1
|
Buckingham AB, Ho S, Knops-Mckim F, Ingemarsdotter CK, Lever AM. Optimization of a lentivirus-mediated gene therapy targeting HIV-1 RNA to eliminate HIV-1-infected cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102341. [PMID: 39434850 PMCID: PMC11491724 DOI: 10.1016/j.omtn.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Persistence of HIV-1 in cellular reservoirs results in lifelong infection, with cure achieved only in rare cases through ablation of marrow-derived cells. We report on optimization of an approach that could potentially be aimed at eliminating these reservoirs, hijacking the HIV-1 alternative splicing process to functionalize the herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) cell suicide system through targeted RNA trans-splicing at the HIV-1 D4 donor site. AUG1-deficient HSVtk therapeutic pre-mRNA was designed to gain an in-frame start codon from HIV-1 tat1. D4-targeting lentiviral vectors were produced and used to transduce HIV-1-expressing cells, where trans-spliced HIV-1 tat/HSVtk mRNA was successfully detected. However, translation of catalytically active HSVtk polypeptides from internal AUGs in HSVtk ΔAUG1 caused GCV-mediated cytotoxicity in uninfected cells. Modifying these sites in the D4 opt 2 lentiviral vector effectively mitigated this major off-target effect. Promoter choice was optimized for increased transgene expression. Affinity for HIV-1 RNA predicted in silico correlated with the propensity of opt 2 payloads to induce HIV-1 RNA trans-splicing and killing of HIV-1-expressing cells with no significant effect on uninfected cells. Following latency reversing agent (LRA) optimization and treatment, 45% of lymphocytes in an HIV-1-infected latency model could be eliminated with D4 opt 2/GCV. Further development would be warranted to exploit this approach.
Collapse
Affiliation(s)
- Amanda B. Buckingham
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Sophia Ho
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | | | - Carin K. Ingemarsdotter
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Andrew M.L. Lever
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| |
Collapse
|
2
|
Barakat AJ, Butler MG. Genetics of anomalies of the kidney and urinary tract with congenital heart disease: A review. Clin Genet 2024; 106:667-678. [PMID: 39289831 DOI: 10.1111/cge.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) and congenital heart disease (CHD) are the most common congenital defects and constitute a major cause of morbidity in children. Anomalies of both systems may be isolated or associated with congenital anomalies of other organ systems. Various reports support the co-occurrence of CAKUT and CHD, although the prevalence can vary. Cardiovascular anomalies occur in 11.2% to 34% of patients with CAKUT, and CAKUT occur in 5.3% to 35.8% of those with CHD. The co-occurrence of genetic factors in both CAKUT and CHD would raise common etiologies including genetics, genetic-environmental interactions, or shared molecular mechanisms and pathways such as NODAL, NOTCH, BMP, WNT, and VEGF. Studies in animal models and humans have indicated a genetic etiology for CHD and CAKUT with hundreds of genes recognized and thousands of entries, found in a catalog of human genetic disorders. There are over 80 CAKUT genes and over 100 CHD genes available for clinical testing. For example, the HNFIB gene accounts for 5% to 31% of reported cases of CAKUT. In view of the association between CAKUT and CHD, a thorough cardiac examination should be performed in patients with CAKUT, and a similar evaluation for CAKUT in the presence of CHD. This will allow early diagnosis and therapeutic intervention to improve the long- term outcome of patients affected, and test for at-risk family members. We present here evidence for an association of anomalies involving the two organ systems, and discuss possible etiologies of targeted genes, their functions, biological processes and interactions on embryogenesis.
Collapse
Affiliation(s)
- Amin J Barakat
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Becker A, Röhrich K, Leske A, Heinicke U, Knape T, Kannt A, Trümper V, Sohn K, Wilken-Schmitz A, Neb H, Adam EH, Laux V, Parnham MJ, Onasch V, Weigert A, Zacharowski K, von Knethen A. Identification of CRTH2 as a New PPARγ-Target Gene in T Cells Suggested CRTH2 Dependent Conversion of T h2 Cells as Therapeutic Concept in COVID-19 Infection. Immunotargets Ther 2024; 13:595-616. [PMID: 39507298 PMCID: PMC11539866 DOI: 10.2147/itt.s463601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/10/2024] [Indexed: 11/08/2024] Open
Abstract
Background COVID-19 is a serious viral infection, which is often associated with a lethal outcome. Therefore, understanding mechanisms, which affect the immune response during SARS-CoV2 infection, are important. Methods To address this, we determined the number of T cells in peripheral blood derived from intensive care COVID-19 patients. Based on our previous studies, evaluating PPARγ-dependent T cell apoptosis in sepsis patients, we monitored PPARγ expression. We performed a next generation sequencing approach to identify putative PPARγ-target genes in Jurkat T cells and used a PPARγ transactivation assay in HEK293T cells. Finally, we translated these data to primary T cells derived from healthy donors. Results A significantly reduced count of total CD3+ T lymphocytes and the CD4+ and CD8+ subpopulations was observed. Also, the numbers of anti-inflammatory, resolutive Th2 cells and FoxP3-positive regulatory T cells (Treg) were decreased. We observed an augmented PPARγ expression in CD4+ T cells of intensive care COVID-19 patients. Adapted from a next generation sequencing approach in Jurkat T cells, we found the chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) as one gene regulated by PPARγ in T cells. This Th2 marker is a receptor for prostaglandin D and its metabolic degradation product 15-deoxy-∆12,14-prostaglandin J2 (15d-PGJ2), an established endogenous PPARγ agonist. In line, we observed an increased PPARγ transactivation in response to 15d-PGJ2 treatment in HEK293T cells overexpressing CRTH2. Translating these data to primary T cells, we found that Th2 differentiation was associated with an increased expression of CRTH2. Interestingly, these CRTH2+ T cells were prone to apoptosis. Conclusion These mechanistic data suggest an involvement of PPARγ in Th2 differentiation and T cell depletion in COVID-19 patients.
Collapse
Affiliation(s)
- Antonia Becker
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Karoline Röhrich
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Amanda Leske
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Ulrike Heinicke
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Tilo Knape
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Aimo Kannt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, 60590, Germany
| | - Verena Trümper
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Sohn
- Innovation Field in-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, 70569, Germany
| | - Annett Wilken-Schmitz
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Holger Neb
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Elisabeth H Adam
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Valerie Onasch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, 60590, Germany
| | - Kai Zacharowski
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, 60596, Germany
| | - Andreas von Knethen
- Goethe University Frankfurt, Department of Anaesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt, 60590, Germany
| |
Collapse
|
4
|
Gao K, Xi W, Ni J, Jiang J, Lei Y, Li L, Chu J, Li R, An Y, Ouyang Y, Su R, Zhang R, Wu G. Genetically modified extracellular vesicles loaded with activated gasdermin D potentially inhibit prostate-specific membrane antigen-positive prostate carcinoma growth and enhance immunotherapy. Biomaterials 2024; 315:122894. [PMID: 39461061 DOI: 10.1016/j.biomaterials.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Prostate cancer (PCa) is associated with poor immunogenicity and lymphocytic infiltration, and immunotherapy effective against PCa remains unavailable. Pyroptosis, a novel immunotherapeutic modality for cancer, promotes systemic immune responses leading to immunogenic cell death in solid tumors. This paper describes the preparation and analysis of PSMAscFv-EVN-GSDMD; this genetically engineered recombinant extracellular vesicle (EV) expresses a single-chain variable antibody fragment (scFv) with high affinity for prostate-specific membrane antigen (PSMA) on their surfaces and is loaded with the N-terminal domain of gasdermin D (GSDMD). Both in vitro and in vivo, PSMAscFv-EVN-GSDMD effectively targeted PSMA-positive PCa cells and induced pyroptosis through the carrier properties of EVs and the specificity of PSMAscFv. In the 22RV1 and PSMA-transfected RM-1-inoculated PCa mouse models, PSMAscFv-EVN-GSDMD efficiently inhibited tumor growth and promoted tumor immune responses. In conclusion, PSMAscFv-EVN-GSDMD can convert the immunosuppressive "cold" tumor microenvironment of PCa into an immunogenic "hot" tumor microenvironment.
