacteria developing resistance to NPs and their harmful effects due to environmental accumulation. Therefore, this systematic review aims to report the clinically relevant bacteria that have developed resistance to the NPs. According to the results of this systematic review, various mechanisms to counteract the antimicrobial activity of various NP types have been proposed. These mechanisms can be grouped into the following categories: production of extracellular compounds, metal efflux pumps, ROS response, genetic changes, DNA repair, adaptative morphogenesis, and changes in the plasma membrane.
Collapse
Affiliation(s)
- Marco Felipe Salas-Orozco
- Facultad de Estomatología, Doctorado en Ciencias Odontológicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Nuria Patiño Marín
- Facultad de Estomatología, Laboratorio de Investigación Clinica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Miguel Angel Casillas Santana
- Maestría en Estomatología con Opcion Terminal en Ortodoncia, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Ghoshal M, Bechtel TD, Gibbons JG, McLandsborough L. Adaptive laboratory evolution of Salmonella enterica in acid stress. Front Microbiol 2023; 14:1285421. [PMID: 38033570 PMCID: PMC10687551 DOI: 10.3389/fmicb.2023.1285421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Adaptive laboratory evolution (ALE) studies play a crucial role in understanding the adaptation and evolution of different bacterial species. In this study, we have investigated the adaptation and evolution of Salmonella enterica serovar Enteritidis to acetic acid using ALE. Materials and methods Acetic acid concentrations below the minimum inhibitory concentration (sub-MIC) were used. Four evolutionary lineages (EL), namely, EL1, EL2, EL3, and EL4, of S. Enteritidis were developed, each demonstrating varying levels of resistance to acetic acid. Results The acetic acid MIC of EL1 remained constant at 27 mM throughout 70 days, while the MIC of EL2, EL3, and EL4 increased throughout the 70 days. EL4 was adapted to the highest concentration of acetic acid (30 mM) and demonstrated the highest increase in its MIC against acetic acid throughout the study, reaching an MIC of 35 mM on day 70. The growth rates of the evolved lineages increased over time and were dependent on the concentration of acetic acid used during the evolutionary process. EL4 had the greatest increase in growth rate, reaching 0.33 (h-1) after 70 days in the presence of 30 mM acetic acid as compared to EL1, which had a growth rate of 0.2 (h-1) after 70 days with no exposure to acetic acid. Long-term exposure to acetic acid led to an increased MIC of human antibiotics such as ciprofloxacin and meropenem against the S. enterica evolutionary lineages. The MIC of ciprofloxacin for EL1 stayed constant at 0.016 throughout the 70 days while that of EL4 increased to 0.047. Bacterial whole genome sequencing revealed single-nucleotide polymorphisms in the ELs in various genes known to be involved in S. enterica virulence, pathogenesis, and stress response including phoP, phoQ, and fhuA. We also observed genome deletions in some of the ELs as compared to the wild-type S. Enteritidis which may have contributed to the bacterial acid adaptation. Discussion This study highlights the potential for bacterial adaptation and evolution under environmental stress and underscores the importance of understanding the development of cross resistance to antibiotics in S. enterica populations. This study serves to enhance our understanding of the pathogenicity and survival strategies of S. enterica under acetic acid stress.
Collapse
Affiliation(s)
- Mrinalini Ghoshal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Tyler D. Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - John G. Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Lynne McLandsborough
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
13
|
Peña-Castro JM, Muñoz-Páez KM, Robledo-Narvaez PN, Vázquez-Núñez E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. Microorganisms 2023; 11:2197. [PMID: 37764041 PMCID: PMC10535843 DOI: 10.3390/microorganisms11092197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria and yeast are being intensively used to produce biofuels and high-added-value products by using plant biomass derivatives as substrates. The number of microorganisms available for industrial processes is increasing thanks to biotechnological improvements to enhance their productivity and yield through microbial metabolic engineering and laboratory evolution. This is allowing the traditional industrial processes for biofuel production, which included multiple steps, to be improved through the consolidation of single-step processes, reducing the time of the global process, and increasing the yield and operational conditions in terms of the desired products. Engineered microorganisms are now capable of using feedstocks that they were unable to process before their modification, opening broader possibilities for establishing new markets in places where biomass is available. This review discusses metabolic engineering approaches that have been used to improve the microbial processing of biomass to convert the plant feedstock into fuels. Metabolically engineered microorganisms (MEMs) such as bacteria, yeasts, and microalgae are described, highlighting their performance and the biotechnological tools that were used to modify them. Finally, some examples of patents related to the MEMs are mentioned in order to contextualize their current industrial use.
Collapse
Affiliation(s)
- Julián Mario Peña-Castro
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico;
| | - Karla M. Muñoz-Páez
- CONAHCYT—Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Queretaro 76230, Queretaro, Mexico;
| | | | - Edgar Vázquez-Núñez
- Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas para la Sostenibilidad (NanoBioTS), Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León 37150, Guanajuato, Mexico
| |
Collapse
|
14
|
Sun Y, Hürlimann S, Garner E. Growth rate is modulated by monitoring cell wall precursors in Bacillus subtilis. Nat Microbiol 2023; 8:469-480. [PMID: 36797487 DOI: 10.1038/s41564-023-01329-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
How bacteria link their growth rate to external nutrient conditions is unknown. To investigate how Bacillus subtilis cells alter the rate at which they expand their cell walls as they grow, we compared single-cell growth rates of cells grown under agar pads with the density of moving MreB filaments under a variety of growth conditions. MreB filament density increases proportionally with growth rate. We show that both MreB filament density and growth rate depend on the abundance of Lipid II and murAA, the first gene in the biosynthetic pathway creating the cell wall precursor Lipid II. Lipid II is sensed by the serine/threonine kinase PrkC, which phosphorylates RodZ and other proteins. We show that phosphorylated RodZ increases MreB filament density, which in turn increases cell growth rate. We also show that increasing the activity of this pathway in nutrient-poor media results in cells that elongate faster than wild-type cells, which means that B. subtilis contains spare 'growth capacity'. We conclude that PrkC functions as a cellular rheostat, enabling fine-tuning of cell growth rates in response to Lipid II in different nutrient conditions.
