1
|
Okhovatian S, Shakeri A, Huyer LD, Radisic M. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Biomacromolecules 2023; 24:4511-4531. [PMID: 37639715 PMCID: PMC10915885 DOI: 10.1021/acs.biomac.3c00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Locke Davenport Huyer
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
2
|
Reventun P, Sánchez-Esteban S, Cook-Calvete A, Delgado-Marín M, Roza C, Jorquera-Ortega S, Hernandez I, Tesoro L, Botana L, Zamorano JL, Zaragoza C, Saura M. Endothelial ILK induces cardioprotection by preventing coronary microvascular dysfunction and endothelial-to-mesenchymal transition. Basic Res Cardiol 2023; 118:28. [PMID: 37452166 PMCID: PMC10348984 DOI: 10.1007/s00395-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Endothelial dysfunction is an early event in coronary microvascular disease. Integrin-linked kinase (ILK) prevents endothelial nitric oxide synthase (eNOS) uncoupling and, thus, endothelial dysfunction. However, the specific role of endothelial ILK in cardiac function remains to be fully elucidated. We hypothesised that endothelial ILK plays a crucial role in maintaining coronary microvascular function and contractile performance in the heart. We generated an endothelial cell-specific ILK conditional knock-out mouse (ecILK cKO) and investigated cardiovascular function. Coronary endothelial ILK deletion significantly impaired cardiac function: ejection fraction, fractional shortening and cardiac output decreased, whilst left ventricle diastolic internal diameter decreased and E/A and E/E' ratios increased, indicating not only systolic but also diastolic dysfunction. The functional data correlated with extensive extracellular matrix remodelling and perivascular fibrosis, indicative of adverse cardiac remodelling. Mice with endothelial ILK deletion suffered early ischaemic-like events with ST elevation and transient increases in cardiac troponins, which correlated with fibrotic remodelling. In addition, ecILK cKO mice exhibited many features of coronary microvascular disease: reduced cardiac perfusion, impaired coronary flow reserve and arterial remodelling with patent epicardial coronary arteries. Moreover, endothelial ILK deletion induced a moderate increase in blood pressure, but the antihypertensive drug Losartan did not affect microvascular remodelling whilst only partially ameliorated fibrotic remodelling. The plasma miRNA profile reveals endothelial-to-mesenchymal transition (endMT) as an upregulated pathway in endothelial ILK conditional KO mice. Our results show that endothelial cells in the microvasculature in endothelial ILK conditional KO mice underwent endMT. Moreover, endothelial cells isolated from these mice and ILK-silenced human microvascular endothelial cells underwent endMT, indicating that decreased endothelial ILK contributes directly to this endothelial phenotype shift. Our results identify ILK as a crucial regulator of microvascular endothelial homeostasis. Endothelial ILK prevents microvascular dysfunction and cardiac remodelling, contributing to the maintenance of the endothelial cell phenotype.
Collapse
Affiliation(s)
- P Reventun
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
- School of Medicine, Department of Medicine, Cardiology Division, Johns Hopkins University, Baltimore, MD, United States
| | - S Sánchez-Esteban
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - A Cook-Calvete
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - M Delgado-Marín
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - C Roza
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - S Jorquera-Ortega
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain
| | - I Hernandez
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - L Tesoro
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
| | - L Botana
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
| | - J L Zamorano
- Servicio Cardiología, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - C Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Universidad Francisco de Vitoria, IRYCIS, Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - M Saura
- Facultad Medicina, Depto. Biología Sistemas (UD Fisiología), Universidad de Alcalá, IRYCIS, Mod 2 Planta 0, Ctra Madrid, Barcelona Km 33,500, Alcalá de Henares, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
3
|
Ponzoni M, Coles JG, Maynes JT. Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. Int J Mol Sci 2023; 24:3162. [PMID: 36834573 PMCID: PMC9963155 DOI: 10.3390/ijms24043162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Even with modern therapy, patients with heart failure only have a 50% five-year survival rate. To improve the development of new therapeutic strategies, preclinical models of disease are needed to properly emulate the human condition. Determining the most appropriate model represents the first key step for reliable and translatable experimental research. Rodent models of heart failure provide a strategic compromise between human in vivo similarity and the ability to perform a larger number of experiments and explore many therapeutic candidates. We herein review the currently available rodent models of heart failure, summarizing their physiopathological basis, the timeline of the development of ventricular failure, and their specific clinical features. In order to facilitate the future planning of investigations in the field of heart failure, a detailed overview of the advantages and possible drawbacks of each model is provided.
Collapse
Affiliation(s)
- Matteo Ponzoni
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - John G. Coles
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jason T. Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
4
|
PLK inhibitors identified by high content phenotypic screening promote maturation of human PSC-derived cardiomyocytes. Biochem Biophys Res Commun 2022; 620:113-120. [DOI: 10.1016/j.bbrc.2022.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
|
5
|
Abstract
ABSTRACT Cardiovascular disease (CVD) remains the leading cause of death worldwide. Therefore, exploring the mechanism of CVDs and critical regulatory factors is of great significance for promoting heart repair, reversing cardiac remodeling, and reducing adverse cardiovascular events. Recently, significant progress has been made in understanding the function of protein kinases and their interactions with other regulatory proteins in myocardial biology. Protein kinases are positioned as critical regulators at the intersection of multiple signals and coordinate nearly every aspect of myocardial responses, regulating contractility, metabolism, transcription, and cellular death. Equally, reconstructing the disrupted protein kinases regulatory network will help reverse pathological progress and stimulate cardiac repair. This review summarizes recent researches concerning the function of protein kinases in CVDs, discusses their promising clinical applications, and explores potential targets for future treatments.
Collapse
|
6
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
8
|
Hoebart C, Rojas‐Galvan NS, Ciotu CI, Aykac I, Reissig LF, Weninger WJ, Kiss A, Podesser BK, Fischer MJM, Heber S. No functional TRPA1 in cardiomyocytes. Acta Physiol (Oxf) 2021; 232:e13659. [PMID: 33819369 PMCID: PMC11478933 DOI: 10.1111/apha.13659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022]
Abstract
AIM There is mounting evidence that TRPA1 has a role in cardiac physiology and pathophysiology. We aim to clarify the site of TRPA1 expression in the heart and in particular whether the channel is expressed in cardiomyocytes. METHODS Due to the high calcium conductance of TRPA1, and marginal calcium changes being detectable, microfluorimetry in primary mouse cardiomyocytes, and in the cardiomyocyte cell lines H9c2 and HL-1, was applied. TRPA1 mRNA in mouse and human hearts, primary cardiomyocytes, and the cardiac cell lines were quantified. Dorsal root ganglia served as control for both methods. RESULTS In addition to AITC, the more potent and specific TRPA1 agonists JT010 and PF-4840154 failed to elicit a TRPA1-mediated response in native and electrically paced primary cardiomyocytes, and the cardiomyocyte cell lines H9c2 and HL-1. There were only marginal levels of TRPA1 mRNA in cardiomyocytes and cardiac cell lines, also in conditions of cell differentiation or inflammation, which might occur in pathophysiological conditions. Similarly, TRPV1 agonist capsaicin did not activate primary mouse cardiomyocytes, did not alter electrically paced activity in these, and did not activate H9c2 cells or alter spontaneous activity of HL-1 cells. Human pluripotent stem cells differentiated to cardiomyocytes had no relevant TRPA1 mRNA levels. Also in human post-mortem heart samples, TRPA1 mRNA levels were substantially lower compared with the respective dorsal root ganglion. CONCLUSION The results do not question a role of TRPA1 in the heart but exclude a direct effect in cardiomyocytes.