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China; State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Jianxin Ni
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Jun Jiang
- Department of Health Service, Base of Health Service, Air Force Medical University, Xi'an, China
| | - Yonghua Lei
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Lin Li
- Department of Immunology, School of Basic Medicine, Yan'an University. Yan'an, 716099, China
| | - Jie Chu
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Ruixiao Li
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Yongpan An
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Yanan Ouyang
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Ruiping Su
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi, 710032, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| |
Collapse
|
5
|
Rajaram N, Benzler K, Bashtrykov P, Jeltsch A. Allele-specific DNA demethylation editing leads to stable upregulation of allele-specific gene expression. iScience 2024; 27:111007. [PMID: 39429790 PMCID: PMC11490731 DOI: 10.1016/j.isci.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Epigenome editing is an emerging technology that allows to rewrite epigenome states and reprogram gene expression. Here, we have developed allele-specific DNA demethylation editing at gene promoters containing an SNP by sgRNA/dCas9 mediated recuitment of TET1. Maximal DNA demethylation (up to 90%) was observed 6 days after transient transfection of the epigenome editors and it was almost stable for 15 days. After allele-specific targeting, DNA demethylation was up to 15-fold more efficient at the targeted allele. Our data show that locus-specific and allele-specific DNA demethylation can trigger the expression of previously silenced genes. Allele-specific DNA demethylation shifted allelic expression ratios about 4-fold. Allele-specific DNA demethylation could be used to correct aberrant imprinting in patients suffering from imprinting disorders and to study the roles of individual alleles of a gene in a given cellular context.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Benzler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
De Pascali F, Inoue A, Benovic JL. Diverse pathways in GPCR-mediated activation of Ca 2+ mobilization in HEK293 cells. J Biol Chem 2024; 300:107882. [PMID: 39395798 DOI: 10.1016/j.jbc.2024.107882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
G protein-coupled receptors transduce extracellular stimuli into intracellular signaling. Ca2+ is a well-known second messenger that can be induced by G protein-coupled receptor activation through the primary canonical pathways involving Gαq- and Gβγ-mediated activation of phospholipase C-β (PLCβ). While some Gs-coupled receptors are shown to trigger Ca2+ mobilization, underlying mechanisms remain elusive. Here, we evaluated whether Gs-coupled receptors including the β2-adrenergic receptor (β2AR) and the prostaglandin EP2 and EP4 receptors (EP2R and EP4R) that are endogenously expressed in human embryonic kidney 293 (HEK293) cells utilize common pathways for mediating Ca2+ mobilization. For the β2AR, we found an essential role for Gq in agonist-promoted Ca2+ mobilization while genetic or pharmacological inhibition of Gs or Gi had minimal effect. β-agonist-promoted Ca2+ mobilization was effectively blocked by the Gq-selective inhibitor YM-254890 and was not observed in ΔGαq/11 or ΔPLCβ cells. Bioluminescence resonance energy transfer analysis also suggests agonist-dependent association of the β2AR with Gq. For the EP2R, which couples to Gs, agonist treatment induced Ca2+ mobilization in a pertussis toxin-sensitive but YM-254890-insensitive manner. In contrast, EP4R, which couples to Gs and Gi, exhibited Ca2+ mobilization that was sensitive to both pertussis toxin and YM-254890. Interestingly, both EP2R and EP4R were largely unable to induce Ca2+ mobilization in ΔGαs or ΔPLCβ cells, supporting a strong dependency on Gs signaling in HEK293 cells. Taken together, we identify differences in the signaling pathways that are used to mediate Ca2+ mobilization in HEK293 cells where the β2AR primarily uses Gq, EP2R uses Gs and Gi, and EP4R uses Gs, Gi, and Gq.
Collapse
Affiliation(s)
- Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Moschonas GD, Delhaye L, Cooreman R, Hüsers F, Bhat A, Stylianidou Z, De Bousser E, De Pryck L, Grzesik H, De Sutter D, Parthoens E, De Smet AS, Maciejczuk A, Lippens S, Callewaert N, Vandekerckhove L, Debyser Z, Sodeik B, Eyckerman S, Saelens X. MX2 forms nucleoporin-comprising cytoplasmic biomolecular condensates that lure viral capsids. Cell Host Microbe 2024; 32:1705-1724.e14. [PMID: 39389033 DOI: 10.1016/j.chom.2024.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Human myxovirus resistance 2 (MX2) can restrict HIV-1 and herpesviruses at a post-entry step through a process requiring an interaction between MX2 and the viral capsids. The involvement of other host cell factors, however, remains poorly understood. Here, we mapped the proximity interactome of MX2, revealing strong enrichment of phenylalanine-glycine (FG)-rich proteins related to the nuclear pore complex as well as proteins that are part of cytoplasmic ribonucleoprotein granules. MX2 interacted with these proteins to form multiprotein cytoplasmic biomolecular condensates that were essential for its anti-HIV-1 and anti-herpes simplex virus 1 (HSV-1) activity. MX2 condensate formation required the disordered N-terminal region and MX2 dimerization. Incoming HIV-1 and HSV-1 capsids associated with MX2 at these dynamic cytoplasmic biomolecular condensates, preventing nuclear entry of their viral genomes. Thus, MX2 forms cytoplasmic condensates that likely act as nuclear pore decoys, trapping capsids and inducing premature viral genome release to interfere with nuclear targeting of HIV-1 and HSV-1.
Collapse
Affiliation(s)
- George D Moschonas
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Louis Delhaye
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Robin Cooreman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Franziska Hüsers
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anayat Bhat
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Zoe Stylianidou
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Elien De Bousser
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laure De Pryck
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hanna Grzesik
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Eef Parthoens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Anne-Sophie De Smet
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Aleksandra Maciejczuk
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Saskia Lippens
- VIB Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; VIB BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; RESIST-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; DZIF-German Centre for Infection Research, Partner site Hannover-Braunschweig, Germany
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
8
|
Rifa RA, Lavado R. Cytotoxic impacts of seven alternative bisphenols on human in vitro cellular models. CHEMOSPHERE 2024; 366:143408. [PMID: 39326710 DOI: 10.1016/j.chemosphere.2024.143408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/27/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Bisphenols (BPs), common in plastics, coatings, and resins, are under scrutiny for potential endocrine disruption. Despite banning bisphenol A (BPA), its perceived safer alternatives may still pose health risks, urging thorough studies on their toxicity mechanisms. This study aimed to investigate the cellular toxicity of the top seven most commonly used BPs, bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol P (BPP), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol E (BPE) in eight different relevant human in vitro cell models: liver (HepaRG), intestinal (Caco-2), breast (T47D), brain (HMC-3), lungs (MRC-5), kidney (HEK293), endothelial (HMEC-1), and skin (HEK-001) cell lines. BPE manifested the highest cytotoxicity in Caco-2 cells, presenting an EC50 value of roughly 0.2 μM (95% confidence interval). In contrast, HEK293 and HepaRG cells demonstrated significant resilience to BPS (EC50 > 1000 μM). BPAF, BPP, and BPAP had consistently low EC50 values across cell lines (6-27.9 μM, 0.6-134.7 μM, and 3.6-178.8 μM), indicating elevated toxicity. After 24 h, all bisphenols adhered to nominal concentrations except BPAF, BPP, and BPS. BPP's concentration notably decreased (30.82 ± 5.53% of nominal value). The results revealed diverse effects of bisphenol analogs on different cell types. These findings emphasized the considerable cytotoxic potential of specific bisphenol analogs across various human cell models, underlining the necessity for a re-evaluation of their safety and regulatory standards.
Collapse
Affiliation(s)
- Rafia Afroze Rifa
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
9
|
Inge M, Miller R, Hook H, Bray D, Keenan J, Zhao R, Gilmore T, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. Nucleic Acids Res 2024; 52:10276-10296. [PMID: 39166482 PMCID: PMC11417405 DOI: 10.1093/nar/gkae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced histone 3 lysine 27 acetylation (H3K27ac). Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data support clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- Melissa M Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Rebekah Miller
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Bray
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Rose Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
10
|
Kent MR, Jay AN, Kendall GC. New dual inducible cellular model to investigate temporal control of oncogenic cooperating genes. Sci Rep 2024; 14:20773. [PMID: 39237585 PMCID: PMC11377716 DOI: 10.1038/s41598-024-71227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
The study of cooperating genes in cancer can lead to mechanistic understanding and identifying potential therapeutic targets. To facilitate these types of studies, we developed a new dual-inducible system utilizing the tetracycline- and cumate-inducible systems driving HES3 and the PAX3::FOXO1 fusion-oncogene, respectively, as cooperating genes from fusion-positive rhabdomyosarcoma. With this model, we can independently induce expression of either HES3 or PAX3::FOXO1, as well as simultaneously induce expression of both genes. This new model will allow us to further investigate the cooperation between HES3 and PAX3::FOXO1 including the temporal requirements for genetic cooperation. Functionally, we show that dual-induction of PAX3::FOXO1 and HES3 modifies sphere formation in a HEK293T-based system. More broadly, this lentiviral dual-inducible system can be adapted for any cooperating genes (overexpression or knockdown), allowing for independent, simultaneous, or temporally controlled gene expression.
Collapse
Affiliation(s)
- Matthew R Kent
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Amanda N Jay
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Genevieve C Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA.
| |
Collapse
|
11
|
Andorfer P, Kahlig CI, Pakusic D, Pachlinger R, John C, Schrenk I, Eisenhut P, Lengler J, Innthaler B, Micutkova L, Kraus B, Brizzee C, Crawford J, Hernandez Bort JA. Cas-CLOVER-mediated knockout of STAT1: A novel approach to engineer packaging HEK-293 cell lines used for rAAV production. Biotechnol J 2024; 19:e2400415. [PMID: 39246130 DOI: 10.1002/biot.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
In addressing the limitations of CRISPR-Cas9, including off-target effects and high licensing fees for commercial use, Cas-CLOVER, a dimeric gene editing tool activated by two guide RNAs, was recently developed. This study focused on implementing and evaluating Cas-CLOVER in HEK-293 cells used for recombinant adeno-associated virus (rAAV) production by targeting the signal transducer and activator of transcription 1 (STAT1) locus, which is crucial for cell growth regulation and might influence rAAV production yields. Cas-CLOVER demonstrated impressive efficiency in gene editing, achieving over 90% knockout (KO) success. Thirteen selected HEK-293 STAT1 KO sub-clones were subjected to extensive analytical characterization to assess their genomic stability, crucial for maintaining cell integrity and functionality. Additionally, rAAV9 productivity, Rep protein pattern profile, and potency, among others, were assessed. Clones showed significant variation in capsid and vector genome titers, with capsid titer reductions ranging from 15% to 98% and vector genome titers from 16% to 55%. Interestingly, the Cas-CLOVER-mediated STAT1 KO bulk cell population showed a better ratio of full to empty capsids. Our study also established a comprehensive analytical workflow to detect and evaluate the gene KOs generated by this innovative tool, providing a solid groundwork for future research in precise gene editing technologies.
