1
|
Mandal S, Mantilla HM, Loganathan K, Faber H, Sharma A, Gedda M, Yengel E, Goswami DK, Heeney M, Anthopoulos TD. Ultra-Fast Moisture Sensor for Respiratory Cycle Monitoring and Non-Contact Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414005. [PMID: 39821214 DOI: 10.1002/adma.202414005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/01/2025] [Indexed: 01/19/2025]
Abstract
As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications. Here, this challenge is tackled by combining a nanogap electrode (NGE) architecture with chicked egg-derived albumen as the moisture-absorbing component. The sensors offer inexpensive manufacturing, high responsivity, ultra-fast response, and selectivity to humidity within a relative humidity range of 10-70% RH. Specifically, the egg albumen-based sensor showed negligible response to relevant interfering species and remained specific to water moisture with a room-temperature responsivity of 1.15 × 104. The nm-short interelectrode distance (circa 20 nm) of the NGE architecture enables fast temporal response, with rise/fall times of 10/28 ms, respectively, making the devices the fastest humidity sensors reported to date based on a biomaterial. By leveraging these features, non-contact moisture sensing and real-time respiratory cycle monitoring suitable for diagnosing chronic diseases such as sleep apnea, asthma, and pulmonary disease are demonstrated.
Collapse
Affiliation(s)
- Suman Mandal
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Harold Mazo Mantilla
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kalaivanan Loganathan
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hendrik Faber
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abhinav Sharma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Murali Gedda
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Emre Yengel
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dipak Kumar Goswami
- Organic Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Martin Heeney
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
2
|
Ahmed UF, Wyatt-Moon GS, Flewitt AJ. "Nano-In-Nano" Schottky Diodes Fabricated by Combining Self-Aligned Nanogap Patterning with Bottom-Up ZnO Nanowire Growth. ACS APPLIED ELECTRONIC MATERIALS 2025; 7:143-149. [PMID: 39830214 PMCID: PMC11736788 DOI: 10.1021/acsaelm.4c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Nanoscale semiconductors offer significant advantages over their bulk semiconductor equivalents for electronic devices as a result of the ability to geometrically tune electronic properties, the absence of internal grain boundaries, and the very low absolute number of defects that are present in such small volumes of material. However, these advantages can only be realized if reliable contacts can be made to the nanoscale semiconductor using a scalable, low-cost process. Although there are many low-cost "bottom-up" techniques for directly growing nanomaterials, the fabrication of contacts at the nanoscale usually requires expensive and slow techniques like e-beam lithography that are also hard to scale to a level of throughput that is required for commercialization. A scalable method of fabricating such devices is demonstrated in this work by combining two bottom-up fabrication techniques. ZnO nanowire Schottky diodes are produced with a device length of a few tens of nanometers and a performance significantly exceeding a ZnO thin film equivalent. The first technique is adhesion lithography that allows self-aligned coplanar electrodes of different materials to be patterned with a nanogap ∼10 to 50 nm length between the two. In this case, one electrode is gold, while the other is a bilayer of titanium on a thin film of ZnO, and it is this thin film that allows the second technique, hydrothermal growth, to be used to grow ZnO nanowires directly across the nanogap. The resulting "nano-in-nano" Schottky diodes have a high rectification ratio >104, a low turn-on voltage <0.3 V, and a minimal off-state current <10 pA. This process could be used to realize a variety of nano-in-nano electronic devices in the future, including short channel gate-all-around (GAA) transistors.
Collapse
Affiliation(s)
- Umer Farooq Ahmed
- Electrical Engineering Division,
Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K.
| | - Gwenhivir S. Wyatt-Moon
- Electrical Engineering Division,
Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K.
| | - Andrew J. Flewitt
- Electrical Engineering Division,
Engineering Department, University of Cambridge, Cambridge CB3 0FA, U.K.
| |
Collapse
|
3
|
Park T, Kim M, Lee EK, Hur J, Yoo H. Overcoming Downscaling Limitations in Organic Semiconductors: Strategies and Progress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306468. [PMID: 37857588 DOI: 10.1002/smll.202306468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Organic semiconductors have great potential to revolutionize electronics by enabling flexible and eco-friendly manufacturing of electronic devices on plastic film substrates. Recent research and development led to the creation of printed displays, radio-frequency identification tags, smart labels, and sensors based on organic electronics. Over the last 3 decades, significant progress has been made in realizing electronic devices with unprecedented features, such as wearable sensors, disposable electronics, and foldable displays, through the exploitation of desirable characteristics in organic electronics. Neverthless, the down-scalability of organic electronic devices remains a crucial consideration. To address this, efforts are extensively explored. It is of utmost importance to further develop these alternative patterning methods to overcome the downscaling challenge. This review comprehensively discusses the efforts and strategies aimed at overcoming the limitations of downscaling in organic semiconductors, with a particular focus on four main areas: 1) lithography-compatible organic semiconductors, 2) fine patterning of printing methods, 3) organic material deposition on pre-fabricated devices, and 4) vertical-channeled organic electronics. By discussing these areas, the full potential of organic semiconductors can be unlocked, and the field of flexible and sustainable electronics can be advanced.
Collapse
Affiliation(s)
- Taehyun Park
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Minseo Kim
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Eun Kwang Lee
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
4
|
Luo S, Zhang J, de Mello JC. Detection of environmental nanoplastics via surface-enhanced Raman spectroscopy using high-density, ring-shaped nanogap arrays. Front Bioeng Biotechnol 2023; 11:1242797. [PMID: 37941723 PMCID: PMC10628472 DOI: 10.3389/fbioe.2023.1242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Micro- and nano-plastics (MNPs) are global contaminants of growing concern to the ecosystem and human health. In-the-field detection and identification of environmental micro- and nano-plastics (e-MNPs) is critical for monitoring the spread and effects of e-MNPs but is challenging due to the dearth of suitable analytical techniques, especially in the sub-micron size range. Here we show that thin gold films patterned with a dense, hexagonal array of ring-shaped nanogaps (RSNs) can be used as active substrates for the sensitive detection of micro- and nano-plastics by surface-enhanced Raman spectroscopy (SERS), requiring only small sample volumes and no significant sample preparation. By drop-casting 0.2-μL aqueous test samples onto the SERS substrates, 50-nm polystyrene (PS) nanoparticles could be determined via Raman spectroscopy at concentrations down to 1 μg/mL. The substrates were successfully applied to the detection and identification of ∼100-nm polypropylene e-MNPs in filtered drinking water and ∼100-nm polyethylene terephthalate (PET) e-MNPs in filtered wash-water from a freshly cleaned PET-based infant feeding bottle.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - John C. de Mello
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Kim M, Kim S, Yoo H. Nanoscale Channel Gate-Tunable Diodes Obtained by Asymmetric Contact and Adhesion Lithography on Fluoropolymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208144. [PMID: 37096940 DOI: 10.1002/smll.202208144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Adhesion lithography offers to fabrication of coplanar asymmetric nanogap electrodes with a low-cost and facile process. In this study, a gate-tunable diode with coplanar asymmetric nanogap is fabricated using adhesion lithography. A fluoropolymer material is introduced to the adhesion lithography process to ensure a manufacturing patterning process yield as high as 96.7%. The asymmetric electrodes formed a built-in potential, leading to rectifying behavior. The coplanar electrode structure allowed the use of a gate electrode in vertical contact with the channel, resulting in gate-tunable diode characteristics. The nanoscale channel induced a high current density (3.38 × 10-7 A∙cm-1 ), providing a high rectification ratio (1.67 × 105 A∙A-1 ). This rectifier diode is confirmed to operate with pulsed input signals and suggests the gate-tunability of nanogap diodes.