Collapse
Affiliation(s)
- Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Sylvia Hürlimann
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
15
|
Minireview: Engineering evolution to reconfigure phenotypic traits in microbes for biotechnological applications. Comput Struct Biotechnol J 2022; 21:563-573. [PMID: 36659921 PMCID: PMC9816911 DOI: 10.1016/j.csbj.2022.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has long been used as the tool of choice for microbial engineering applications, ranging from the production of commodity chemicals to the innovation of complex phenotypes. With the advent of systems and synthetic biology, the ALE experimental design has become increasingly sophisticated. For instance, implementation of in silico metabolic model reconstruction and advanced synthetic biology tools have facilitated the effective coupling of desired traits to adaptive phenotypes. Furthermore, various multi-omic tools now enable in-depth analysis of cellular states, providing a comprehensive understanding of the biology of even the most genomically perturbed systems. Emerging machine learning approaches would assist in streamlining the interpretation of massive and multiplexed datasets and promoting our understanding of complexity in biology. This review covers some of the representative case studies among the 700 independent ALE studies reported to date, outlining key ideas, principles, and important mechanisms underlying ALE designs in bioproduction and synthetic cell engineering, with evidence from literatures to aid comprehension.
Collapse
|
16
|
Abstract
All organisms rely on complex metabolites such as amino acids, nucleotides, and cofactors for essential metabolic processes. Some microbes synthesize these fundamental ingredients of life de novo, while others rely on uptake to fulfill their metabolic needs. Although certain metabolic processes are inherently "leaky," the mechanisms enabling stable metabolite provisioning among microbes in the absence of a host remain largely unclear. In particular, how can metabolite provisioning among free-living bacteria be maintained under the evolutionary pressure to economize resources? Salvaging, the process of "recycling and reusing," can be a metabolically efficient route to obtain access to required resources. Here, we show experimentally how precursor salvaging in engineered Escherichia coli populations can lead to stable, long-term metabolite provisioning. We find that salvaged cobamides (vitamin B12 and related enzyme cofactors) are readily made available to nonproducing population members, yet salvagers are strongly protected from overexploitation. We also describe a previously unnoted benefit of precursor salvaging, namely, the removal of the nonfunctional, proliferation-inhibiting precursor. As long as compatible precursors are present, any microbe possessing the terminal steps of a biosynthetic process can, in principle, forgo de novo biosynthesis in favor of salvaging. Consequently, precursor salvaging likely represents a potent, yet overlooked, alternative to de novo biosynthesis for the acquisition and provisioning of metabolites in free-living bacterial populations. IMPORTANCE Recycling gives new life to old things. Bacteria have the ability to recycle and reuse complex molecules they encounter in their environment to fulfill their basic metabolic needs in a resource-efficient way. By studying the salvaging (recycling and reusing) of vitamin B12 precursors, we found that metabolite salvaging can benefit others and provide stability to a bacterial community at the same time. Salvagers of vitamin B12 precursors freely share the result of their labor yet cannot be outcompeted by freeloaders, likely because salvagers retain preferential access to the salvaging products. Thus, salvaging may represent an effective, yet overlooked, mechanism of acquiring and provisioning nutrients in microbial populations.