Collapse
Affiliation(s)
- Peter Andorfer
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Carolin-Isabel Kahlig
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Doris Pakusic
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Robert Pachlinger
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Christiane John
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Irene Schrenk
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Peter Eisenhut
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Johannes Lengler
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Bernd Innthaler
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Lucia Micutkova
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Barbara Kraus
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | | | | | - Juan A Hernandez Bort
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Semcesen LN, Robinson DRL, Stroud DA. Generating mammalian knock-out cell lines to investigate mitochondrial protein complex assembly. Methods Enzymol 2024; 707:441-473. [PMID: 39488386 DOI: 10.1016/bs.mie.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The development of easy-to-use gene-editing approaches has revolutionized the study of mitochondrial protein complex assembly in mammalian cells. Once the domain of classical cell biology models such Saccharomyces cerevisiae, human knockout cell lines lacking expression of a specific protein can be made at low cost and in as little as two to three weeks. In this chapter we outline our approach to generation of knockouts in commonly used transformed laboratory cell lines, with a view toward their use in the study of mitochondrial respiratory chain complex assembly and mitochondrial biology. Common pitfalls and caveats are discussed along with recommendations on how to validate a knockout cell line through sequencing of genomic edits and stable complementation to exclude the influence of off-target effects and enable further studies of protein function.
Collapse
Affiliation(s)
- Liana N Semcesen
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - David R L Robinson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC Australia.
| |
Collapse
|
13
|
Soltani Rad MN, Behrouz S, Charbaghi M, Behrouz M, Zarenezhad E, Ghanbariasad A. Design, synthesis, anticancer and in silico assessment of 8-caffeinyl chalcone hybrid conjugates. RSC Adv 2024; 14:26674-26693. [PMID: 39175679 PMCID: PMC11340408 DOI: 10.1039/d4ra04787g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
In this paper, we report the design, synthesis, and characterization of novel 8-caffeinyl chalcone hybrid conjugates, which were studied for their anticancer properties, toxicity, and in silico behavior. The synthesized compounds consist of 8-caffeinyl and chalcone structures with diverse substituents. The synthesis involved three main stages: bromination of caffeine to produce 8-BC, synthesis of chalcones, and subsequent coupling of these chalcones with 8-BC. The anticancer activity of the resulting compounds was evaluated in vitro against breast cancer MCF-7 and melanoma A-375 cell lines, revealing certain compounds to have significant efficacy compared to the reference drug methotrexate. Toxicity assessments using a healthy cell line indicated that most compounds displayed some level of toxicity, with only a few exceptions. Molecular docking studies indicated robust binding affinities of selected compounds to B-RAF kinase and hDHFR enzymes. In silico analyses of pharmacokinetic and physicochemical properties demonstrated that the majority of the compounds adhered to Lipinski's rule of five. Furthermore, density functional theory (DFT) studies were performed to gain deeper insights into the properties of the intermediates used throughout the research.
Collapse
Affiliation(s)
- Mohammad Navid Soltani Rad
- Department of Chemistry, Shiraz University of Technology Shiraz 71555-313 Iran +98-71-3735-4520 +98-71-3735-4500
- Medicinal Chemistry Research Laboratory, Novel Technology for Health Research Center, Shiraz University of Technology Shiraz 71555-313 Iran
| | - Somayeh Behrouz
- Department of Chemistry, Shiraz University of Technology Shiraz 71555-313 Iran +98-71-3735-4520 +98-71-3735-4500
- Medicinal Chemistry Research Laboratory, Novel Technology for Health Research Center, Shiraz University of Technology Shiraz 71555-313 Iran
| | - Maedeh Charbaghi
- Department of Chemistry, Shiraz University of Technology Shiraz 71555-313 Iran +98-71-3735-4520 +98-71-3735-4500
| | - Marzieh Behrouz
- Department of Chemistry, Shiraz University of Technology Shiraz 71555-313 Iran +98-71-3735-4520 +98-71-3735-4500
| | - Elham Zarenezhad
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences Fasa Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences Fasa Iran
| |
Collapse
|
14
|
Berthold A, Lloyd VK. Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi. Genes (Basel) 2024; 15:1010. [PMID: 39202370 PMCID: PMC11353914 DOI: 10.3390/genes15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Collapse
Affiliation(s)
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| |
Collapse
|
15
|
Zhang R, He Z, Shi Y, Sun X, Chen X, Wang G, Zhang Y, Gao P, Wu Y, Lu S, Duan J, Sun S, Yang N, Fan W, Zhao K, Yang B, Xia Y, Zhang Y, Zhang Y, Yin H. Amplification editing enables efficient and precise duplication of DNA from short sequence to megabase and chromosomal scale. Cell 2024; 187:3936-3952.e19. [PMID: 38936359 DOI: 10.1016/j.cell.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.
Collapse
Affiliation(s)
- Ruiwen Zhang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zhou He
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yajing Shi
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangkun Sun
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinyu Chen
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Guoquan Wang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yizhou Zhang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Pan Gao
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ying Wu
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuhan Lu
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Junyi Duan
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shangwu Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yang
- Center for Gene Diagnosis and Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Fan
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan 430071, China
| | - Yan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ying Zhang
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hao Yin
- Departments of Urology and Laboratory Medicine, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, State Key Laboratory of Virology, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
16
|
Vu K, Kar S, Goyal N, Mottamal M, Afosah DK, Al-Horani RA. Discovery of Heparin Mimetic, Potent, and Selective Inhibitors of Human Clotting Factor XIIIa. ACS OMEGA 2024; 9:31105-31119. [PMID: 39035933 PMCID: PMC11256326 DOI: 10.1021/acsomega.4c04518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Factor XIIIa (FXIIIa) is a cysteine transglutaminase that catalyzes the last step in the coagulation process. An anion-binding site inhibition of FXIIIa is a paradigm-shifting strategy that may offer key advantages of controlled inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We previously reported a flavonoid trimer-based allosteric inhibitor of FXIIIa with moderate potency and selectivity. To further advance this approach, we evaluated a series of 27 variably sulfonated heparin mimetics against human FXIIIa. Only 13 molecules exhibited inhibitory activity at the highest concentration tested with IC50 values of 2-286 μM. Specifically, inhibitor 16 demonstrated an IC50 value of 2.4 ± 0.5 μM in a bisubstrate, fluorescence-based trans-glutamination assay. It also demonstrated a significant selectivity over other clotting factors including thrombin, factor Xa, and factor XIa as well as other cysteine enzymes including papain and tissue transglutaminase 2. Inhibitor 16 did not affect the viability of three human cell lines at a concentration that is 5-fold its FXIIIa-IC50. The molecule had a very weak effect on the activated partial thromboplastin time of human plasma at a concentration of >700 μM, further supporting its functional selectivity. Importantly, molecule 16 inhibited FXIIIa-mediated polymerization of fibrin(ogen) in a concentration-dependent manner as shown by the gel electrophoresis experiment. Michaelis-Menten kinetics revealed that the molecule competes with the Gln-donor protein substrate, i.e., dimethylcasein, but not with the Lys-donor small substrate, i.e., dansylcadaverine. Molecular modeling studies revealed that this type of molecule likely binds to an anion-binding site comprising the basic amino acids of Lys54, Lys61, Lys73, Lys156, and Arg244 among others. Overall, our work puts forward a new anion-binding site, selective, nontoxic, sulfonated heparin mimetic FXIIIa inhibitor 16 for further development as an effective and safer anticoagulant.
