1
|
Ding X, Zhang D, Zhang HD, Zheng X, Yan Y. Unveiling hidden scaling relations in dissipative relaxation dynamics of strongly correlated quantum impurity systems. J Chem Phys 2024; 161:174120. [PMID: 39508346 DOI: 10.1063/5.0236906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024] Open
Abstract
Understanding the time evolution of strongly correlated open quantum systems (OQSs) in response to perturbations (quenches) is of fundamental importance to the precise control of quantum devices. It is, however, rather challenging in multi-impurity quantum systems because such evolution often involves multiple intricate dynamical processes. In this work, we apply the numerically exact hierarchical equations of motion approach to explore the influence of two different types of perturbations, i.e., sudden swapping of the energy levels of impurity systems and activating the inter-impurity spin-exchange interaction, on the dissipation dynamics of the Kondo-correlated two-impurity Anderson model over a wide range of energetic parameters. By evaluating the time-dependent impurity spectral function and other system properties, we analyze the time evolution of the Kondo state in detail and conclude a phenomenologically scaling relation for Kondo dynamics driven by these perturbations. The evolutionary scaling relationship is not only related to the Kondo characteristic energy TK but also significantly affected by the simultaneous non-Kondo dynamic characteristic energy. We expect these results will inspire subsequent theoretical studies on the dynamics of strongly correlated OQSs.
Collapse
Affiliation(s)
- Xu Ding
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Daochi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hou-Dao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and IChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Lampert JS, Krogmeier TJ, Schlimgen AW, Head-Marsden K. Orbital entanglement and the double d-shell effect in binary transition metal molecules. J Chem Phys 2024; 161:174103. [PMID: 39484890 DOI: 10.1063/5.0232316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Accurate modeling of transition metal-containing compounds is of great interest due to their wide-ranging and significant applications. These systems present several challenges from an electronic structure perspective, including significant multi-reference characters and many chemically relevant orbitals. A further complication arises from the so-called double d-shell effect, which is known to cause a myriad of issues in the treatment of first-row transition metals with both single- and multi-reference methods. While this effect has been well documented for several decades, a comprehensive understanding of its consequences and underlying causes is still evolving. Here, we characterize the second d-shell effect by analyzing the information entropy of correlated wavefunctions in a periodic series of 3d and 4d transition metal molecular hydrides and oxides. These quantum information techniques provide unique insight into the nuanced electronic structure of these species and are powerful tools for the study of weak and strong correlations in the transition metal d manifold.
Collapse
Affiliation(s)
- Julianne S Lampert
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, USA
| | - Timothy J Krogmeier
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Anthony W Schlimgen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kade Head-Marsden
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
3
|
Totoiu C, Follmer AH, Oyala PH, Hadt RG. Probing Bioinorganic Electron Spin Decoherence Mechanisms with an Fe 2S 2 Metalloprotein. J Phys Chem B 2024; 128:10417-10426. [PMID: 39392916 PMCID: PMC11514009 DOI: 10.1021/acs.jpcb.4c06186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Recent efforts have sought to develop paramagnetic molecular quantum bits (qubits) as a means to store and manipulate quantum information. Emerging structure-property relationships have shed light on electron spin decoherence mechanisms. While insights within molecular quantum information science have derived from synthetic systems, biomolecular platforms would allow for the study of decoherence phenomena in more complex chemical environments and further leverage molecular biology and protein engineering approaches. Here we have employed the exchange-coupled ST = 1/2 Fe2S2 active site of putidaredoxin, an electron transfer metalloprotein, as a platform for fundamental mechanistic studies of electron spin decoherence toward spin-based biological quantum sensing. At low temperatures, decoherence rates were anisotropic, reflecting a hyperfine-dominated decoherence mechanism, standing in contrast to the anisotropy of molecular systems observed previously. This mechanism provided a pathway for probing spatial effects on decoherence, such as protein vs solvent contributions. Furthermore, we demonstrated spatial sensitivity to single point mutations via site-directed mutagenesis and temporal sensitivity for monitoring solvent isotope exchange. Thus, this study demonstrates a step toward the design and construction of biomolecular quantum sensors.
Collapse
Affiliation(s)
- Christian
A. Totoiu
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Paul H. Oyala
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Mezzadri M, Chiesa A, Lepori L, Carretta S. Fault-tolerant computing with single-qudit encoding in a molecular spin. MATERIALS HORIZONS 2024; 11:4961-4969. [PMID: 39051507 DOI: 10.1039/d4mh00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We show that molecular spins represent ideal materials to realize a fault-tolerant quantum computer, in which all quantum operations include protection against leading (dephasing) errors. This is achieved by pursuing a qudit approach, in which logical error-corrected qubits are encoded in a single multi-level molecule (a qudit) and not in a large collection of two-level systems, as in standard codes. By preventing such an explosion of resources, this emerging way of thinking about quantum error correction makes its actual implementation using molecular spins much closer. We show how to perform all quantum computing operations (logical gates, corrections and measurements) without propagating errors. We achieve a quasi-exponential error correction with only linear qudit size growth, i.e. a higher efficiency than the standard approach based on stabilizer codes and concatenation.
Collapse
Affiliation(s)
- Matteo Mezzadri
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
| | - Alessandro Chiesa
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - Luca Lepori
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
| | - Stefano Carretta
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
5
|
Gupta S, Wakizaka M, Yamane T, Sato K, Ishikawa R, Funakoshi N, Yamashita M. Spin coherence and magnetization dynamics of TMA 2[KCo 1-xFe x(CN) 6] toward coordination-framework spin qubits. Phys Chem Chem Phys 2024; 26:24924-24930. [PMID: 39295502 DOI: 10.1039/d4cp02263g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal compounds with S = 1/2 coordination-frameworks have been emerging as new powerful qubit candidates. In this study, we have reported the CN-based coordination framework TMA2[KCo1-xFex(CN)6] to be a qubit. We explored the magnetization dynamics and spin coherence of the magnetic dilution of the S = 1/2 Fe(III) complex TMA2[KFe(CN)6] (TMA = tetramethylammonium) in its Co(III)-based diamagnetic analogue TMA2[KCo(CN)6]. Alternating-current (AC) susceptibility data illustrate a slow magnetic relaxation upon applying a field of 0.1 T, which follows the phonon-bottleneck relaxation mechanism along with the Raman process. A magnetic relaxation time (τ) of 0.3 s (2% Fe) was realized at 1.8 K. Moreover, pulsed EPR data reveal a coherence duration of 1 μs (0.1% Fe) at 4 K with successful observation of Rabi oscillation at 4 K and 13 K (2% Fe) using MW pulses with variable irradiation-field strengths. The overall results indicate that TMA2[KCo1-xFex(CN)6] represents a promising qubit candidate, as it is capable of being placed in any superposition of the two distinct Ms states (Ms = +1/2 and Ms = -1/2).
Collapse
Affiliation(s)
- Shraddha Gupta
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masanori Wakizaka
- Department of Applied Chemistry and Bioscience, Faculty of Science and Technology, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan.
| | - Takeshi Yamane
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan.