Collapse
Affiliation(s)
- Minseo Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, South Korea
| | - Seongjae Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, South Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, South Korea
| |
Collapse
|
6
|
Lee SW, Cho H, Jang CM, Huh MS, Cho SM. Sidewall patterning of organic-inorganic multilayer thin film encapsulation by adhesion lithography. Sci Rep 2023; 13:12394. [PMID: 37524726 PMCID: PMC10390510 DOI: 10.1038/s41598-023-39155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
A simple sidewall patterning process for organic-inorganic multilayer thin-film encapsulation (TFE) has been proposed and demonstrated. An Al2O3 thin film grown by atomic layer deposition (ALD) was patterned by adhesion lithography using the difference in interfacial adhesion strength. The difference in interfacial adhesion strength was provided by the vapor-deposited fluoro-octyl-trichloro-silane self-assembled monolayer (SAM) patterns formed by a shadow mask. The sidewall patterning of multilayer TFE was shown possible by repeating the adhesion lithography and the vapor deposition of organic polymer and SAM patterns using shadow masks. The proposed process has the advantage of being able to pattern the blanket ALD-grown Al2O3 thin films by adhesion lithography using a SAM pattern that can be more accurately predefined with a shadow mask.
Collapse
Affiliation(s)
- Seung Woo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Heyjin Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | | | | | - Sung Min Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea.
| |
Collapse
|
7
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
8
|
Luo S, Mancini A, Lian E, Xu W, Berté R, Li Y. Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3842. [PMID: 36364618 PMCID: PMC9655199 DOI: 10.3390/nano12213842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Applicable surface-enhanced Raman scattering (SERS) active substrates typically require low-cost patterning methodology, high reproducibility, and a high enhancement factor (EF) over a large area. However, the lack of reproducible, reliable fabrication for large area SERS substrates in a low-cost manner remains a challenge. Here, a patterning method based on nanosphere lithography and adhesion lithography is reported that allows massively parallel fabrication of 10-nm annular gap arrays on large areas. The arrays exhibit excellent reproducibility and high SERS performance, with an EF of up to 107. An effective wearable SERS contact lens for glucose detection is further demonstrated. The technique described here extends the range of SERS-active substrates that can be fabricated over large areas, and holds exciting potential for SERS-based chemical and biomedical detection.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Andrea Mancini
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Enkui Lian
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Wenqi Xu
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Yi Li
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Rapid and up-scalable manufacturing of gigahertz nanogap diodes. Nat Commun 2022; 13:3260. [PMID: 35672406 PMCID: PMC9174168 DOI: 10.1038/s41467-022-30876-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/17/2022] [Indexed: 12/01/2022] Open
Abstract
The massive deployment of fifth generation and internet of things technologies requires precise and high-throughput fabrication techniques for the mass production of radio frequency electronics. We use printable indium-gallium-zinc-oxide semiconductor in spontaneously formed self-aligned <10 nm nanogaps and flash-lamp annealing to demonstrate rapid manufacturing of nanogap Schottky diodes over arbitrary size substrates operating in 5 G frequencies. These diodes combine low junction capacitance with low turn-on voltage while exhibiting cut-off frequencies (intrinsic) of >100 GHz. Rectifier circuits constructed with these co-planar diodes can operate at ~47 GHz (extrinsic), making them the fastest large-area electronic devices demonstrated to date. The incoming internet of things technology requires mass production of radiofrequency electronics. Here, Anthopoulos et al. report a self-forming nanogap method for manufacturing Schottky diodes, operating at 47 GHz, over arbitrary size substrates.
Collapse
|
10
|
Loganathan K, Scaccabarozzi AD, Faber H, Ferrari F, Bizak Z, Yengel E, Naphade DR, Gedda M, He Q, Solomeshch O, Adilbekova B, Yarali E, Tsetseris L, Salama KN, Heeney M, Tessler N, Anthopoulos TD. 14 GHz Schottky Diodes Using a p-Doped Organic Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108524. [PMID: 34990058 DOI: 10.1002/adma.202108524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The low carrier mobility of organic semiconductors and the high parasitic resistance and capacitance often encountered in conventional organic Schottky diodes hinder their deployment in emerging radio frequency (RF) electronics. Here, these limitations are overcome by combining self-aligned asymmetric nanogap electrodes (≈25 nm) produced by adhesion lithography, with a high mobility organic semiconductor, and RF Schottky diodes able to operate in the 5G frequency spectrum are demonstrated. C16 IDT-BT is used, as the high hole mobility polymer, and the impact of p-doping on the diode performance is studied. Pristine C16 IDT-BT-based diodes exhibit maximum intrinsic and extrinsic cutoff frequencies (fC ) of >100 and 6 GHz, respectively. This extraordinary performance is attributed to the planar nature of the nanogap channel and the diode's small junction capacitance (<2 pF). Doping of C16 IDT-BT with the molecular p-dopant C60 F48 improves the diode's performance further by reducing the series resistance resulting to intrinsic and extrinsic fC of >100 and ≈14 GHz respectively, while the DC output voltage of an RF rectifier circuit increases by a tenfold. Our work highlights the importance of the planar nanogap architecture and paves the way for the use of organic Schottky diodes in large-area RF electronics of the future.