Collapse
|
17
|
Membrane transporter identification and modulation via adaptive laboratory evolution. Metab Eng 2022; 72:376-390. [DOI: 10.1016/j.ymben.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
|
18
|
Mahilkar A, Venkataraman P, Mall A, Saini S. Experimental Evolution of Anticipatory Regulation in Escherichia coli. Front Microbiol 2022; 12:796228. [PMID: 35087497 PMCID: PMC8787300 DOI: 10.3389/fmicb.2021.796228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental cues in an ecological niche are often temporal in nature. For instance, in temperate climates, temperature is higher in daytime compared to during night. In response to these temporal cues, bacteria have been known to exhibit anticipatory regulation, whereby triggering response to a yet to appear cue. Such an anticipatory response in known to enhance Darwinian fitness, and hence, is likely an important feature of regulatory networks in microorganisms. However, the conditions under which an anticipatory response evolves as an adaptive response are not known. In this work, we develop a quantitative model to study response of a population to two temporal environmental cues, and predict variables which are likely important for evolution of anticipatory regulatory response. We follow this with experimental evolution of Escherichia coli in alternating environments of rhamnose and paraquat for ∼850 generations. We demonstrate that growth in this cyclical environment leads to evolution of anticipatory regulation. As a result, pre-exposure to rhamnose leads to a greater fitness in paraquat environment. Genome sequencing reveals that this anticipatory regulation is encoded via mutations in global regulators. Overall, our study contributes to understanding of how environment shapes the topology of regulatory networks in an organism.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akshat Mall
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Kim K, Hou CY, Choe D, Kang M, Cho S, Sung BH, Lee DH, Lee SG, Kang TJ, Cho BK. Adaptive laboratory evolution of Escherichia coli W enhances gamma-aminobutyric acid production using glycerol as the carbon source. Metab Eng 2021; 69:59-72. [PMID: 34775076 DOI: 10.1016/j.ymben.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
The microbial conversion of glycerol into value-added commodity products has emerged as an attractive means to meet the demands of biosustainability. However, glycerol is a non-preferential carbon source for productive fermentation because of its low energy density. We employed evolutionary and metabolic engineering in tandem to construct an Escherichia coli strain with improved GABA production using glycerol as the feedstock carbon. Adaptive evolution of E. coli W under glycerol-limited conditions for 1300 generations harnessed an adapted strain with a metabolic system optimized for glycerol utilization. Mutation profiling, enzyme kinetic assays, and transcriptome analysis of the adapted strain allowed us to decipher the basis of glycerol adaptation at the molecular level. Importantly, increased substrate influx mediated by the mutant glpK and modulation of intracellular cAMP levels were the key drivers of improved fitness in the glycerol-limited condition. Leveraging the enhanced capability of glycerol utilization in the strain, we constructed a GABA-producing E. coli W-derivative with superior GABA production compared to the wild-type. Furthermore, rationally designed inactivation of the non-essential metabolic genes, including ackA, mgsA, and gabT, in the glycerol-adapted strain improved the final GABA titer and specific productivity by 3.9- and 4.3-fold, respectively, compared with the wild-type.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chen Yuan Hou
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Espeso DR, Dvořák P, Aparicio T, de Lorenzo V. An automated DIY framework for experimental evolution of Pseudomonas putida. Microb Biotechnol 2021; 14:2679-2685. [PMID: 33047876 PMCID: PMC8601172 DOI: 10.1111/1751-7915.13678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 10/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to the biological chassis at stake. In this work, we have adopted a do-it-yourself (DIY) approach to implement a flexible and automated framework for performing ALE experiments with the environmental bacterium and metabolic engineering platform Pseudomonas putida. The setup includes a dual-chamber semi-continuous log-phase bioreactor design combined with an anti-biofilm layout to manage specific traits of this bacterium in long-term cultivation experiments. As a way of validation, the prototype was instrumental for selecting fast-growing variants of a P. putida strain engineered to metabolize D-xylose as sole carbon and energy source after running an automated 42 days protocol of iterative regrowth. Several genomic changes were identified in the evolved population that pinpointed the role of RNA polymerase in controlling overall physiological conditions during metabolism of the new carbon source.
Collapse
Affiliation(s)
- David R. Espeso
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Pavel Dvořák
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrno62500Czech Republic
| | - Tomás Aparicio
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Víctor de Lorenzo
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| |
Collapse
|
21
|
Xu J, Yang J, Jiang Y, Wu M, Yang S, Yang L. A novel global transcriptional perturbation target identified by forward genetics reprograms Vibrio natriegens for improving recombinant protein production. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1124-1133. [PMID: 34169308 DOI: 10.1093/abbs/gmab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
Vibrio natriegens is known to be the fastest-growing free-living bacterium with the potential to be a novel protein expression system other than Escherichia coli. Seven sampled genes of interest (GOIs) encoding biocatalyst enzymes, including Ochrobactrum anthropi-derived ω-transaminase (OATA), were strongly expressed in E. coli but weakly in V. natriegens using the pET expression system. In this study, we fused the C-terminal of OATA with green fluorescent protein (GFP) and obtained V. natriegens mutants that could increase both protein yield and enzyme activity of OATA as well as the other three GOIs by ultraviolet mutagenesis, fluorescence-activated cell sorting (FACS), and OATA colorimetric assay. Furthermore, next-generation sequencing and strain reconstruction revealed that the Y457 variants in the conserved site of endogenous RNA polymerase (RNAP) β' subunit rpoC are responsible for the increase in recombinant protein yield. We speculated that the mutation of rpoC Y457 may reprogram V. natriegens's innate gene transcription, thereby increasing the copy number of pET plasmids and soluble protein yield of certain GOIs. The increase in GOI expression may partly be attributed to the increase in copy number. In conclusion, GOI-GFP fusion combined with FACS is a powerful tool of forward genetics that can be used to obtain a superior expression chassis. If more high-expression-related targets are found for more GOIs, it would make the construction of next-generation protein expression chassis more time-saving.
Collapse
Affiliation(s)
- Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Shanghai Taoyusheng Biotechnology Co. Ltd, Shanghai 201201, China
| | - Mianbin Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310007, China
| |
Collapse
|
22
|
Palsson BO. Genome‐Scale Models. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Shiver AL, Osadnik H, Peters JM, Mooney RA, Wu PI, Henry KK, Braberg H, Krogan NJ, Hu JC, Landick R, Huang KC, Gross CA. Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs. Mol Cell 2021; 81:2201-2215.e9. [PMID: 34019789 PMCID: PMC8484514 DOI: 10.1016/j.molcel.2021.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.