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka 558-8585, Japan.
| | - Ryuta Ishikawa
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | - Nobuto Funakoshi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Raza A, Chelazzi L, Ciattini S, Sorace L, Perfetti M. Osmium(III) Acetylacetonate and Its Missing Polymorph: A Magnetic and Structural Investigation. Inorg Chem 2024; 63:17198-17207. [PMID: 39092922 DOI: 10.1021/acs.inorgchem.4c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Despite the potential for their application, the magnetic behavior of complexes containing 4d and 5d metal ions is underexplored, evidencing the need for benchmark multi-technique studies on simple molecules. We report here a structural and magnetic study on osmium(III) acetylacetonate [Os(acac)3]. X-ray single crystal diffraction did not allow us to determine the structure of the β-polymorph of [Os(acac)3]. The combined magnetic (dc magnetic measurements on powder and cantilever torque magnetometry on single crystal) and spectroscopic (electron paramagnetic resonance, EPR) characterization is here used to provide further evidence that its structure is indeed the one of the orthorhombic "missing polymorph", analogous to the ruthenium(III) derivative. Our study shows that all acetylacetonate complexes of the eighth group of the periodic table show dimorphism and are isomorphic. The EPR characterization allowed the experimental assessment of the easy axis nature of the ground doublet and the determination of the first hyperfine coupling in an osmium complex. Torque magnetometry, applied here for the first time on an osmium-based molecule, determined the orientation of the easy axis along the pseudo C3 axis of the complex. Ac magnetometric measurements revealed in-field slow relaxation of the magnetization further slowed by the suppression of dipolar fields via magnetic dilution in the isostructural gallium(III) analogue.
Collapse
Affiliation(s)
- Arsen Raza
- Department of Chemistry "Ugo Schiff", DICUS and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
- Department of Industrial Engineering, DIEF and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
| | - Laura Chelazzi
- Centro di Servizi di Cristallografia Strutturale, CRIST, Via della Lastruccia, 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Samuele Ciattini
- Centro di Servizi di Cristallografia Strutturale, CRIST, Via della Lastruccia, 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Sorace
- Department of Chemistry "Ugo Schiff", DICUS and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Mauro Perfetti
- Department of Chemistry "Ugo Schiff", DICUS and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
7
|
Zhou A, Sun Z, Sun L. Stable organic radical qubits and their applications in quantum information science. Innovation (N Y) 2024; 5:100662. [PMID: 39091459 PMCID: PMC11292369 DOI: 10.1016/j.xinn.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.
Collapse
Affiliation(s)
- Aimei Zhou
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhecheng Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lei Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
| |
Collapse
|
8
|
Cui MH, Lu YM, Wang J, Ouyang Z, Wang Z, Shao C, Song Y. Room-Temperature Quantum Coherence of Reversible Photo-Generated Radical and its Film. Chemistry 2024:e202402660. [PMID: 39210539 DOI: 10.1002/chem.202402660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Electron spin qubits are becoming an important research direction in the field of quantum computing and information storage. However, the quantum decoherence has seriously hindered the development of this field. So far, few qubits exhibit long phase memory time (Tm), and even fewer qubits that can reach room temperature. Some reports show that the coherence times of radicals are generally long, so radicals may be the preferred spin carriers for qubits. Here, we demonstrate the qubit properties of a photogenerated radical (1 a) based on 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (tpt, 1). More importantly, the photogenerated radical is a spin self-diluting complex, which the dilution is generally used in the investigation of qubits to reduce the interference of environment on qubits in order to overcome the decoherence of qubits. It is surprised that radical tpt has a stable Tm=1.1 μs above 20 K, even keep it to room temperature. In addition, the tpt-film prepared by the vacuum evaporation is significantly increase the T1 and Tm at low temperature.
Collapse
Affiliation(s)
- Ming-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Ming Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhongwen Ouyang
- Department Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Department Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chongyun Shao
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Santanni F, Little E, Lockyer SJ, Whitehead GFS, McInnes EJL, Timco GA, Bowen AM, Sessoli R, Winpenny REP. Weak Exchange Interactions in Multispin Systems: EPR Studies of Metalloporphyrins Decorated with {Cr 7Ni} Rings. Inorg Chem 2024; 63:15460-15466. [PMID: 38941532 PMCID: PMC11337161 DOI: 10.1021/acs.inorgchem.4c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Both metalloporphyrins and heterometallic {Cr7Ni} rings are of significant research interest due to their proposed roles in quantum information processing devices. In this study, we present a series of complexes in which [Cr7NiF3(Etglu)(O2CtBu)15] (N-EtgluH5 = N-ethyl-d-glucamine) heterometallic rings are coordinated to metalloporphyrin linkers: the symmetric [M(TPyP)] for M = Cu2+, VO2+, and H2TPyP = 5,10,15,20-tetra(4-pyridyl)porphyrin; and the asymmetric [{VO}(TrPPyP)] for H2(TrPPyP) = 5,10,15-(triphenyl)-20-(4-pyridyl)porphyrin. The magnetic interactions present in these complexes are unraveled using the continuous wave (CW) electron paramagnetic resonance (EPR) technique. The nature of the coupling between the {Cr7Ni} rings and the central metalloporphyrin is assessed by numerical simulations of CW EPR spectra and determined to be on the order of 0.01 cm-1, larger than the dipolar ones and suitable for individual spin addressability in multiqubit architectures.
Collapse
Affiliation(s)
- Fabio Santanni
- Dipartimento
di Chimica “Ugo Schiff” & INSTM Unit, Università̀ degli Studi di Firenze, Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy
| | - Edmund Little
- Photon
Science Institute and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Selena J. Lockyer
- Photon
Science Institute and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - George F. S. Whitehead
- Photon
Science Institute and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Eric J. L. McInnes
- Photon
Science Institute and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Grigore A. Timco
- Photon
Science Institute and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alice M. Bowen
- Photon
Science Institute and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Roberta Sessoli
- Dipartimento
di Chimica “Ugo Schiff” & INSTM Unit, Università̀ degli Studi di Firenze, Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy
| | - Richard E. P. Winpenny
- Photon
Science Institute and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
10
|
Wang H, Kim H, Dong D, Shinokita K, Watanabe K, Taniguchi T, Matsuda K. Quantum coherence and interference of a single moiré exciton in nano-fabricated twisted monolayer semiconductor heterobilayers. Nat Commun 2024; 15:4905. [PMID: 38851776 PMCID: PMC11162440 DOI: 10.1038/s41467-024-48623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/02/2024] [Indexed: 06/10/2024] Open
Abstract
The moiré potential serves as a periodic quantum confinement for optically generated excitons, creating spatially ordered zero-dimensional quantum systems. However, a broad emission spectrum resulting from inhomogeneity among moiré potentials hinders the investigation of their intrinsic properties. In this study, we demonstrated a method for the optical observation of quantum coherence and interference of a single moiré exciton in a twisted semiconducting heterobilayer beyond the diffraction limit of light. We observed a single and sharp photoluminescence peak from a single moiré exciton following nanofabrication. Our findings revealed the extended duration of quantum coherence in a single moiré exciton, persisting beyond 10 ps, and an accelerated decoherence process with increasing temperature and excitation power density. Moreover, quantum interference experiments revealed the coupling between moiré excitons in different moiré potential minima. The observed quantum coherence and interference of moiré exciton will facilitate potential applications of moiré quantum systems in quantum technologies.