Collapse
Affiliation(s)
- Kalaivanan Loganathan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Federico Ferrari
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Zhanibek Bizak
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), Advanced Membranes and Porous Materials Center (AMPM), Thuwal, 23955-6900, Saudi Arabia
| | - Emre Yengel
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Dipti R Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Murali Gedda
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Qiao He
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Olga Solomeshch
- The Zisapel Nano-Electronic Center, Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 3200, Israel
| | - Begimai Adilbekova
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Emre Yarali
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens, GR-15780, Greece
| | - Khaled N Salama
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), Advanced Membranes and Porous Materials Center (AMPM), Thuwal, 23955-6900, Saudi Arabia
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Nir Tessler
- The Zisapel Nano-Electronic Center, Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 3200, Israel
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Luo S, Mancini A, Wang F, Liu J, Maier SA, de Mello JC. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy. ACS NANO 2022; 16:7438-7447. [PMID: 35381178 PMCID: PMC9134500 DOI: 10.1021/acsnano.1c09930] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Squeezing light into nanometer-sized metallic nanogaps can generate extremely high near-field intensities, resulting in dramatically enhanced absorption, emission, and Raman scattering of target molecules embedded within the gaps. However, the scarcity of low-cost, high-throughput, and reproducible nanogap fabrication methods offering precise control over the gap size is a continuing obstacle to practical applications. Using a combination of molecular self-assembly, colloidal nanosphere lithography, and physical peeling, we report here a high-throughput method for fabricating large-area arrays of triangular nanogaps that allow the gap width to be tuned from ∼10 to ∼3 nm. The nanogap arrays function as high-performance substrates for surface-enhanced Raman spectroscopy (SERS), with measured enhancement factors as high as 108 relative to a thin gold film. Using the nanogap arrays, methylene blue dye molecules can be detected at concentrations as low as 1 pM, while adenine biomolecules can be detected down to 100 pM. We further show that it is possible to achieve sensitive SERS detection on binary-metal nanogap arrays containing gold and platinum, potentially extending SERS detection to the investigation of reactive species at platinum-based catalytic and electrochemical surfaces.
Collapse
Affiliation(s)
- Sihai Luo
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), 7491 Trondheim, Norway
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Feng Wang
- Department
of Structural Engineering, Norwegian University
of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Junyang Liu
- College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
- Blackett
Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ, United Kingdom
| | - John C. de Mello
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
12
|
Jeong J, Kim HW, Kim DS. Gaptronics: multilevel photonics applications spanning zero-nanometer limits. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1231-1260. [PMID: 39634622 PMCID: PMC11501287 DOI: 10.1515/nanoph-2021-0798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/07/2024]
Abstract
With recent advances in nanofabrication technology, various metallic gap structures with gap widths reaching a few to sub-nanometer, and even 'zero-nanometer', have been realized. At such regime, metallic gaps not only exhibit strong electromagnetic field confinement and enhancement, but also incorporate various quantum phenomena in a macroscopic scale, finding applications in ultrasensitive detection using nanosystems, enhancement of light-matter interactions in low-dimensional materials, and ultralow-power manipulation of electromagnetic waves, etc. Therefore, moving beyond nanometer to 'zero-nanometer' can greatly diversify applications of metallic gaps and may open the field of dynamic 'gaptronics.' In this paper, an overview is given on wafer-scale metallic gap structures down to zero-nanometer gap width limit. Theoretical description of metallic gaps from sub-10 to zero-nanometer limit, various wafer-scale fabrication methods and their applications are presented. With such versatility and broadband applicability spanning visible to terahertz and even microwaves, the field of 'gaptronics' can be a central building block for photochemistry, quantum optical devices, and 5/6G communications.
Collapse
Affiliation(s)
- Jeeyoon Jeong
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, Gangwon24341, Korea
| | - Hyun Woo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology, Daejeon34114, Korea
| | - Dai-Sik Kim
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Korea
- Department of Physics and Center for Atom Scale Electromagnetism, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea
- Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Korea
| |
Collapse
|
13
|
Shu Z, Chen Y, Feng Z, Liang H, Li W, Liu Y, Duan H. Asymmetric Nanofractures Determined the Nonreciprocal Peeling for Self-Aligned Heterostructure Nanogaps and Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1718-1726. [PMID: 34978176 DOI: 10.1021/acsami.1c19776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planar heterostructures composed of two or more adjacent structures with different materials are a kind of building blocks for various applications in surface plasmon resonance sensors, rectifiers, photovoltaic devices, and ambipolar devices, but their reliable fabrication with controllable shape, size, and positioning accuracy remains challenging. In this work, we propose a concept for fabricating planar heterostructures via directional stripping and controlled nanofractures of metallic films, with which self-aligned, multimaterial, multiscale heterostructures with arbitrary geometries and sub-20 nm gaps can be obtained. By using a split ring as the template, the asymmetric nanofracture of the deposited film at the split position results in nonreciprocal peeling of the film in the split ring. Compared to the conventional processes, the final heterostructures are defined only by their outlines, thus providing the ability to fabricate complex heterostructures with higher resolutions. We demonstrate that this method can be used to fabricate heterodimers, multimaterial oligomers, and multiscale asymmetrical electrodes. An Ag-MoS2-Au photodiode with a strong rectification effect is fabricated based on the nanogap heterostructures prepared by this method. This technology provides a unique and reliable approach to define nanogap heterostructures, which are supposed to have potential applications in nanoelectronics, nanoplasmonics, nano-optoelectronics, and electrochemistry.
Collapse
Affiliation(s)
- Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Yiqin Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Zhanyong Feng
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Wanying Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Chen D, Tan H, Xu T, Wang W, Chen H, Zhang J. Micropatterned PEDOT with Enhanced Electrochromism and Electrochemical Tunable Diffraction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58011-58018. [PMID: 34797985 DOI: 10.1021/acsami.1c17897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micro-nanofabrication of conductive polymers (CPs) with functional structures is in great demand in organic electronic devices, micro-optics, and flex sensors. Here, we report the fabrication of micropatterned poly(3,4-ethylenedioxythiophene) (PEDOT) and its applications on flexible electrochromic devices and tunable diffractive optics. The localized electropolymerization of 3,4-ethylenedioxythiophene at the electrode/agarose gel stamping interface through an electrochemical wet stamping (E-WETS) technique is used to fabricate PEDOT with functional microstructures. PEDOT microdots, micro-rectangles, and interdigitated array microelectrodes are fabricated with submicron tolerance and ∼2 μm smallest feature size. Furthermore, the flexible PEDOT electrochromic devices consisting of the logo of Xiamen University are fabricated with a reversible switch of absorptivity. The improved optical and coloration-amperometric responses of electrochromism are demonstrated because of the enhanced charge transport rate of the micropatterned PEDOT. The electrochromism of the 2D PEDOT micropatterns is further used as a binary diffractive optical element to modulate the intensity and efficiency of diffracted 2D structural light because of the switchable absorptivity during doping and dedoping processes. When the potential is switched from 1 to -1 V to tune the absorptivity at ∼600 nm from low to high, the intensity of zero-order diffraction light spot decreases with the intensity of other order diffraction light spots increasing dramatically. The results demonstrate that E-WETS provides an alternative method for the fabrication of CPs with functional micro-nanostructures. The electrochemical tunable diffraction with high reversibility and fast response is of potential applications in micro-optics and flex sensors.
