1
|
Weng SC, Chen F, Li M, Lee S, Gerry C, Turksoy DC, Akbari OS. Establishing a dominant early larval sex-selection strain in the Asian malaria vector Anopheles stephensi. Infect Dis Poverty 2024; 13:83. [PMID: 39523387 PMCID: PMC11552218 DOI: 10.1186/s40249-024-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Genetic biocontrol interventions targeting mosquito-borne diseases require the release of male mosquitoes exclusively, as only females consume blood and transmit pathogens. Releasing only males eliminates the risk of increasing mosquito bites and spreading pathogens while enabling effective population control. The aim of this study is to develop robust sex-sorting methods for early larval stages in mosquitoes, enabling scalable male-only releases for genetic biocontrol interventions. METHODS To address the challenge of sex-sorting in the Asian malaria vector Anopheles stephensi, we engineer Sexing Element Produced by Alternative RNA-splicing of a Transgenic Observable Reporter (SEPARATOR). This dominant fluorescent-based method, previously proven effective in Aedes aegypti, exploits sex-specific alternative splicing of a reporter to ensure exclusive male-specific expression early in development. The sex-specific alternative RNA splicing of the doublesex gene was selected as a target for engineering SEPARATOR due to its evolutionary conservation in insects. To expand SEPARATOR's applicability for genetic sexing, we assessed the cross-species sex-specific RNA splicing activity of the An. gambiae doublesex (AngDsx) splicing module in An. stephensi. Male-specific enhanced green fluorescent protein (EGFP) expression was verified throughout the mosquito life cycle using a fluorescent stereomicroscope. RESULTS Our results confirm that SEPARATOR regulates male-specific EGFP expression in An. stephensi and enables reliable positive male selection from the first instar larval stages. Molecular analysis demonstrates that male-specific EGFP expression is dependent on doublesex sex-specific splicing events. Additionally, the splicing module from An. gambiae operates effectively in An. stephensi, demonstrating evolutionary conservation in sex-specific splicing events between these species. CONCLUSIONS SEPARATOR's independence from sex-chromosome linkage provides resistance to breakage that could be mediated by meiotic recombination and chromosomal rearrangements, making it highly suitable for mass male releases. By enabling precise male selection from the first instar larval stages, SEPARATOR represents a significant advancement that will aid in the genetic biocontrol for Anopheles mosquitoes.
Collapse
Affiliation(s)
- Shih-Che Weng
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Fangying Chen
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sammy Lee
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Connor Gerry
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dylan Can Turksoy
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Yan Y, Ahmed HMM, Wimmer EA, Schetelig MF. Biotechnology-enhanced genetic controls of the global pest Drosophila suzukii. Trends Biotechnol 2024:S0167-7799(24)00249-X. [PMID: 39327106 DOI: 10.1016/j.tibtech.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Spotted wing Drosophila (Drosophila suzukii Matsumura, or SWD), an insect pest of soft-skinned fruits native to East Asia, has rapidly spread worldwide in the past 15 years. Genetic controls such as sterile insect technique (SIT) have been considered for the environmentally friendly and cost-effective management of this pest. In this review, we provide the latest developments for the genetic control strategies of SWD, including sperm-marking strains, CRISPR-based sex-ratio distortion, neoclassical genetic sexing strains, transgenic sexing strains, a sex-sorting incompatible male system, precision-guided SIT, and gene drives based on synthetic Maternal effect dominant embryonic arrest (Medea) or homing CRISPR systems. These strategies could either enhance the efficacy of traditional SIT or serve as standalone methods for the sustainable control of SWD.
Collapse
Affiliation(s)
- Ying Yan
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany.
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany; Department of Crop Protection, Faculty of Agriculture - University of Khartoum, Postal code 13314 Khartoum North, Sudan
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Winchesterstraße 2, 35394 Gießen, Germany
| |
Collapse
|
3
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Pescod P, Bevivino G, Anthousi A, Shepherd J, Shelton R, Lombardo F, Nolan T. Homing gene drives can transfer rapidly between Anopheles gambiae strains with minimal carryover of flanking sequences. Nat Commun 2024; 15:6846. [PMID: 39122734 PMCID: PMC11315913 DOI: 10.1038/s41467-024-51225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
CRISPR-Cas9 homing gene drives are designed to induce a targeted double-stranded DNA break at a wild type allele ('recipient'), which, when repaired by the host cell, is converted to the drive allele from the homologous ('donor') chromosome. Germline localisation of this process leads to super-Mendelian inheritance of the drive and the rapid spread of linked traits, offering a novel strategy for population control through the deliberate release of drive individuals. During the homology-based DNA repair, additional segments of the recipient chromosome may convert to match the donor, potentially impacting carrier fitness and strategy success. Using Anopheles gambiae strains with variations around the drive target site, here we assess the extent and nature of chromosomal conversion. We show both homing and meiotic drive contribute as mechanisms of inheritance bias. Additionally, over 80% of homing events resolve within 50 bp of the chromosomal break, enabling rapid gene drive transfer into locally-adapted genetic backgrounds.
Collapse
Affiliation(s)
- Poppy Pescod
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Giulia Bevivino
- Division of Parasitology, Department of Public Health and Infectious Diseases, University of Rome "la Sapienza", Rome, Italy
| | - Amalia Anthousi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Josephine Shepherd
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ruth Shelton
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Fabrizio Lombardo
- Division of Parasitology, Department of Public Health and Infectious Diseases, University of Rome "la Sapienza", Rome, Italy
| | - Tony Nolan
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
5
|
Naidoo K, Oliver SV. Gene drives: an alternative approach to malaria control? Gene Ther 2024:10.1038/s41434-024-00468-8. [PMID: 39039203 DOI: 10.1038/s41434-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Genetic modification for the control of mosquitoes is frequently touted as a solution for a variety of vector-borne diseases. There has been some success using non-insecticidal methods like sterile or incompatible insect techniques to control arbovirus diseases. However, control by genetic modifications to reduce mosquito populations or create mosquitoes that are refractory to infection with pathogens are less developed. The advent of CRISPR-Cas9-mediated gene drives may advance this mechanism of control. In this review, use and progress of gene drives for vector control, particularly for malaria, is discussed. A brief history of population suppression and replacement gene drives in mosquitoes, rapid advancement of the field over the last decade and how genetic modification fits into the current scope of vector control are described. Mechanisms of alternative vector control by genetic modification to modulate mosquitoes' immune responses and anti-parasite effector molecules as part of a combinational strategy to combat malaria are considered. Finally, the limitations and ethics of using gene drives for mosquito control are discussed.
Collapse
Affiliation(s)
- Kubendran Naidoo
- SAMRC/Wits Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa.
- Infectious Diseases and Oncology Research Institute (IDORI), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Shüné V Oliver
- Wits Research Institute for Malaria, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
6
|
Apte RA, Smidler AL, Pai JJ, Chow ML, Chen S, Mondal A, Sánchez C. HM, Antoshechkin I, Marshall JM, Akbari OS. Eliminating malaria vectors with precision-guided sterile males. Proc Natl Acad Sci U S A 2024; 121:e2312456121. [PMID: 38917000 PMCID: PMC11228498 DOI: 10.1073/pnas.2312456121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/03/2024] [Indexed: 06/27/2024] Open
Abstract
Controlling the principal African malaria vector, the mosquito Anopheles gambiae, is considered essential to curtail malaria transmission. However, existing vector control technologies rely on insecticides, which are becoming increasingly ineffective. Sterile insect technique (SIT) is a powerful suppression approach that has successfully eradicated a number of insect pests, yet the A. gambiae toolkit lacks the requisite technologies for its implementation. SIT relies on iterative mass releases of nonbiting, nondriving, sterile males which seek out and mate with monandrous wild females. Once mated, females are permanently sterilized due to mating-induced refractoriness, which results in population suppression of the subsequent generation. However, sterilization by traditional methods renders males unfit, making the creation of precise genetic sterilization methods imperative. Here, we introduce a vector control technology termed precision-guided sterile insect technique (pgSIT), in A. gambiae for inducible, programmed male sterilization and female elimination for wide-scale use in SIT campaigns. Using a binary CRISPR strategy, we cross separate engineered Cas9 and gRNA strains to disrupt male-fertility and female-essential genes, yielding >99.5% male sterility and >99.9% female lethality in hybrid progeny. We demonstrate that these genetically sterilized males have good longevity, are able to induce sustained population suppression in cage trials, and are predicted to eliminate wild A. gambiae populations using mathematical models, making them ideal candidates for release. This work provides a valuable addition to the malaria genetic biocontrol toolkit, enabling scalable SIT-like confinable, species-specific, and safe suppression in the species.