Collapse
Affiliation(s)
- Haonan Wang
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Heejun Kim
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Duanfei Dong
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
11
|
Nodaraki L, Ariciu AM, Huh DN, Liu J, Martins DOTA, Ortu F, Winpenny REP, Chilton NF, McInnes EJL, Mills DP, Evans WJ, Tuna F. Ligand Effects on the Spin Relaxation Dynamics and Coherent Manipulation of Organometallic La(II) Potential Qu dits. J Am Chem Soc 2024; 146:15000-15009. [PMID: 38787801 PMCID: PMC11157535 DOI: 10.1021/jacs.3c12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
We present pulsed electron paramagnetic resonance (EPR) studies on three La(II) complexes, [K(2.2.2-cryptand)][La(Cp')3] (1), [K(2.2.2-cryptand)][La(Cp″)3] (2), and [K(2.2.2-cryptand)][La(Cptt)3] (3), which feature cyclopentadienyl derivatives as ligands [Cp' = C5H4SiMe3; Cp″ = C5H3(SiMe3)2; Cptt = C5H3(CMe3)2] and display a C3 symmetry. Long spin-lattice relaxation (T1) and phase memory (Tm) times are observed for all three compounds, but with significant variation in T1 among 1-3, with 3 being the slowest relaxing due to higher s-character of the SOMO. The dephasing times can be extended by more than an order of magnitude via dynamical decoupling experiments using a Carr-Purcell-Meiboom-Gill (CPMG) sequence, reaching 161 μs (5 K) for 3. Coherent spin manipulation is performed by the observation of Rabi quantum oscillations up to 80 K in this nuclear spin-rich environment (1H, 13C, and 29Si). The high nuclear spin of 139La (I = 7/2), and the ability to coherently manipulate all eight hyperfine transitions, makes these molecules promising candidates for application as qudits (multilevel quantum systems featuring d quantum states; d >2) for performing quantum operations within a single molecule. Application of HYSCORE techniques allows us to quantify the electron spin density at ligand nuclei and interrogate the role of functional groups to the electron spin relaxation properties.
Collapse
Affiliation(s)
- Lydia
E. Nodaraki
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Ana-Maria Ariciu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel N. Huh
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
- Department
of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
of America
| | - Jingjing Liu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel O. T. A. Martins
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Fabrizio Ortu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | | | - Nicholas F. Chilton
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Research
School of Chemistry, Australian National
University, Canberra 2617, Australia
| | - Eric J. L. McInnes
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - William J. Evans
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
12
|
Liao YQ, Liu YC, Wang YH, Fu PX, Xie Y, Gao S, Wang YX, Liu Z, Jiang SD. Angular-resolved Rabi oscillations of orthorhombic spins in a Co(II) molecular qubit. Phys Chem Chem Phys 2024; 26:14832-14838. [PMID: 38721813 DOI: 10.1039/d4cp01017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Magnetic molecules are promising candidates for quantum information processing (QIP) due to their tunable electron structures and quantum properties. A high spin Co(II) complex, CoH2dota, is studied for its potential to be used as a quantum bit (qubit) utilizing continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopy at low temperature. On the X-band microwave energy scale, the system can be treated as an effective spin 1/2 with a strongly anisotropic g-tensor resulting from the significant spin-orbital coupling. An experimental and theoretical study is conducted to investigate the anisotropic Rabi oscillations of the two magnetically equivalent spin centres with different orientations in a single crystal sample, which aims to verify the relationship between the Rabi frequency and the orientation of the g-tensor. The findings of this study show that an effective quantum manipulation method is developed for orthorhombic spin systems.
Collapse
Affiliation(s)
- Yi-Qiu Liao
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 511442, China.
| | - You-Chao Liu
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 511442, China.
| | - Yi-Han Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Peng-Xiang Fu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Xie
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 511442, China.
| | - Song Gao
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 511442, China.
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Ye-Xin Wang
- Quantum Science Centre of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen-Hong Kong International Science and Technology Park, NO. 3 Binglang Road, Futian District, Shenzhen, Guangdong, 518045, China.
| | - Zheng Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 511442, China.
| |
Collapse
|
13
|
Gabarró-Riera G, Sañudo EC. Challenges for exploiting nanomagnet properties on surfaces. Commun Chem 2024; 7:99. [PMID: 38693350 PMCID: PMC11063158 DOI: 10.1038/s42004-024-01183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Molecular complexes with single-molecule magnet (SMM) or qubit properties, commonly called molecular nanomagnets, are great candidates for information storage or quantum information processing technologies. However, the implementation of molecular nanomagnets in devices for the above-mentioned applications requires controlled surface deposition and addressing the nanomagnets' properties on the surface. This Perspectives paper gives a brief overview of molecular properties on a surface relevant for magnetic molecules and how they are affected when the molecules interact with a surface; then, we focus on systems of increasing complexity, where the relevant SMMs and qubit properties have been observed for the molecules deposited on surfaces; finally, future perspectives, including possible ways of overcoming the problems encountered so far are discussed.
Collapse
Affiliation(s)
- Guillem Gabarró-Riera
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona IN2UB, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain
| | - E Carolina Sañudo
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona IN2UB, C/Martí i Franqués 1-11, 08028, Barcelona, Spain.
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Stewart R, Canaj AB, Liu S, Regincós Martí E, Celmina A, Nichol G, Cheng HP, Murrie M, Hill S. Engineering Clock Transitions in Molecular Lanthanide Complexes. J Am Chem Soc 2024; 146:11083-11094. [PMID: 38619978 PMCID: PMC11046435 DOI: 10.1021/jacs.3c09353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Molecular lanthanide (Ln) complexes are promising candidates for the development of next-generation quantum technologies. High-symmetry structures incorporating integer spin Ln ions can give rise to well-isolated crystal field quasi-doublet ground states, i.e., quantum two-level systems that may serve as the basis for magnetic qubits. Recent work has shown that symmetry lowering of the coordination environment around the Ln ion can produce an avoided crossing or clock transition within the ground doublet, leading to significantly enhanced coherence. Here, we employ single-crystal high-frequency electron paramagnetic resonance spectroscopy and high-level ab initio calculations to carry out a detailed investigation of the nine-coordinate complexes, [HoIIIL1L2], where L1 = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane and L2 = F- (1) or [MeCN]0 (2). The pseudo-4-fold symmetry imposed by the neutral organic ligand scaffold (L1) and the apical anionic fluoride ion generates a strong axial anisotropy with an mJ = ±8 ground-state quasi-doublet in 1, where mJ denotes the projection of the J = 8 spin-orbital moment onto the ∼C4 axis. Meanwhile, off-diagonal crystal field interactions give rise to a giant 116.4 ± 1.0 GHz clock transition within this doublet. We then demonstrate targeted crystal field engineering of the clock transition by replacing F- with neutral MeCN (2), resulting in an increase in the clock transition frequency by a factor of 2.2. The experimental results are in broad agreement with quantum chemical calculations. This tunability is highly desirable because decoherence caused by second-order sensitivity to magnetic noise scales inversely with the clock transition frequency.