Collapse
Affiliation(s)
- Clara Hoebart
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | | | - Cosmin I. Ciotu
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Ibrahim Aykac
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | | | - Attila Kiss
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | - Bruno K. Podesser
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | - Stefan Heber
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
A Scalable Approach Reveals Functional Responses of iPSC Cardiomyocyte 3D Spheroids. SLAS DISCOVERY 2020; 26:352-363. [DOI: 10.1177/2472555220975332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) provide an in vitro model of the human myocardium. Complex 3D scaffolded culture methods improve the phenotypical maturity of iPSC-CMs, although typically at the expense of throughput. We have developed a novel, scalable approach that enables the use of iPSC-CM 3D spheroid models in a label-free readout system in a standard 96-well plate-based format. Spheroids were accurately positioned onto recording electrodes using a magnetic gold–iron oxide nanoparticle approach. Remarkably, both contractility (impedance) and extracellular field potentials (EFPs) could be detected from the actively beating spheroids over long durations and after automated dosing with pharmacological agents. The effects on these parameters of factors, such as co-culture (including human primary cardiac fibroblasts), extracellular buffer composition, and electrical pacing, were investigated. Beat amplitudes were increased greater than 15-fold by co-culture with fibroblasts. Optimization of extracellular Ca2+ fluxes and electrical pacing promoted the proper physiological response to positive inotropic agonists of increased beat amplitude (force) rather than the increased beat rate often observed in iPSC-CM studies. Mechanistically divergent repolarizations in different spheroid models were indicated by their responses to BaCl2 compared with E-4031. These studies demonstrate a new method that enables the pharmacological responses of 3D iPSC-CM spheroids to be determined in a label-free, standardized, 96-well plate-based system. This approach could have discovery applications across cardiovascular efficacy and safety, where parameters typically sought as readouts of iPSC-CM maturity or physiological relevance have the potential to improve assay predictivity.
Collapse
|
10
|
Jokela TA, LaBarge MA. Integration of mechanical and ECM microenvironment signals in the determination of cancer stem cell states. CURRENT STEM CELL REPORTS 2020; 7:39-47. [PMID: 33777660 DOI: 10.1007/s40778-020-00182-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Cancer stem cells (CSCs) are increasingly understood to play a central role in tumor progression. Growing evidence implicates tumor microenvironments as a source of signals that regulate or even impose CSC states on tumor cells. This review explores points of integration for microenvironment-derived signals that are thought to regulate CSCs in carcinomas. Recent findings CSC states are directly regulated by the mechanical properties and extra cellular matrix (ECM) composition of tumor microenvironments that promote CSC growth and survival, which may explain some modes of therapeutic resistance. CSCs sense mechanical forces and ECM composition through integrins and other cell surface receptors, which then activate a number of intracellular signaling pathways. The relevant signaling events are dynamic and context-dependent. Summary CSCs are thought to drive cancer metastases and therapeutic resistance. Cells that are in CSC states and more differentiated states appear to be reversible and conditional upon the components of the tumor microenvironment. Signals imposed by tumor microenvironment are of a combinatorial nature, ultimately representing the integration of multiple physical and chemical signals. Comprehensive understanding of the tumor microenvironment-imposed signaling that maintains cells in CSC states may guide future therapeutic interventions.
Collapse
Affiliation(s)
- Tiina A Jokela
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd, Duarte CA 91010
| |
Collapse
|
11
|
Liu R, Sun F, Forghani P, Armand LC, Rampoldi A, Li D, Wu R, Xu C. Proteomic Profiling Reveals Roles of Stress Response, Ca 2+ Transient Dysregulation, and Novel Signaling Pathways in Alcohol-Induced Cardiotoxicity. Alcohol Clin Exp Res 2020; 44:2187-2199. [PMID: 32981093 DOI: 10.1111/acer.14471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol use in pregnancy increases the risk of abnormal cardiac development, and excessive alcohol consumption in adults can induce cardiomyopathy, contractile dysfunction, and arrhythmias. Understanding molecular mechanisms underlying alcohol-induced cardiac toxicity could provide guidance in the development of therapeutic strategies. METHODS We have performed proteomic and bioinformatic analysis to examine protein alterations globally and quantitatively in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) treated with ethanol (EtOH). Proteins in both cell lysates and extracellular culture media were systematically quantitated. RESULTS Treatment with EtOH caused severe detrimental effects on hiPSC-CMs as indicated by significant cell death and deranged Ca2+ handling. Treatment of hiPSC-CMs with EtOH significantly affected proteins responsible for stress response (e.g., GPX1 and HSPs), ion channel-related proteins (e.g. ATP1A2), myofibril structure proteins (e.g., MYL2/3), and those involved in focal adhesion and extracellular matrix (e.g., ILK and PXN). Proteins involved in the TNF receptor-associated factor 2 signaling (e.g., CPNE1 and TNIK) were also affected by EtOH treatment. CONCLUSIONS The observed changes in protein expression highlight the involvement of oxidative stress and dysregulation of Ca2+ handling and contraction while also implicating potential novel targets in alcohol-induced cardiotoxicity. These findings facilitate further exploration of potential mechanisms, discovery of novel biomarkers, and development of targeted therapeutics against EtOH-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rui Liu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Department of Pediatrics, (RL), the Third Xiangya Hospital of Central South University, Changsha, China
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Parvin Forghani
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Lawrence C Armand
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Antonio Rampoldi
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Dong Li
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, (FS, RW), Georgia Institute of Technology, Atlanta, Georgia
| | - Chunhui Xu
- From the, Department of Pediatrics, (RL, PF, LCA, AR, DL, CX), Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, (CX), Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
12
|
Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020; 11:368. [PMID: 32477154 PMCID: PMC7235370 DOI: 10.3389/fphys.2020.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is mostly caused by mutations in genes encoding cytoskeletal and sarcomeric proteins. In the pediatric population, DCM is the predominant type of primitive myocardial disease. A severe form of DCM is associated with mutations in the DMD gene encoding dystrophin, which are the cause of Duchenne Muscular Dystrophy (DMD). DMD-associated cardiomyopathy is still poorly understood and orphan of a specific therapy. In the last 5 years, a rise of interest in disease models using human induced pluripotent stem cells (hiPSCs) has led to more than 50 original studies on DCM models. In this review paper, we provide a comprehensive overview on the advances in DMD cardiomyopathy disease modeling and highlight the most remarkable findings obtained from cardiomyocytes differentiated from hiPSCs of DMD patients. We will also describe how hiPSCs based studies have contributed to the identification of specific myocardial disease mechanisms that may be relevant in the pathogenesis of DCM, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | | | - Raffaele Coppini
- Department of NeuroFarBa, Università degli Studi di Firenze, Florence, Italy
| | - Nicole Ceschia
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Sacconi
- LENS, Università degli Studi di Firenze and National Institute of Optics (INO-CNR), Florence, Italy
| | | | - Silvia Favilli
- Pediatric Cardiology, Meyer Children's Hospital, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Han D, Wang Y, Wang Y, Dai X, Zhou T, Chen J, Tao B, Zhang J, Cao F. The Tumor-Suppressive Human Circular RNA CircITCH Sponges miR-330-5p to Ameliorate Doxorubicin-Induced Cardiotoxicity Through Upregulating SIRT6, Survivin, and SERCA2a. Circ Res 2020; 127:e108-e125. [PMID: 32392088 DOI: 10.1161/circresaha.119.316061] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Doxorubicin is one of the most potent antitumor agents available; however, its clinical use is restricted because it poses a risk of severe cardiotoxicity. Previous work has established that CircITCH (circular RNA ITCH [E3 ubiquitin-protein ligase]) is a broad-spectrum tumor-suppressive circular RNA and that its host gene, ITCH (E3 ubiquitin protein ligase), is involved in doxorubicin-induced cardiotoxicity (DOXIC). Whether CircITCH plays a role in DOXIC remains unknown. OBJECTIVE We aimed to dissect the role of CircITCH in DOXIC and further decipher its potential mechanisms. METHODS AND RESULTS Circular RNA sequencing was performed to screen the potentially involved circRNAs in DOXI pathogenesis. Quantitative polymerase chain reaction and RNA in situ hybridization revealed that CircITCH was downregulated in doxorubicin-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in the autopsy specimens from cancer patients who suffered from doxorubicin-induced cardiomyopathy. Cell death/viability assays, detection of cardiomyocyte necrosis markers, microelectrode array, and cardiomyocyte functional assays revealed that CircITCH ameliorated doxorubicin-induced cardiomyocyte injury and dysfunction. Detection of cellular/mitochondrial oxidative stress and DNA damage markers verified that CircITCH alleviated cellular/mitochondrial oxidative stress and DNA damage induced by doxorubicin. RNA pull-down assays, Ago2 immunoprecipitation and double fluorescent in situ hybridization identified miR-330-5p as a direct target of CircITCH. Moreover, CircITCH was found to function by acting as an endogenous sponge that sequestered miR-330-5p. Bioinformatic analysis, luciferase reporter assays, and quantitative polymerase chain reaction showed that SIRT6 (sirtuin 6), BIRC5 (baculoviral IAP repeat containing 5, Survivin), and ATP2A2 (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, SERCA2a [SR Ca2+-ATPase 2]) were direct targets of miR-330-5p and that they were regulated by the CircITCH/miR-330-5p axis in DOXIC. Further experiments demonstrated that CircITCH-mediated alleviation of DOXIC was dependent on the interactions between miR-330-5p and the 3'-UTRs of SIRT6, BIRC5, and ATP2A2 mRNA. Finally, AAV9 (adeno-associated virus serotype 9) vector-based overexpression of the well-conserved CircITCH partly prevented DOXIC in mice. CONCLUSIONS CircITCH represents a novel therapeutic target for DOXIC because it acts as a natural sponge of miR-330-5p, thereby upregulating SIRT6, Survivin and SERCA2a to alleviate doxorubicin-induced cardiomyocyte injury and dysfunction.
Collapse
Affiliation(s)
- Dong Han
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.).,Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei Province, China (Yongjun Wang, T.Z.)
| | - Yabin Wang
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.)
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| | - Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei Province, China (Yongjun Wang, T.Z.)
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| | | | - Jibin Zhang
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.)
| | - Feng Cao
- From the Department of Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing (D.H., J.Z., Yabin Wang, F.C.).,Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an Shaanxi Province, China (D.H., X.D., J.C., F.C.)
| |
Collapse
|
14
|
Dieseldorff Jones KM, Vied C, Valera IC, Chase PB, Parvatiyar MS, Pinto JR. Sexual dimorphism in cardiac transcriptome associated with a troponin C murine model of hypertrophic cardiomyopathy. Physiol Rep 2020; 8:e14396. [PMID: 32189431 PMCID: PMC7081104 DOI: 10.14814/phy2.14396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022] Open
Abstract
Heart disease remains the number one killer of women in the US. Nonetheless, studies in women and female animal models continue to be underrepresented in cardiac research. Hypertrophic cardiomyopathy (HCM), the most commonly inherited cardiac disorder, has been tied to sarcomeric protein variants in both sexes. Among the susceptible genes, TNNC1-encoding cardiac troponin C (cTnC)-causes a substantial HCM phenotype in mice. Mice bearing an HCM-associated cTnC-A8V point mutation exhibited a significant decrease in stroke volume and left ventricular diameter and volume. Importantly, isovolumetric contraction time was significantly higher for female HCM mice. We utilized a transcriptomic approach to investigate the basis underlying the sexual dimorphism observed in the cardiac physiology of adult male and female HCM mice. RNA sequencing revealed several altered canonical pathways within the HCM mice versus WT groups including an increase in eukaryotic initiation factor 2 signaling, integrin-linked kinase signaling, actin nucleation by actin-related protein-Wiskott-Aldrich syndrome family protein complex, regulation of actin-based motility by Rho kinase, vitamin D receptor/retinoid X receptor activation, and glutathione redox reaction pathways. In contrast, valine degradation, tricarboxylic acid cycle II, methionine degradation, and inositol phosphate compound pathways were notably down-regulated in HCM mice. These down-regulated pathways may be reduced in response to altered energetics in the hypertrophied hearts and may represent conservation of energy as the heart is compensating to meet increased contractile demands. HCM male versus female mice followed similar trends of the canonical pathways altered between HCM and WT. In addition, seven of the differentially expressed genes in both WT and HCM male versus female comparisons swapped directions in fold-change between the sexes. These findings suggest a sexually-dimorphic HCM phenotype due to a sarcomeric mutation and pinpoint several key targetable pathways and genes that may provide the means to alleviate the more severe decline in female cardiac function.