Collapse
Affiliation(s)
- Kayla
T. Vu
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Srabani Kar
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Madhusoodanan Mottamal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Daniel K. Afosah
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rami A. Al-Horani
- Division
of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
17
|
Arystarkhova E, Sweadner KJ. Na,K-ATPase Expression Can Be Limited Post-Transcriptionally: A Test of the Role of the Beta Subunit, and a Review of Evidence. Int J Mol Sci 2024; 25:7414. [PMID: 39000521 PMCID: PMC11242325 DOI: 10.3390/ijms25137414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The Na,K-ATPase is an α-β heterodimer. It is well known that the Na,K-ATPase β subunit is required for the biosynthesis and trafficking of the α subunit to the plasma membrane. During investigation of properties of human ATP1A3 mutations in 293 cells, we observed a reciprocal loss of endogenous ATP1A1 when expressing ATP1A3. Scattered reports going back as far as 1991 have shown that experimental expression of one subunit can result in reduction in another, suggesting that the total amount is strictly limited. It seems logical that either α or β subunit should be rate-limiting for assembly and functional expression. Here, we present evidence that neither α nor β may be limiting and that there is another level of control that limits the amount of Na,K-ATPase to physiological levels. We propose that α subunits compete for something specific, like a private chaperone, required to finalize their biosynthesis or to prevent their degradation in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kathleen J. Sweadner
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Catalán-Tatjer D, Tzimou K, Nielsen LK, Lavado-García J. Unravelling the essential elements for recombinant adeno-associated virus (rAAV) production in animal cell-based platforms. Biotechnol Adv 2024; 73:108370. [PMID: 38692443 DOI: 10.1016/j.biotechadv.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) stand at the forefront of gene therapy applications, holding immense significance for their safe and efficient gene delivery capabilities. The constantly increasing and unmet demand for rAAVs underscores the need for a more comprehensive understanding of AAV biology and its impact on rAAV production. In this literature review, we delved into AAV biology and rAAV manufacturing bioprocesses, unravelling the functions and essentiality of proteins involved in rAAV production. We discuss the interconnections between these proteins and how they affect the choice of rAAV production platform. By addressing existing inconsistencies, literature gaps and limitations, this review aims to define a minimal set of genes that are essential for rAAV production, providing the potential to advance rAAV biomanufacturing, with a focus on minimizing the genetic load within rAAV-producing cells.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
19
|
Olschewski DN, Nazarzadeh N, Lange F, Koenig AM, Kulka C, Abraham JA, Blaschke SJ, Merkel R, Hoffmann B, Fink GR, Schroeter M, Rueger MA, Vay SU. The angiotensin II receptors type 1 and 2 modulate astrocytes and their crosstalk with microglia and neurons in an in vitro model of ischemic stroke. BMC Neurosci 2024; 25:29. [PMID: 38926677 PMCID: PMC11202395 DOI: 10.1186/s12868-024-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Astrocytes are the most abundant cell type of the central nervous system and are fundamentally involved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on their neighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specific differences in astrocytic acting. The renin-angiotensin-aldosterone system regulates arterial blood pressure through endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2 receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensin II receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia. Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker) or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygen and glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effects on microglia and cortical neurons. RESULT The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes during ischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10, a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resulted in both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reduced the expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia. Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes. CONCLUSION Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthy and ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this work emphasizes the strong interference of the different cells in the CNS and that targeting astrocytes might serve as a therapeutic strategy to influence the acting of glia-neuronal network in de- and regenerative context.
Collapse
Affiliation(s)
- Daniel Navin Olschewski
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.
| | - Nilufar Nazarzadeh
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Felix Lange
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Anna Maria Koenig
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Christina Kulka
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jella-Andrea Abraham
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Stefan Johannes Blaschke
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Rudolf Merkel
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Bernd Hoffmann
- Department of Mechanobiology, Institute of Biological Information Processing (IBI-2), Research Centre Juelich, Juelich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Sabine Ulrike Vay
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Labat-de-Hoz L, Fernández-Martín L, Correas I, Alonso MA. INF2 formin variants linked to human inherited kidney disease reprogram the transcriptome, causing mitotic chaos and cell death. Cell Mol Life Sci 2024; 81:279. [PMID: 38916773 PMCID: PMC11335204 DOI: 10.1007/s00018-024-05323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
21
|
Zhang S, Yang J, Ji D, Meng X, Zhu C, Zheng G, Glessner J, Qu HQ, Cui Y, Liu Y, Wang W, Li X, Zhang H, Xiu Z, Sun Y, Sun L, Li J, Hakonarson H, Li J, Xia Q. NASP gene contributes to autism by epigenetic dysregulation of neural and immune pathways. J Med Genet 2024; 61:677-688. [PMID: 38443156 DOI: 10.1136/jmg-2023-109385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Epigenetics makes substantial contribution to the aetiology of autism spectrum disorder (ASD) and may harbour a unique opportunity to prevent the development of ASD. We aimed to identify novel epigenetic genes involved in ASD aetiology. METHODS Trio-based whole exome sequencing was conducted on ASD families. Genome editing technique was used to knock out the candidate causal gene in a relevant cell line. ATAC-seq, ChIP-seq and RNA-seq were performed to investigate the functional impact of knockout (KO) or mutation in the candidate gene. RESULTS We identified a novel candidate gene NASP (nuclear autoantigenic sperm protein) for epigenetic dysregulation in ASD in a Chinese nuclear family including one proband with autism and comorbid atopic disease. The de novo likely gene disruptive variant tNASP(Q289X) subjects the expression of tNASP to nonsense-mediated decay. tNASP KO increases chromatin accessibility, promotes the active promoter state of genes enriched in synaptic signalling and leads to upregulated expression of genes in the neural signalling and immune signalling pathways. Compared with wild-type tNASP, tNASP(Q289X) enhances chromatin accessibility of the genes with enriched expression in the brain. RNA-seq revealed that genes involved in neural and immune signalling are affected by the tNASP mutation, consistent with the phenotypic impact and molecular effects of nasp-1 mutations in Caenorhabditis elegans. Two additional patients with ASD were found carrying deletion or deleterious mutation in the NASP gene. CONCLUSION We identified novel epigenetic mechanisms mediated by tNASP which may contribute to the pathogenesis of ASD and its immune comorbidity.
Collapse
Affiliation(s)
- Sipeng Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinyi Meng
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chonggui Zhu
- Department of Endocrinology, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Zheng
- National Supercomputer Center in Tianjin (NSCC-TJ), Tianjin, China
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuechen Cui
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Wang
- The Institute of Psychology of the Chinese Academy of Sciences, Beijing, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hao Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhanjie Xiu
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan Sun
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Sun
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Saito A, Kise R, Inoue A. Generation of Comprehensive GPCR-Transducer-Deficient Cell Lines to Dissect the Complexity of GPCR Signaling. Pharmacol Rev 2024; 76:599-619. [PMID: 38719480 DOI: 10.1124/pharmrev.124.001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) compose the largest family of transmembrane receptors and are targets of approximately one-third of Food and Drug Administration-approved drugs owing to their involvement in almost all physiologic processes. GPCR signaling occurs through the activation of heterotrimeric G-protein complexes and β-arrestins, both of which serve as transducers, resulting in distinct cellular responses. Despite seeming simple at first glance, accumulating evidence indicates that activation of either transducer is not a straightforward process as a stimulation of a single molecule has the potential to activate multiple signaling branches. The complexity of GPCR signaling arises from the aspects of G-protein-coupling selectivity, biased signaling, interpathway crosstalk, and variable molecular modifications generating these diverse signaling patterns. Numerous questions relative to these aspects of signaling remained unanswered until the recent development of CRISPR genome-editing technology. Such genome editing technology presents opportunities to chronically eliminate the expression of G-protein subunits, β-arrestins, G-protein-coupled receptor kinases (GRKs), and many other signaling nodes in the GPCR pathways at one's convenience. Here, we review the practicality of using CRISPR-derived knockout (KO) cells in the experimental contexts of unraveling the molecular details of GPCR signaling mechanisms. To mention a few, KO cells have revealed the contribution of β-arrestins in ERK activation, Gα protein selectivity, GRK-based regulation of GPCRs, and many more, hence validating its broad applicability in GPCR studies. SIGNIFICANCE STATEMENT: This review emphasizes the practical application of G-protein-coupled receptor (GPCR) transducer knockout (KO) cells in dissecting the intricate regulatory mechanisms of the GPCR signaling network. Currently available cell lines, along with accumulating KO cell lines in diverse cell types, offer valuable resources for systematically elucidating GPCR signaling regulation. Given the association of GPCR signaling with numerous diseases, uncovering the system-based signaling map is crucial for advancing the development of novel drugs targeting specific diseases.
Collapse
Affiliation(s)
- Ayaki Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Mott PD, Zea AH, Lewis J, Mirzalieva O, Aiyar AA. Serine deamination by human serine racemase synergizes with antibiotics to curtail the replication of Chlamydia trachomatis. J Biol Chem 2024; 300:107350. [PMID: 38718865 PMCID: PMC11140210 DOI: 10.1016/j.jbc.2024.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024] Open
Abstract
The obligate intracellular bacterium, Chlamydia trachomatis, has evolved to depend on its human host for many metabolites, including most amino acids and three of the four nucleotides. Given this, it is not surprising that depletion of a single amino acid in the host cell growth medium blocks chlamydial replication. Paradoxically, supra-normal levels of some amino acids also block productive replication of Chlamydia. Here, we have determined how elevated serine levels, generated by exogenous supplementation, impede chlamydial inclusion development and reduce the generation of infectious progeny. Our findings reveal that human serine racemase, which is broadly expressed in multiple tissues, potentiates the anti-chlamydial effect of elevated serine concentrations. In addition to reversibly converting l-serine to d-serine, serine racemase also deaminates serine via β-elimination. We have determined that d-serine does not directly impact Chlamydia; rather, ammonia generated by serine deamination limits the productive chlamydial replication. Our findings imply that ammonia produced within host cells can traverse the chlamydial inclusion membrane. Further, this property of serine deaminase can be exploited to sensitize Chlamydia to concentrations of doxycycline that are otherwise not bactericidal. Because exogenously elevated levels of serine can be tolerated over extended periods, the broad expression pattern of serine racemase indicates it to be a host enzyme whose activity can be directed against multiple intracellular bacterial pathogens. From a therapeutic perspective, demonstrating host metabolism can be skewed to generate an anti-bacterial metabolite that synergizes with antibiotics, we believe our results provide a new approach to target intracellular pathogens.