Collapse
Affiliation(s)
- Robert Stewart
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
- Center
for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
| | - Angelos B. Canaj
- School
of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Shuanglong Liu
- Center
for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Emma Regincós Martí
- School
of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Anna Celmina
- School
of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Gary Nichol
- EastCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, Scotland, U.K.
| | - Hai-Ping Cheng
- Center
for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mark Murrie
- School
of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Stephen Hill
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
- Center
for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Rabelo R, Toma L, Julve M, Lloret F, Pasán J, Cangussu D, Ruiz-García R, Cano J. How the spin state tunes the slow magnetic relaxation field dependence in spin crossover cobalt(II) complexes. Dalton Trans 2024; 53:5507-5520. [PMID: 38416047 DOI: 10.1039/d4dt00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel family of cobalt(II) compounds with tridentate pyridine-2,6-diiminephenyl type ligands featuring electron-withdrawing substituents of general formula [Co(n-XPhPDI)2](ClO4)2·S [n-XPhPDI = 2,6-bis(N-n-halophenylformimidoyl)pyridine with n = 4 (1-3) and 3 (4); X = I (1), Br (2 and 4) and Cl (3); S = MeCN (1 and 2) and EtOAc (3)] has been synthesised and characterised by single-crystal X-ray diffraction, electron paramagnetic resonance, and static (dc) and dynamic (ac) magnetic measurements combined with theoretical calculations. The structures of 1-4 consist of mononuclear bis(chelating) cobalt(II) complex cations, [CoII(n-XPhPDI)2]2+, perchlorate anions, and acetonitrile (1 and 2) or ethyl acetate (3) molecules of crystallisation. This unique series of mononuclear six-coordinate octahedral cobalt(II) complexes displays both thermally-induced low-spin (LS)/high-spin (HS) transition and field-induced slow magnetic relaxation in both LS and HS states. A complete LS ↔ HS transition occurs for 1 and 2, while it is incomplete for 4, one-third of the complexes being HS at low temperatures. In contrast, 3 remains HS in all the temperature range. 1 and 2 show dual spin relaxation dynamics under the presence of an applied dc magnetic field (Hdc), with the occurrence of faster- (FR) and slower-relaxing (SR) processes at lower (Hdc = 1.0 kOe) and higher fields (Hdc = 2.5 kOe), respectively. On the contrary, 3 and 4 exhibit only SR and FR relaxations, regardless of Hdc. Overall, the distinct field-dependence of the single-molecule magnet (SMM) behaviour along with this family of spin-crossover (SCO) cobalt(II)-n-XPhPDI complexes is dominated by Raman mechanisms and, occasionally, with additional temperature-independent Intra-Kramer [LS or HS (D > 0)] or Quantum Tunneling of Magnetisation mechanisms [HS (D < 0)] also contributing.
Collapse
Affiliation(s)
- Renato Rabelo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Luminita Toma
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Joan Cano
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| |
Collapse
|
16
|
Smith P, Hrubý J, Evans WJ, Hill S, Minasian SG. Identification of an X-Band Clock Transition in Cp' 3Pr - Enabled by a 4f 25d 1 Configuration. J Am Chem Soc 2024; 146:5781-5785. [PMID: 38387072 PMCID: PMC10921394 DOI: 10.1021/jacs.3c12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Molecular qubits offer an attractive basis for quantum information processing, but challenges remain with regard to sustained coherence. Qubits based on clock transitions offer a method to improve the coherence times. We propose a general strategy for identifying molecules with high-frequency clock transitions in systems where a d electron is coupled to a crystal-field singlet state of an f configuration, resulting in an MJ = ±1/2 ground state with strong hyperfine coupling. Using this approach, a 9.834 GHz clock transition was identified in a molecular Pr complex, [K(crypt)][Cp'3PrII], leading to 3-fold enhancements in T2 relative to other transitions in the spectrum. This result indicates the promise of the design principles outlined here for the further development of f-element systems for quantum information applications.
Collapse
Affiliation(s)
- Patrick
W. Smith
- Lawrence
Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| | - Jakub Hrubý
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - William J. Evans
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Stephen Hill
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Stefan G. Minasian
- Lawrence
Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Wakizaka M, Gupta S, Wan Q, Takaishi S, Noro H, Sato K, Yamashita M. Spin qubits of Cu(II) doped in Zn(II) metal-organic frameworks above microsecond phase memory time. Chemistry 2024; 30:e202304202. [PMID: 38146235 DOI: 10.1002/chem.202304202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 12/27/2023]
Abstract
With the aim of creating Cu(II) spin qubits in a rigid metal-organic framework (MOF), this work demonstrates a doping of 5 %, 2 %, 1 %, and 0.1 % mol of Cu(II) ions into a perovskite-type MOF [CH6 N3 ][ZnII (HCOO)3 ]. The presence of dopant Cu(II) sites are confirmed with anisotropic g-factors (gx =2.07, gy =2.12, and gz =2.44) in the S=1/2 system by experimentally and theoretically. Magnetic dynamics indicate the occurrence of a slow magnetic relaxation via the direct and Raman processes under an applied field, with a relaxation time (τ) of 3.5 ms (5 % Cu), 9.2 ms (2 % Cu), and 15 ms (1 % Cu) at 1.8 K. Furthermore, pulse-ESR spectroscopy reveals spin qubit properties with a spin-spin relaxation (phase memory) time (T2 ) of 0.21 μs (2 %Cu), 0.39 μs (1 %Cu), and 3.0 μs (0.1 %Cu) at 10 K as well as Rabi oscillation between MS =±1/2 spin sublevels. T2 above microsecond is achieved for the first time in the Cu(II)-doped MOFs. It can be observed at submicrosecond around 50 K. These spin relaxations are very sensitive to the magnetic dipole interactions relating with cross-relaxation between the Cu(II) sites and can be tuned by adjusting the dopant concentration.
Collapse
Affiliation(s)
- Masanori Wakizaka
- Department of Applied Chemistry and Bioscience, Faculty of Science and Technology, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose, 066-8655, Japan
| | - Shraddha Gupta
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Qingyun Wan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Honoka Noro
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, P. R. China
| |
Collapse
|
18
|
Kazmierczak NP, Lopez NE, Luedecke KM, Hadt RG. Determining the key vibrations for spin relaxation in ruffled Cu(ii) porphyrins via resonance Raman spectroscopy. Chem Sci 2024; 15:2380-2390. [PMID: 38362417 PMCID: PMC10866354 DOI: 10.1039/d3sc05774g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Pinpointing vibrational mode contributions to electron spin relaxation (T1) constitutes a key goal for developing molecular quantum bits (qubits) with long room-temperature coherence times. However, there remains no consensus to date as to the energy and symmetry of the relevant modes that drive relaxation. Here, we analyze a series of three geometrically-tunable S = ½ Cu(ii) porphyrins with varying degrees of ruffling distortion in the ground state. Theoretical calculations predict that increased distortion should activate low-energy ruffling modes (∼50 cm-1) for spin-phonon coupling, thereby causing faster spin relaxation in distorted porphyrins. However, experimental T1 times do not follow the degree of ruffling, with the highly distorted copper tetraisopropylporphyrin (CuTiPP) even displaying room-temperature coherence. Local mode fitting indicates that the true vibrations dominating T1 lie in the energy regime of bond stretches (∼200-300 cm-1), which are comparatively insensitive to the degree of ruffling. We employ resonance Raman (rR) spectroscopy to determine vibrational modes possessing both the correct energy and symmetry to drive spin-phonon coupling. The rR spectra uncover a set of mixed symmetric stretch vibrations from 200-250 cm-1 that explain the trends in temperature-dependent T1. These results indicate that molecular spin-phonon coupling models systematically overestimate the contribution of ultra-low-energy distortion modes to T1, pointing out a key deficiency of existing theory. Furthermore, this work highlights the untapped power of rR spectroscopy as a tool for building spin dynamics structure-property relationships in molecular quantum information science.