Collapse
Affiliation(s)
| | - Cynthia Vied
- Translational Science LaboratoryCollege of MedicineFlorida State UniversityTallahasseeFLUSA
| | - Isela C. Valera
- Department of Nutrition, Food and Exercise SciencesFlorida State UniversityTallahasseeFLUSA
| | - P. Bryant Chase
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Michelle S. Parvatiyar
- Department of Nutrition, Food and Exercise SciencesFlorida State UniversityTallahasseeFLUSA
| | - Jose R. Pinto
- Department of Biomedical SciencesCollege of MedicineFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
15
|
Wan W, He C, Du C, Wang Y, Wu S, Wang T, Zou R. Effect of ILK on small-molecule metabolism of human periodontal ligament fibroblasts with mechanical stretching. J Periodontal Res 2019; 55:229-237. [PMID: 31630411 DOI: 10.1111/jre.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mechanical stimuli can cause periodontal tissue reconstruction. Studies have found that changes in metabolites can be the terminal effect of integrin-mediated mechanical signaling. As a key kinase in integrin regulation, integrin-linked kinase (ILK) mediates mechanical signal transduction, which may contribute to metabolite changes. Defining the components of small-molecule metabolites can optimize mechanical stimuli and periodontal tissue reconstruction. Our purpose is to detect the effect of ILK-mediated mechanical signaling on intracellular small-molecule metabolites (amino acids and organic acids) in human periodontal ligament fibroblasts (HPDLFs). METHODS Primary HPDLFs were isolated by enzyme digestion method. Tensile stresses were applied on HPDLFs in vitro using a Flexcell system. ILK gene in HPDLFs was knocked down by RNA interference (RNAi). Twenty common amino acids and seven organic acids in HPDLFs were analyzed by gas chromatography/mass spectrometry technique. RESULTS Five amino acids (ie, alanine, glutamine, glutamate, glycine, and threonine) and three organic acids (ie, pyruvate, lactate, and citric acid) were found to be changed remarkably after mechanical stretching. In addition, baseline levels of four amino acids (ie, glutamate, glutamine, threonine, and glycine) and two organic acids (ie, lactate and citric acid) were significantly different in ILK knockdown compared with wild-type HPDLFs. CONCLUSION This study suggests that five amino acids (ie, alanine, glutamine, glutamate, glycine, and threonine) and three organic acids (ie, pyruvate, lactate, and citric acid) may act as cellular mediators for mechanical signals in HPDLFs. Among them, four amino acids (ie, glutamate, glutamine, threonine, and glycine) and two organic acids (ie, lactate and citric acid) may be closely linked to ILK.
Collapse
Affiliation(s)
- Wanting Wan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chuan He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | | | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shiyang Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tairan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Nikolajević Starčević J, Janić M, Šabovič M. Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients. Int J Mol Sci 2019; 20:ijms20051197. [PMID: 30857271 PMCID: PMC6429211 DOI: 10.3390/ijms20051197] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
In diabetic patients, cardiomyopathy is an important cause of heart failure, but its pathophysiology has not been completely understood thus far. Myocardial hypertrophy and diastolic dysfunction have been considered the hallmarks of diabetic cardiomyopathy (DCM), while systolic function is affected in the latter stages of the disease. In this article we propose the potential pathophysiological mechanisms responsible for myocardial hypertrophy and increased myocardial stiffness leading to diastolic dysfunction in this specific entity. According to our model, increased myocardial stiffness results from both cellular and extracellular matrix stiffness as well as cell–matrix interactions. Increased intrinsic cardiomyocyte stiffness is probably the most important contributor to myocardial stiffness. It results from the impairment in cardiomyocyte cytoskeleton. Several other mechanisms, specifically affected by diabetes, seem to also be significantly involved in myocardial stiffening, i.e., impairment in the myocardial nitric oxide (NO) pathway, coronary microvascular dysfunction, increased inflammation and oxidative stress, and myocardial sodium glucose cotransporter-2 (SGLT-2)-mediated effects. Better understanding of the complex pathophysiology of DCM suggests the possible value of drugs targeting the listed mechanisms. Antidiabetic drugs, NO-stimulating agents, anti-inflammatory agents, and SGLT-2 inhibitors are emerging as potential treatment options for DCM.
Collapse
Affiliation(s)
- Jovana Nikolajević Starčević
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Miodrag Janić
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| | - Mišo Šabovič
- Department of Vascular Diseases, University Medical Centre Ljubljana, Zaloška cesta 7; SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Sosa P, Alcalde-Estevez E, Plaza P, Troyano N, Alonso C, Martínez-Arias L, Evelem de Melo Aroeira A, Rodriguez-Puyol D, Olmos G, López-Ongil S, Ruíz-Torres MP. Hyperphosphatemia Promotes Senescence of Myoblasts by Impairing Autophagy Through Ilk Overexpression, A Possible Mechanism Involved in Sarcopenia. Aging Dis 2018; 9:769-784. [PMID: 30271655 PMCID: PMC6147593 DOI: 10.14336/ad.2017.1214] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
In mammalians, advancing age is associated with sarcopenia, the progressive and involuntary loss of muscle mass and strength. Hyperphosphatemia is an aging-related condition involved in several pathologies. The aim of this work was to assess whether hyperphosphatemia plays a role in the age-related loss of mass muscle and strength by inducing cellular senescence in murine myoblasts and to explore the intracellular mechanism involved in this effect. Cultured mouse C2C12 cells were treated with 10 mM beta-glycerophosphate (BGP] at different periods of time to induce hyperphosphatemia. BGP promoted cellular senescence after 24 h of treatment, assessed by the increased expression of p53, acetylated-p53 and p21 and senescence associated β-galactosidase activity. In parallel, BGP increased ILK expression and activity, followed by mTOR activation and autophagy reduction. Knocking-down ILK expression increased autophagy and protected cells from senescence induced by hyperphosphatemia. BGP also reduced the proliferative capacity of cultured myoblasts. Old mice (24-months-old] presented higher serum phosphate concentration, lower forelimb strength, higher expression of p53 and ILK and less autophagy in vastus muscle than young mice (5-months-old]. In conclusion, we propose that hyperphosphatemia induces senescence in cultured myoblasts through ILK overexpression, reducing their proliferative capacity, which could be a mechanism involved in the development of sarcopenia, since old mice showed loss of muscular strength correlated with high serum phosphate concentration and increased levels of ILK and p53.
Collapse
Affiliation(s)
- Patricia Sosa
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
| | - Elena Alcalde-Estevez
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
- Research Unit, Biomedical Research Foundation from Príncipe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain.
| | - Patricia Plaza
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
| | - Nuria Troyano
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
| | - Cristina Alonso
- Geriatric and Frailty Section, Getafe University Hospital, Getafe, Madrid, Spain.
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias. Instituto de Investigación Sanitaria del Principado de Asturias, Red de Investigación Renal (REDinREN] del ISCIII, Oviedo, Spain
| | | | - Diego Rodriguez-Puyol
- Research Unit, Biomedical Research Foundation from Príncipe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain.
- Nephrology Section, Biomedical Research Foundation from Principe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| | - Gemma Olmos
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| | - Susana López-Ongil
- Research Unit, Biomedical Research Foundation from Príncipe de Asturias University Hospital, Alcalá de Henares, Madrid, Spain.
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| | - María P. Ruíz-Torres
- System Biology Department, Alcala University, Alcalá de Henares, Madrid, Spain.