Collapse
Affiliation(s)
- Duan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hao Tan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Tianyi Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Wang
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Hezhang Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
15
|
Luo S, Hoff BH, Maier SA, de Mello JC. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102756. [PMID: 34719889 PMCID: PMC8693066 DOI: 10.1002/advs.202102756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Metallic nanogaps with metal-metal separations of less than 10 nm have many applications in nanoscale photonics and electronics. However, their fabrication remains a considerable challenge, especially for applications that require patterning of nanoscale features over macroscopic length-scales. Here, some of the most promising techniques for nanogap fabrication are evaluated, covering established technologies such as photolithography, electron-beam lithography (EBL), and focused ion beam (FIB) milling, plus a number of newer methods that use novel electrochemical and mechanical means to effect the patterning. The physical principles behind each method are reviewed and their strengths and limitations for nanogap patterning in terms of resolution, fidelity, speed, ease of implementation, versatility, and scalability to large substrate sizes are discussed.
Collapse
Affiliation(s)
- Sihai Luo
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Bård H. Hoff
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Stefan A. Maier
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
- Blackett LaboratoryDepartment of PhysicsImperial College LondonLondonSW7 2AZUK
| | - John C. de Mello
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| |
Collapse
|
16
|
Li N, Zhang B, He Y, Luo Y. Sub-Picosecond Nanodiodes for Low-Power Ultrafast Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100874. [PMID: 34245057 DOI: 10.1002/adma.202100874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The tradeoff between ultrahigh speed and low power is a dominant challenge in continuously improving modern electronics. Fundamental electronic devices with ultrafast response are highly desired in low-power electronics. However, conventional semiconductor electronic devices now near the speed limit from the physical roadblocks including short-channel effect, restricted carrier velocity, and heat death. Currently emerging electronic devices also face formidable difficulties to achieve high-speed performance at low operating voltage without heat disturbance. Here, a novel fabricated coplanar tip-to-edge semiconductor-free nanostructure with asymmetric sub-10 nm air channel is reported, stimulating electric-field accelerated scattering-free transport of electrons and resulting in ultrafast response of record sub-picoseconds at a low turn-on voltage around 0.7 V. Simulation results show a typical electrical response down to 64 fs, which is ≈103 times faster than that of conventional semiconductor electronic devices. The coplanar asymmetric nanostructure allows a high rectifying ratio up to 106 which is superior to that of the most promising 2D semiconducting nanodiodes. In addition, heat death is overcome due to the inherent advantages from the novel nanostructure and underlying working mechanism. The intriguing nanodiodes will attract broadly interests in electronics due to their potential as rudimentary building blocks in ultrafast electronic integrated circuits.
Collapse
Affiliation(s)
- Nannan Li
- Micro/Nano Fabrication Laboratory (MNFL), Microsystem and Terahertz Research Center, CAEP, Chengdu, 610200, China
- Institute of Electronic Engineering, CAEP, Mianyang, 621900, China
| | - Binglei Zhang
- Micro/Nano Fabrication Laboratory (MNFL), Microsystem and Terahertz Research Center, CAEP, Chengdu, 610200, China
- Institute of Electronic Engineering, CAEP, Mianyang, 621900, China
| | - Yue He
- Institute of Electronic Engineering, CAEP, Mianyang, 621900, China
- Terahertz Communication and Radar Technology Research Laboratory, Microsystem and Terahertz Research Center, CAEP, Chengdu, 610200, China
| | - Yi Luo
- Micro/Nano Fabrication Laboratory (MNFL), Microsystem and Terahertz Research Center, CAEP, Chengdu, 610200, China
| |
Collapse
|
17
|
Adam T, Dhahi TS, Gopinath SCB, Hashim U, Uda MNA. Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review. Biotechnol Appl Biochem 2021; 69:1395-1417. [PMID: 34143905 DOI: 10.1002/bab.2212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Nanogap biosensors have fascinated researchers due to their excellent electrical properties. Nanogap biosensors comprise three arrays of electrodes that form nanometer-size gaps. The sensing gaps have become the major building blocks of several sensing applications, including bio- and chemosensors. One of the advantages of nanogap biosensors is that they can be fabricated in nanoscale size for various downstream applications. Several studies have been conducted on nanogap biosensors, and nanogap biosensors exhibit potential material properties. The possibilities of combining these unique properties with a nanoscale-gapped device and electrical detection systems allow excellent and potential prospects in biomolecular detection. However, their fabrication is challenging as the gap is becoming smaller. It includes high-cost, low-yield, and surface phenomena to move a step closer to the routine fabrications. This review summarizes different feasible techniques in the fabrication of nanogap electrodes, such as preparation by self-assembly with both conventional and nonconventional approaches. This review also presents a comprehensive analysis of the fabrication, potential applications, history, and the current status of nanogap biosensors with a special focus on nanogap-mediated bio- and chemical sonsors.
Collapse
Affiliation(s)
- Tijjani Adam
- Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Kampus Uniciti Alam Sg. Chuchuh, Padang Besar (U), Perlis, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Th S Dhahi
- Physics Department, University of Basrah, Basra, Iraq.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - U Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N A Uda
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
18
|
Luo S, Mancini A, Berté R, Hoff BH, Maier SA, de Mello JC. Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100491. [PMID: 33939199 PMCID: PMC11468177 DOI: 10.1002/adma.202100491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Metallic nanogaps (MNGs) are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible, high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. A patterning technique based on molecular self-assembly and physical peeling is reported here that allows the gap-width to be tuned from more than 30 nm to less than 3 nm. The ability of the technique to define sub-3-nm gaps between dissimilar metals permits the easy fabrication of molecular rectifiers, in which conductive molecules bridge metals with differing work functions. A method is further described for fabricating massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps, in which nanometric size control is maintained over large patterning areas of up to a square centimeter. The arrays exhibit strong plasmonic resonances under visible light illumination and act as high-performance substrates for surface-enhanced Raman spectroscopy, with high enhancement factors of up to 3 × 108 relative to thin gold films. The methods described here extend the range of metallic nanostructures that can be fabricated over large areas, and are likely to find many applications in molecular electronics, plasmonics, and biosensing.