Collapse
Affiliation(s)
- Patricia D Mott
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| | - Arnold H Zea
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Jamiya Lewis
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Oygul Mirzalieva
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Ashok A Aiyar
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
24
|
Nemudraia A, Nemudryi A, Wiedenheft B. Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells. Science 2024; 384:808-814. [PMID: 38662916 PMCID: PMC11175973 DOI: 10.1126/science.adk5518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Genome editing with CRISPR RNA-guided endonucleases generates DNA breaks that are resolved by cellular DNA repair machinery. However, analogous methods to manipulate RNA remain unavailable. We show that site-specific RNA breaks generated with type-III CRISPR complexes are repaired in human cells and that this repair can be used for programmable deletions in human transcripts to restore gene function. Collectively, this work establishes a technology for precise RNA manipulation with potential therapeutic applications.
Collapse
Affiliation(s)
- Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University; Bozeman, MT, 59717, USA
| |
Collapse
|
25
|
Kim SH, Park HM, Jeong HJ. Evaluation of PDL1 positive cancer cell-specific binding activity of recombinant anti-PDL1 scFv. Biotechnol Prog 2024; 40:e3439. [PMID: 38377106 DOI: 10.1002/btpr.3439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Programmed cell death-ligand 1 (PDL1) is a transmembrane protein that is characterized as an immune regulatory molecule. We recently developed a recombinant single-chain fragment of variable domain (scFv) against PDL1, which showed high binding efficiency to purified recombinant PDL1 protein. However, at that time, proof-of-concept data for the effect of scFv using PDL1-expressing cells was lacking. In this study, we conducted two kinds of cell-based immunoassays, western blotting and enzyme-linked immunosorbent assay, using anti-PDL1 scFv. The results indicate that scFv can selectively and sensitively detect PDL1 from PDL1 positive human cancer cell lines. Our findings suggest that scFv could be used as a potential PDL1 inhibitor agent and probe for cell-based immunoassays to detect PDL1.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Industry-Academia Cooperation Foundation, Hongik University, Sejong-si, South Korea
| | - Hae-Min Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Hee-Jin Jeong
- Department of Biological and Chemical Engineering, Hongik University, Sejong-si, South Korea
| |
Collapse
|
26
|
Benitez MBM, Navarro YP, Azuara-Liceaga E, Cruz AT, Flores JV, Lopez-Canovas L. Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). Int J Mol Med 2024; 53:44. [PMID: 38516776 PMCID: PMC10998718 DOI: 10.3892/ijmm.2024.5368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.
Collapse
Affiliation(s)
- Maximo Berto Martinez Benitez
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Yussel Pérez Navarro
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Elisa Azuara-Liceaga
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Angeles Tecalco Cruz
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Jesús Valdés Flores
- Biochemistry Department, Center for Research and Advanced Studies, National Polytechnic Institute of Mexico, Mexico City, CP 07360, Mexico
| | - Lilia Lopez-Canovas
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| |
Collapse
|
27
|
Chen XR, Dixit K, Yang Y, McDermott MI, Imam HT, Bankaitis VA, Igumenova TI. A novel bivalent interaction mode underlies a non-catalytic mechanism for Pin1-mediated protein kinase C regulation. eLife 2024; 13:e92884. [PMID: 38687676 PMCID: PMC11060717 DOI: 10.7554/elife.92884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Karuna Dixit
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Yuan Yang
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Hasan Tanvir Imam
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
| | - Vytas A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M UniversityCollege StationUnited States
- Department of Cell Biology & Genetics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
28
|
Köhler AR, Haußer J, Harsch A, Bernhardt S, Häußermann L, Brenner LM, Lungu C, Olayioye MA, Bashtrykov P, Jeltsch A. Modular dual-color BiAD sensors for locus-specific readout of epigenome modifications in single cells. CELL REPORTS METHODS 2024; 4:100739. [PMID: 38554702 PMCID: PMC11045877 DOI: 10.1016/j.crmeth.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
Dynamic changes in the epigenome at defined genomic loci play crucial roles during cellular differentiation and disease development. Here, we developed dual-color bimolecular anchor detector (BiAD) sensors for high-sensitivity readout of locus-specific epigenome modifications by fluorescence microscopy. Our BiAD sensors comprise an sgRNA/dCas9 complex as anchor and double chromatin reader domains as detector modules, both fused to complementary parts of a split IFP2.0 fluorophore, enabling its reconstitution upon binding of both parts in close proximity. In addition, a YPet fluorophore is recruited to the sgRNA to mark the genomic locus of interest. With these dual-color BiAD sensors, we detected H3K9me2/3 and DNA methylation and their dynamic changes upon RNAi or inhibitor treatment with high sensitivity at endogenous genomic regions. Furthermore, we showcased locus-specific H3K36me2/3 readout as well as H3K27me3 and H3K9me2/3 enrichment on the inactive X chromosome, highlighting the broad applicability of our dual-color BiAD sensors for single-cell epigenome studies.
Collapse
Affiliation(s)
- Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Johannes Haußer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Annika Harsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Steffen Bernhardt
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lilia Häußermann
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lisa-Marie Brenner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
29
|
Moreno-Aguilera M, Neher AM, Mendoza MB, Dodel M, Mardakheh FK, Ortiz R, Gallego C. KIS counteracts PTBP2 and regulates alternative exon usage in neurons. eLife 2024; 13:e96048. [PMID: 38597390 PMCID: PMC11045219 DOI: 10.7554/elife.96048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.
Collapse
Affiliation(s)
| | - Alba M Neher
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Mónica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Martin Dodel
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Faraz K Mardakheh
- Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSICBarcelonaSpain
| |
Collapse
|
30
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
31
|
Han G, Zhang Y, Zhong L, Wang B, Qiu S, Song J, Lin C, Zou F, Wu J, Yu H, Liang C, Wen K, Seow Y, Yin H. Generalizable anchor aptamer strategy for loading nucleic acid therapeutics on exosomes. EMBO Mol Med 2024; 16:1027-1045. [PMID: 38448545 PMCID: PMC11018858 DOI: 10.1038/s44321-024-00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.
Collapse
Affiliation(s)
- Gang Han
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Yao Zhang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Li Zhong
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Biaobiao Wang
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Shuai Qiu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Jun Song
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Caorui Lin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Fangdi Zou
- Public Laboratory & Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center & Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Jingqiao Wu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Huanan Yu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Ke Wen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis St, Genome, Singapore, 138672, Republic of Singapore
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics & International Joint Laboratory of Ocular Diseases (Ministry of Education), School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Qixiangtai Road, Heping District, 300070, Tianjin, China.
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, 300052, Tianjin, China.
| |
Collapse
|
32
|
Anjum F, Kaushik K, Salam A, Yadav A, Nandi CK. Super-Resolution Microscopy Unveils Synergistic Structural Changes of Organelles Upon Point Mutation. Adv Biol (Weinh) 2024; 8:e2300399. [PMID: 38053236 DOI: 10.1002/adbi.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Ethyl methanesulphonate (EMS), is a widely used chemical mutagen that causes high-frequency germline null mutation by inserting an alkyl group into the nucleotide guanine in eukaryotic cells. The effect of EMS on the dynamics of the aneuploid genome, increased cellular instability, and carcinogenicity in relation to benign and malignant tumors are reported, but the molecular level understanding of morphological changes of higher-order chromatin structure has poorly been understood. This is due to a lack of sufficient resolution in conventional microscopic techniques to see small structures below the diffraction limit. Here, using super-resolution radial fluctuation, a largely fragmented, decompaction, and less dense heterochromatin structure upon EMS treatment to HEK 293A cells without any change in nuclear DNA domains is observed. This result suggests an early stage of carcinogenicity happened due to the point mutation. In addition, the distinct structural changes with an elongated morphology of lysosomes are also observed. On the other hand, fragmented and increased heterogeneous populations with an increased cytoplasmic occupancy of mitochondria are observed.
Collapse
Affiliation(s)
- Farhan Anjum
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Aditya Yadav
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
33
|
Claes K, Van Herpe D, Vanluchene R, Roels C, Van Moer B, Wyseure E, Vandewalle K, Eeckhaut H, Yilmaz S, Vanmarcke S, Çıtak E, Fijalkowska D, Grootaert H, Lonigro C, Meuris L, Michielsen G, Naessens J, van Schie L, De Rycke R, De Bruyne M, Borghgraef P, Callewaert N. OPENPichia: licence-free Komagataella phaffii chassis strains and toolkit for protein expression. Nat Microbiol 2024; 9:864-876. [PMID: 38443579 PMCID: PMC10914597 DOI: 10.1038/s41564-023-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/01/2023] [Indexed: 03/07/2024]
Abstract
The industrial yeast Komagataella phaffii (formerly named Pichia pastoris) is commonly used to synthesize recombinant proteins, many of which are used as human therapeutics or in food. However, the basic strain, named NRRL Y-11430, from which all commercial hosts are derived, is not available without restrictions on its use. Comparative genome sequencing leaves little doubt that NRRL Y-11430 is derived from a K. phaffii type strain deposited in the UC Davis Phaff Yeast Strain Collection in 1954. We analysed four equivalent type strains in several culture collections and identified the NCYC 2543 strain, from which we started to develop an open-access Pichia chassis strain that anyone can use to produce recombinant proteins to industry standards. NRRL Y-11430 is readily transformable, which we found to be due to a HOC1 open-reading-frame truncation that alters cell-wall mannan. We introduced the HOC1 open-reading-frame truncation into NCYC 2543, which increased the transformability and improved secretion of some but not all of our tested proteins. We provide our genome-sequenced type strain, the hoc1tr derivative that we named OPENPichia as well as a synthetic, modular expression vector toolkit under liberal end-user distribution licences as an unencumbered OPENPichia resource for the microbial biotechnology community.