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain.
| |
Collapse
|
19
|
Dufresne SS, Boulanger-Piette A, Bossé S, Argaw A, Hamoudi D, Marcadet L, Gamu D, Fajardo VA, Yagita H, Penninger JM, Russell Tupling A, Frenette J. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy. Acta Neuropathol Commun 2018; 6:31. [PMID: 29699580 PMCID: PMC5922009 DOI: 10.1186/s40478-018-0533-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 01/13/2023] Open
Abstract
Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that regulates synchronously bone and skeletal muscle physiopathology is still elusive. Receptor-activator of nuclear factor κB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG) are the key regulators of osteoclast differentiation and bone remodelling. We thus hypothesized that RANK/RANKL/OPG, which is a key pathway for bone regulation, is involved in Duchenne muscular dystrophy (DMD) physiopathology. Our results show that muscle-specific RANK deletion (mdx-RANKmko) in dystrophin deficient mdx mice improves significantly specific force [54% gain in force] of EDL muscles with no protective effect against eccentric contraction-induced muscle dysfunction. In contrast, full-length OPG-Fc injections restore the force of dystrophic EDL muscles [162% gain in force], protect against eccentric contraction-induced muscle dysfunction ex vivo and significantly improve functional performance on downhill treadmill and post-exercise physical activity. Since OPG serves a soluble receptor for RANKL and as a decoy receptor for TRAIL, mdx mice were injected with anti-RANKL and anti-TRAIL antibodies to decipher the dual function of OPG. Injections of anti-RANKL and/or anti-TRAIL increase significantly the force of dystrophic EDL muscle [45% and 17% gains in force, respectively]. In agreement, truncated OPG-Fc that contains only RANKL domains produces similar gains, in terms of force production, than anti-RANKL treatments. To corroborate that full-length OPG-Fc also acts independently of RANK/RANKL pathway, dystrophin/RANK double-deficient mice were treated with full-length OPG-Fc for 10 days. Dystrophic EDL muscles exhibited a significant gain in force relative to untreated dystrophin/RANK double-deficient mice, indicating that the effect of full-length OPG-Fc is in part independent of the RANKL/RANK interaction. The sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) activity is significantly depressed in dysfunctional and dystrophic muscles and full-length OPG-Fc treatment increased SERCA activity and SERCA-2a expression. These findings demonstrate the superiority of full-length OPG-Fc treatment relative to truncated OPG-Fc, anti-RANKL, anti-TRAIL or muscle RANK deletion in improving dystrophic muscle function, integrity and protection against eccentric contractions. In conclusion, full-length OPG-Fc represents an efficient alternative in the development of new treatments for muscular dystrophy in which a single therapeutic approach may be foreseeable to maintain both bone and skeletal muscle functions.
Collapse
|
20
|
Rosales W, Lizcano F. The Histone Demethylase JMJD2A Modulates the Induction of Hypertrophy Markers in iPSC-Derived Cardiomyocytes. Front Genet 2018; 9:14. [PMID: 29479368 PMCID: PMC5811633 DOI: 10.3389/fgene.2018.00014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/10/2018] [Indexed: 01/04/2023] Open
Abstract
The development of cardiovascular pathologies is partly attributed to epigenetic causes, including histone methylation, which appears to be an important marker in hearts that develop cardiac hypertrophy. Previous studies showed that the histone demethylase JMJD2A can regulate the hypertrophic process in murine cardiomyocytes. However, the influence of JMJD2A on cardiac hypertrophy in a human cardiomyocyte model is still poorly understood. In the present study, cardiomyocytes derived from human induced pluripotent stem cells (iPSCs) were used. Hypertrophy was induced by angiotensin II and endothelin-1 (ET-1), and transfections were performed to overexpress JMJD2A and for small interfering RNA (siRNA)-induced silencing of JMJD2A. Gene expression analyses were determined using RT-PCR and Western blot. The expression levels of B-type natriuretic peptide (BNP), natriuretic peptide A (ANP), and beta myosin heavy chain (β-MHC) were increased by nearly 2–10-fold with ET-1 compared with the control. However, a higher level of JMJD2A and UTX was detected, whereas the level of JMJD2C was lower. When cardiomyocytes were transiently transfected with JMJD2A, an increase close to 150% in BNP was observed, and this increase was greater after treatment with ET-1. To verify the specificity of JMJD2A activity, a knockdown was performed by means of siRNA-JMJD2A, which led to a significant reduction in BNP. The involvement of JMJD2A suggests that histone-specific modifications are associated with genes encoding proteins that are actively transcribed during the hypertrophy process. Since BNP is closely related to JMJD2A expression, we suggest that there could be a direct influence of JMJD2A on the expression of BNP. These results may be studied further to reduce cardiac hypertrophy via the regulation of epigenetic modifiers.
Collapse
Affiliation(s)
- Wendy Rosales
- Center of Biomedical Research, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Research, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
21
|
Cardiac shock wave therapy promotes arteriogenesis of coronary micrangium, and ILK is involved in the biomechanical effects by proteomic analysis. Sci Rep 2018; 8:1814. [PMID: 29379038 PMCID: PMC5788936 DOI: 10.1038/s41598-018-19393-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
Cardiac Shock Wave Therapy (CSWT) improves myocardial perfusion and ameliorates cardiac remodeling after acute myocardial infarction (AMI), but the precise mechanisms remain obscure. Herein, we have applied CSWT to a rat model of AMI to demonstrate the arteriogenesis of coronary micrangium and protein expression changes in ischemic myocardium after CSWT. Four weeks after CSWT, the fraction shortening of rats was improved greatly and the cardiomyocyte apoptosis index was significantly lower than the AMI group (P < 0.05). Besides, the fibrotic area was markedly decreased in the CSWT group. In the infarction border zone, the thickness of smooth muscle layer was expanded apparently after CSWT. Label-free quantitative proteomic analysis and bioinformatics analysis revealed that the differentially expressed proteins were largely enriched in the focal adhesion signaling pathway. And integrin linked kinase (ILK) may be a key factor contributed to arteriogenesis of coronary micrangium during CSWT. In conclusion, non-invasive cardiac shock wave could promote arteriogenesis of coronary micrangium and alleviate myocardial apoptosis and fibrosis after AMI. Furthermore, focal adhesion signaling pathway may have a central role in the related signal network and ILK was closely related to the arteriogenesis of coronary micrangium during CSWT.