Collapse
Affiliation(s)
- Sihai Luo
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| | - Andrea Mancini
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
| | - Rodrigo Berté
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
| | - Bård H. Hoff
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| | - Stefan A. Maier
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
- Blackett Laboratory, Department of PhysicsImperial College LondonLondonSW7 2AZUK
| | - John C. de Mello
- Department of ChemistryNorwegian University of Science and Technology (NTNU)NO‐7491TrondheimNorway
| |
Collapse
|
19
|
Barrios CA. Pressure Sensitive Adhesive Tape: A Versatile Material Platform for Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20185303. [PMID: 32948000 PMCID: PMC7570651 DOI: 10.3390/s20185303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Pressure sensitive adhesive (PSA) tapes are a versatile, safe and easy-to-use solution for fastening, sealing, masking, or joining. They are widely employed in daily life, from domestic use to industrial applications in sectors such as construction and the automotive industry. In recent years, PSA tapes have found a place in the field of micro- and nanotechnology, particularly in contact transfer techniques where they can be used as either sacrificial layers or flexible substrates. As a consequence, various optical sensing configurations based on PSA tapes have been developed. In this paper, recent achievements related to the use of PSA tapes as functional and integral parts of optical sensors are reviewed. These include refractive index sensors, optomechanical sensors and vapor sensors.
Collapse
Affiliation(s)
- Carlos Angulo Barrios
- Institute for Optoelectronic Systems and Microtechnology (ISOM), ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
- Department of Photonics and Bioengineering (TFB), ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
20
|
Qin L, Huang Y, Xia F, Wang L, Ning J, Chen H, Wang X, Zhang W, Peng Y, Liu Q, Zhang Z. 5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography. NANO LETTERS 2020; 20:4916-4923. [PMID: 32559096 DOI: 10.1021/acs.nanolett.0c00978] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of reliable, mass-produced, and cost-effective sub-10 nm nanofabrication technology leads to an unprecedented level of integration of photonic devices. In this work, we describe the development of a laser direct writing (LDW) lithography technique with ∼5 nm feature size, which is about 1/55 of the optical diffraction limit of the LDW system (405 nm laser and 0.9 NA objective), and the realization of 5 nm nanogap electrodes. This LDW lithography exhibits an attractive capability of well-site control and mass production of ∼5 × 105 nanogap electrodes per hour, breaking the trade-off between resolution and throughput in a nanofabrication technique. Nanosensing chips have been demonstrated with the as-obtained nanogap electrodes, where controllable surface enhancement Raman scattering of rhodamine 6G has been realized via adjusting the gap width and, especially, the applied bias voltages. Our results establish that such a low-cost and high-efficient lithography technology has great potential to fabricate compact integrated circuits and biochips.
Collapse
Affiliation(s)
- Liang Qin
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Yuanqing Huang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
- CAS Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences and Technology, Electron Microscopy Centre of Lanzhou University, Lab of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Feng Xia
- College of Physics, Qingdao University, Qingdao 266000, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiqiang Ning
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Hongmei Chen
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Xu Wang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Wei Zhang
- Suzhou HWN Nanotec. Co., LTD., Suzhou 215123, China
| | - Yong Peng
- School of Physical Sciences and Technology, Electron Microscopy Centre of Lanzhou University, Lab of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qian Liu
- CAS Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ziyang Zhang
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123, China
| |
Collapse
|
21
|
Kim S, Bahk YM, Kim D, Yun H, Lim YR, Song W, Kim DS. Fabrication of vertical van der Waals gap array using single-and multi-layer graphene. NANOTECHNOLOGY 2020; 31:035304. [PMID: 31437819 DOI: 10.1088/1361-6528/ab3dd2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arrays of van der Waals gaps were manufactured by synthesizing the vertically aligned graphene layer stacked between two copper (Cu) catalytic films. The Cu-graphene-Cu laminated structure was obtained by directly synthesizing graphene on a patterned Cu film followed by depositing a second copper layer for optical measurements. The synthesis of graphene on the Cu surface was optimized by adjusting the synthesis temperatures and pre-annealing time using plasma enhanced chemical vapor deposition (PECVD). Resonant Raman spectroscopy measurements reveal that graphene can be synthesized on both bulk Cu foil and relatively thin Cu film under the same growth mechanism using PECVD. Structural and optical characterizations of the array of graphene van der Waals gaps were implemented by the transmission electron microscope and terahertz-time domain spectroscopy (THz-TDS). In THz-TDS, the measured THz amplitude transmitted through the graphene van der Waals gap slit array was constant regardless of the gap width determined by the number of graphene layers between the Cu thin films in a single slit. These results imply that the optical dielectric constant of graphene at THz frequencies in the out-of-plane direction is linearly proportional to the gap width. Our results of the manufacturing method can be adopted to investigate mechanical, electrical, and optical properties of other 2D materials such as h-BN, MoS2, and others. Furthermore, metal-graphene-metal structures with vertical orientations can be used in many electronic, optic, and optoelectronic applications.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Squillaci MA, Stoeckel MA, Samorì P. 3D hybrid networks of gold nanoparticles: mechanoresponsive electrical humidity sensors with on-demand performances. NANOSCALE 2019; 11:19319-19326. [PMID: 31478544 DOI: 10.1039/c9nr05336k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have engineered macroscopic 3D porous networks of gold nanoparticles (AuNPs) chemically interconnected by di-thiolated ethylene glycol oligomers. The formation of such superstructures has been followed by means of UV-Vis spectroscopy by monitoring the aggregation-dependent plasmonic band of such nanomaterials. The controlled chemical tethering of the AuNPs with di-thiolated linkers possessing a well-defined contour length rules the interparticle distance. The use of ad-hoc linkers ensures charge transport via direct tunneling and the hygroscopic nature of the ethylene glycol backbone allows interaction with moisture. Upon interaction with water molecules from the atmosphere, our 3D networks undergo swelling reducing the tunnelling current passing through the system. By exploiting such a behavior, we have devised a new approach for the fabrication of electrical resistive humidity sensors. For the first time we have also introduced a new strategy to fabricate stable and robust devices by covalently attaching our 3D networks to gold electrodes. Devices comprising both 4 (TEG) or 6 (HEG) ethylene glycol repetitive units combined with AuNPs exhibited (i) unprecedentedly high response speed (∼26 ms), (ii) short recovery time (∼250 ms) in the absence of any hysteresis effect, and (iii) a linear response to humidity changes characterized by a highest sensitivity of 51 kΩ per RH(%) for HEG- and 500 Ω per RH(%) for TEG-based devices. The employed green solution processing in water and the extreme robustness of our 3D networks make them interesting candidates for the fabrication of sensors which can operate under extreme conditions and for countless cycles.