Collapse
Affiliation(s)
- Reema A. Apte
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Andrea L. Smidler
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - James J. Pai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Martha L. Chow
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Sanle Chen
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Agastya Mondal
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA94720
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Héctor M. Sánchez C.
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA94720
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA94720
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - John M. Marshall
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA94720
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Bunting MD, Godahewa GI, McPherson NO, Robertson LJ, Gierus L, Piltz SG, Edwards O, Tizard M, Thomas PQ. Investigating the potential of X chromosome shredding for mouse genetic biocontrol. Sci Rep 2024; 14:13466. [PMID: 38866815 PMCID: PMC11169450 DOI: 10.1038/s41598-024-63706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
CRISPR-Cas9 technology has facilitated development of strategies that can potentially provide more humane and effective methods to control invasive vertebrate species, such as mice. One promising strategy is X chromosome shredding which aims to bias offspring towards males, resulting in a gradual and unsustainable decline of females. This method has been explored in insects with encouraging results. Here, we investigated this strategy in Mus musculus by targeting repeat DNA sequences on the X chromosome with the aim of inducing sufficient DNA damage to specifically eliminate X chromosome-bearing sperm during gametogenesis. We tested three different guide RNAs (gRNAs) targeting different repeats on the X chromosome, together with three male germline-specific promoters for inducing Cas9 expression at different stages of spermatogenesis. A modest bias towards mature Y-bearing sperm was detected in some transgenic males, although this did not translate into significant male-biasing of offspring. Instead, cleavage of the X chromosome during meiosis typically resulted in a spermatogenic block, manifest as small testes volume, empty tubules, low sperm concentration, and sub/infertility. Our study highlights the importance of controlling the timing of CRISPR-Cas9 activity during mammalian spermatogenesis and the sensitivity of spermatocytes to X chromosome disruption.
Collapse
Affiliation(s)
- Mark D Bunting
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Gelshan I Godahewa
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- CSIRO Environment, Floreat, WA, 6014, Australia
| | - Nicole O McPherson
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Louise J Robertson
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Luke Gierus
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sandra G Piltz
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | | | - Mark Tizard
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC, 3220, Australia
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Haber DA, Arien Y, Lamdan LB, Alcalay Y, Zecharia C, Krsticevic F, Yonah ES, Avraham RD, Krzywinska E, Krzywinski J, Marois E, Windbichler N, Papathanos PA. Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives. Nat Commun 2024; 15:4983. [PMID: 38862555 PMCID: PMC11166636 DOI: 10.1038/s41467-024-49387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.
Collapse
Affiliation(s)
- Daniella An Haber
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yael Arien
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Lee Benjamin Lamdan
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yehonathan Alcalay
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Chen Zecharia
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Flavia Krsticevic
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Elad Shmuel Yonah
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Rotem Daniel Avraham
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Elzbieta Krzywinska
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Jaroslaw Krzywinski
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Genetics and Ecology Research Centre, Polo d'Innovazione di Genomica Genetica e Biologia, Via Mazzieri, 05100, Terni, Italy
| | - Eric Marois
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, INSERM, CNRS, Strasbourg, France
| | | | - Philippos Aris Papathanos
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| |
Collapse
|
9
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
10
|
Vitale M, Kranjc N, Leigh J, Kyrou K, Courty T, Marston L, Grilli S, Crisanti A, Bernardini F. Y chromosome shredding in Anopheles gambiae: Insight into the cellular dynamics of a novel synthetic sex ratio distorter. PLoS Genet 2024; 20:e1011303. [PMID: 38848445 PMCID: PMC11189259 DOI: 10.1371/journal.pgen.1011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/20/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Despite efforts to explore the genome of the malaria vector Anopheles gambiae, the Y chromosome of this species remains enigmatic. The large number of repetitive and heterochromatic DNA sequences makes the Y chromosome exceptionally difficult to fully assemble, hampering the progress of gene editing techniques and functional studies for this chromosome. In this study, we made use of a bioinformatic platform to identify Y-specific repetitive DNA sequences that served as a target site for a CRISPR/Cas9 system. The activity of Cas9 in the reproductive organs of males caused damage to Y-bearing sperm without affecting their fertility, leading to a strong female bias in the progeny. Cytological investigation allowed us to identify meiotic defects and investigate sperm selection in this new synthetic sex ratio distorter system. In addition, alternative promoters enable us to target the Y chromosome in specific tissues and developmental stages of male mosquitoes, enabling studies that shed light on the role of this chromosome in male gametogenesis. This work paves the way for further insight into the poorly characterised Y chromosome of Anopheles gambiae. Moreover, the sex distorter strain we have generated promises to be a valuable tool for the advancement of studies in the field of developmental biology, with the potential to support the progress of genetic strategies aimed at controlling malaria mosquitoes and other pest species.
Collapse
Affiliation(s)
- Matteo Vitale
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jessica Leigh
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kyrous Kyrou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas Courty
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Louise Marston
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silvia Grilli
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Du J, Chen W, Jia X, Xu X, Yang E, Zhou R, Zhang Y, Metzloff M, Messer PW, Champer J. Germline Cas9 promoters with improved performance for homing gene drive. Nat Commun 2024; 15:4560. [PMID: 38811556 PMCID: PMC11137117 DOI: 10.1038/s41467-024-48874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.
Collapse
Affiliation(s)
- Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Weizhe Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xihua Jia
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ruizhi Zhou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yuqi Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Matt Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
12
|
Lawler CD, Nuñez AKP, Hernandes N, Bhide S, Lohrey I, Baxter S, Robin C. The haplolethal gene wupA of Drosophila exhibits potential as a target for an X-poisoning gene drive. G3 (BETHESDA, MD.) 2024; 14:jkae025. [PMID: 38306583 PMCID: PMC10989859 DOI: 10.1093/g3journal/jkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/23/2023] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
A synthetic gene drive that targets haplolethal genes on the X chromosome can skew the sex ratio toward males. Like an "X-shredder," it does not involve "homing," and that has advantages including the reduction of gene drive resistance allele formation. We examine this "X-poisoning" strategy by targeting 4 of the 11 known X-linked haplolethal/haplosterile genes of Drosophila melanogaster with CRISPR/Cas9. We find that targeting the wupA gene during spermatogenesis skews the sex ratio so fewer than 14% of progeny are daughters. That is unless we cross the mutagenic males to X^XY female flies that bear attached-X chromosomes, which reverses the inheritance of the poisoned X chromosome so that sons inherit it from their father, in which case only 2% of the progeny are sons. These sex ratio biases suggest that most of the CRISPR/Cas9 mutants we induced in the wupA gene are haplolethal but some are recessive lethal. The males generating wupA mutants do not suffer from reduced fertility; rather, the haplolethal mutants arrest development in the late stages of embryogenesis well after fertilized eggs have been laid. This provides a distinct advantage over genetic manipulation strategies involving sterility which can be countered by the remating of females. We also find that wupA mutants that destroy the nuclear localization signal of shorter isoforms are not haplolethal as long as the open reading frame remains intact. Like D. melanogaster, wupA orthologs of Drosophila suzukii and Anopheles mosquitos are found on X chromosomes making wupA a viable X-poisoning target in multiple species.