Collapse
Affiliation(s)
- Katrien Claes
- Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Dries Van Herpe
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Inbiose NV, Ghent, Belgium
| | - Robin Vanluchene
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Charlotte Roels
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Berre Van Moer
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Elise Wyseure
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kristof Vandewalle
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hannah Eeckhaut
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Semiramis Yilmaz
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sandrine Vanmarcke
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Erhan Çıtak
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hendrik Grootaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Chiara Lonigro
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Leander Meuris
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Gitte Michielsen
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Justine Naessens
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Loes van Schie
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, Ghent, Belgium
| | - Michiel De Bruyne
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, Ghent, Belgium
| | | | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
34
|
Anderson R, Das MR, Chang Y, Farenhem K, Schmitz CO, Jain A. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. Mol Cell 2024; 84:702-714.e10. [PMID: 38295802 PMCID: PMC10923110 DOI: 10.1016/j.molcel.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Expansions of CAG trinucleotide repeats cause several rare neurodegenerative diseases. The disease-causing repeats are translated in multiple reading frames and without an identifiable initiation codon. The molecular mechanism of this repeat-associated non-AUG (RAN) translation is not known. We find that expanded CAG repeats create new splice acceptor sites. Splicing of proximal donors to the repeats produces unexpected repeat-containing transcripts. Upon splicing, depending on the sequences surrounding the donor, CAG repeats may become embedded in AUG-initiated open reading frames. Canonical AUG-initiated translation of these aberrant RNAs may account for proteins that have been attributed to RAN translation. Disruption of the relevant splice donors or the in-frame AUG initiation codons is sufficient to abrogate RAN translation. Our findings provide a molecular explanation for the abnormal translation products observed in CAG trinucleotide repeat expansion disorders and add to the repertoire of mechanisms by which repeat expansion mutations disrupt cellular functions.
Collapse
Affiliation(s)
- Rachel Anderson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Michael R Das
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Yeonji Chang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kelsey Farenhem
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Cameron O Schmitz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
35
|
Hernandez-Suarez L, Diez-Martin E, Egiguren-Ortiz J, Fernandez R, Etxebarria A, Astigarraga E, Miguelez C, Ramirez-Garcia A, Barreda-Gómez G. Serological Antibodies against Kidney, Liver, and Spleen Membrane Antigens as Potential Biomarkers in Patients with Immune Disorders. Int J Mol Sci 2024; 25:2025. [PMID: 38396703 PMCID: PMC10888476 DOI: 10.3390/ijms25042025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Immune disorders arise from complex genetic and environmental factors, which lead to dysregulation at the cellular and inflammatory levels and cause tissue damage. Recent research highlights the crucial role of reactive antibodies in autoimmune diseases and graft rejection, but their complex determination poses challenges for clinical use. Therefore, our study aimed to ascertain whether the presence of reactive antibodies against membrane antigens in tissues from both animal models and humans could serve as biomarkers in patients with autoimmune disorders. To address this issue, we examined the binding profile of serological antibodies against a diverse panel of cell membranes from the spleen, liver, and kidney tissues of monkeys, rats, and humans. After developing the cell membrane microarrays, human sera were immunologically assayed. The study was first conducted on sera from two groups, healthy subjects and patients with inflammatory and autoimmune disorders, and then optimized for kidney transplant patient sera. A significant increase in antibody reactivity against specific monkey kidney and spleen membranes was observed in the serum of patients with lupus nephritis, while kidney transplant patients showed a significant enhancement against human tissues and human embryonic kidney 293 cells. These results show the potential importance for clinical and basic research purposes of studying the presence of specific IgG against membrane antigens in patients' serum as potential biomarkers of immune disorders. However, it is important to note that these results need to be verified in further studies with a larger sample size to confirm their relevance.
Collapse
Affiliation(s)
- Leidi Hernandez-Suarez
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Eguzkiñe Diez-Martin
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - June Egiguren-Ortiz
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Roberto Fernandez
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| | - Aitor Etxebarria
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| | - Egoitz Astigarraga
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Neurodegenerative Diseases Group, BioBizkaia Health Research Institute, 48940 Barakaldo, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Gabriel Barreda-Gómez
- Department of Research and Development, IMG Pharma Biotech S.L., 48170 Zamudio, Spain; (L.H.-S.); (E.D.-M.); (J.E.-O.); (R.F.); (A.E.); (E.A.)
| |
Collapse
|
36
|
Huang CH, Chiu SY, Chou YC, Wu KJ. A refined Uni-vector prime editing system improves genome editing outcomes in mammalian cells. Biotechnol J 2024; 19:e2300353. [PMID: 38403398 DOI: 10.1002/biot.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Prime editing is an advanced technology in CRISPR/Cas research with increasing numbers of improved methodologies. The original multi-vector method hampers the efficiency and precision of prime editing and also has inherent difficulty in generating homozygous mutations in mammalian cells. To overcome these technical issues, we developed a Uni-vector prime editing system, wherein the major components for prime editing were constructed in all-in-one plasmids, pPE3-pPuro and pePEmax-pPuro. The Uni-vector prime editing plasmids enhance the editing efficiency of prime editing and improved the generation of homozygous mutated mammalian cell lines. The editing efficiency is dependent of the transfection efficiency. Remarkably, the Uni-vector ePE5max system achieved an impressive editing rate approximately 79% in average, even in cell lines that are traditionally difficult to transfect, such as FaDu cell line. Furthermore, it resulted in a high frequency of homozygous knocked-in cells, with a rate of 99% in HeLa and 85% in FaDu cells. Together, our Uni-vector approach simplifies the delivery of editing components and improves the editing efficiency, especially in cells with low transfection efficiency. This approach presents an advancement in the field of prime editing.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Cancer Genome Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Szu-Ying Chiu
- Cancer Genome Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
37
|
Acar DD, Witkowski W, Wejda M, Wei R, Desmet T, Schepens B, De Cae S, Sedeyn K, Eeckhaut H, Fijalkowska D, Roose K, Vanmarcke S, Poupon A, Jochmans D, Zhang X, Abdelnabi R, Foo CS, Weynand B, Reiter D, Callewaert N, Remaut H, Neyts J, Saelens X, Gerlo S, Vandekerckhove L. Integrating artificial intelligence-based epitope prediction in a SARS-CoV-2 antibody discovery pipeline: caution is warranted. EBioMedicine 2024; 100:104960. [PMID: 38232633 PMCID: PMC10803917 DOI: 10.1016/j.ebiom.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING Full list of funders is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Delphine Diana Acar
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Wojciech Witkowski
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Magdalena Wejda
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Ruifang Wei
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Tim Desmet
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent 9000, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sieglinde De Cae
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Hannah Eeckhaut
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sandrine Vanmarcke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | | | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xin Zhang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Caroline S Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven 3000, Belgium
| | - Dirk Reiter
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Han Remaut
- Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels 1050, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent 9052, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
38
|
Liu S, Zhou H, Shi Y, Yi S, Wang X, Li J, Liao B, Cao J, Li G. Zinc Oxide Nanoparticles Induce Renal Injury by Initiating Oxidative Stress, Mitochondrial Damage and Apoptosis in Renal Tubular Epithelial Cells. Biol Trace Elem Res 2024; 202:481-492. [PMID: 37119342 DOI: 10.1007/s12011-023-03683-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used in many fields due to their unique physicochemical properties. However, the renal toxicity of ZnO NPs and the underlying mechanisms have not been well studied. We found that ZnO NPs induced injury in human renal proximal tubular epithelial cells (HK-2) in a dose- and size-dependent manner, as revealed by CCK-8, LDH and Annexin V-FITC assays. Mechanistically, ZnO NPs promoted oxidative stress and mitochondrial damage by generating ROS and induced apoptosis in HK-2 cells, as evidenced by the upregulation of Bax and Caspase 3 and downregulation of Beclin 1. In vivo, ZnO NPs induced tubular epithelial cell apoptosis and increased serum creatinine, serum urea nitrogen, and urinary protein in mice, suggesting damage to renal structure and function. These findings clarified our understanding of the biological mechanisms underlying ZnO NP-induced renal tubular epithelial cell injury and contributed to estimating the risk of ZnO NPs to the kidney.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Han Zhou
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Yang Shi
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Simeng Yi
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Xinyu Wang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Jingyan Li
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030607, China.
| | - Guang Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
39
|
Zhang C, Wu H, Feng H, Zhang YA, Tu J. Grass carp reovirus VP56 and VP35 induce formation of viral inclusion bodies for replication. iScience 2024; 27:108684. [PMID: 38188516 PMCID: PMC10767200 DOI: 10.1016/j.isci.2023.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Viral inclusion bodies (VIBs) are subcellular structures required for efficient viral replication. How type II grass carp reovirus (GCRV-II), the mainly prevalent strain, forms VIBs is unknown. In this study, we found that GCRV-II infection induced punctate VIBs in grass carp ovary (GCO) cells and that non-structural protein 38 (NS38) functioned as a participant in VIB formation. Furthermore, VP56 and VP35 induced VIBs and recruited other viral proteins via the N-terminal of VP56 and the middle domain of VP35. Additionally, we found that the newly synthesized viral RNAs co-localized with VP56 and VP35 in VIBs during infection. Taken together, VP56 and VP35 induce VIB formation and recruit other viral proteins and viral RNAs to the VIBs for viral replication, which helps identify new targets for developing anti-GCRV-II drugs to disrupt viral replication.