Collapse
Affiliation(s)
- Marco Antonio Squillaci
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
| | - Marc-Antoine Stoeckel
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France.
| |
Collapse
|
23
|
Kano S, Kawazu T, Yamazaki A, Fujii M. Digital image analysis for measuring nanogap distance produced by adhesion lithography. NANOTECHNOLOGY 2019; 30:285303. [PMID: 30913554 DOI: 10.1088/1361-6528/ab134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A simple digital image analysis for measuring nanogap distance produced by adhesion lithography is proposed. Adhesion lithography produces metal electrodes with sub-15 nm undulated space and μm to mm scale width without using electron beam lithography. Although the process has been rapidly improved in recent years, there has been no generalized procedure to evaluate the nanogap distance. In this study, we propose a procedure to evaluate a nanogap electrode with large width/gap distance ratios (>1000). The procedure is to determine the average distance of nanogap space from the area and the perimeter of the space by the analysis of the grayscale image. This procedure excludes any arbitrariness of the estimation and gives quantitative comparison of nanogap electrodes produced by different processes.
Collapse
Affiliation(s)
- Shinya Kano
- Department of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai, Nada, Kobe, Japan
| | | | | | | |
Collapse
|
24
|
Machida M, Niidome T, Onoe H, Heisterkamp A, Terakawa M. Spatially-targeted laser fabrication of multi-metal microstructures inside a hydrogel. OPTICS EXPRESS 2019; 27:14657-14666. [PMID: 31163910 DOI: 10.1364/oe.27.014657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The spatially-targeted fabrication of bimetallic microstructures coexisting in the supporting hydrogel is demonstrated by multi-photon photoreduction. Microstructures composed of gold and silver were fabricated along a predefined trajectory by taking advantages of the hydrogel's ionic permeability. Different resonant wavelengths of optical absorption were obtained for gold, silver, and their bimetallic structures. Transmission electron microscopy and energy dispersive X-ray analysis revealed that the optical properties are attributable to the formation of bimetallic structure consisted of core-shell nanoparticles. The fabrication of dissimilar metal structures within hydrogel is a promising technique for optically driven actuators in soft robotics and sensing applications by allowing for site-selective optical properties.
Collapse
|
25
|
Chu Y, Qian C, Chahal P, Cao C. Printed Diodes: Materials Processing, Fabrication, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801653. [PMID: 30937260 PMCID: PMC6425440 DOI: 10.1002/advs.201801653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/02/2018] [Indexed: 05/24/2023]
Abstract
Printing techniques for the fabrication of diodes have received increasing attention over the last decade due to their great potential as alternatives for high-throughput and cost-effective manufacturing approaches compatible with both flexible and rigid substrates. Here, the progress achieved and the challenges faced in the fabrication of printed diodes are discussed and highlighted, with a focus on the materials of significance (silicon, metal oxides, nanomaterials, and organics), the techniques utilized for ink deposition (gravure printing, screen printing, inkjet printing, aerosol jet printing, etc.), and the process through which the printed layers of diode are sintered after printing. Special attention is also given to the device applications within which the printed diodes have been successfully incorporated, particularly in the fields of rectification, light emission, energy harvesting, and displays. Considering the unmatched production scalability of printed diodes and their intrinsic suitability for flexible and wearable applications, significant improvement in performance and intensive research in development and applications of the printed diodes will continuously progress in the future.
Collapse
Affiliation(s)
- Yihang Chu
- Laboratory for Soft Machines & ElectronicsSchool of PackagingMichigan State UniversityEast LansingMI48824USA
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Chunqi Qian
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of RadiologyMichigan State UniversityEast LansingMI48824USA
| | - Premjeet Chahal
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Changyong Cao
- Laboratory for Soft Machines & ElectronicsSchool of PackagingMichigan State UniversityEast LansingMI48824USA
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Mechanical EngineeringMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
26
|
Cai H, Meng Q, Zhao H, Li M, Dai Y, Lin Y, Ding H, Pan N, Tian Y, Luo Y, Wang X. High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20189-20195. [PMID: 29799180 DOI: 10.1021/acsami.8b04810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 106 and a detection limit of 10-11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe2. Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.
Collapse
Affiliation(s)
| | | | | | | | - Yanmeng Dai
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen 518060 , China
| | | | | | | | - Yangchao Tian
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230027 , China
| | | | | |
Collapse
|
27
|
Matarèse BFE, Feyen PLC, Falco A, Benfenati F, Lugli P, deMello JC. Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes. Sci Rep 2018; 8:5560. [PMID: 29615634 PMCID: PMC5882823 DOI: 10.1038/s41598-018-21755-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/26/2018] [Indexed: 01/09/2023] Open
Abstract
Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass.
Collapse
Affiliation(s)
- Bruno F E Matarèse
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2AY, UK
| | - Paul L C Feyen
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genoa, Italy
| | - Aniello Falco
- Faculty of Science and Technology, Free University of Bolzano - Bozen, 39100, Bolzano, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bolzano - Bozen, 39100, Bolzano, Italy
| | - John C deMello
- Imperial College London, Exhibition Road, South Kensington, London, SW7 2AY, UK.
| |
Collapse
|
28
|
Wyatt-Moon G, Georgiadou DG, Semple J, Anthopoulos TD. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41965-41972. [PMID: 29172422 DOI: 10.1021/acsami.7b12942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5-3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device's unique architecture, the detectors exhibit high responsivity (≈79 A W-1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm-2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm-2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.
Collapse
Affiliation(s)
- Gwenhivir Wyatt-Moon
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory, Imperial College London , London SW7 2BW, U.K
| | - Dimitra G Georgiadou
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory, Imperial College London , London SW7 2BW, U.K
| | - James Semple
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory, Imperial College London , London SW7 2BW, U.K
| | - Thomas D Anthopoulos
- Centre for Plastic Electronics and Department of Physics, Blackett Laboratory, Imperial College London , London SW7 2BW, U.K
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST) , Thuwal, Jeddah 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Wang Y, Narayanan SR, Wu W. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells. ACS NANO 2017; 11:8421-8428. [PMID: 28686412 DOI: 10.1021/acsnano.7b04038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.