Collapse
Affiliation(s)
- Nathanael P Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology Pasadena California 91125 USA
| | - Nathan E Lopez
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology Pasadena California 91125 USA
| | - Kaitlin M Luedecke
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology Pasadena California 91125 USA
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology Pasadena California 91125 USA
| |
Collapse
|
19
|
Chiesa A, Santini P, Garlatti E, Luis F, Carretta S. Molecular nanomagnets: a viable path toward quantum information processing? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:034501. [PMID: 38314645 DOI: 10.1088/1361-6633/ad1f81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Molecular nanomagnets (MNMs), molecules containing interacting spins, have been a playground for quantum mechanics. They are characterized by many accessible low-energy levels that can be exploited to store and process quantum information. This naturally opens the possibility of using them as qudits, thus enlarging the tools of quantum logic with respect to qubit-based architectures. These additional degrees of freedom recently prompted the proposal for encoding qubits with embedded quantum error correction (QEC) in single molecules. QEC is the holy grail of quantum computing and this qudit approach could circumvent the large overhead of physical qubits typical of standard multi-qubit codes. Another important strength of the molecular approach is the extremely high degree of control achieved in preparing complex supramolecular structures where individual qudits are linked preserving their individual properties and coherence. This is particularly relevant for building quantum simulators, controllable systems able to mimic the dynamics of other quantum objects. The use of MNMs for quantum information processing is a rapidly evolving field which still requires to be fully experimentally explored. The key issues to be settled are related to scaling up the number of qudits/qubits and their individual addressing. Several promising possibilities are being intensively explored, ranging from the use of single-molecule transistors or superconducting devices to optical readout techniques. Moreover, new tools from chemistry could be also at hand, like the chiral-induced spin selectivity. In this paper, we will review the present status of this interdisciplinary research field, discuss the open challenges and envisioned solution paths which could finally unleash the very large potential of molecular spins for quantum technologies.
Collapse
Affiliation(s)
- A Chiesa
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - P Santini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - E Garlatti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - F Luis
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Fısica de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - S Carretta
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
20
|
Chicco S, Allodi G, Chiesa A, Garlatti E, Buch CD, Santini P, De Renzi R, Piligkos S, Carretta S. Proof-of-Concept Quantum Simulator Based on Molecular Spin Qudits. J Am Chem Soc 2024; 146:1053-1061. [PMID: 38147824 PMCID: PMC10785809 DOI: 10.1021/jacs.3c12008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The use of d-level qudits instead of two-level qubits can largely increase the power of quantum logic for many applications, ranging from quantum simulations to quantum error correction. Magnetic molecules are ideal spin systems to realize these large-dimensional qudits. Indeed, their Hamiltonian can be engineered to an unparalleled extent and can yield a spectrum with many low-energy states. In particular, in the past decade, intense theoretical, experimental, and synthesis efforts have been devoted to develop quantum simulators based on molecular qubits and qudits. However, this remarkable potential is practically unexpressed, because no quantum simulation has ever been experimentally demonstrated with these systems. Here, we show the first prototype quantum simulator based on an ensemble of molecular qudits and a radiofrequency broadband spectrometer. To demonstrate the operativity of the device, we have simulated quantum tunneling of the magnetization and the transverse-field Ising model, representative of two different classes of problems. These results represent an important step toward the actual use of molecular spin qudits in quantum technologies.
Collapse
Affiliation(s)
- Simone Chicco
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INSTM, UdR Parma, I-43124 Parma, Italy
| | - Giuseppe Allodi
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
| | - Alessandro Chiesa
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INSTM, UdR Parma, I-43124 Parma, Italy
- INFN-Sezione
Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
| | - Elena Garlatti
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INSTM, UdR Parma, I-43124 Parma, Italy
- INFN-Sezione
Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
| | - Christian D. Buch
- Department
of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Paolo Santini
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INSTM, UdR Parma, I-43124 Parma, Italy
- INFN-Sezione
Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
| | - Roberto De Renzi
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
| | - Stergios Piligkos
- Department
of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Stefano Carretta
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INSTM, UdR Parma, I-43124 Parma, Italy
- INFN-Sezione
Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
| |
Collapse
|
21
|
Palmer JR, Williams ML, Young RM, Peinkofer KR, Phelan BT, Krzyaniak MD, Wasielewski MR. Oriented Triplet Excitons as Long-Lived Electron Spin Qutrits in a Molecular Donor-Acceptor Single Cocrystal. J Am Chem Soc 2024; 146:1089-1099. [PMID: 38156609 DOI: 10.1021/jacs.3c12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The photogeneration of multiple unpaired electron spins within molecules is a promising route to applications in quantum information science because they can be initialized into well-defined, multilevel quantum states (S > 1/2) and reproducibly fabricated by chemical synthesis. However, coherent manipulation of these spin states is difficult to realize in typical molecular systems due to the lack of selective addressability and short coherence times of the spin transitions. Here, these challenges are addressed by using donor-acceptor single cocrystals composed of pyrene and naphthalene dianhydride to host spatially oriented triplet excitons, which exhibit promising photogenerated qutrit properties. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates that spatially orienting triplet excitons in a single crystal platform imparts narrow, well-resolved, tunable resonances in the triplet EPR spectrum, allowing selective addressability of the spin sublevel transitions. Pulse-EPR spectroscopy reveals that at temperatures above 30 K, spin decoherence of these triplet excitons is driven by exciton diffusion. However, coherence is limited by electronic spin dipolar coupling below 30 K, where T2 varies nonlinearly with the optical excitation density due to exciton annihilation. Overall, an optimized coherence time of T2 = 7.1 μs at 20 K is achieved. These results provide important insights into designing solid-state molecular excitonic materials with improved spin qutrit properties.
Collapse
Affiliation(s)
- Jonathan R Palmer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Kathryn R Peinkofer
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Brian T Phelan
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
22
|
Lockyer SJ, Asthana D, Whitehead GFS, Vitorica‐Yrezabal IJ, Timco GA, McInnes EJL, Winpenny REP. Control and Transferability of Magnetic Interactions in Supramolecular Structures: Trimers of {Cr 7 Ni} Antiferromagnetic Rings. Chemistry 2023; 29:e202302360. [PMID: 37737455 PMCID: PMC10947047 DOI: 10.1002/chem.202302360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
A synthetic strategy is demonstrated to prepare two distinct trimers of antiferromagnetically coupled {Cr7 Ni} rings, substantially varying the magnetic interactions between the spin centres. The interactions were studied using multi-frequency cw EPR: in a trimer linked via non-covalent H-bonding interactions no measurable interaction between rings was seen, while in a trimer linked via iso-nicotinate groups isotropic and anisotropic exchange interactions of +0.42 and -0.8 GHz, respectively, were observed. The latter are the same as those for a simpler hetero-dimer system, showing how the spin-spin interactions can be built in a predictable and modular manner in these systems.
Collapse
Affiliation(s)
- Selena J. Lockyer
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Deepak Asthana
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - George F. S. Whitehead
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | | | - Grigore. A. Timco
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Eric J. L. McInnes
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Richard E. P. Winpenny
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| |
Collapse
|
23
|
Kato H, Horii Y, Noguchi M, Fujimori H, Kajiwara T. Molecular elastic crystals exhibiting slow magnetic relaxations. Chem Commun (Camb) 2023; 59:14587-14590. [PMID: 37991259 DOI: 10.1039/d3cc04770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We report an elastic crystal of a copper(II) porphyrinato complex that exhibits slow magnetic relaxations and is a promising candidate for an external-force-responsive spin qubit.