Collapse
Affiliation(s)
- Anthony L Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter I Wu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Hu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Ewunkem AJ, Rodgers L, Campbell D, Staley C, Subedi K, Boyd S, Graves JL. Experimental Evolution of Magnetite Nanoparticle Resistance in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:790. [PMID: 33808798 PMCID: PMC8003623 DOI: 10.3390/nano11030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Both ionic and nanoparticle iron have been proposed as materials to control multidrug-resistant (MDR) bacteria. However, the potential bacteria to evolve resistance to nanoparticle bacteria remains unexplored. To this end, experimental evolution was utilized to produce five magnetite nanoparticle-resistant (FeNP1-5) populations of Escherichia coli. The control populations were not exposed to magnetite nanoparticles. The 24-h growth of these replicates was evaluated in the presence of increasing concentrations magnetite NPs as well as other ionic metals (gallium III, iron II, iron III, and silver I) and antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). Scanning electron microscopy was utilized to determine cell size and shape in response to magnetite nanoparticle selection. Whole genome sequencing was carried out to determine if any genomic changes resulted from magnetite nanoparticle resistance. After 25 days of selection, magnetite resistance was evident in the FeNP treatment. The FeNP populations also showed a highly significantly (p < 0.0001) greater 24-h growth as measured by optical density in metals (Fe (II), Fe (III), Ga (III), Ag, and Cu II) as well as antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). The FeNP-resistant populations also showed a significantly greater cell length compared to controls (p < 0.001). Genomic analysis of FeNP identified both polymorphisms and hard selective sweeps in the RNA polymerase genes rpoA, rpoB, and rpoC. Collectively, our results show that E. coli can rapidly evolve resistance to magnetite nanoparticles and that this result is correlated resistances to other metals and antibiotics. There were also changes in cell morphology resulting from adaptation to magnetite NPs. Thus, the various applications of magnetite nanoparticles could result in unanticipated changes in resistance to both metal and antibiotics.
Collapse
Affiliation(s)
- Akamu J. Ewunkem
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - LaShunta Rodgers
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
| | - Daisha Campbell
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Constance Staley
- Department of Chemistry, Bennett College, Greensboro, NC 27401, USA;
| | - Kiran Subedi
- College of Agricultural and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Sada Boyd
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - Joseph L. Graves
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
25
|
Shi XC, Tremblay PL, Wan L, Zhang T. Improved robustness of microbial electrosynthesis by adaptation of a strict anaerobic microbial catalyst to molecular oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142440. [PMID: 33254866 DOI: 10.1016/j.scitotenv.2020.142440] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Microbial electrosynthesis (MES) and other bioprocesses such as syngas fermentation developed for energy storage and the conversion of carbon dioxide into valuable chemicals often employs acetogens as microbial catalysts. Acetogens are sensitive to molecular oxygen, which means that bioproduction reactors must be maintained under strict anaerobic conditions. This requirement increases cost and does not eliminate the possibility of O2 leakage. For MES, the risk is even greater since the system generates O2 when water splitting is the anodic reaction. Here, we show that O2 from the anode of a MES reactor diffuses into the cathode chamber where strict anaerobes reduce CO2. To overcome this drawback, a stepwise adaptive laboratory evolution (ALE) strategy is used to develop the O2 tolerance of the acetogen Sporomusa ovata. Two heavily-mutated S. ovata strains growing well autotrophically in the presence of 0.5 to 5% O2 were obtained. The adapted strains were more performant in the MES system than the wild type converting electrical energy and CO2 into acetate 1.5 fold faster. This study shows that the O2 tolerance of acetogens can be increased, which leads to improvement of the performance and robustness of energy-storage bioprocesses such as MES where O2 is an inhibitor.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lulu Wan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
26
|
Nguyen AD, Nam G, Kim D, Lee EY. Metabolic role of pyrophosphate-linked phosphofructokinase pfk for C1 assimilation in Methylotuvimicrobium alcaliphilum 20Z. Microb Cell Fact 2020; 19:131. [PMID: 32546161 PMCID: PMC7298851 DOI: 10.1186/s12934-020-01382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Methanotrophs is a promising biocatalyst in biotechnological applications with their ability to utilize single carbon (C1) feedstock to produce high-value compounds. Understanding the behavior of biological networks of methanotrophic bacteria in different parameters is vital to systems biology and metabolic engineering. Interestingly, methanotrophic bacteria possess the pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) instead of the ATP-dependent 6-phosphofructokinase, indicating their potentials to serve as promising model for investigation the role of inorganic pyrophosphate (PPi) and PPi-dependent glycolysis in bacteria. Gene knockout experiments along with global-omics approaches can be used for studying gene functions as well as unraveling regulatory networks that rely on the gene product. RESULTS In this study, we performed gene knockout and RNA-seq experiments in Methylotuvimicrobium alcaliphilum 20Z to investigate the functional roles of PPi-PFK in C1 metabolism when cells were grown on methane and methanol, highlighting its metabolic importance in C1 assimilation in M. alcaliphilum 20Z. We further conducted adaptive laboratory evolution (ALE) to investigate regulatory architecture in pfk knockout strain. Whole-genome resequencing and RNA-seq approaches were performed to characterize the genetic and metabolic responses of adaptation to pfk knockout. A number of mutations, as well as gene expression profiles, were identified in pfk ALE strain to overcome insufficient C1 assimilation pathway which limits the growth in the unevolved strain. CONCLUSIONS This study first revealed the regulatory roles of PPi-PFK on C1 metabolism and then provided novel insights into mechanism of adaptation to the loss of this major metabolic enzyme as well as an improved basis for future strain design in type I methanotrophs.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Gayoung Nam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