Collapse
Affiliation(s)
- Clancy D Lawler
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | | | - Natalia Hernandes
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Soumitra Bhide
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Isabelle Lohrey
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Simon Baxter
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
13
|
Kaur R, Frederickson A, Wetmore SD. Elucidation of the catalytic mechanism of a single-metal dependent homing endonuclease using QM and QM/MM approaches: the case study of I- PpoI. Phys Chem Chem Phys 2024; 26:8919-8931. [PMID: 38426850 DOI: 10.1039/d3cp06201e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Homing endonucleases (HEs) are highly specific DNA cleaving enzymes, with I-PpoI having been suggested to use a single metal to accelerate phosphodiester bond cleavage. Although an I-PpoI mechanism has been proposed based on experimental structural data, no consensus has been reached regarding the roles of the metal or key active site amino acids. This study uses QM cluster and QM/MM calculations to provide atomic-level details of the I-PpoI catalytic mechanism. Minimal QM cluster and large-scale QM/MM models demonstrate that the experimentally-proposed pathway involving direct Mg2+ coordination to the substrate coupled with leaving group protonation through a metal-activated water is not feasible due to an inconducive I-PpoI active site alignment. Despite QM cluster models of varying size uncovering a pathway involving leaving group protonation by a metal-activated water, indirect (water-mediated) metal coordination to the substrate is required to afford this pathway, which renders this mechanism energetically infeasible. Instead, QM cluster models reveal that the preferred pathway involves direct Mg2+-O3' coordination to stabilize the charged substrate and assist leaving group departure, while H98 activates the water nucleophile. These calculations also underscore that both catalytic residues that directly interact with the substrate and secondary amino acids that position or stabilize these residues are required for efficient catalysis. QM/MM calculations on the solvated enzyme-DNA complex verify the preferred mechanism, which is fully consistent with experimental kinetic, structural, and mutational data. The fundamental understanding of the I-PpoI mechanism of action, gained from the present work can be used to further explore potential uses of this enzyme in biotechnology and medicine, and direct future computational investigations of other members of the understudied HE family.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Angela Frederickson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
14
|
Miranda LS, Rudd SR, Mena O, Hudspeth PE, Barboza-Corona JE, Park HW, Bideshi DK. The Perpetual Vector Mosquito Threat and Its Eco-Friendly Nemeses. BIOLOGY 2024; 13:182. [PMID: 38534451 DOI: 10.3390/biology13030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mosquitoes are the most notorious arthropod vectors of viral and parasitic diseases for which approximately half the world's population, ~4,000,000,000, is at risk. Integrated pest management programs (IPMPs) have achieved some success in mitigating the regional transmission and persistence of these diseases. However, as many vector-borne diseases remain pervasive, it is obvious that IPMP successes have not been absolute in eradicating the threat imposed by mosquitoes. Moreover, the expanding mosquito geographic ranges caused by factors related to climate change and globalization (travel, trade, and migration), and the evolution of resistance to synthetic pesticides, present ongoing challenges to reducing or eliminating the local and global burden of these diseases, especially in economically and medically disadvantaged societies. Abatement strategies include the control of vector populations with synthetic pesticides and eco-friendly technologies. These "green" technologies include SIT, IIT, RIDL, CRISPR/Cas9 gene drive, and biological control that specifically targets the aquatic larval stages of mosquitoes. Regarding the latter, the most effective continues to be the widespread use of Lysinibacillus sphaericus (Ls) and Bacillus thuringiensis subsp. israelensis (Bti). Here, we present a review of the health issues elicited by vector mosquitoes, control strategies, and lastly, focus on the biology of Ls and Bti, with an emphasis on the latter, to which no resistance has been observed in the field.
Collapse
Affiliation(s)
- Leticia Silva Miranda
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Sarah Renee Rudd
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Integrated Biomedical Graduate Studies, and School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Oscar Mena
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Piper Eden Hudspeth
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - José E Barboza-Corona
- Departmento de Alimentos, Posgrado en Biociencias, Universidad de Guanajuato Campus Irapuato-Salamanca, Irapuato 36500, Guanajuato, Mexico
| | - Hyun-Woo Park
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| | - Dennis Ken Bideshi
- Graduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
- Undergraduate Program in Biomedical Sciences, Department of Biological Sciences, California Baptist University, Riverside, CA 92504, USA
| |
Collapse
|
15
|
Aldridge RL, Gibson S, Linthicum KJ. Aedes aegypti Controls AE. Aegypti: SIT and IIT-An Overview. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:32-49. [PMID: 38427588 DOI: 10.2987/23-7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.
Collapse
|
16
|
D'Amato R, Taxiarchi C, Galardini M, Trusso A, Minuz RL, Grilli S, Somerville AGT, Shittu D, Khalil AS, Galizi R, Crisanti A, Simoni A, Müller R. Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages. Nat Commun 2024; 15:952. [PMID: 38296981 PMCID: PMC10830555 DOI: 10.1038/s41467-024-44907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
CRISPR-based gene drives have the potential to spread within populations and are considered as promising vector control tools. A doublesex-targeting gene drive was able to suppress laboratory Anopheles mosquito populations in small and large cages, and it is considered for field application. Challenges related to the field-use of gene drives and the evolving regulatory framework suggest that systems able to modulate or revert the action of gene drives, could be part of post-release risk-mitigation plans. In this study, we challenge an AcrIIA4-based anti-drive to inhibit gene drive spread in age-structured Anopheles gambiae population under complex feeding and behavioural conditions. A stochastic model predicts the experimentally-observed genotype dynamics in age-structured populations in medium-sized cages and highlights the necessity of large-sized cage trials. These experiments and experimental-modelling framework demonstrate the effectiveness of the anti-drive in different scenarios, providing further corroboration for its use in controlling the spread of gene drive in Anopheles.
Collapse
Affiliation(s)
- Rocco D'Amato
- Genetics and Ecology Research Centre, Polo of Genomics, Genetics and Biology (Polo GGB), Terni, Italy
| | | | - Marco Galardini
- Biological Design Center, Boston University, Boston, MA, USA
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Alessandro Trusso
- Genetics and Ecology Research Centre, Polo of Genomics, Genetics and Biology (Polo GGB), Terni, Italy
| | - Roxana L Minuz
- Genetics and Ecology Research Centre, Polo of Genomics, Genetics and Biology (Polo GGB), Terni, Italy
| | - Silvia Grilli
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Dammy Shittu
- Department of Life Sciences, Imperial College London, London, UK
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, UK
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Alekos Simoni
- Genetics and Ecology Research Centre, Polo of Genomics, Genetics and Biology (Polo GGB), Terni, Italy.
- Department of Life Sciences, Imperial College London, London, UK.
| | - Ruth Müller
- Genetics and Ecology Research Centre, Polo of Genomics, Genetics and Biology (Polo GGB), Terni, Italy.
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
17
|
Olejarz JW, Nowak MA. Gene drives for the extinction of wild metapopulations. J Theor Biol 2024; 577:111654. [PMID: 37984587 DOI: 10.1016/j.jtbi.2023.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Population-suppressing gene drives may be capable of extinguishing wild populations, with proposed applications in conservation, agriculture, and public health. However, unintended and potentially disastrous consequences of release of drive-engineered individuals are extremely difficult to predict. We propose a model for the dynamics of a sex ratio-biasing drive, and using simulations, we show that failure of the suppression drive is often a natural outcome due to stochastic and spatial effects. We further demonstrate rock-paper-scissors dynamics among wild-type, drive-infected, and extinct populations that can persist for arbitrarily long times. Gene drive-mediated extinction of wild populations entails critical complications that lurk far beyond the reach of laboratory-based studies. Our findings help in addressing these challenges.
Collapse
Affiliation(s)
- Jason W Olejarz
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA; Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA.
| | - Martin A Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
18
|
Meccariello A, Hou S, Davydova S, Fawcett JD, Siddall A, Leftwich PT, Krsticevic F, Papathanos PA, Windbichler N. Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata. Nat Commun 2024; 15:372. [PMID: 38191463 PMCID: PMC10774415 DOI: 10.1038/s41467-023-44399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Shibo Hou
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | - Alexandra Siddall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Flavia Krsticevic
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
19
|
Kumam Y, Trick HN, Vara Prasad P, Jugulam M. Transformative Approaches for Sustainable Weed Management: The Power of Gene Drive and CRISPR-Cas9. Genes (Basel) 2023; 14:2176. [PMID: 38136999 PMCID: PMC10742955 DOI: 10.3390/genes14122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.
Collapse
Affiliation(s)
- Yaiphabi Kumam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA;
| | - P.V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (Y.K.); (P.V.V.P.)
| |
Collapse
|
20
|
Djihinto OY, Meacci D, Medjigodo AA, Bernardini F, Djogbénou LS. Relative expression of key genes involved in nucleic acids methylation in Anopheles gambiae sensu stricto. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:754-766. [PMID: 37417368 DOI: 10.1111/mve.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
In vertebrates, enzymes responsible for DNA methylation, one of the epigenetic mechanisms, are encoded by genes falling into the cytosine methyltransferases genes family (Dnmt1, Dnmt3a,b and Dnmt3L). However, in Diptera, only the methyltransferase Dnmt2 was found, suggesting that DNA methylation might act differently for species in this order. Moreover, genes involved in epigenetic dynamics, such as Ten-eleven Translocation dioxygenases (TET) and Methyl-CpG-binding domain (MBDs), present in vertebrates, might play a role in insects. This work aimed at investigating nucleic acids methylation in the malaria vector Anopheles gambiae (Diptera: Culicidae) by analysing the expression of Dnmt2, TET2 and MBDs genes using quantitative real-time polymerase chain reaction (qRT-PCR) at pre-immature stages and in reproductive tissues of adult mosquitoes. In addition, the effect of two DNA methylation inhibitors on larval survival was evaluated. The qPCR results showed an overall low expression of Dnmt2 at all developmental stages and in adult reproductive tissues. In contrast, MBD and TET2 showed an overall higher expression. In adult mosquito reproductive tissues, the expression level of the three genes in males' testes was significantly higher than that in females' ovaries. The chemical treatments did not affect larval survival. The findings suggest that mechanisms other than DNA methylation underlie epigenetic regulation in An. gambiae.