Collapse
|
22
|
Park KC, Kim SW, Jeon JY, Jo AR, Choi HJ, Kim J, Lee HG, Kim Y, Mills GB, Noh SH, Lee MG, Park ES, Cheong JH. Survival of Cancer Stem-Like Cells Under Metabolic Stress via CaMK2α-mediated Upregulation of Sarco/Endoplasmic Reticulum Calcium ATPase Expression. Clin Cancer Res 2017; 24:1677-1690. [DOI: 10.1158/1078-0432.ccr-17-2219] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
|
23
|
Martewicz S, Serena E, Zatti S, Keller G, Elvassore N. Substrate and mechanotransduction influence SERCA2a localization in human pluripotent stem cell-derived cardiomyocytes affecting functional performance. Stem Cell Res 2017; 25:107-114. [PMID: 29125993 DOI: 10.1016/j.scr.2017.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/08/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Physical cues are major determinants of cellular phenotype and evoke physiological and pathological responses on cell structure and function. Cellular models aim to recapitulate basic functional features of their in vivo counterparts or tissues in order to be of use in in vitro disease modeling or drug screening and testing. Understanding how culture systems affect in vitro development of human pluripotent stem cell (hPSC)-derivatives allows optimization of cellular human models and gives insight in the processes involved in their structural organization and function. In this work, we show involvement of the mechanotransduction pathway RhoA/ROCK in the structural reorganization of hPSC-derived cardiomyocytes after adhesion plating. These structural changes have a major impact on the intracellular localization of SERCA2 pumps and concurrent improvement in calcium cycling. The process is triggered by cell interaction with the culture substrate, which mechanical cues drive sarcomeric alignment and SERCA2a spreading and relocalization from a perinuclear to a whole-cell distribution. This structural reorganization is mediated by the mechanical properties of the substrate, as shown by the process failure in hPSC-CMs cultured on soft 4kPa hydrogels as opposed to physiologically stiff 16kPa hydrogels and glass. Finally, pharmacological inhibition of Rho-associated protein kinase (ROCK) by different compounds identifies this specific signaling pathway as a major player in SERCA2 localization and the associated improvement in hPSC-CMs calcium handling ability in vitro.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Elena Serena
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy
| | - Susi Zatti
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, via Marzolo 9, Padova 35131, Italy; Venetian Institute of Molecular Medicine, via Orus 2, Padova 35129, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
24
|
Duan Q, Song P, Ding Y, Zou MH. Activation of AMP-activated protein kinase by metformin ablates angiotensin II-induced endoplasmic reticulum stress and hypertension in mice in vivo. Br J Pharmacol 2017; 174:2140-2151. [PMID: 28436023 DOI: 10.1111/bph.13833] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/29/2017] [Accepted: 04/16/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Metformin, one of the most frequently prescribed medications for type 2 diabetes, reportedly exerts BP-lowering effects in patients with diabetes. However, the effects and underlying mechanisms of metformin on BP in non-diabetic conditions remain to be determined. The aim of the present study was to determine the effects of metformin on angiotensin II (Ang II) infusion-induced hypertension in vivo. EXPERIMENTAL APPROACH The effects of metformin on BP were investigated in wild-type (WT) C57BL/6J mice and in mice lacking AMP-activated protein kinase α2 (AMPKα2) mice with or without Ang II infusion. Also, the effect of metformin on Ang II-induced endoplasmic reticulum (ER) stress was explored in cultured human vascular smooth muscle cells (hVSMCs). KEY RESULTS Metformin markedly reduced BP in Ang II-infused WT mice but not in AMPKα2-deficient mice. In cultured hVSMCs, Ang II treatment resulted in inactivation of AMPK, as well as the subsequent induction of spliced X-box binding protein-1, phosphorylation of eukaryotic translation initiation factor 2α and expression of glucose-regulated protein 78 kDa, representing three well-characterized ER stress biomarkers. Moreover, AMPK activation by metformin ablated Ang II-induced ER stress in hVSMCs. Mechanistically, metformin-activated AMPKα2 suppressed ER stress by increasing phospholamban phosphorylation. CONCLUSION AND IMPLICATIONS Metformin alleviates Ang II-triggered hypertension in mice by activating AMPKα2, which mediates phospholamban phosphorylation and inhibits Ang II-induced ER stress in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Quanlu Duan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA.,Division of Cardiology, Department Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
25
|
Lu W, Xie J, Gu R, Xu B. Expression of integrin-linked kinase improves cardiac function in a swine model of myocardial infarction. Exp Ther Med 2017; 13:1868-1874. [PMID: 28565779 PMCID: PMC5443207 DOI: 10.3892/etm.2017.4162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022] Open
Abstract
Previous studies have described the beneficial effects of overexpressing integrin-linked kinase (ILK) after myocardial infarction (MI) in small animal models. However, the effects of ILK in pre-clinical large animals are not known. To move closer to clinical translation, we examined the effects of ILK gene transfer in a swine model of ischemic heart disease. Swine received percutaneous intracoronary injections of adenoviral vector expressing ILK (n=10) or empty ad-null (n=10) in the left anterior descending coronary artery (LAD) following LAD occlusion. Four weeks after transfection, we confirmed that transgene expression was restricted to the infarcted area in the cardiac tissue. Imaging studies demonstrated preserved cardiac function in the ILK group. ILK treatment was associated with reduced infarcted scar size and preserved left ventricular (LV) geometry (LV diameter and LV wall thickness). Enhanced angiogenesis was preserved in the ILK animals, along with reduction of apoptosis. ILK gene therapy improves cardiac remodeling and function in swine following MI associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation with no signs of toxicity. These results may deliver a new approach to treat post-infarct remodeling and subsequent heart failure.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Jun Xie
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Rong Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
26
|
Kragl M, Schubert R, Karsjens H, Otter S, Bartosinska B, Jeruschke K, Weiss J, Chen C, Alsteens D, Kuss O, Speier S, Eberhard D, Müller DJ, Lammert E. The biomechanical properties of an epithelial tissue determine the location of its vasculature. Nat Commun 2016; 7:13560. [PMID: 27995929 PMCID: PMC5187430 DOI: 10.1038/ncomms13560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor ‘empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue. Vasculature is denser in soft than in stiff tissues. Kragl et al. suggest a mechanistic link between biomechanical tissue properties and vascularization by showing that integrin-linked kinase reduces the contractile forces of the cell cortex in endocrine pancreatic cells, facilitating their adhesion to blood vessels and enabling pancreatic islet vascularization.
Collapse
Affiliation(s)
- Martin Kragl
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Rajib Schubert
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Haiko Karsjens
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Silke Otter
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Kay Jeruschke
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Chunguang Chen
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David Alsteens
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stephan Speier
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Daniel J Müller
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Haque ZK, Wang DZ. How cardiomyocytes sense pathophysiological stresses for cardiac remodeling. Cell Mol Life Sci 2016; 74:983-1000. [PMID: 27714411 DOI: 10.1007/s00018-016-2373-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
In the past decades, the cardiovascular community has laid out the fundamental signaling cascades that become awry in the cardiomyocyte during the process of pathologic cardiac remodeling. These pathways are initiated at the cell membrane and work their way to the nucleus to mediate gene expression. Complexity is multiplied as the cardiomyocyte is subjected to cross talk with other cells as well as a barrage of extracellular stimuli and mechanical stresses. In this review, we summarize the signaling cascades that play key roles in cardiac function and then we proceed to describe emerging concepts of how the cardiomyocyte senses the mechanical and environmental stimuli to transition to the deleterious genetic program that defines pathologic cardiac remodeling. As a highlighting example of these processes, we illustrate the transition from a compensated hypertrophied myocardium to a decompensated failing myocardium, which is clinically manifested as decompensated heart failure.