Collapse
Affiliation(s)
- Yifei Wang
- Ming Hsieh Department of Electrical Engineering, and ‡Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - S R Narayanan
- Ming Hsieh Department of Electrical Engineering, and ‡Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Wei Wu
- Ming Hsieh Department of Electrical Engineering, and ‡Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
30
|
Schmaltz T, Sforazzini G, Reichert T, Frauenrath H. Self-Assembled Monolayers as Patterning Tool for Organic Electronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605286. [PMID: 28160336 DOI: 10.1002/adma.201605286] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Indexed: 06/06/2023]
Abstract
The patterning of functional materials represents a crucial step for the implementation of organic semiconducting materials into functional devices. Classical patterning techniques such as photolithography or shadow masking exhibit certain limitations in terms of choice of materials, processing techniques and feasibility for large area fabrication. The use of self-assembled monolayers (SAMs) as a patterning tool offers a wide variety of opportunities, from the region-selective deposition of active components to guiding the crystallization direction. Here, we discuss general techniques and mechanisms for SAM-based patterning and show that all necessary components for organic electronic devices, i.e., conducting materials, dielectrics, organic semiconductors, and further functional layers can be patterned with the use of self-assembled monolayers. The advantages and limitations, and potential further applications of patterning approaches based on self-assembled monolayers are critically discussed.
Collapse
Affiliation(s)
- Thomas Schmaltz
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015, Lausanne, Switzerland
| | - Giuseppe Sforazzini
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015, Lausanne, Switzerland
| | - Thomas Reichert
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015, Lausanne, Switzerland
| | - Holger Frauenrath
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Macromolecular and Organic Materials, EPFL-STI-IMX-LMOM, Station 12, 1015, Lausanne, Switzerland
| |
Collapse
|
31
|
Interfacial phenomena between conjugated organic molecules and noble metals. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Tai Y, Lubineau G. "Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600370. [PMID: 28435776 PMCID: PMC5396151 DOI: 10.1002/advs.201600370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/29/2016] [Indexed: 06/07/2023]
Abstract
Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.
Collapse
Affiliation(s)
- Yanlong Tai
- Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)COHMAS LaboratoryThuwal23955‐6900Saudi Arabia
| | - Gilles Lubineau
- Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)COHMAS LaboratoryThuwal23955‐6900Saudi Arabia
| |
Collapse
|
33
|
Xiang Q, Chen Y, Li Z, Bi K, Zhang G, Duan H. An anti-ultrasonic-stripping effect in confined micro/nanoscale cavities and its applications for efficient multiscale metallic patterning. NANOSCALE 2016; 8:19541-19550. [PMID: 27878197 DOI: 10.1039/c6nr07585a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a method to reliably and efficiently fabricate high-fidelity metallic structures from a ten-nanometer to a millimeter scale based on an anti-ultrasonic-stripping (AUS) effect in confined micro/nanoscale cavities. With this AUS effect, metallic structures, which are surrounded by the pre-patterned closed templates, could be defined through selectively removing the evaporated metallic layer at the top and outside of the templates by ultrasonic-cavitation-induced stripping. Because only pre-patterned templates are required for exposure in this multiscale patterning process, this AUS-based process enables much smaller and more reliable plasmonic nanogaps due to the mitigated proximity effect and allows rapid fabrication of multiscale metallic structures which require both tiny and large structures. With unprecedented efficiency and resolution down to a ten-nanometer scale, various metallic structures were fabricated using this AUS-effect-based multiscale patterning process. This AUS effect paves the way for direct writing of metallic structures with a high resolution over a large area for practical applications in plasmonics and nanogap-based electronics.
Collapse
Affiliation(s)
- Quan Xiang
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Yiqin Chen
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Zhiqin Li
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Kaixi Bi
- School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
| | - Guanhua Zhang
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China.
| |
Collapse
|
34
|
Semple J, Rossbauer S, Anthopoulos TD. Analysis of Schottky Contact Formation in Coplanar Au/ZnO/Al Nanogap Radio Frequency Diodes Processed from Solution at Low Temperature. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23167-23174. [PMID: 27530144 DOI: 10.1021/acsami.6b07099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Much work has been carried out in recent years in fabricating and studying the Schottky contact formed between various metals and the n-type wide bandgap semiconductor zinc oxide (ZnO). In spite of significant progress, reliable formation of such technologically interesting contacts remains a challenge. Here, we report on solution-processed ZnO Schottky diodes based on a coplanar Al/ZnO/Au nanogap architecture and study the nature of the rectifying contact formed at the ZnO/Au interface. Resultant diodes exhibit excellent operating characteristics, including low-operating voltages (±2.5 V) and exceptionally high current rectification ratios of >10(6) that can be independently tuned via scaling of the nanogap's width. The barrier height for electron injection responsible for the rectifying behavior is studied using current-voltage-temperature and capacitance-voltage measurements (C-V) yielding values in the range of 0.54-0.89 eV. C-V measurements also show that electron traps present at the Au/ZnO interface appear to become less significant at higher frequencies, hence making the diodes particularly attractive for high-frequency applications. Finally, an alternative method for calculating the Richardson constant is presented yielding a value of 38.9 A cm(-2) K(-2), which is close to the theoretically predicted value of 32 A cm(-2) K(-2). The implications of the obtained results for the use of these coplanar Schottky diodes in radio frequency applications is discussed.
Collapse
Affiliation(s)
- James Semple
- Department of Physics and Centre for Plastic Electronics Blackett Laboratory, Imperial College London , London SW7 2AZ, United Kingdom
| | - Stephan Rossbauer
- Department of Physics and Centre for Plastic Electronics Blackett Laboratory, Imperial College London , London SW7 2AZ, United Kingdom
| | - Thomas D Anthopoulos
- Department of Physics and Centre for Plastic Electronics Blackett Laboratory, Imperial College London , London SW7 2AZ, United Kingdom
| |
Collapse
|
35
|
Werner CM, Katuri KP, Hari AR, Chen W, Lai Z, Logan BE, Amy GL, Saikaly PE. Graphene-Coated Hollow Fiber Membrane as the Cathode in Anaerobic Electrochemical Membrane Bioreactors--Effect of Configuration and Applied Voltage on Performance and Membrane Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4439-4447. [PMID: 26691927 DOI: 10.1021/acs.est.5b02833] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrically conductive, graphene-coated, hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 and 0.9 V) using a new rectangular reactor configuration compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 μm for rectangular reactors and 4 μm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than that in the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.