Collapse
Affiliation(s)
- Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Dario Meacci
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Adandé A Medjigodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Institut Régional de Santé Publique (IRSP), University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
21
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
22
|
Davydova S, Liu J, Kandul NP, Braswell WE, Akbari OS, Meccariello A. Next-generation genetic sexing strain establishment in the agricultural pest Ceratitis capitata. Sci Rep 2023; 13:19866. [PMID: 37964160 PMCID: PMC10646097 DOI: 10.1038/s41598-023-47276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/11/2023] [Indexed: 11/16/2023] Open
Abstract
Tephritid fruit fly pests pose an increasing threat to the agricultural industry due to their global dispersion and a highly invasive nature. Here we showcase the feasibility of an early-detection SEPARATOR sex sorting approach through using the non-model Tephritid pest, Ceratitis capitata. This system relies on female-only fluorescent marker expression, accomplished through the use of a sex-specific intron of the highly-conserved transformer gene from C. capitata and Anastrepha ludens. The herein characterized strains have 100% desired phenotype outcomes, allowing accurate male-female separation during early development. Overall, we describe an antibiotic and temperature-independent sex-sorting system in C. capitata, which, moving forward, may be implemented in other non-model Tephritid pest species. This strategy can facilitate the establishment of genetic sexing systems with endogenous elements exclusively, which, on a wider scale, can improve pest population control strategies like sterile insect technique.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Junru Liu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nikolay P Kandul
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - W Evan Braswell
- USDA APHIS PPQ Science and Technology Insect Management and Molecular Diagnostic Laboratory, 22675 North Moorefield Road, Edinburg, TX, 78541, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Pan M, Champer J. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model. Mol Ecol 2023; 32:5673-5694. [PMID: 37694511 DOI: 10.1111/mec.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.
Collapse
Affiliation(s)
- Mingzuyu Pan
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
24
|
Page N, Taxiarchi C, Tonge D, Kuburic J, Chesters E, Kriezis A, Kyrou K, Game L, Nolan T, Galizi R. Single-cell profiling of Anopheles gambiae spermatogenesis defines the onset of meiotic silencing and premeiotic overexpression of the X chromosome. Commun Biol 2023; 6:850. [PMID: 37582841 PMCID: PMC10427639 DOI: 10.1038/s42003-023-05224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Understanding development and genetic regulation in the Anopheles gambiae germline is essential to engineer effective genetic control strategies targeting this malaria mosquito vector. These include targeting the germline to induce sterility or using regulatory sequences to drive transgene expression for applications such as gene drive. However, only very few germline-specific regulatory elements have been characterised with the majority showing leaky expression. This has been shown to considerably reduce the efficiency of current genetic control strategies, which rely on regulatory elements with more tightly restricted spatial and/or temporal expression. Meiotic silencing of the sex chromosomes limits the flexibility of transgene expression to develop effective sex-linked genetic control strategies. Here, we build on our previous study, dissecting gametogenesis into four distinct cell populations, using single-cell RNA sequencing to define eight distinct cell clusters and associated germline cell-types using available marker genes. We reveal overexpression of X-linked genes in a distinct cluster of pre-meiotic cells and document the onset of meiotic silencing of the X chromosome in a subcluster of cells in the latter stages of spermatogenesis. This study provides a comprehensive dataset, characterising the expression of distinct cell types through spermatogenesis and widening the toolkit for genetic control of malaria mosquitoes.
Collapse
Affiliation(s)
- Nicole Page
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Daniel Tonge
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Jasmina Kuburic
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Emily Chesters
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Antonios Kriezis
- Department of Life Sciences, Imperial College London, London, UK
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK.
| |
Collapse
|
25
|
Lu HZ, Sui Y, Lobo NF, Fouque F, Gao C, Lu S, Lv S, Deng SQ, Wang DQ. Challenge and opportunity for vector control strategies on key mosquito-borne diseases during the COVID-19 pandemic. Front Public Health 2023; 11:1207293. [PMID: 37554733 PMCID: PMC10405932 DOI: 10.3389/fpubh.2023.1207293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Mosquito-borne diseases are major global health problems that threaten nearly half of the world's population. Conflicting resources and infrastructure required by the coronavirus disease 2019 (COVID-19) global pandemic have resulted in the vector control process being more demanding than ever. Although novel vector control paradigms may have been more applicable and efficacious in these challenging settings, there were virtually no reports of novel strategies being developed or implemented during COVID-19 pandemic. Evidence shows that the COVID-19 pandemic has dramatically impacted the implementation of conventional mosquito vector measures. Varying degrees of disruptions in malaria control and insecticide-treated nets (ITNs) and indoor residual spray (IRS) distributions worldwide from 2020 to 2021 were reported. Control measures such as mosquito net distribution and community education were significantly reduced in sub-Saharan countries. The COVID-19 pandemic has provided an opportunity for innovative vector control technologies currently being developed. Releasing sterile or lethal gene-carrying male mosquitoes and novel biopesticides may have advantages that are not matched by traditional vector measures in the current context. Here, we review the effects of COVID-19 pandemic on current vector control measures from 2020 to 2021 and discuss the future direction of vector control, taking into account probable evolving conditions of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hong-Zheng Lu
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Sui
- Brown School, Washington University, St. Louis, MO, United States
| | - Neil F. Lobo
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Florence Fouque
- Research for Implementation Unit, The Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Chen Gao
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shenning Lu
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Shan Lv
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Duo-Quan Wang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Smidler AL, Apte RA, Pai JJ, Chow ML, Chen S, Mondal A, Sánchez C. HM, Antoshechkin I, Marshall JM, Akbari OS. Eliminating Malaria Vectors with Precision Guided Sterile Males. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549947. [PMID: 37503146 PMCID: PMC10370176 DOI: 10.1101/2023.07.20.549947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Controlling the principal African malaria vector, the mosquito Anopheles gambiae, is considered essential to curtail malaria transmission. However existing vector control technologies rely on insecticides, which are becoming increasingly ineffective. Sterile insect technique (SIT) is a powerful suppression approach that has successfully eradicated a number of insect pests, yet the A. gambiae toolkit lacks the requisite technologies for its implementation. SIT relies on iterative mass-releases of non-biting, non-driving, sterile males which seek out and mate with monandrous wild females. Once mated, females are permanently sterilized due to mating-induced refractoriness, which results in population suppression of the subsequent generation. However, sterilization by traditional methods renders males unfit, making the creation of precise genetic sterilization methods imperative. Here we develop precision guided Sterile Insect Technique (pgSIT) in the mosquito A. gambiae for inducible, programmed male-sterilization and female-elimination for wide scale use in SIT campaigns. Using a binary CRISPR strategy, we cross separate engineered Cas9 and gRNA strains to disrupt male-fertility and female-essential genes, yielding >99.5% male-sterility and >99.9% female-lethality in hybrid progeny. We demonstrate that these genetically sterilized males have good longevity, are able to induce population suppression in cage trials, and are predicted to eliminate wild A. gambiae populations using mathematical models, making them ideal candidates for release. This work provides a valuable addition to the malaria genetic biocontrol toolkit, for the first time enabling scalable SIT-like confinable suppression in the species.