27
|
Wang G, Haringa C, Tang W, Noorman H, Chu J, Zhuang Y, Zhang S. Coupled metabolic-hydrodynamic modeling enabling rational scale-up of industrial bioprocesses. Biotechnol Bioeng 2019; 117:844-867. [PMID: 31814101 DOI: 10.1002/bit.27243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Metabolomics aims to address what and how regulatory mechanisms are coordinated to achieve flux optimality, different metabolic objectives as well as appropriate adaptations to dynamic nutrient availability. Recent decades have witnessed that the integration of metabolomics and fluxomics within the goal of synthetic biology has arrived at generating the desired bioproducts with improved bioconversion efficiency. Absolute metabolite quantification by isotope dilution mass spectrometry represents a functional readout of cellular biochemistry and contributes to the establishment of metabolic (structured) models required in systems metabolic engineering. In industrial practices, population heterogeneity arising from fluctuating nutrient availability frequently leads to performance losses, that is reduced commercial metrics (titer, rate, and yield). Hence, the development of more stable producers and more predictable bioprocesses can benefit from a quantitative understanding of spatial and temporal cell-to-cell heterogeneity within industrial bioprocesses. Quantitative metabolomics analysis and metabolic modeling applied in computational fluid dynamics (CFD)-assisted scale-down simulators that mimic industrial heterogeneity such as fluctuations in nutrients, dissolved gases, and other stresses can procure informative clues for coping with issues during bioprocessing scale-up. In previous studies, only limited insights into the hydrodynamic conditions inside the industrial-scale bioreactor have been obtained, which makes case-by-case scale-up far from straightforward. Tracking the flow paths of cells circulating in large-scale bioreactors is a highly valuable tool for evaluating cellular performance in production tanks. The "lifelines" or "trajectories" of cells in industrial-scale bioreactors can be captured using Euler-Lagrange CFD simulation. This novel methodology can be further coupled with metabolic (structured) models to provide not only a statistical analysis of cell lifelines triggered by the environmental fluctuations but also a global assessment of the metabolic response to heterogeneity inside an industrial bioreactor. For the future, the industrial design should be dependent on the computational framework, and this integration work will allow bioprocess scale-up to the industrial scale with an end in mind.
Collapse
Affiliation(s)
- Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Cees Haringa
- Transport Phenomena, Chemical Engineering Department, Delft University of Technology, Delft, The Netherlands.,DSM Biotechnology Center, Delft, The Netherlands
| | - Wenjun Tang
- DSM Biotechnology Center, Delft, The Netherlands
| | - Henk Noorman
- DSM Biotechnology Center, Delft, The Netherlands.,Bioprocess Engineering, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB. Proc Natl Acad Sci U S A 2019; 116:24164-24173. [PMID: 31712440 PMCID: PMC6883840 DOI: 10.1073/pnas.1915569116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The evolution of new metabolic pathways has been a driver of diversification from the last universal common ancestor 3.8 billion y ago to the present. Bioinformatic evidence suggests that many pathways were assembled by recruiting promiscuous enzymes to serve new functions. However, the processes by which new pathways have emerged are lost in time. We have little information about the environmental conditions that fostered emergence of new pathways, the genome context in which new pathways emerged, and the types of mutations that elevated flux through inefficient new pathways. Experimental laboratory evolution has allowed us to evolve a new pathway and identify mechanisms by which mutations increase fitness when an inefficient new pathway becomes important for survival. PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5′-phosphate (PLP) in Escherichia coli. Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity, suggesting that PLP is being produced by some alternative pathway. Continued evolution of parallel lineages for 110 to 150 generations produced several strains that grow robustly in glucose. We identified a 4-step bypass pathway patched together from promiscuous enzymes that restores PLP synthesis in strain JK1. None of the mutations in JK1 occurs in a gene encoding an enzyme in the new pathway. Two mutations indirectly enhance the ability of SerA (3-phosphoglycerate dehydrogenase) to perform a new function in the bypass pathway. Another disrupts a gene encoding a PLP phosphatase, thus preserving PLP levels. These results demonstrate that a functional pathway can be patched together from promiscuous enzymes in the proteome, even without mutations in the genes encoding those enzymes.
Collapse
|
29
|
Du B, Olson CA, Sastry AV, Fang X, Phaneuf PV, Chen K, Wu M, Szubin R, Xu S, Gao Y, Hefner Y, Feist AM, Palsson BO. Adaptive laboratory evolution of Escherichia coli under acid stress. MICROBIOLOGY-SGM 2019; 166:141-148. [PMID: 31625833 DOI: 10.1099/mic.0.000867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability of Escherichia coli to tolerate acid stress is important for its survival and colonization in the human digestive tract. Here, we performed adaptive laboratory evolution of the laboratory strain E. coli K-12 MG1655 at pH 5.5 in glucose minimal medium. After 800 generations, six independent populations under evolution had reached 18.0 % higher growth rates than their starting strain at pH 5.5, while maintaining comparable growth rates to the starting strain at pH 7. We characterized the evolved strains and found that: (1) whole genome sequencing of isolated clones from each evolved population revealed mutations in rpoC appearing in five of six sequenced clones; and (2) gene expression profiles revealed different strategies to mitigate acid stress, which are related to amino acid metabolism and energy production and conversion. Thus, a combination of adaptive laboratory evolution, genome resequencing and expression profiling revealed, on a genome scale, the strategies that E. coli uses to mitigate acid stress.