Collapse
Affiliation(s)
- Craig M Werner
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ananda Rao Hari
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Wei Chen
- Advanced Membranes and Porous Materials Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Gary L Amy
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology , Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Semple J, Rossbauer S, Burgess CH, Zhao K, Jagadamma LK, Amassian A, McLachlan MA, Anthopoulos TD. Radio Frequency Coplanar ZnO Schottky Nanodiodes Processed from Solution on Plastic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1993-2000. [PMID: 26918520 DOI: 10.1002/smll.201503110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/02/2016] [Indexed: 06/05/2023]
Abstract
Coplanar radio frequency Schottky diodes based on solution-processed C60 and ZnO semiconductors are fabricated via adhesion-lithography. The development of a unique asymmetric nanogap electrode architecture results in devices with a high current rectification ratio (10(3) -10(6) ), low operating voltage (<3 V), and cut-off frequencies of >400 MHz. Device fabrication is scalable and can be performed at low temperatures even on plastic substrates with very high yield.
Collapse
Affiliation(s)
- James Semple
- Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Stephan Rossbauer
- Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Claire H Burgess
- Department of Materials and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Kui Zhao
- Solar and Photovoltaic Engineering Research Centre and Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lethy Krishnan Jagadamma
- Solar and Photovoltaic Engineering Research Centre and Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aram Amassian
- Solar and Photovoltaic Engineering Research Centre and Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Martyn A McLachlan
- Department of Materials and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Thomas D Anthopoulos
- Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
37
|
Oh S, Park SK, Kim JH, Cho I, Kim HJ, Park SY. Patterned Taping: A High-Efficiency Soft Lithographic Method for Universal Thin Film Patterning. ACS NANO 2016; 10:3478-3485. [PMID: 26863506 DOI: 10.1021/acsnano.5b07590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a universal lithographic technique for microscale/nanoscale film patterns, we develop a strategy for the use of soft lithographically patterned pressure-sensitive tape (patterned tape) as a pattern-transporting stamp material. Patterning was successfully implemented through the selective detachment and/or attachment of various thin films, including organic and metallic layers demanding no subsequent physical, thermal, or chemical treatment, as this incurs the risk of the deformation of the thin film and the deterioration of its functionalities. Its features of universal adhesion and flexibility enable pressure-sensitive tapes to form patterns on a variety of surfaces: organic, polymeric, and inorganic surfaces as well as flat, curved, uneven, and flexible substrates. Moreover, the proposed technique boasts the unique and distinct advantages of short operation time, supreme patterning yield, and multilayer stacking capability, which suggest considerable potential for their application to advanced optoelectronic device fabrication.
Collapse
Affiliation(s)
- Sangyoon Oh
- Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Sang Kyu Park
- Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Jin Hong Kim
- Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Illhun Cho
- Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Hyeong-Ju Kim
- Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Soo Young Park
- Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| |
Collapse
|
38
|
Abstract
Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures.
Collapse
|
39
|
Xu W, Lee Y, Min SY, Park C, Lee TW. Simple, Inexpensive, and Rapid Approach to Fabricate Cross-Shaped Memristors Using an Inorganic-Nanowire-Digital-Alignment Technique and a One-Step Reduction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:527-532. [PMID: 26585580 DOI: 10.1002/adma.201503153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/12/2015] [Indexed: 06/05/2023]
Abstract
A rapid, scalable, and designable approach to produce a cross-shaped memristor array is demonstrated using an inorganic-nanowire digital-alignment technique and a one-step reduction process. Two-dimensional arrays of perpendicularly aligned, individually conductive Cu-nanowires with a nanometer-scale Cux O layer sandwiched at each cross point are produced.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk, 790-784, Republic of Korea
| | - Yeongjun Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk, 790-784, Republic of Korea
| | - Sung-Yong Min
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk, 790-784, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk, 790-784, Republic of Korea
| |
Collapse
|
40
|
Aluminum Nanoholes for Optical Biosensing. BIOSENSORS-BASEL 2015; 5:417-31. [PMID: 26184330 PMCID: PMC4600165 DOI: 10.3390/bios5030417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 11/29/2022]
Abstract
Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.
Collapse
|
41
|
Tripathi LN, Kang T, Bahk YM, Han S, Choi G, Rhie J, Jeong J, Kim DS. Quantum dots-nanogap metamaterials fabrication by self-assembly lithography and photoluminescence studies. OPTICS EXPRESS 2015; 23:14937-14945. [PMID: 26072850 DOI: 10.1364/oe.23.014937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film. We then quantified the quenching in terms of an average photoluminescence enhancement factor. A finite difference time domain simulation was performed to understand the role of an electric field enhancement in the nanogap over this quenching. Finally, we interpreted the mechanism of the photoluminescence quenching and proposed fabrication method of new metamaterials using our technique.
Collapse
|
42
|
Lam B, Zhou W, Kelley SO, Sargent EH. Programmable definition of nanogap electronic devices using self-inhibited reagent depletion. Nat Commun 2015; 6:6940. [PMID: 25914024 PMCID: PMC4423216 DOI: 10.1038/ncomms7940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/16/2015] [Indexed: 11/09/2022] Open
Abstract
Electrodes exhibiting controlled nanoscale separations are required in devices for light detection, semiconductor electronics and medical diagnostics. Here we use low-cost lithography to define micron-separated electrodes, which we downscale to create three-dimensional electrodes separated by nanoscale gaps. Only by devising a new strategy, which we term electrochemical self-inhibited reagent depletion, were we able to produce a robust self-limiting nanogap manufacturing technology. We investigate the method using experiment and simulation and find that, when electrodeposition is carried out using micron-spaced electrodes simultaneously poised at the same potential, these exhibit self-inhibited reagent depletion, leading to defined and robust nanogaps. Particularly remarkable is the formation of fractal electrodes that exhibit interpenetrating jagged elements that consistently avoid electrical contact. We showcase the new technology by fabricating photodetectors with responsivities (A/W) that are one hundred times higher than previously reported photodetectors operating at the same low (1-3 V) voltages. The new strategy adds to the nanofabrication toolkit method that unites top-down template definition with bottom-up three-dimensional nanoscale features.
Collapse
Affiliation(s)
- Brian Lam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Wendi Zhou
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|