Collapse
Affiliation(s)
- Andrea L. Smidler
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Reema A. Apte
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - James J. Pai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Martha L. Chow
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Sanle Chen
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Agastya Mondal
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA91125, USA
| | - John M. Marshall
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
27
|
Smidler AL, Pai JJ, Apte RA, Sánchez C. HM, Corder RM, Jeffrey Gutiérrez E, Thakre N, Antoshechkin I, Marshall JM, Akbari OS. A confinable female-lethal population suppression system in the malaria vector, Anopheles gambiae. SCIENCE ADVANCES 2023; 9:eade8903. [PMID: 37406109 PMCID: PMC10321730 DOI: 10.1126/sciadv.ade8903] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Malaria is among the world's deadliest diseases, predominantly affecting Sub-Saharan Africa and killing over half a million people annually. Controlling the principal vector, the mosquito Anopheles gambiae, as well as other anophelines, is among the most effective methods to control disease spread. Here, we develop a genetic population suppression system termed Ifegenia (inherited female elimination by genetically encoded nucleases to interrupt alleles) in this deadly vector. In this bicomponent CRISPR-based approach, we disrupt a female-essential gene, femaleless (fle), demonstrating complete genetic sexing via heritable daughter gynecide. Moreover, we demonstrate that Ifegenia males remain reproductively viable and can load both fle mutations and CRISPR machinery to induce fle mutations in subsequent generations, resulting in sustained population suppression. Through modeling, we demonstrate that iterative releases of nonbiting Ifegenia males can act as an effective, confinable, controllable, and safe population suppression and elimination system.
Collapse
Affiliation(s)
- Andrea L. Smidler
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - James J. Pai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Reema A. Apte
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Héctor M. Sánchez C.
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Rodrigo M. Corder
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Eileen Jeffrey Gutiérrez
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
- Oxitec Ltd., Abingdon, OX14 4RQ, UK
| | - Neha Thakre
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA 91125, USA
| | - John M. Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Pollegioni P, Persampieri T, Minuz RL, Bucci A, Trusso A, Martino SD, Leo C, Bruttini M, Ciolfi M, Waldvogel A, Tripet F, Simoni A, Crisanti A, Müller R. Introgression of a synthetic sex ratio distortion transgene into different genetic backgrounds of Anopheles coluzzii. INSECT MOLECULAR BIOLOGY 2023; 32:56-68. [PMID: 36251429 PMCID: PMC10092091 DOI: 10.1111/imb.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The development of genetically modified mosquitoes (GMM) and their subsequent field release offers innovative approaches for vector control of malaria. A non-gene drive self-limiting male-bias Ag(PMB)1 strain has been developed in a 47-year-old laboratory G3 strain of Anopheles gambiae s.l. When Ag(PMB)1 males are crossed to wild-type females, expression of the endonuclease I-PpoI during spermatogenesis causes the meiotic cleavage of the X chromosome in sperm cells, leading to fertile offspring with a 95% male bias. However, World Health Organization states that the functionality of the transgene could differ when inserted in different genetic backgrounds of Anopheles coluzzii which is currently a predominant species in several West-African countries and thus a likely recipient for a potential release of self-limiting GMMs. In this study, we introgressed the transgene from the donor Ag(PMB)1 by six serial backcrosses into two recipient colonies of An. coluzzii that had been isolated in Mali and Burkina Faso. Scans of informative Single Nucleotide Polymorphism (SNP) markers and whole-genome sequencing analysis revealed a nearly complete introgression of chromosomes 3 and X, but a remarkable genomic divergence in a large region of chromosome 2 between the later backcrossed (BC6) transgenic offspring and the recipient paternal strains. These findings suggested to extend the backcrossing breeding strategy beyond BC6 generation and increasing the introgression efficiency of critical regions that have ecological and epidemiological implications through the targeted selection of specific markers. Disregarding differential introgression efficiency, we concluded that the phenotype of the sex ratio distorter is stable in the BC6 introgressed An. coluzzii strains.
Collapse
Affiliation(s)
- Paola Pollegioni
- Research Institute on Terrestrial EcosystemsNational Research CouncilTerniItaly
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Tania Persampieri
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Roxana L. Minuz
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Alessandro Bucci
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Alessandro Trusso
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Salvatore Di Martino
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Chiara Leo
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Marco Bruttini
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
- Tuscan Centre of Precision Medicine, Department of Medicine, Surgery and NeurosciencesUniversity of SienaSienaItaly
| | - Marco Ciolfi
- Research Institute on Terrestrial EcosystemsNational Research CouncilTerniItaly
| | | | - Frédéric Tripet
- Centre for Applied Entomology and ParasitologyKeele UniversityNewcastle‐under‐LymeUK
| | - Alekos Simoni
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
| | - Andrea Crisanti
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Ruth Müller
- Genetics and Ecology Research CentrePolo d'Innovazione di Genomica, Genetica e BiologiaTerniItaly
- Unit Entomology, Department of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
| |
Collapse
|
29
|
Geci R, Willis K, Burt A. Gene drive designs for efficient and localisable population suppression using Y-linked editors. PLoS Genet 2022; 18:e1010550. [PMID: 36574454 PMCID: PMC9829173 DOI: 10.1371/journal.pgen.1010550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/09/2023] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
The sterile insect technique (SIT) has been successful in controlling some pest species but is not practicable for many others due to the large number of individuals that need to be reared and released. Previous computer modelling has demonstrated that the release of males carrying a Y-linked editor that kills or sterilises female descendants could be orders of magnitude more efficient than SIT while still remaining spatially restricted, particularly if combined with an autosomal sex distorter. In principle, further gains in efficiency could be achieved by using a self-propagating double drive design, in which each of the two components (the Y-linked editor and the sex ratio distorter) boosted the transmission of the other. To better understand the expected dynamics and impact of releasing constructs of this new design we have analysed a deterministic population genetic and population dynamic model. Our modelling demonstrates that this design can suppress a population from very low release rates, with no invasion threshold. Importantly, the design can work even if homing rates are low and sex chromosomes are silenced at meiosis, potentially expanding the range of species amenable to such control. Moreover, the predicted dynamics and impacts can be exquisitely sensitive to relatively small (e.g., 25%) changes in allele frequencies in the target population, which could be exploited for sequence-based population targeting. Analysis of published Anopheles gambiae genome sequences indicates that even for weakly differentiated populations with an FST of 0.02 there may be thousands of suitably differentiated genomic sites that could be used to restrict the spread and impact of a release. Our proposed design, which extends an already promising development pathway based on Y-linked editors, is therefore a potentially useful addition to the menu of options for genetic biocontrol.
Collapse
Affiliation(s)
- René Geci
- Dept. of Life Sciences, Imperial College London, Silwood Park, United Kingdom
| | - Katie Willis
- Dept. of Life Sciences, Imperial College London, Silwood Park, United Kingdom
| | - Austin Burt
- Dept. of Life Sciences, Imperial College London, Silwood Park, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Silva SOF, de Mello CF, Julião GR, Dias R, Alencar J. Sexual Proportion and Egg Hatching of Vector Mosquitos in an Atlantic Forest Fragment in Rio de Janeiro, Brazil. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010013. [PMID: 36675962 PMCID: PMC9912254 DOI: 10.3390/life13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Some Aedinii mosquitoes are of high importance in the transmission of the sylvatic YFV. Usually, their eggs are very resistant and depend on the rain for their hatching. The present study evaluated the effect of multiple mosquito-egg immersions and the sex ratio of male and female specimens from Atlantic Forest remnants in the state of Rio de Janeiro, Brazil. Three sampling sites were selected in the municipality of Casimiro de Abreu, where 50 ovitraps were randomly installed to collect eggs from the ground level up to different heights, from August 2018 to December 2020. The mosquito sex ratios were compared between seasons and forest sites, using the generalized linear mixed model (GLMM), which included sampling months and trees as random effects. A total of 33,091 mosquito eggs were collected, of which 6152 eggs were already hatched (18%) and 26,939 were unhatched; of these, approximately 76% subsequently hatched. We found that 25% of the eggs corresponded to four species: Aedes albopictus (n = 1277), Ae. terrens (n = 793), Haemagogus janthinomys (n = 89), and Hg. leucocelaenus (n = 3033). The sex ratio (male:female) was variable concerning the sampling sites and the season. For most species, GLMM estimates found no difference in the variation of the average sex ratio as a function of these predictors, and there was no evidence of temporal autocorrelation in the mosquito data. The number of immersions necessary for hatching the eggs differed between mosquito species, and eggs collected in the dry season hatched both in the first immersions and the subsequent events. Co-occurrence of Aedes terrens and Hg. leucocelaenus was the most frequently observed pairwise species combination. Considering recurrent arbovirus outbreaks in Brazil and their burden on the human population, our study helps to shed light on how these vectors behave in nature; therefore, they can be used in surveillance programs.