Collapse
Affiliation(s)
- Chu Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Timmins LM, Erickson P, Parekkadan B. Investigating dynamics of lentiviral vector secretion from HEK293T producer cells using a fractionated perfusion system. Biotechnol J 2024; 19:e2300097. [PMID: 37718481 PMCID: PMC11289840 DOI: 10.1002/biot.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Mammalian cell culture is quickly becoming the go to engineering vehicle to mass produce viral vectors in a manner that is safe, convenient, reproducible, and cost and scale effective. Human embryonic kidney (HEK293) cells, in particular, have been utilized and customized (via differentiated transgene expression, modified culture parameters, addition of cytostatic culture agents) to increase vector yields. However, less attention has been made to understanding innate processes within the cells (such as, immune response, cell cycle, metabolism) themselves to better control or increase viral vector product yield. Accordingly, herein, the variation in viral production was studied from HEK cells over time using a one-way perfusion system and bioreactor to study the impact of external factors on secretion dynamics without retrotransduction. Specifically, the impact of cell density on viral titer, transduction efficiency, and LDH, was studied. Next, we look at the impact of using an inflammatory reporter cell line on viral output, and the secretion dynamics from HEK cells when we use sodium butyrate (cell cycle arrest agent). Lastly, we assess how downregulation of the PDK pathway increases viral titer. Altogether, we investigated the impact of various interventions to increase transient protein expression and viral output from HEK cells in a controlled and measurable environment to ultimately increase the efficiency of HEK cells for downstream clinical applications.
Collapse
Affiliation(s)
- Lauren M. Timmins
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Patrick Erickson
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
- Department of Medicine, Rutgers Biomedical Health Sciences, New Brunswick, New Jersey, USA
| |
Collapse
|
41
|
Eccles MK, Main N, Carlessi R, Armstrong AM, Sabale M, Roberts-Mok B, Tirnitz-Parker JEE, Agostino M, Groth D, Fraser PE, Verdile G. Quantitative comparison of presenilin protein expression reveals greater activity of PS2-γ-secretase. FASEB J 2024; 38:e23396. [PMID: 38156414 DOI: 10.1096/fj.202300954rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-β. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.
Collapse
Affiliation(s)
- Melissa K Eccles
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Nathan Main
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Ayeisha Milligan Armstrong
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Miheer Sabale
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brigid Roberts-Mok
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Mark Agostino
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
42
|
Lu M, Lee Z, Lin YC, Irfanullah I, Cai W, Hu WS. Enhancing the production of recombinant adeno-associated virus in synthetic cell lines through systematic characterization. Biotechnol Bioeng 2024; 121:341-354. [PMID: 37749931 DOI: 10.1002/bit.28562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is among the most commonly used in vivo gene delivery vehicles and has seen a number of successes in clinical application. Current manufacturing processes of rAAV employ multiple plasmid transfection or rely on virus infection and face challenges in scale-up. A synthetic biology approach was taken to generate stable cell lines with integrated genetic modules, which produced rAAV upon induction albeit at a low productivity. To identify potential factors that restrained the productivity, we systematically characterized virus production kinetics through targeted quantitative proteomics and various physical assays of viral components. We demonstrated that reducing the excessive expression of gene of interest by its conditional expression greatly increased the productivity of these synthetic cell lines. Further enhancement was gained by optimizing induction profiles and alleviating proteasomal degradation of viral capsid protein by the addition of proteasome inhibitors. Altogether, these enhancements brought the productivity close to traditional multiple plasmid transfection. The rAAV produced had comparable full particle contents as those produced by conventional transient plasmid transfection. The present work exemplified the versatility of our synthetic biology-based viral vector production platform and its potential for plasmid- and virus-free rAAV manufacturing.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ibrahim Irfanullah
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
43
|
Yang L, Metzger GA, Padilla Del Valle R, Delgadillo Rubalcaba D, McLaughlin RN. Evolutionary insights from profiling LINE-1 activity at allelic resolution in a single human genome. EMBO J 2024; 43:112-131. [PMID: 38177314 PMCID: PMC10883270 DOI: 10.1038/s44318-023-00007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Transposable elements have created the majority of the sequence in many genomes. In mammals, LINE-1 retrotransposons have been expanding for more than 100 million years as distinct, consecutive lineages; however, the drivers of this recurrent lineage emergence and disappearance are unknown. Most human genome assemblies provide a record of this ancient evolution, but fail to resolve ongoing LINE-1 retrotranspositions. Utilizing the human CHM1 long-read-based haploid assembly, we identified and cloned all full-length, intact LINE-1s, and found 29 LINE-1s with measurable in vitro retrotransposition activity. Among individuals, these LINE-1s varied in their presence, their allelic sequences, and their activity. We found that recently retrotransposed LINE-1s tend to be active in vitro and polymorphic in the population relative to more ancient LINE-1s. However, some rare allelic forms of old LINE-1s retain activity, suggesting older lineages can persist longer than expected. Finally, in LINE-1s with in vitro activity and in vivo fitness, we identified mutations that may have increased replication in ancient genomes and may prove promising candidates for mechanistic investigations of the drivers of LINE-1 evolution and which LINE-1 sequences contribute to human disease.
Collapse
Affiliation(s)
- Lei Yang
- Pacific Northwest Research Institute, Seattle, WA, USA
| | | | - Ricky Padilla Del Valle
- Pacific Northwest Research Institute, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | | | - Richard N McLaughlin
- Pacific Northwest Research Institute, Seattle, WA, USA.
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|
44
|
Ding D, Zhong J, Xing Y, Hu Y, Ge X, Yao W. Bioinformatics and Experimental Study Revealed LINC00982/ miR-183-5p/ABCA8 Axis Suppresses LUAD Progression. Curr Cancer Drug Targets 2024; 24:654-667. [PMID: 38419344 DOI: 10.2174/0115680096266700231107071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major health challenge worldwide with an undesirable prognosis. LINC00982 has been implicated as a tumor suppressor in diverse human cancers; however, its role in LUAD has not been fully characterized. METHODS Expression level and prognostic value of LINC00982 were investigated in pan-cancer and lung cancer from The Cancer Genome Atlas (TCGA) project. Differential expression analysis based on the LINC00982 expression level was performed in LUAD followed by gene set enrichment analysis (GSEA) and functional enrichment analyses. The association between LINC00982 expression and tumor immune microenvironment characteristics was evaluated. A potential ceRNA regulatory axis was identified and experimentally validated. RESULTS We found that LINC00982 expression was downregulated and correlated with poor prognosis in LUAD. Enrichment analyses revealed that LINC00982 could inhibit DNA damage repair and cell proliferation, but enhance tumor metabolic reprogramming. We identified a competing endogenous RNA network involving LINC00982, miR-183-5p, and ATP-binding cassette subfamily A member 8 (ABCA8). Luciferase assays confirmed that miR-183-5p can interact with LINC00982 and ABCA8. Forced miR-183-5p expression reduced LINC00982 transcript levels and suppressed ABCA8 expression. CONCLUSIONS Our findings revealed the LINC00982/miR-183-5p/ABCA8 axis as a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Defang Ding
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiang Ge
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
45
|
Gent R, Van Rooyen D, Atkin SL, Swart AC. C11-hydroxy and C11-oxo C 19 and C 21 Steroids: Pre-Receptor Regulation and Interaction with Androgen and Progesterone Steroid Receptors. Int J Mol Sci 2023; 25:101. [PMID: 38203272 PMCID: PMC10778819 DOI: 10.3390/ijms25010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11β-hydroxysteroid dehydrogenase (11βHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11βHSD1 and 11βHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11βHSD2 occurred more readily than the reverse reaction catalysed by 11βHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11β-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11β-hydroxyprogesterone (11βOHP4), 11β-hydroxydihydroprogesterone (11βOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11βOHP4, 11βOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11β-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11βHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Desmaré Van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
46
|
Lian X, Zhao X, Zhong J, Zhang C, Chu Y, Wang Y, Lu S, Wang Z. A New HEK293 Cell with CR2 Region of E1A Gene Deletion Prevents the Emergence of Replication-Competent Adenovirus. Cancers (Basel) 2023; 15:5713. [PMID: 38136259 PMCID: PMC10742158 DOI: 10.3390/cancers15245713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
PURPOSE To eliminate the contaminants of Replication-Competent Adenovirus (RCA) during high titer recombinant oncolytic adenovirus production. METHODS At first, we detected E1A copy numbers of different sources of 293 cells using Q-PCR, and we screened a subclone JH293-C21 of the JH293 cell line (purchased from ATCC) with lower early region 1A (E1A) copy numbers and higher adenovirus production ability. Then, we deleted the conserved region (CR)2 of the E1A gene in this subclone using the CRISPR-Cas9 system and obtained a stable cell clone JH293-C21-C14 with lower E1A expression, but the RCA formation had no significant reduction. Then, we further deleted the CR2 of JH293-C21-C14 cells with the CRISPR-Cas9 system and obtained a strain of cells named JH293-C21-C14-C28. Finally, we detected the capacity for cell proliferation, adenovirus production, and RCA formation in the production of recombinant adenovirus. RESULTS The JH293-C21-C14-C28 cells had a similar cell proliferation ability and human adenovirus production as JH293-C21 cells. Most importantly, RCA production in JH293-C21-C14-C28 cells was lower than in JH293-C21 cells. CONCLUSION Human adenovirus producer cell clone JH293-C21-C14-C28 with CR2 deletion can effectively prevent the RCA production of replication-competent oncolytic adenovirus; this will provide significant advantages in utility and safety in gene therapy.