Collapse
Affiliation(s)
- Hinako Kato
- Graduate School of Humanities and Science, Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan.
| | - Yoji Horii
- Graduate School of Humanities and Science, Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan.
| | - Mariko Noguchi
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroki Fujimori
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Takashi Kajiwara
- Graduate School of Humanities and Science, Nara Women's University, Kitauoya-Higashimachi, Nara 630-8506, Japan.
| |
Collapse
|
24
|
Qiu Y, Eckvahl HJ, Equbal A, Krzyaniak MD, Wasielewski MR. Enhancing Coherence Times of Chromophore-Radical Molecular Qubits and Qudits by Rational Design. J Am Chem Soc 2023; 145:25903-25909. [PMID: 37963349 DOI: 10.1021/jacs.3c10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
An important criterion for quantum operations is long qubit coherence times. To elucidate the influence of molecular structure on the coherence times of molecular spin qubits and qudits, a series of molecules featuring perylenediimide (PDI) chromophores covalently linked to stable nitroxide radicals were synthesized and investigated by pulse electron paramagnetic resonance spectroscopy. Photoexcitation of PDI in these systems creates an excited quartet state (Q) followed by a spin-polarized doublet ground state (D0), which hold promise as spin qudits and qubits, respectively. By tailoring the molecular structure of these spin qudit/qubit candidates by selective deuteration and eliminating intramolecular motion, coherence times of Tm = 9.1 ± 0.3 and 4.2 ± 0.3 μs at 85 K for D0 and Q, respectively, are achieved. These coherence times represent a nearly 3-fold enhancement compared to those of the initial molecular design. This approach offers a rational structural design protocol for effectively extending coherence times in molecular spin qudits/qubits.
Collapse
Affiliation(s)
- Yunfan Qiu
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Hannah J Eckvahl
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Asif Equbal
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Paula M. Trienens Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3313, United States
| |
Collapse
|
25
|
Bennett TS, Nawaz S, Lockyer SJ, Asthana D, Whitehead GFS, Vitorica-Yrezabal IJ, Timco GA, Burton NA, Winpenny REP, McInnes EJL. A ring of rotaxanes: studies of a large paramagnetic assembly in solution. Inorg Chem Front 2023; 10:6945-6952. [PMID: 38021441 PMCID: PMC10660382 DOI: 10.1039/d3qi02165c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Here we report the synthesis and structural characterization of four [7]rotaxanes formed by coordinating hybrid inorganic-organic [2]rotaxanes to a central {Ni12} core. X-ray single crystal diffraction demonstrate that [7]rotaxanes are formed, with a range of conformations in the crystal. Small angle X-ray scattering supported by molecular dynamic simulations demonstrates that the large molecules are stable in solution and also show that the conformers present in solution are not those found in the crystal. Pulsed EPR spectroscopy show that phase memory times for the {Cr7Ni} rings, which have been proposed as qubits, are reduced but not dramatically by the presence of the {Ni12} cage.
Collapse
Affiliation(s)
- Tom S Bennett
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Selina Nawaz
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Selena J Lockyer
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Deepak Asthana
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - George F S Whitehead
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Grigore A Timco
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Neil A Burton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard E P Winpenny
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Eric J L McInnes
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
26
|
Tejedor I, Urtizberea A, Natividad E, Martínez JI, Gascón I, Roubeau O. Dilute Gd hydroxycarbonate particles for localized spin qubit integration. MATERIALS HORIZONS 2023; 10:5214-5222. [PMID: 37725390 DOI: 10.1039/d3mh01201h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Molecular spins are considered as the quantum hardware to build hybrid quantum processors in which coupling to superconducting devices would provide the means to implement the necessary coherent manipulations. As an alternative to large magnetically-dilute crystals or concentrated nano-scale deposits of paramagnetic molecules that have been studied so far, the use of pre-formed sub-micronic spherical particles of a doped Gd@Y hydroxycarbonate is evaluated here. Particles with an adjustable number of spin carriers are prepared through the control of both particle size and doping. Bulk magnetic properties and continuous wave and time-domain-EPR spectroscopy show that the Gd spins in these particles are potential qubits with robust quantum coherence. Monolayers of densely-packed particles are then formed interfacially and transferred successfully to the surface of Nb superconducting resonators. Alternatively, these particles are disposed at controlled localizations as isolated groups of a few particles through Dip-Pen Nanolithography using colloidal organic dispersions as ink. Altogether, this study offers new material and methodologies relevant to the development of viable hybrid quantum processors.
Collapse
Affiliation(s)
- Inés Tejedor
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain
| | - Ainhoa Urtizberea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Campus Río Ebro, María de Luna 3, 50018 Zaragoza, Spain.
| | - Eva Natividad
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Campus Río Ebro, María de Luna 3, 50018 Zaragoza, Spain.
| | - Jesús I Martínez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain
| | - Ignacio Gascón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain
| |
Collapse
|
27
|
Schäfter D, Wischnat J, Tesi L, De Sousa JA, Little E, McGuire J, Mas-Torrent M, Rovira C, Veciana J, Tuna F, Crivillers N, van Slageren J. Molecular One- and Two-Qubit Systems with Very Long Coherence Times. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302114. [PMID: 37289574 DOI: 10.1002/adma.202302114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Indexed: 06/10/2023]
Abstract
General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.
Collapse
Affiliation(s)
- Dennis Schäfter
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Jonathan Wischnat
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - J Alejandro De Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Edmund Little
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jake McGuire
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
28
|
Kazmierczak NP, Luedecke KM, Gallmeier ET, Hadt RG. T1 Anisotropy Elucidates Spin Relaxation Mechanisms in an S = 1 Cr(IV) Optically Addressable Molecular Qubit. J Phys Chem Lett 2023; 14:7658-7664. [PMID: 37603791 DOI: 10.1021/acs.jpclett.3c01964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Paramagnetic molecules offer unique advantages for quantum information science owing to their spatial compactness, synthetic tunability, room-temperature quantum coherence, and potential for optical state initialization and readout. However, current optically addressable molecular qubits are hampered by rapid spin-lattice relaxation (T1) even at sub-liquid nitrogen temperatures. Here, we use temperature- and orientation-dependent pulsed electron paramagnetic resonance (EPR) to elucidate the negative sign of the ground state zero-field splitting (ZFS) and assign T1 anisotropy to specific types of motion in an optically addressable S = 1 Cr(o-tolyl)4 molecular qubit. The anisotropy displays a distinct sin2(2θ) functional form that is not observed in S = 1/2 Cu(acac)2 or other Cu(II)/V(IV) microwave addressable molecular qubits. The Cr(o-tolyl)4 T1 anisotropy is ascribed to couplings between electron spins and rotational motion in low-energy acoustic or pseudoacoustic phonons. Our findings suggest that rotational degrees of freedom should be suppressed to maximize the coherence temperature of optically addressable qubits.