Collapse
Affiliation(s)
- Shayenne Olsson Freitas Silva
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Postgraduate Program in Tropical Medicine, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil
| | - Cecilia Ferreira de Mello
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Genimar Rebouças Julião
- Laboratory of Entomology I, Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
- National Institute of Epidemiology of the Western Amazon—INCT EpiAmO—Fiocruz Rondônia, Rua da Beira 7671, Lagoa, Porto Velho 76812-245, RO, Brazil
| | - Rayane Dias
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Postgraduate Program in Tropical Medicine, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro 21040-360, RJ, Brazil
| | - Jeronimo Alencar
- Diptera Laboratory, Oswaldo Cruz Institute (Fiocruz), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Correspondence:
| |
Collapse
|
31
|
Asad M, Liu D, Chen J, Yang G. Applications of gene drive systems for population suppression of insect pests. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:724-733. [PMID: 36043456 DOI: 10.1017/s0007485322000268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Population suppression is an effective way for controlling insect pests and disease vectors, which cause significant damage to crop and spread contagious diseases to plants, animals and humans. Gene drive systems provide innovative opportunities for the insect pests population suppression by driving genes that impart fitness costs on populations of pests or disease vectors. Different gene-drive systems have been developed in insects and applied for their population suppression. Here, different categories of gene drives such as meiotic drive (MD), under-dominance (UD), homing endonuclease-based gene drive (HEGD) and especially the CRISPR/Cas9-based gene drive (CCGD) were reviewed, including the history, types, process and mechanisms. Furthermore, the advantages and limitations of applying different gene-drive systems to suppress the insect population were also summarized. This review provides a foundation for developing a specific gene-drive system for insect population suppression.
Collapse
Affiliation(s)
- Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Dan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
32
|
Verkuijl SAN, Gonzalez E, Li M, Ang JXD, Kandul NP, Anderson MAE, Akbari OS, Bonsall MB, Alphey L. A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias. Nat Commun 2022; 13:7145. [PMID: 36414618 PMCID: PMC9681865 DOI: 10.1038/s41467-022-34739-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (wGDe). Here, through an analysis using this linkage we show that in males inheritance bias of wGDe did not occur by homing, rather through increased propagation of the donor drive element. We test the same wGDe drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.
Collapse
Affiliation(s)
- Sebald A N Verkuijl
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Estela Gonzalez
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ming Li
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joshua X D Ang
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle A E Anderson
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.
- The Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
33
|
Champer SE, Kim IK, Clark AG, Messer PW, Champer J. Anopheles homing suppression drive candidates exhibit unexpected performance differences in simulations with spatial structure. eLife 2022; 11:e79121. [PMID: 36239372 PMCID: PMC9596161 DOI: 10.7554/elife.79121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Recent experiments have produced several Anopheles gambiae homing gene drives that disrupt female fertility genes, thereby eventually inducing population collapse. Such drives may be highly effective tools to combat malaria. One such homing drive, based on the zpg promoter driving CRISPR/Cas9, was able to eliminate a cage population of mosquitoes. A second version, purportedly improved upon the first by incorporating an X-shredder element (which biases inheritance towards male offspring), was similarly successful. Here, we analyze experimental data from each of these gene drives to extract their characteristics and performance parameters and compare these to previous interpretations of their experimental performance. We assess each suppression drive within an individual-based simulation framework that models mosquito population dynamics in continuous space. We find that the combined homing/X-shredder drive is actually less effective at population suppression within the context of our mosquito population model. In particular, the combined drive often fails to completely suppress the population, instead resulting in an unstable equilibrium between drive and wild-type alleles. By contrast, otherwise similar drives based on the nos promoter may prove to be more promising candidates for future development than originally thought.
Collapse
Affiliation(s)
- Samuel E Champer
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| | - Isabel K Kim
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| | - Andrew G Clark
- Department of Computational Biology, Cornell UniversityIthacaUnited States
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Philipp W Messer
- Department of Computational Biology, Cornell UniversityIthacaUnited States
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| |
Collapse
|
34
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
35
|
Melesse Vergara M, Labbé J, Tannous J. Reflection on the Challenges, Accomplishments, and New Frontiers of Gene Drives. BIODESIGN RESEARCH 2022; 2022:9853416. [PMID: 37850135 PMCID: PMC10521683 DOI: 10.34133/2022/9853416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/19/2022] [Indexed: 10/19/2023] Open
Abstract
Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.
Collapse
Affiliation(s)
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Invaio Sciences, Cambridge, MA 02138USA
| | - Joanna Tannous
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
36
|
Vitale M, Leo C, Courty T, Kranjc N, Connolly JB, Morselli G, Bamikole C, Haghighat-Khah RE, Bernardini F, Fuchs S. Comprehensive characterization of a transgene insertion in a highly repetitive, centromeric region of Anopheles mosquitoes. Pathog Glob Health 2022; 117:273-283. [PMID: 35861105 PMCID: PMC10081084 DOI: 10.1080/20477724.2022.2100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The availability of the genomic sequence of the malaria mosquito Anopheles gambiae has in recent years sparked the development of transgenic technologies with the potential to be used as novel vector control tools. These technologies rely on genome editing that confer traits able to affect vectorial capacity. This can be achieved by either reducing the mosquito population or by making mosquitoes refractory to the parasite infection. For any genetically modified organism that is regarded for release, molecular characterization of the transgene and flanking sites are essential for their safety assessment and post-release monitoring. Despite great advancements, Whole-Genome Sequencing data are still subject to limitations due to the presence of repetitive and unannotated DNA sequences. Faced with this challenge, we describe a number of techniques that were used to identify the genomic location of a transgene in the male bias mosquito strain Ag(PMB)1 considered for potential field application. While the initial inverse PCR identified the most likely insertion site on Chromosome 3 R 36D, reassessment of the data showed a high repetitiveness in those sequences and multiple genomic locations as potential insertion sites of the transgene. Here we used a combination of DNA sequencing analysis and in-situ hybridization to clearly identify the integration of the transgene in a poorly annotated centromeric region of Chromosome 2 R 19D. This study emphasizes the need for accuracy in sequencing data for the genome of organisms of medical importance such as Anopheles mosquitoes and other tools available that can support genomic locations of transgenes.
Collapse
Affiliation(s)
- Matteo Vitale
- Department of Life Sciences, Imperial College London, London, UK
| | - Chiara Leo
- Polo d'Innovazione di Genomica, Genetica, e Biologia, Siena, Italy
| | - Thomas Courty
- Department of Infectious Diseases, King's College London, London, UK
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, London, UK
| | - Giulia Morselli
- Department of Life Sciences, Imperial College London, London, UK
| | - Christopher Bamikole
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | | | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
37
|
Beeton NJ, Wilkins A, Ickowicz A, Hayes KR, Hosack GR. Spatial modelling for population replacement of mosquito vectors at continental scale. PLoS Comput Biol 2022; 18:e1009526. [PMID: 35648783 PMCID: PMC9191746 DOI: 10.1371/journal.pcbi.1009526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/13/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conventional vector control strategies to attempt to limit its burden. Novel control strategies require detailed safety assessment to ensure responsible and successful deployments. Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii, two closely related subspecies within the species complex Anopheles gambiae sensu lato (s.l.), are among the dominant malaria vectors in sub-Saharan Africa. These two subspecies readily hybridise and compete in the wild and are also known to have distinct niches, each with spatially and temporally varying carrying capacities driven by precipitation and land use factors. We model the spread and persistence of a population-modifying gene drive system in these subspecies across sub-Saharan Africa by simulating introductions of genetically modified mosquitoes across the African mainland and its offshore islands. We explore transmission of the gene drive between the two subspecies that arise from different hybridisation mechanisms, the effects of both local dispersal and potential wind-aided migration to the spread, and the development of resistance to the gene drive. Given the best current available knowledge on the subspecies’ life histories, we find that an introduced gene drive system with typical characteristics can plausibly spread from even distant offshore islands to the African mainland with the aid of wind-driven migration, with resistance beginning to take over within a decade. Our model accounts for regional to continental scale mechanisms, and demonstrates a range of realistic dynamics including the effect of prevailing wind on spread and spatio-temporally varying carrying capacities for subspecies. As a result, it is well-placed to answer future questions relating to mosquito gene drives as important life history parameters become better understood. Conventional control methods have dramatically reduced malaria, but it still kills over 300,000 children in Africa each year, and this number could increase as their effectiveness wanes. Novel control methods using gene drives rapidly reduce or modify malaria vector populations in laboratory settings, and hence are now being considered for field applications. We use modelling to assess how a gene drive might spread and persist in the malaria-carrying subspecies Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii. These two subspecies interbreed and compete, so we model how these interactions affect the spread of the drive at a continental scale. In scenarios that allow mosquitoes to travel on prevailing wind currents, we find that a gene drive can potentially spread across national borders—and jump from offshore islands to the African mainland—but spread is eventually arrested when the drive allele is ousted by a resistant allele. As we learn more about the population dynamics of both genetically modified and wild mosquitoes, and as gene drive systems are further developed to allow local containment and evade resistance, our model will be able to answer more detailed questions about how they can be applied in the field effectively and safely.