Collapse
Affiliation(s)
- Bin Du
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrick V Phaneuf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ke Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Muyao Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clin Microbiol Rev 2019; 33:33/1/e00101-19. [PMID: 31619395 DOI: 10.1128/cmr.00101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause a majority of urinary tract infections (UTIs). Since UPEC strains can become antibiotic resistant, adjunct or alternate therapies are urgently needed. UPEC strains grow extremely rapidly in patients with UTIs. Thus, this review focuses on the relation between urine composition and UPEC growth and metabolism. Compilation of urinary components from two major data sources suggests the presence of sufficient amino acids and carbohydrates as energy sources and abundant phosphorus, sulfur, and nitrogen sources. In a mouse UTI model, mutants lacking enzymes of the tricarboxylic acid cycle, gluconeogenesis, and the nonoxidative branch of the pentose cycle are less competitive than the corresponding parental strains, which is consistent with amino acids as major energy sources. Other evidence suggests that carbohydrates are required energy sources. UPEC strains in urine ex vivo and in vivo express transporters for peptides, amino acids, carbohydrates, and iron and genes associated with nitrogen limitation, amino acid synthesis, nucleotide synthesis, and nucleotide salvage. Mouse models confirm the requirement for many, but not all, of these genes. Laboratory evolution studies suggest that rapid nutrient uptake without metabolic rewiring is sufficient to account for rapid growth. Proteins and pathways required for rapid growth should be considered potential targets for alternate or adjunct therapies.
Collapse
|
31
|
Tang Z, Ye W, Chen H, Kuang X, Guo J, Xiang M, Peng C, Chen X, Liu H. Role of purines in regulation of metabolic reprogramming. Purinergic Signal 2019; 15:423-438. [PMID: 31493132 DOI: 10.1007/s11302-019-09676-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Purines, among most influential molecules, are reported to have essential biological function by regulating various cell types. A large number of studies have led to the discovery of many biological functions of the purine nucleotides such as ATP, ADP, and adenosine, as signaling molecules that engage G protein-coupled or ligand-gated ion channel receptors. The role of purines in the regulation of cellular functions at the gene or protein level has been well documented. With the advances in multiomics, including those from metabolomic and bioinformatic analyses, metabolic reprogramming was identified as a key mechanism involved in the regulation of cellular function under physiological or pathological conditions. Recent studies suggest that purines or purine-derived products contribute to important regulatory functions in many fundamental biological and pathological processes related to metabolic reprogramming. Therefore, this review summarizes the role and potential mechanism of purines in the regulation of metabolic reprogramming. In particular, the molecular mechanisms of extracellular purine- and intracellular purine-mediated metabolic regulation in various cells during disease development are discussed. In summary, our review provides an extensive resource for studying the regulatory role of purines in metabolic reprogramming and sheds light on the utilization of the corresponding peptides or proteins for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Zhenwei Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Haotian Chen
- Clinical Medicine Eight-Year Program, Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Xinwei Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minmin Xiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Center for Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Nguyen-Vo TP, Liang Y, Sankaranarayanan M, Seol E, Chun AY, Ashok S, Chauhan AS, Kim JR, Park S. Development of 3-hydroxypropionic-acid-tolerant strain of Escherichia coli W and role of minor global regulator yieP. Metab Eng 2019; 53:48-58. [DOI: 10.1016/j.ymben.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
|
33
|
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng 2019; 58:17-34. [PMID: 30940506 DOI: 10.1016/j.ymben.2019.03.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022]
Abstract
Amino acid fermentation is one of the major pillars of industrial biotechnology. The multi-billion USD amino acid market is rising steadily and is diversifying. Metabolic engineering is no longer focused solely on strain development for the bulk amino acids L-glutamate and L-lysine that are produced at the million-ton scale, but targets specialty amino acids. These demands are met by the development and application of new metabolic engineering tools including CRISPR and biosensor technologies as well as production processes by enabling a flexible feedstock concept, co-production and co-cultivation schemes. Metabolic engineering advances are exemplified for specialty proteinogenic amino acids, cyclic amino acids, omega-amino acids, and amino acids functionalized by hydroxylation, halogenation and N-methylation.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
34
|
Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun 2019; 10:935. [PMID: 30804335 PMCID: PMC6389913 DOI: 10.1038/s41467-019-08888-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology.
Collapse
|
35
|
Yu S, Zhao Z, Xu X, Li M, Li P. Characterization of three different types of extracellular vesicles and their impact on bacterial growth. Food Chem 2019; 272:372-378. [DOI: 10.1016/j.foodchem.2018.08.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
|
36
|
Zhao N, Qian L, Luo G, Zheng S. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:9517-9529. [DOI: 10.1007/s00253-018-9358-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
37
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
38
|
Wang Z, Liu J, Chen L, Zeng AP, Solem C, Jensen PR. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metab Eng 2018; 48:1-12. [DOI: 10.1016/j.ymben.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022]
|
39
|
Abstract
Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo, we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. Only a few examples of real-time evolutionary investigations in environments outside the laboratory are described in the scientific literature. Remembering that biological evolution, as it has progressed in nature, has not taken place in test tubes, it is not surprising that conclusions from our investigations of bacterial evolution in the CF model system are different from what has been concluded from laboratory experiments. The analysis presented here of the metabolic and regulatory driving forces leading to successful adaptation to a new environment provides an important insight into the role of metabolism and its regulatory mechanisms for successful adaptation of microorganisms in dynamic and complex environments. Understanding the trajectories of adaptation, as well as the mechanisms behind slow growth and rewiring of regulatory and metabolic networks, is a key element to understand the adaptive robustness and evolvability of bacteria in the process of increasing their in vivo fitness when conquering new territories.