Collapse
Affiliation(s)
- Xueqi Lian
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Xiaoyan Zhao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Jingjing Zhong
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Chenglin Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Yongchao Chu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| | - Zhimin Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China; (X.L.); (X.Z.); (J.Z.); (C.Z.); (Y.C.); (Y.W.)
| |
Collapse
|
47
|
Lobaz V, Liščáková V, Sedlák F, Musil D, Petrova SL, Šeděnková I, Pánek J, Kučka J, Konefał R, Tihlaříková E, Neděla V, Pankrác J, Šefc L, Hrubý M, Šácha P, Štěpánek P. Tuning polymer-blood and polymer-cytoplasm membrane interactions by manipulating the architecture of poly(2-oxazoline) triblock copolymers. Colloids Surf B Biointerfaces 2023; 231:113564. [PMID: 37742364 DOI: 10.1016/j.colsurfb.2023.113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Bioactive moieties designed to bind to cell membrane receptors benefit from coupling with polymeric carriers that have enhanced affinity to the cell membrane. When bound to the cell surface, such carriers create a "2D solution" of a ligand with a significantly increased concentration near a membrane-bound receptor compared to a freely water-soluble ligand. Bifunctional polymeric carriers based on amphiphilic triblock copolymers were synthesized from 2-pent-4-ynyl oxazoline, 2-nonyl oxazoline and 2-ethyl oxazoline. Their self-assembly and interactions with plasma proteins and HEK 293 cells were studied in detail. The affinity of these triblock copolymers to HEK 293 cell membranes and organ tissues was tunable by the overall hydrophobicity of the polymer molecule, which is determined by the length of the hydrophobic and hydrophilic blocks. The circulation time and biodistribution of three representative triblock copolymers were monitored after intravenous administration to C57BL/6 albino mice. A prolonged circulation time was observed for polymers with longer hydrophobic blocks, despite their molecular weight being below the renal threshold.
Collapse
Affiliation(s)
- Volodymyr Lobaz
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia.
| | - Veronika Liščáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia; Laboratory of Theranostics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, U Nemocnice 5, 128 53 Prague 2, Czechia
| | - František Sedlák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia; Laboratory of Theranostics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, U Nemocnice 5, 128 53 Prague 2, Czechia
| | - Dominik Musil
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czechia
| | - Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Ivana Šeděnková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Jiří Pánek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Jan Kučka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Rafał Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61 200 Brno, Czechia
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 61 200 Brno, Czechia
| | - Jan Pankrác
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Czechia
| | - Luděk Šefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, Czechia
| | - Martin Hrubý
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 542/2, 160 00 Prague 6, Czechia
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského n. 1888/2, 162 06 Prague 6, Czechia
| |
Collapse
|
48
|
Moy AB, Kamath A, Ternes S, Kamath J. The Challenges to Advancing Induced Pluripotent Stem Cell-Dependent Cell Replacement Therapy. MEDICAL RESEARCH ARCHIVES 2023; 11:4784. [PMID: 38188933 PMCID: PMC10768945 DOI: 10.18103/mra.v11i11.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Induced pluripotent stem cells (iPSC) represent a potentially exciting regenerative-medicine cell therapy for several chronic conditions such as macular degeneration, soft tissue and orthopedic conditions, cardiopulmonary disease, cancer, neurodegenerative disorders and metabolic disorders. The field of iPSC therapeutics currently exists at an early stage of development. There are several important stakeholders that include academia, industry, regulatory agencies, financial institutions and patients who are committed to advance the field. Yet, unlike more established therapeutic modalities like small and large molecules, iPSC therapies pose significant unique challenges with respect to safety, potency, genetic stability, immunogenicity, tumorgenicity, cell reproducibility, scalability and engraftment. The aim of this review article is to highlight the unique technical challenges that need to be addressed before iPSC technology can be fully realized as a cell replacement therapy. Additionally, this manuscript offers some potential solutions and identifies areas of focus that should be considered in order for the iPSC field to achieve its promise. The scope of this article covers the following areas: (1) the impact of different iPSC reprogramming methods on immunogenicity and tumorigenicity; (2) the effect of genetic instability on cell reproducibility and differentiation; (3) the role of growth factors and post-translational modification on differentiation and cell scalability; (4) the potential use of gene editing in improving iPSC differentiation; (5) the advantages and disadvantages between autologous and allogeneic cell therapy; (6) the regulatory considerations in developing a viable and reproducible cell product; and (7) the impact of local tissue inflammation on cell engraftment and cell viability.
Collapse
Affiliation(s)
- Alan B. Moy
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
- John Paul II Medical Research Institute, Coralville, IA 52241
| | - Anant Kamath
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
| | - Sara Ternes
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
| | - Jay Kamath
- John Paul II Medical Research Institute, Coralville, IA 52241
| |
Collapse
|
49
|
Harris MT, Marr MT. The intrinsically disordered region of eIF5B stimulates IRES usage and nucleates biological granule formation. Cell Rep 2023; 42:113283. [PMID: 37862172 PMCID: PMC10680144 DOI: 10.1016/j.celrep.2023.113283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/22/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Cells activate stress response pathways to survive adverse conditions. Such responses involve the inhibition of global cap-dependent translation. This inhibition is a block that essential transcripts must escape via alternative methods of translation initiation, e.g., an internal ribosome entry site (IRES). IRESs have distinct structures and generally require a limited repertoire of translation factors. Cellular IRESs have been identified in many critical cellular stress response transcripts. We previously identified cellular IRESs in the murine insulin receptor (Insr) and insulin-like growth factor 1 receptor (Igf1r) transcripts and demonstrated their resistance to eukaryotic initiation factor 4F (eIF4F) inhibition. Here, we find that eIF5B preferentially promotes Insr, Igf1r, and hepatitis C virus IRES activity through a non-canonical mechanism that requires its highly charged and disordered N terminus. We find that the N-terminal region of eIF5B can drive cytoplasmic granule formation. This eIF5B granule is triggered by cellular stress and is sufficient to specifically promote IRES activity.
Collapse
Affiliation(s)
- Meghan T Harris
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA
| | - Michael T Marr
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
50
|
Rajaram N, Kouroukli AG, Bens S, Bashtrykov P, Jeltsch A. Development of super-specific epigenome editing by targeted allele-specific DNA methylation. Epigenetics Chromatin 2023; 16:41. [PMID: 37864244 PMCID: PMC10589950 DOI: 10.1186/s13072-023-00515-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epigenome editing refers to the targeted reprogramming of genomic loci using an EpiEditor which may consist of an sgRNA/dCas9 complex that recruits DNMT3A/3L to the target locus. Methylation of the locus can lead to a modulation of gene expression. Allele-specific DNA methylation (ASM) refers to the targeted methylation delivery only to one allele of a locus. In the context of diseases caused by a dominant mutation, the selective DNA methylation of the mutant allele could be used to repress its expression but retain the functionality of the normal gene. RESULTS To set up allele-specific targeted DNA methylation, target regions were selected from hypomethylated CGIs bearing a heterozygous SNP in their promoters in the HEK293 cell line. We aimed at delivering maximum DNA methylation with highest allelic specificity in the targeted regions. Placing SNPs in the PAM or seed regions of the sgRNA, we designed 24 different sgRNAs targeting single alleles in 14 different gene loci. We achieved efficient ASM in multiple cases, such as ISG15, MSH6, GPD1L, MRPL52, PDE8A, NARF, DAP3, and GSPT1, which in best cases led to five to tenfold stronger average DNA methylation at the on-target allele and absolute differences in the DNA methylation gain at on- and off-target alleles of > 50%. In general, loci with the allele discriminatory SNP positioned in the PAM region showed higher success rate of ASM and better specificity. Highest DNA methylation was observed on day 3 after transfection followed by a gradual decline. In selected cases, ASM was stable up to 11 days in HEK293 cells and it led up to a 3.6-fold change in allelic expression ratios. CONCLUSIONS We successfully delivered ASM at multiple genomic loci with high specificity, efficiency and stability. This form of super-specific epigenome editing could find applications in the treatment of diseases caused by dominant mutations, because it allows silencing of the mutant allele without repression of the expression of the normal allele thereby minimizing potential side-effects of the treatment.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexandra G Kouroukli
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|