Collapse
Affiliation(s)
- Nicholas J. Beeton
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
- * E-mail: (NJB); (AW)
| | - Andrew Wilkins
- Mineral Resources, CSIRO, 1 Technology Court, Pullenvale QLD, Australia
- * E-mail: (NJB); (AW)
| | - Adrien Ickowicz
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
| | - Keith R. Hayes
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
| | | |
Collapse
|
38
|
Abstract
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
39
|
Verkuijl SAN, Ang JXD, Alphey L, Bonsall MB, Anderson MAE. The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Front Bioeng Biotechnol 2022; 10:856981. [PMID: 35419354 PMCID: PMC8996256 DOI: 10.3389/fbioe.2022.856981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Making discrete and precise genetic changes to wild populations has been proposed as a means of addressing some of the world's most pressing ecological and public health challenges caused by insect pests. Technologies that would allow this, such as synthetic gene drives, have been under development for many decades. Recently, a new generation of programmable nucleases has dramatically accelerated technological development. CRISPR-Cas9 has improved the efficiency of genetic engineering and has been used as the principal effector nuclease in different gene drive inheritance biasing mechanisms. Of these nuclease-based gene drives, homing endonuclease gene drives have been the subject of the bulk of research efforts (particularly in insects), with many different iterations having been developed upon similar core designs. We chart the history of homing gene drive development, highlighting the emergence of challenges such as unintended repair outcomes, "leaky" expression, and parental deposition. We conclude by discussing the progress made in developing strategies to increase the efficiency of homing endonuclease gene drives and mitigate or prevent unintended outcomes.
Collapse
Affiliation(s)
- Sebald A. N. Verkuijl
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joshua X. D. Ang
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
40
|
Wang GH, Du J, Chu CY, Madhav M, Hughes GL, Champer J. Symbionts and gene drive: two strategies to combat vector-borne disease. Trends Genet 2022; 38:708-723. [PMID: 35314082 DOI: 10.1016/j.tig.2022.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Mosquitoes bring global health problems by transmitting parasites and viruses such as malaria and dengue. Unfortunately, current insecticide-based control strategies are only moderately effective because of high cost and resistance. Thus, scalable, sustainable, and cost-effective strategies are needed for mosquito-borne disease control. Symbiont-based and genome engineering-based approaches provide new tools that show promise for meeting these criteria, enabling modification or suppression approaches. Symbiotic bacteria like Wolbachia are maternally inherited and manipulate mosquito host reproduction to enhance their vertical transmission. Genome engineering-based gene drive methods, in which mosquitoes are genetically altered to spread drive alleles throughout wild populations, are also proving to be a potentially powerful approach in the laboratory. Here, we review the latest developments in both symbionts and gene drive-based methods. We describe some notable similarities, as well as distinctions and obstacles, relating to these promising technologies.
Collapse
Affiliation(s)
- Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Du
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen Yi Chu
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mukund Madhav
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Beaghton PJ, Burt A. Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density. Theor Popul Biol 2022; 145:109-125. [PMID: 35247370 DOI: 10.1016/j.tpb.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Synthetic gene drive constructs are being developed to control disease vectors, invasive species, and other pest species. In a well-mixed random mating population a sufficiently strong gene drive is expected to eliminate a target population, but it is not clear whether the same is true when spatial processes play a role. In species with an appropriate biology it is possible that drive-induced reductions in density might lead to increased inbreeding, reducing the efficacy of drive, eventually leading to suppression rather than elimination, regardless of how strong the drive is. To investigate this question we analyse a series of explicitly solvable stochastic models considering a range of scenarios for the relative timing of mating, reproduction, and dispersal and analyse the impact of two different types of gene drive, a Driving Y chromosome and a homing construct targeting an essential gene. We find in all cases a sufficiently strong Driving Y will go to fixation and the population will be eliminated, except in the one life history scenario (reproduction and mating in patches followed by dispersal) where low density leads to increased inbreeding, in which case the population persists indefinitely, tending to either a stable equilibrium or a limit cycle. These dynamics arise because Driving Y males have reduced mating success, particularly at low densities, due to having fewer sisters to mate with. Increased inbreeding at low densities can also prevent a homing construct from eliminating a population. For both types of drive, if there is strong inbreeding depression, then the population cannot be rescued by inbreeding and it is eliminated. These results highlight the potentially critical role that low-density-induced inbreeding and inbreeding depression (and, by extension, other sources of Allee effects) can have on the eventual impact of a gene drive on a target population.
Collapse
Affiliation(s)
- P J Beaghton
- Institute for Security Science and Technology, South Kensington Campus, Imperial College London, London, UK; Department of Computing, South Kensington Campus, Imperial College London, London, UK.
| | - Austin Burt
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
| |
Collapse
|
42
|
Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes. Nat Commun 2022; 13:796. [PMID: 35145082 PMCID: PMC8831579 DOI: 10.1038/s41467-022-28419-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex. Release of genetically-modified sterile mosquitoes is a potential method of malaria control but has yet to be tested in the field. Here, the authors perform a mark-release-recapture experiment and show that genetically-modified mosquitoes have reduced survival and dispersal compared to wild-types.
Collapse
|
43
|
Birand A, Cassey P, Ross JV, Russell JC, Thomas P, Prowse TAA. Gene drives for vertebrate pest control: realistic spatial modelling of eradication probabilities and times for island mouse populations. Mol Ecol 2022; 31:1907-1923. [PMID: 35073448 PMCID: PMC9303646 DOI: 10.1111/mec.16361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Invasive alien species continue to threaten global biodiversity. CRISPR‐based gene drives, which can theoretically spread through populations despite imparting a fitness cost, could be used to suppress or eradicate pest populations. We develop an individual‐based, spatially explicit, stochastic model to simulate the ability of CRISPR‐based homing and X chromosome shredding drives to eradicate populations of invasive house mice (Mus muculus) from islands. Using the model, we explore the interactive effect of the efficiency of the drive constructs and the spatial ecology of the target population on the outcome of a gene‐drive release. We also consider the impact of polyandrous mating and sperm competition, which could compromise the efficacy of some gene‐drive strategies. Our results show that both drive strategies could be used to eradicate large populations of mice. Whereas parameters related to drive efficiency and demography strongly influence drive performance, we find that sperm competition following polyandrous mating is unlikely to impact the outcome of an eradication effort substantially. Assumptions regarding the spatial ecology of mice influenced the probability of and time required for eradication, with short‐range dispersal capacities and limited mate‐search areas producing ‘chase’ dynamics across the island characterized by cycles of local extinction and recolonization by mice. We also show that highly efficient drives are not always optimal, when dispersal and mate‐search capabilities are low. Rapid local population suppression around the introduction sites can cause loss of the gene drive before it can spread to the entire island. We conclude that, although the design of efficient gene drives is undoubtedly critical, accurate data on the spatial ecology of target species are critical for predicting the result of a gene‐drive release.
Collapse
Affiliation(s)
- Aysegul Birand
- Invasion Science and Wildlife Ecology Lab, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Phillip Cassey
- Invasion Science and Wildlife Ecology Lab, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Joshua V Ross
- School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - James C Russell
- School of Biological Sciences, Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Paul Thomas
- School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Thomas A A Prowse
- Invasion Science and Wildlife Ecology Lab, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
44
|
Bunting MD, Pfitzner C, Gierus L, White M, Piltz S, Thomas PQ. Generation of Gene Drive Mice for Invasive Pest Population Suppression. Methods Mol Biol 2022; 2495:203-230. [PMID: 35696035 DOI: 10.1007/978-1-0716-2301-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gene drives are genetic elements that are transmitted to greater than 50% of offspring and have potential for population modification or suppression. While gene drives are known to occur naturally, the recent emergence of CRISPR-Cas9 genome-editing technology has enabled generation of synthetic gene drives in a range of organisms including mosquitos, flies, and yeast. For example, studies in Anopheles mosquitos have demonstrated >95% transmission of CRISPR-engineered gene drive constructs, providing a possible strategy for malaria control. Recently published studies have also indicated that it may be possible to develop gene drive technology in invasive rodents such as mice. Here, we discuss the prospects for gene drive development in mice, including synthetic "homing drive" and X-shredder strategies as well as modifications of the naturally occurring t haplotype. We also provide detailed protocols for generation of gene drive mice through incorporation of plasmid-based transgenes in a targeted and non-targeted manner. Importantly, these protocols can be used for generating transgenic mice for any project that requires insertion of kilobase-scale transgenes such as knock-in of fluorescent reporters, gene swaps, overexpression/ectopic expression studies, and conditional "floxed" alleles.