Collapse
Affiliation(s)
- Zaffar K Haque
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 1260 John F. Enders Research Bldg, 320 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
28
|
Jia Y, Chang HC, Schipma MJ, Liu J, Shete V, Liu N, Sato T, Thorp EB, Barger PM, Zhu YJ, Viswakarma N, Kanwar YS, Ardehali H, Thimmapaya B, Reddy JK. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice. PLoS One 2016; 11:e0160755. [PMID: 27548259 PMCID: PMC4993490 DOI: 10.1371/journal.pone.0160755] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cadherins/genetics
- Cadherins/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cyclic Nucleotide Phosphodiesterases, Type 1/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism
- Embryo, Mammalian
- Energy Metabolism
- Female
- Gene Deletion
- Gene Expression Profiling
- Gene Expression Regulation
- Genes, Lethal
- Gestational Age
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Mediator Complex Subunit 1/deficiency
- Mediator Complex Subunit 1/genetics
- Mice
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/pathology
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Peroxisome Proliferator-Activated Receptors/genetics
- Peroxisome Proliferator-Activated Receptors/metabolism
- Pregnancy
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hsiang-Chun Chang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Matthew J. Schipma
- Next Generation Sequencing Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jing Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Varsha Shete
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ning Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatsuya Sato
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Philip M. Barger
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yi-Jun Zhu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Navin Viswakarma
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yashpal S. Kanwar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hossein Ardehali
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (JKR); (BT)
| | - Janardan K. Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (JKR); (BT)
| |
Collapse
|
29
|
Herron TJ, Rocha AMD, Campbell KF, Ponce-Balbuena D, Willis BC, Guerrero-Serna G, Liu Q, Klos M, Musa H, Zarzoso M, Bizy A, Furness J, Anumonwo J, Mironov S, Jalife J. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function. Circ Arrhythm Electrophysiol 2016; 9:e003638. [PMID: 27069088 DOI: 10.1161/circep.113.003638] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 03/16/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. METHODS AND RESULTS Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. CONCLUSIONS Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers.
Collapse
Affiliation(s)
- Todd J Herron
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.).
| | - Andre Monteiro Da Rocha
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Katherine F Campbell
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Daniela Ponce-Balbuena
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - B Cicero Willis
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Guadalupe Guerrero-Serna
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Qinghua Liu
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Matt Klos
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Hassan Musa
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Manuel Zarzoso
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Alexandra Bizy
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Jamie Furness
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Justus Anumonwo
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - Sergey Mironov
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| | - José Jalife
- From the Center for Arrhythmia Research, Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI (T.J.H., A.M.D.R., K.C., D.P.-B., B.C.W., G.G.-S., Q.L., J.F., J.A., S.M., J.J.); Department of Medicine, University of California San Diego, La Jolla, CA (M.K.); Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH (H.M.); Shanxi Medical University, Zhejiang, China (Q.L.); and University of Valencia, Valencia, Spain (M.Z., A.B.)
| |
Collapse
|
30
|
Traister A, Lu M, Coles JG, Maynes JT. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry. Data Brief 2016; 7:1148-50. [PMID: 27408918 PMCID: PMC4927968 DOI: 10.1016/j.dib.2016.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 11/26/2022] Open
Abstract
Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Alexandra Traister
- Division of Cardiovascular Surgery, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Mingliang Lu
- Division of Cardiovascular Surgery, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - John G Coles
- Division of Cardiovascular Surgery, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8; Departments of Anesthesia and Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 2J7
| |
Collapse
|
31
|
Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:110-22. [PMID: 27208698 PMCID: PMC5067302 DOI: 10.1016/j.pbiomolbio.2016.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
Abstract
Cardiac auto-regulation involves integrated regulatory loops linking electrics and mechanics in the heart. Whereas mechanical activity is usually seen as 'the endpoint' of cardiac auto-regulation, it is important to appreciate that the heart would not function without feed-back from the mechanical environment to cardiac electrical (mechano-electric coupling, MEC) and mechanical (mechano-mechanical coupling, MMC) activity. MEC and MMC contribute to beat-by-beat adaption of cardiac output to physiological demand, and they are involved in various pathological settings, potentially aggravating cardiac dysfunction. Experimental and computational studies using rabbit as a model species have been integral to the development of our current understanding of MEC and MMC. In this paper we review this work, focusing on physiological and pathological implications for cardiac function.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
32
|
Abstract
Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.
Collapse
Affiliation(s)
- Rémi Peyronnet
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Jeanne M Nerbonne
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.)
| | - Peter Kohl
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (R.P., P.K.); Departments of Developmental Biology and Internal Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO (J.M.N.); Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Freiburg, Germany (R.P., P.K.).
| |
Collapse
|
33
|
IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover. Cell Rep 2016; 14:2668-82. [DOI: 10.1016/j.celrep.2016.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
|
34
|
Liensinine- and Neferine-Induced Cardiotoxicity in Primary Neonatal Rat Cardiomyocytes and Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2016; 17:ijms17020186. [PMID: 26840304 PMCID: PMC4783920 DOI: 10.3390/ijms17020186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
Due to drug-induced potential congestive heart failure and irreversible dilated cardiomyopathies, preclinical evaluation of cardiac dysfunction is important to assess the safety of traditional or novel treatments. The embryos of Nelumbo nucifera Gaertner seeds are a homology of traditional Chinese medicine and food. In this study, we applied the real time cellular analysis (RTCA) Cardio system, which can real-time monitor the contractility of cardiomyocytes (CMs), to evaluate drug safety in rat neonatal CMs and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). This study showed detailed biomechanical CM contractility in vitro, and provided insights into the cardiac dysfunctions associated with liensinine and neferine treatment. These effects exhibited dose and time-dependent recovery. Neferine showed stronger blocking effect in rat neonatal CMs than liensinine. In addition, the effects of liensinine and neferine were further evaluated on hiPS-CMs. Our study also indicated that both liensinine and neferine can cause disruption of calcium homeostasis. For the first time, we demonstrated the potential cardiac side effects of liensinine or neferine. While the same inhibition was observed on hiPS-CMs, more importantly, this study introduced an efficient and effective approach to evaluate the cardiotoxicity of the existing and novel drug candidates.
Collapse
|
35
|
Mu D, Zhang XL, Xie J, Yuan HH, Wang K, Huang W, Li GN, Lu JR, Mao LJ, Wang L, Cheng L, Mai XL, Yang J, Tian CS, Kang LN, Gu R, Zhu B, Xu B. Intracoronary Transplantation of Mesenchymal Stem Cells with Overexpressed Integrin-Linked Kinase Improves Cardiac Function in Porcine Myocardial Infarction. Sci Rep 2016; 6:19155. [PMID: 26750752 PMCID: PMC4707493 DOI: 10.1038/srep19155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
The effect of mesenchymal stem cell (MSCs)-based therapy on treating acute myocardial infarction (MI) is limited due to poor engraftment and limited regenerative potential. Here we engineered MSCs with integrin-linked kinase (ILK), a pleiotropic protein critically regulating cell survival, proliferation, differentiation, and angiogenesis. We firstly combined ferumoxytol with poly-L-lysine (PLL), and found this combination promisingly enabled MRI visualization of MSCs in vitro and in vivo with good safety. We provided visually direct evidence that intracoronary ILK-MSCs had substantially enhanced homing capacity to infarct myocardium in porcine following cardiac catheterization induced MI. Intracoronary transplantation of allogeneic ILK-MSCs, but not vector-MSCs, significantly enhanced global left ventricular ejection fraction (LVEF) by 7.8% compared with baseline, by 10.3% compared with vehicles, and inhibited myocardial remodeling compared with vehicles at 15-day follow-up. Compared with vector-MSCs, ILK-MSCs significantly improved regional LV contractile function, reduced scar size, fibrosis, cell apoptosis, and increased regional myocardial perfusion and cell proliferation. This preclinical study indicates that ILK-engineered MSCs might promote the clinical translation of MSC-based therapy in post-MI patients, and provides evidence that ferumoxytol labeling of cells combined with PLL is feasible in in vivo cell tracking.