Collapse
Affiliation(s)
- Nathanael P Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Kaitlin M Luedecke
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Elisabeth T Gallmeier
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
29
|
Schlimgen AW, Guo Y, Head-Marsden K. Characterizing Excited States of a Copper-Based Molecular Qubit Candidate with Correlated Electronic Structure Methods. J Phys Chem A 2023; 127:6764-6770. [PMID: 37531508 DOI: 10.1021/acs.jpca.3c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Molecular spins have a variety of potential advantages as qubits for quantum computation, such as tunability and well-understood design pathways through organometallic synthesis. Organometallic and heavy-metal-based molecular spin qubits can also exhibit rich electronic structures due to ligand field interactions and electron correlation. These features make consistent and reliable modeling of these species a considerable challenge for contemporary electronic structure techniques. Here, we elucidate the electronic structure of a Cu(II) complex analogous to a recently proposed room-temperature molecular spin qubit. Using active space methods to describe the electron correlation, we show the nuanced interaction between the metal d orbitals and ligand σ and π orbitals makes these systems challenging to model, both in terms of the delocalized spin density and the excited state ordering. We show that predicting the correct spin delocalization requires special consideration of the Cu d orbitals and that the excited state spectrum for the Cu(III) complex also requires the explicit inclusion of the π orbitals in the active space. These interactions are rather common in molecular spin qubit motifs and may play an important role in spin-decoherence processes. Our results may lend insight into future studies of the orbital interactions and electron delocalization of similar complexes.
Collapse
Affiliation(s)
- Anthony W Schlimgen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, United States
| | - Yangyang Guo
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, United States
| | - Kade Head-Marsden
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 61630, United States
| |
Collapse
|
30
|
Gorgon S, Lv K, Grüne J, Drummond BH, Myers WK, Londi G, Ricci G, Valverde D, Tonnelé C, Murto P, Romanov AS, Casanova D, Dyakonov V, Sperlich A, Beljonne D, Olivier Y, Li F, Friend RH, Evans EW. Reversible spin-optical interface in luminescent organic radicals. Nature 2023; 620:538-544. [PMID: 37587296 PMCID: PMC10432275 DOI: 10.1038/s41586-023-06222-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/16/2023] [Indexed: 08/18/2023]
Abstract
Molecules present a versatile platform for quantum information science1,2 and are candidates for sensing and computation applications3,4. Robust spin-optical interfaces are key to harnessing the quantum resources of materials5. To date, carbon-based candidates have been non-luminescent6,7, which prevents optical readout via emission. Here we report organic molecules showing both efficient luminescence and near-unity generation yield of excited states with spin multiplicity S > 1. This was achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals and anthracene. We observed that the doublet photoexcitation delocalized onto the linked acene within a few picoseconds and subsequently evolved to a pure high-spin state (quartet for monoradical, quintet for biradical) of mixed radical-triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical readout enabled by reverse intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene shows strong spin correlation. Our approach simultaneously supports a high efficiency of initialization, spin manipulations and light-based readout at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies.
Collapse
Affiliation(s)
- Sebastian Gorgon
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK.
| | - Kuo Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Jeannine Grüne
- Experimental Physics VI, Faculty of Physics and Astronomy, University of Würzburg, Würzburg, Germany
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - William K Myers
- Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
| | - Giacomo Londi
- Laboratory for Computational Modelling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Namur, Belgium
| | - Gaetano Ricci
- Laboratory for Computational Modelling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Namur, Belgium
| | - Danillo Valverde
- Laboratory for Computational Modelling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Namur, Belgium
| | | | - Petri Murto
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | | | - Vladimir Dyakonov
- Experimental Physics VI, Faculty of Physics and Astronomy, University of Würzburg, Würzburg, Germany
| | - Andreas Sperlich
- Experimental Physics VI, Faculty of Physics and Astronomy, University of Würzburg, Würzburg, Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Yoann Olivier
- Laboratory for Computational Modelling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Namur, Belgium
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | | | - Emrys W Evans
- Department of Chemistry, Swansea University, Swansea, UK.
| |
Collapse
|
31
|
Mayländer M, Thielert P, Quintes T, Vargas Jentzsch A, Richert S. Room Temperature Electron Spin Coherence in Photogenerated Molecular Spin Qubit Candidates. J Am Chem Soc 2023. [PMID: 37337625 DOI: 10.1021/jacs.3c04021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
One of the main challenges in the emerging field of molecular spintronics is the identification of new spin qubit materials for quantum information applications. In this regard, recent work has shown that photoexcited chromophore-radical systems are promising candidates to expand our repertoire of suitable candidate molecules. Here, we investigate a series of three chromophore-radical compounds composed of a perylene diimide (PDI) chromophore and a stable 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) radical by transient electron paramagnetic resonance (EPR) techniques. We explore the influence of isotope labeling of the TEMPO moiety on the EPR spectra and electron spin coherence times of the molecular quartet states generated upon photoexcitation and illustrate that (i) a coherent manipulation of the spin state is possible in these systems even at room temperature and that (ii) a spin coherence time of 0.7 μs can be achieved under these conditions. This demonstration of electron spin coherence at ambient temperatures paves the way for practical applications of such systems in functional molecular devices.
Collapse
Affiliation(s)
- Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Philipp Thielert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Theresia Quintes
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Andreas Vargas Jentzsch
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
32
|
Noh K, Colazzo L, Urdaniz C, Lee J, Krylov D, Devi P, Doll A, Heinrich AJ, Wolf C, Donati F, Bae Y. Template-directed 2D nanopatterning of S = 1/2 molecular spins. NANOSCALE HORIZONS 2023; 8:624-631. [PMID: 36752198 DOI: 10.1039/d2nh00375a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular spins are emerging platforms for quantum information processing. By chemically tuning their molecular structure, it is possible to prepare a robust environment for electron spins and drive the assembly of a large number of qubits in atomically precise spin-architectures. The main challenges in the integration of molecular qubits into solid-state devices are (i) minimizing the interaction with the supporting substrate to suppress quantum decoherence and (ii) controlling the spatial distribution of the spins at the nanometer scale to tailor the coupling among qubits. Herein, we provide a nanofabrication method for the realization of a 2D patterned array of individually addressable Vanadyl Phthalocyanine (VOPc) spin qubits. The molecular nanoarchitecture is crafted on top of a diamagnetic monolayer of Titanyl Phthalocyanine (TiOPc) that electronically decouples the electronic spin of VOPc from the underlying Ag(100) substrate. The isostructural TiOPc interlayer also serves as a template to regulate the spacing between VOPc spin qubits on a scale of a few nanometers, as demonstrated using scanning tunneling microscopy, X-ray circular dichroism, and density functional theory. The long-range molecular ordering is due to a combination of charge transfer from the metallic substrate and strain in the TiOPc interlayer, which is attained without altering the pristine VOPc spin characteristics. Our results pave a viable route towards the future integration of molecular spin qubits into solid-state devices.