Collapse
Affiliation(s)
- Mark D Bunting
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Chandran Pfitzner
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Luke Gierus
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Melissa White
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia
| | - Paul Q Thomas
- School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia.
- South Australian Genome Editing Facility, North Terrace, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| |
Collapse
|
45
|
Metchanun N, Borgemeister C, Amzati G, von Braun J, Nikolov M, Selvaraj P, Gerardin J. Modeling impact and cost-effectiveness of driving-Y gene drives for malaria elimination in the Democratic Republic of the Congo. Evol Appl 2022; 15:132-148. [PMID: 35126652 PMCID: PMC8792473 DOI: 10.1111/eva.13331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.
Collapse
Affiliation(s)
| | | | - Gaston Amzati
- Université Evangélique en AfriqueBukavuDemocratic Republic of the Congo
| | | | | | | | - Jaline Gerardin
- Institute for Disease ModelingBellevueWashingtonUSA
- Department of Preventive Medicine and Institute for Global HealthNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
46
|
Siddall A, Harvey-Samuel T, Chapman T, Leftwich PT. Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Front Bioeng Biotechnol 2022; 10:867851. [PMID: 35837548 PMCID: PMC9274970 DOI: 10.3389/fbioe.2022.867851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Sex determination pathways in insects are generally characterised by an upstream primary signal, which is highly variable across species, and that regulates the splicing of a suite of downstream but highly-conserved genes (transformer, doublesex and fruitless). In turn, these downstream genes then regulate the expression of sex-specific characteristics in males and females. Identification of sex determination pathways has and continues to be, a critical component of insect population suppression technologies. For example, "first-generation" transgenic technologies such as fsRIDL (Female-Specific Release of Insects carrying Dominant Lethals) enabled efficient selective removal of females from a target population as a significant improvement on the sterile insect technique (SIT). Second-generation technologies such as CRISPR/Cas9 homing gene drives and precision-guided SIT (pgSIT) have used gene editing technologies to manipulate sex determination genes in vivo. The development of future, third-generation control technologies, such as Y-linked drives, (female to male) sex-reversal, or X-shredding, will require additional knowledge of aspects of sexual development, including a deeper understanding of the nature of primary signals and dosage compensation. This review shows how knowledge of sex determination in target pest species is fundamental to all phases of the development of control technologies.
Collapse
Affiliation(s)
- Alex Siddall
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
47
|
Abstract
Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems. This Review summarizes the phenomenal progress in this field, focusing on optimal design features for full-drive elements (drives with linked Cas9 and guide RNA components) that either suppress target mosquito populations or modify them to prevent pathogen transmission, allelic drives for updating genetic elements, mitigating strategies including trans-complementing split-drives and genetic neutralizing elements, and the adaptation of drive technology to other organisms. These scientific advances, combined with ethical and social considerations, will facilitate the transparent and responsible advancement of these technologies towards field implementation.
Collapse
Affiliation(s)
- Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Abstract
Gene drives are an emerging technology with tremendous potential to impact public health, agriculture, and conservation. While gene drives can be described simply as selfish genetic elements (natural or engineered) that are inherited at non-Mendelian rates, upon closer inspection, engineered gene drive technology is a complex class of biotechnology that uses a diverse number of genetic features to bias rates of inheritance. As a complex technology, gene drives can be difficult to comprehend, not only for the public and stakeholders, but also to risk assessors, risk managers, and decisionmakers not familiar with gene drive literature. To address this difficulty, we describe a gene drive classification system based on 5 functional characteristics. These characteristics include a gene drive's objective, mechanism, release threshold, range, and persistence. The aggregate of the gene drive's characteristics can be described as the gene drive's architecture. Establishing a classification system to define different gene drive technologies should make them more comprehensible to the public and provide a framework to guide regulatory evaluation and decisionmaking.
Collapse
Affiliation(s)
- Justin Overcash
- Justin Overcash, PhD, is an Animal and Plant Health Inspection Service (APHIS) Science Fellow, Biotechnology Regulatory Services, Riverdale, MD
| | - Andrew Golnar
- Andrew Golnar, PhD, is an APHIS Science Fellow, Wildlife Services, Fort Collins, CO
| |
Collapse
|
49
|
Alcalay Y, Fuchs S, Galizi R, Bernardini F, Haghighat-Khah RE, Rusch DB, Adrion JR, Hahn MW, Tortosa P, Rotenberry R, Papathanos PA. The Potential for a Released Autosomal X-Shredder Becoming a Driving-Y Chromosome and Invasively Suppressing Wild Populations of Malaria Mosquitoes. Front Bioeng Biotechnol 2021; 9:752253. [PMID: 34957064 PMCID: PMC8698249 DOI: 10.3389/fbioe.2021.752253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Sex-ratio distorters based on X-chromosome shredding are more efficient than sterile male releases for population suppression. X-shredding is a form of sex distortion that skews spermatogenesis of XY males towards the preferential transmission of Y-bearing gametes, resulting in a higher fraction of sons than daughters. Strains harboring X-shredders on autosomes were first developed in the malaria mosquito Anopheles gambiae, resulting in strong sex-ratio distortion. Since autosomal X-shredders are transmitted in a Mendelian fashion and can be selected against, their frequency in the population declines once releases are halted. However, unintended transfer of X-shredders to the Y-chromosome could produce an invasive meiotic drive element, that benefits from its biased transmission to the predominant male-biased offspring and its effective shielding from female negative selection. Indeed, linkage to the Y-chromosome of an active X-shredder instigated the development of the nuclease-based X-shredding system. Here, we analyze mechanisms whereby an autosomal X-shredder could become unintentionally Y-linked after release by evaluating the stability of an established X-shredder strain that is being considered for release, exploring its potential for remobilization in laboratory and wild-type genomes of An. gambiae and provide data regarding expression on the mosquito Y-chromosome. Our data suggest that an invasive X-shredder resulting from a post-release movement of such autosomal transgenes onto the Y-chromosome is unlikely.
Collapse
Affiliation(s)
- Yehonatan Alcalay
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Roberto Galizi
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, United Kingdom
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Jeffrey R Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, United States.,Department of Computer Science, Indiana University, Bloomington, IN, United States
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, INSERM 1187, CNRS 9192, IRD 249, Plateforme de Recherche CYROI, Saint Denis, France
| | - Rachel Rotenberry
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
50
|
Gamez S, Chaverra-Rodriguez D, Buchman A, Kandul NP, Mendez-Sanchez SC, Bennett JB, Sánchez C HM, Yang T, Antoshechkin I, Duque JE, Papathanos PA, Marshall JM, Akbari OS. Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nat Commun 2021; 12:7202. [PMID: 34893590 PMCID: PMC8664916 DOI: 10.1038/s41467-021-27333-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be beneficial to drive the expression in a sex-specific manner to produce genetic sexing systems, sex ratio distorters, or even sex-specific gene drives, for example. To explore this possibility, here we develop a transgenic line of Drosophila melanogaster expressing Cas9 from the Y chromosome. We functionally characterize the utility of this strain for both sex selection and gene drive finding it to be quite effective. To explore its utility for population control, we built mathematical models illustrating its dynamics as compared to other state-of-the-art systems designed for both population modification and suppression. Taken together, our results contribute to the development of current CRISPR genetic control tools and demonstrate the utility of using sex-linked Cas9 strains for genetic control of animals.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Agragene Inc., San Diego, CA, 92121, USA
| | - Duverney Chaverra-Rodriguez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anna Buchman
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stelia C Mendez-Sanchez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Group for Research in Biochemistry and Microbiology (Grupo de Investigación en Bioquímica Y Microbiología-GIBIM), School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Héctor M Sánchez C
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jonny E Duque
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
- Centro de Investigaciones en Enfermedades Tropicales - CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Piedecuesta, Santander, Colombia
| | - Philippos A Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - John M Marshall
- Divisions of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|