Collapse
|
40
|
Díaz T, Fillet S, Campoy S, Vázquez R, Viña J, Murillo J, Adrio JL. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates. Appl Microbiol Biotechnol 2018; 102:3287-3300. [DOI: 10.1007/s00253-018-8810-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
|
41
|
Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis. Proc Natl Acad Sci U S A 2018; 115:1605-1610. [PMID: 29378945 DOI: 10.1073/pnas.1714373115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mature human gut microbiota is established during the first years of life, and altered intestinal microbiomes have been associated with several human health disorders. Escherichia coli usually represents less than 1% of the human intestinal microbiome, whereas in cystic fibrosis (CF), greater than 50% relative abundance is common and correlates with intestinal inflammation and fecal fat malabsorption. Despite the proliferation of E. coli and other Proteobacteria in conditions involving chronic gastrointestinal tract inflammation, little is known about adaptation of specific characteristics associated with microbiota clonal expansion. We show that E. coli isolated from fecal samples of young children with CF has adapted to growth on glycerol, a major component of fecal fat. E. coli isolates from different CF patients demonstrate an increased growth rate in the presence of glycerol compared with E. coli from healthy controls, and unrelated CF E. coli strains have independently acquired this growth trait. Furthermore, CF and control E. coli isolates have differential gene expression when grown in minimal media with glycerol as the sole carbon source. While CF isolates display a growth-promoting transcriptional profile, control isolates engage stress and stationary-phase programs, which likely results in slower growth rates. Our results indicate that there is selection of unique characteristics within the microbiome of individuals with CF, which could contribute to individual disease outcomes.
Collapse
|
42
|
Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes. Nat Commun 2017; 8:2112. [PMID: 29235478 PMCID: PMC5727395 DOI: 10.1038/s41467-017-02323-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Sexual recombination and mutation rate are theorized to play different roles in adaptive evolution depending on the fitness landscape; however, direct experimental support is limited. Here we examine how these factors affect the rate of adaptation utilizing a “genderless” strain of Escherichia coli capable of continuous in situ sexual recombination. The results show that the populations with increased mutation rate, and capable of sexual recombination, outperform all the other populations. We further characterize two sexual and two asexual populations with increased mutation rate and observe maintenance of beneficial mutations in the sexual populations through mutational sweeps. Furthermore, we experimentally identify the molecular signature of a mating event within the sexual population that combines two beneficial mutations to generate a fitter progeny; this evidence suggests that the recombination event partially alleviates clonal interference. We present additional data suggesting that stochasticity plays an important role in the combinations of mutations observed. Sexual recombination and mutation rate may play different roles in adaptive evolution depending on the fitness landscape. Here, Peabody et al. examine how the two factors affect the rate of adaptation of an E. coli strain capable of sexual recombination, under different conditions during experimental evolution.
Collapse
|
43
|
Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S. Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved d-xylose utilization. BIORESOURCE TECHNOLOGY 2017; 245:1377-1385. [PMID: 28552568 DOI: 10.1016/j.biortech.2017.05.055] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/22/2023]
Abstract
Adaptive Laboratory Evolution (ALE) is increasingly being used as a technique for untargeted strain optimization. This work aimed at developing an automated and miniaturized ALE approach based on repetitive batch cultivations in microtiter plates. The new method is applied to the recently published strain Corynebacterium glutamicum pEKEx3-xylXABCDCc, which is capable of utilizing d-xylose via the Weimberg (WMB) pathway. As a result, the significantly improved strain WMB2evo was obtained, showing a specific growth rate of 0.26h-1 on d-xylose as sole carbon and energy source. WMB2evo grows stable during lab-scale bioreactor operation, demonstrating the high potential of this strain for future biorefinery applications. Genome sequencing of cell samples from two different ALE processes revealed potential key mutations, e.g. in the gene cg0196 (encoding for the transcriptional regulator IolR of the myo-inositol metabolism). These findings open up new perspectives for the rational engineering of C. glutamicum towards improved d-xylose utilization.
Collapse
Affiliation(s)
- Andreas Radek
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Moritz Fabian Müller
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Christian Brüsseler
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany.
| |
Collapse
|
44
|
Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies. Appl Environ Microbiol 2017; 83:AEM.00410-17. [PMID: 28455337 DOI: 10.1128/aem.00410-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 11/20/2022] Open
Abstract
Adaptive laboratory evolution (ALE) experiments are often designed to maintain a static culturing environment to minimize confounding variables that could influence the adaptive process, but dynamic nutrient conditions occur frequently in natural and bioprocessing settings. To study the nature of carbon substrate fitness tradeoffs, we evolved batch cultures of Escherichia coli via serial propagation into tubes alternating between glucose and either xylose, glycerol, or acetate. Genome sequencing of evolved cultures revealed several genetic changes preferentially selected for under dynamic conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent "generalist" strain developed, while in another, two "specialist" subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists and specialists, in one case being completely abolished, while gene expression data distinguished the transcriptional strategies implemented by strains in pursuit of growth optimality. Genome-scale metabolic modeling techniques were then used to help explain the inherent substrate differences giving rise to the observed distinct adaptive strategies. This study gives insight into the population dynamics of adaptation in an alternating environment and into the underlying metabolic and genetic mechanisms. Furthermore, ALE-generated optimized strains have phenotypes with potential industrial bioprocessing applications.IMPORTANCE Evolution and natural selection inexorably lead to an organism's improved fitness in a given environment, whether in a laboratory or natural setting. However, despite the frequent natural occurrence of complex and dynamic growth environments, laboratory evolution experiments typically maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving Escherichia coli to conditions of frequently switching growth substrate. Characterization of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation to complex environments but also suggests strategies for experimental design to achieve desired evolutionary outcomes.