Collapse
Affiliation(s)
- Dan Mu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xin-Lin Zhang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jun Xie
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hui-Hua Yuan
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Kun Wang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wei Huang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guan-Nan Li
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jian-Rong Lu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Li-Juan Mao
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lian Wang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Le Cheng
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiao-Li Mai
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jun Yang
- Department of Pathology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chuan-Shuai Tian
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Li-Na Kang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Rong Gu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Bin Zhu
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
36
|
Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute Myocardial Response to Stretch: What We (don't) Know. Front Physiol 2016; 6:408. [PMID: 26779036 PMCID: PMC4700209 DOI: 10.3389/fphys.2015.00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
Myocardial stretch, as result of acute hemodynamic overload, is one of the most frequent challenges to the heart and the ability of the heart to intrinsically adapt to it is essential to prevent circulatory congestion. In this review, we highlight the historical background, the currently known mechanisms, as well as the gaps in the understanding of this physiological response. The systolic adaptation to stretch is well-known for over 100 years, being dependent on an immediate increase in contractility—known as the Frank-Starling mechanism—and a further progressive increase—the slow force response. On the other hand, its diastolic counterpart remains largely unstudied. Mechanosensors are structures capable of perceiving mechanical signals and activating pathways that allow their transduction into biochemical responses. Although the connection between these structures and stretch activated pathways remains elusive, we emphasize those most likely responsible for the initiation of the acute response. Calcium-dependent pathways, including angiotensin- and endothelin-related pathways; and cGMP-dependent pathways, comprising the effects of nitric oxide and cardiac natriuretic hormones, embody downstream signaling. The ischemic setting, a paradigmatic situation of acute hemodynamic overload, is also touched upon. Despite the relevant knowledge accumulated, there is much that we still do not know. The quest for further understanding the myocardial response to acute stretch may provide new insights, not only in its physiological importance, but also in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- João S Neves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - André M Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Manuel Neiva-Sousa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - João Almeida-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Ricardo Castro-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| |
Collapse
|
37
|
Edmunds RC, Gill JA, Baldwin DH, Linbo TL, French BL, Brown TL, Esbaugh AJ, Mager EM, Stieglitz J, Hoenig R, Benetti D, Grosell M, Scholz NL, Incardona JP. Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. Sci Rep 2015; 5:17326. [PMID: 26658479 PMCID: PMC4674699 DOI: 10.1038/srep17326] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022] Open
Abstract
Crude oils from distinct geological sources worldwide are toxic to developing fish hearts. When oil spills occur in fish spawning habitats, natural resource injury assessments often rely on conventional morphometric analyses of heart form and function. The extent to which visible indicators correspond to molecular markers for cardiovascular stress is unknown for pelagic predators from the Gulf of Mexico. Here we exposed mahi (Coryphaena hippurus) embryos to field-collected crude oil samples from the 2010 Deepwater Horizon disaster. We compared visible heart defects (edema, abnormal looping, reduced contractility) to changes in expression of cardiac-specific genes that are diagnostic of heart failure in humans or associated with loss-of-function zebrafish cardiac mutants. Mahi exposed to crude oil during embryogenesis displayed typical symptoms of cardiogenic syndrome as larvae. Contractility, looping, and circulatory defects were evident, but larval mahi did not exhibit downstream craniofacial and body axis abnormalities. A gradation of oil exposures yielded concentration-responsive changes in morphometric and molecular responses, with relative sensitivity being influenced by age. Our findings suggest that 1) morphometric analyses of cardiac function are more sensitive to proximal effects of crude oil-derived chemicals on the developing heart, and 2) molecular indicators reveal a longer-term adverse shift in cardiogenesis trajectory.
Collapse
Affiliation(s)
- Richard C Edmunds
- National Research Council Associate Program, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - J A Gill
- Frank Orth and Associates, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - David H Baldwin
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Tiffany L Linbo
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Barbara L French
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Tanya L Brown
- Frank Orth and Associates, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas, Marine Science Institute, 750 Channel View Dr., Port Aransas, TX 78373 USA
| | - Edward M Mager
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - John Stieglitz
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Ron Hoenig
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Cswy., Miami, FL 33149 USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112 USA
| |
Collapse
|
38
|
Mechanosensitivity of integrin adhesion complexes: role of the consensus adhesome. Exp Cell Res 2015; 343:7-13. [PMID: 26515553 DOI: 10.1016/j.yexcr.2015.10.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022]
Abstract
Cell and tissue stiffness have been known to contribute to both developmental and pathological signalling for some time, but the underlying mechanisms remain elusive. Integrins and their associated adhesion signalling complexes (IACs), which form a nexus between the cell cytoskeleton and the extracellular matrix, act as a key force sensing and transducing unit in cells. Accordingly, there has been much interest in obtaining a systems-level understanding of IAC composition. Proteomic approaches have revealed the complexity of IACs and identified a large number of components that are regulated by cytoskeletal force. Here we review the function of the consensus adhesome, an assembly of core IAC proteins that emerged from a meta-analysis of multiple proteomic datasets, in the context of mechanosensing. As IAC components have been linked to a variety of diseases involved with rigidity sensing, the field is now in a position to define the mechanosensing function of individual IAC proteins and elucidate their mechanisms of action.
Collapse
|
39
|
Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ Res 2015; 116:1462-1476. [PMID: 25858069 PMCID: PMC4394185 DOI: 10.1161/circresaha.116.304937] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 01/10/2023]
Abstract
Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load. However, under prolonged and abnormal loading conditions, the remodeling processes can become maladaptive, leading to altered physiological function and the development of pathological cardiac hypertrophy and heart failure. Although the mechanisms underlying mechanotransduction are far from being fully elucidated, human and mouse genetic studies have highlighted various cytoskeletal and sarcolemmal structures in cardiac myocytes as the likely candidates for load transducers, based on their link to signaling molecules and architectural components important in disease pathogenesis. In this review, we summarize recent developments that have uncovered specific protein complexes linked to mechanotransduction and mechanotransmission within the sarcomere, the intercalated disc, and at the sarcolemma. The protein structures acting as mechanotransducers are the first step in the process that drives physiological and pathological cardiac hypertrophy and remodeling, as well as the transition to heart failure, and may provide better insights into mechanisms driving mechanotransduction-based diseases.
Collapse
Affiliation(s)
- Robert C. Lyon
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fabian Zanella
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jeffrey H. Omens
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|