Collapse
|
45
|
de Jong H, Geiselmann J, Ropers D. Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery. Trends Microbiol 2017; 25:480-493. [DOI: 10.1016/j.tim.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/03/2016] [Accepted: 12/15/2016] [Indexed: 11/27/2022]
|
46
|
Hansen ASL, Lennen RM, Sonnenschein N, Herrgård MJ. Systems biology solutions for biochemical production challenges. Curr Opin Biotechnol 2017; 45:85-91. [PMID: 28319856 DOI: 10.1016/j.copbio.2016.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/20/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
Abstract
There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals.
Collapse
Affiliation(s)
- Anne Sofie Lærke Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Rebecca M Lennen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
47
|
Optimality and sub-optimality in a bacterial growth law. Nat Commun 2017; 8:14123. [PMID: 28102224 PMCID: PMC5253639 DOI: 10.1038/ncomms14123] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022] Open
Abstract
Organisms adjust their gene expression to improve fitness in diverse environments. But finding the optimal expression in each environment presents a challenge. We ask how good cells are at finding such optima by studying the control of carbon catabolism genes in Escherichia coli. Bacteria show a growth law: growth rate on different carbon sources declines linearly with the steady-state expression of carbon catabolic genes. We experimentally modulate gene expression to ask if this growth law always maximizes growth rate, as has been suggested by theory. We find that the growth law is optimal in many conditions, including a range of perturbations to lactose uptake, but provides sub-optimal growth on several other carbon sources. Combining theory and experiment, we genetically re-engineer E. coli to make sub-optimal conditions into optimal ones and vice versa. We conclude that the carbon growth law is not always optimal, but represents a practical heuristic that often works but sometimes fails. Organisms improve their fitness by adjusting their gene expression to the environment, for example bacteria scale the expression of metabolic enzymes near linearly to their growth rate. Here, the authors show that such linear scaling often maximizes growth rate, but that linear scaling is suboptimal under some conditions.
Collapse
|
48
|
Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metab Eng 2017; 39:90-101. [DOI: 10.1016/j.ymben.2016.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/03/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022]
|
49
|
Winkler JD, Halweg-Edwards AL, Erickson KE, Choudhury A, Pines G, Gill RT. The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes. ACS Synth Biol 2016; 5:1566-1577. [PMID: 27438180 DOI: 10.1021/acssynbio.6b00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The microbial ability to resist stressful environmental conditions and chemical inhibitors is of great industrial and medical interest. Much of the data related to mutation-based stress resistance, however, is scattered through the academic literature, making it difficult to apply systematic analyses to this wealth of information. To address this issue, we introduce the Resistome database: a literature-curated collection of Escherichia coli genotypes-phenotypes containing over 5,000 mutants that resist hundreds of compounds and environmental conditions. We use the Resistome to understand our current state of knowledge regarding resistance and to detect potential synergy or antagonism between resistance phenotypes. Our data set represents one of the most comprehensive collections of genomic data related to resistance currently available. Future development will focus on the construction of a combined genomic-transcriptomic-proteomic framework for understanding E. coli's resistance biology. The Resistome can be downloaded at https://bitbucket.org/jdwinkler/resistome_release/overview .
Collapse
Affiliation(s)
- James D. Winkler
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Andrea L. Halweg-Edwards
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Keesha E. Erickson
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Alaksh Choudhury
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Gur Pines
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Ryan T. Gill
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
50
|
Elucidation of the regulatory role of the fructose operon reveals a novel target for enhancing the NADPH supply in Corynebacterium glutamicum. Metab Eng 2016; 38:344-357. [PMID: 27553884 DOI: 10.1016/j.ymben.2016.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022]
Abstract
The performance of Corynebacterium glutamicum cell factories producing compounds which rely heavily on NADPH has been reported to depend on the sugar being metabolized. While some aspects of this phenomenon have been elucidated, there are still many unresolved questions as to how sugar metabolism is linked to redox and to the general metabolism. We here provide new insights into the regulation of the metabolism of this important platform organism by systematically characterizing mutants carrying various lesions in the fructose operon. Initially, we found that a strain where the dedicated fructose uptake system had been inactivated (KO-ptsF) was hampered in growth on sucrose minimal medium, and suppressor mutants appeared readily. Comparative genomic analysis in conjunction with enzymatic assays revealed that suppression was linked to inactivation of the pfkB gene, encoding a fructose-1-phosphate kinase. Detailed characterization of KO-ptsF, KO-pfkB and double knock-out (DKO) derivatives revealed a strong role for sugar-phosphates, especially fructose-1-phosphate (F1P), in governing sugar as well as redox metabolism due to effects on transcriptional regulation of key genes. These findings allowed us to propose a simple model explaining the correlation between sugar phosphate concentration, gene expression and ultimately the observed phenotype. To guide us in our analysis and help us identify bottlenecks in metabolism we debugged an existing genome-scale model onto which we overlaid the transcriptome data. Based on the results obtained we managed to enhance the NADPH supply and transform the wild-type strain into delivering the highest yield of lysine ever obtained on sucrose and fructose, thus providing a good example of how regulatory mechanisms can be harnessed for bioproduction.
Collapse
|