Collapse
Affiliation(s)
- Kyungju Noh
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Luciano Colazzo
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Corina Urdaniz
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Jaehyun Lee
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Denis Krylov
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Parul Devi
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Andrin Doll
- Swiss Light Source (SLS), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Fabio Donati
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute of Basic Science (IBS), 03760 Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, 03760 Seoul, Republic of Korea
| |
Collapse
|
33
|
Santanni F, Briganti M, Serrano G, Salvadori E, Veneri A, Batistoni C, Russi SF, Menichetti S, Mannini M, Chiesa M, Sorace L, Sessoli R. VdW Mediated Strong Magnetic Exchange Interactions in Chains of Hydrogen-Free Sublimable Molecular Qubits. JACS AU 2023; 3:1250-1262. [PMID: 37124308 PMCID: PMC10131211 DOI: 10.1021/jacsau.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Sulfur-rich molecular complexes of dithiolene-like ligands are appealing candidates as molecular spin qubits because spin coherence properties are enhanced in hydrogen-free environments. Herein, we employ the hydrogen-free mononegative 1,3,2-dithiazole-4-thione-5-thiolate (dttt-) ligand as an alternative to common dinegative dithiolate ligands. We report the first synthesis and structural characterization of its Cu2+, Ni2+, and Pt2+ neutral complexes. The XPS analysis of thermal deposition of [Cu(dttt)2] in UHV conditions indicates that films of intact molecules can be deposited on surfaces by sublimation. Thanks to a combined approach employing DC magnetometry and DFT calculations, we highlighted AF exchange interactions of 108 cm-1 and 36 cm-1 attributed to the two different polymorph phases. These couplings are exclusively mediated by S···S VdW interactions, which are facilitated by the absence of counterions and made particularly efficient by the diffuse electron density on S atoms. Furthermore, the spin dynamics of solid-state magnetically diluted samples was investigated. The longest observed T m is 2.3 μs at 30 K, which significantly diverges from the predicted T m > 100 μs. These results point to the diluting matrix severely affecting the coherence lifetime of Cu2+ species via different factors, such as the contributions of neighboring 14N nuclei and the formation of radical impurities in a non-completely controllable way. However, the ease of processing [Cu(dttt)2] via thermal sublimation can allow dispersion in matrices better suited for coherent spin manipulation of isolated molecules and the realization of AF-coupled VdW structures on surfaces.
Collapse
Affiliation(s)
- Fabio Santanni
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Matteo Briganti
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Giulia Serrano
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Ingegneria Industriale - DIEF, Università
degli Studi di Firenze, Via Santa Marta 3, I-50139 Firenze, Italy
| | - Enrico Salvadori
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Alessandro Veneri
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Chiara Batistoni
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Sofia F. Russi
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Stefano Menichetti
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Matteo Mannini
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Mario Chiesa
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Lorenzo Sorace
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Roberta Sessoli
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| |
Collapse
|
34
|
Roseiro P, Yalouz S, Brook DJR, Ben Amor N, Robert V. Modifications of Tanabe-Sugano d6 Diagram Induced by Radical Ligand Field: Ab Initio Inspection of a Fe(II)-Verdazyl Molecular Complex. Inorg Chem 2023; 62:5737-5743. [PMID: 36971364 DOI: 10.1021/acs.inorgchem.3c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Quantum entanglement between the spin states of a metal center and radical ligands is suggested in an iron(II) [Fe(dipyvd)2]2+ compound (dipyvd = 1-isopropyl-3,5-dipyridil-6-oxoverdazyl). Wave function ab initio (Difference Dedicated Configuration Interaction, DDCI) inspections were carried out to stress the versatility of local spin states. We named this phenomenon excited state spinmerism, in reference to our previous work (see Roseiro et al., ChemPhysChem 2022, e202200478) where we introduced the concept of spinmerism as an extension of mesomerism to spin degrees of freedom. The construction of localized molecular orbitals allows for a reading of the wave functions and projections onto the local spin states. The low-energy spectrum is well-depicted by a Heisenberg picture. A 60 cm-1 ferromagnetic interaction is calculated between the radical ligands with the Stotal = 0 and 1 states largely dominated by a local low-spin SFe = 0. In contrast, the higher-lying Stotal = 2 states are superpositions of the local SFe = 1 (17%, 62%) and SFe = 2 (72%, 21%) spin states. Such mixing extends the traditional picture of a high-field d6 Tanabe-Sugano diagram. Even in the absence of spin-orbit coupling, the avoided crossing between different local spin states is triggered by the field generated by radical ligands. This puzzling scenario emerges from versatile local spin states in compounds which extend the traditional views in molecular magnetism.
Collapse
|
35
|
Tesi L, Stemmler F, Winkler M, Liu SSY, Das S, Sun X, Zharnikov M, Ludwigs S, van Slageren J. Modular Approach to Creating Functionalized Surface Arrays of Molecular Qubits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208998. [PMID: 36609776 DOI: 10.1002/adma.202208998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The quest for developing quantum technologies is driven by the promise of exponentially faster computations, ultrahigh performance sensing, and achieving thorough understanding of many-particle quantum systems. Molecular spins are excellent qubit candidates because they feature long coherence times, are widely tunable through chemical synthesis, and can be interfaced with other quantum platforms such as superconducting qubits. A present challenge for molecular spin qubits is their integration in quantum devices, which requires arranging them in thin films or monolayers on surfaces. However, clear proof of the survival of quantum properties of molecular qubits on surfaces has not been reported so far. Furthermore, little is known about the change in spin dynamics of molecular qubits going from the bulk to monolayers. Here, a versatile bottom-up method is reported to arrange molecular qubits as functional groups of self-assembled monolayers (SAMs) on surfaces, combining molecular self-organization and click chemistry. Coherence times of up to 13 µs demonstrate that qubit properties are maintained or even enhanced in the monolayer.
Collapse
Affiliation(s)
- Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Friedrich Stemmler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Mario Winkler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sherri S Y Liu
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Saunak Das
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Xiuming Sun
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
36
|
Koyama S, Sato K, Yamashita M, Sakamoto R, Iguchi H. Observation of slow magnetic relaxation phenomena in spatially isolated π-radical ions. Phys Chem Chem Phys 2023; 25:5459-5467. [PMID: 36748343 DOI: 10.1039/d2cp06026d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of molecular spins as quantum bits is fascinating because it offers a wide range of strategies through chemical modifications. In this regard, it is very interesting to search for organic radical ions that have small spin-orbit coupling values. On the other hand, the feature of the magnetic relaxation of π-organic radical ions is rarely exploited due to the difficulty of spin dilution, and π-stacking interaction. In this study, we focus on N,N',N''-tris(2,6-dimethylphenyl)benzenetriimide (BTI-xy), where three xylene moieties connected to the imide groups cover the π-plane of the BTI core. As a result, BTI-xy radical anions without π-stacking interaction were obtained. This led to the slow magnetization relaxation, which is reported for the first time in organic radicals. Furthermore, the relaxation times in a solution state revealed the importance of spin interaction.
Collapse
Affiliation(s)
- Shohei Koyama
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Kazunobu Sato
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan. .,School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Hiroaki Iguchi
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
37
|
Ishizaki T, Ozeki T. Slow magnetic relaxation of a S = 1/2 copper(II)-substituted Keggin-type silicotungstate. Dalton Trans 2023; 52:4678-4683. [PMID: 36779264 DOI: 10.1039/d2dt03999k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
This is the first report on slow magnetic relaxation in an S = 1/2 system based on a first-row transition metal ion with the polyoxometalate skeleton [(n-C4H9)4N]4H2[SiW11O39Cu] (1). The X-band electron-spin-resonance spectrum of 1 measured at room temperature indicates that the copper ion experiences significantly reduced intermolecular interactions compared to the potassium salt and that it adopts a five-coordinated square-pyramidal coordination geometry. The AC magnetic-susceptibility measurements revealed that 1 undergoes slow magnetic relaxation in an applied static magnetic field (Hdc). The extracted spin-lattice relaxation time (92 ms at 1.8 K and Hdc = 5000 Oe) for 5% magnetically diluted 1, [(n-C4H9)4N]4H2[SiW11O39Cu0.05Zn0.95] (dil.1), is comparable to those of other potential S = 1/2 spin qubits. A relaxation-time analysis indicated that Raman spin-lattice relaxation dominates even at low temperatures in an optimized field. The extracted Raman exponent (n = 2.30) is smaller than those of other S = 1/2 complexes that carry organic ligands, which implies that the decrease in relaxation time at higher temperatures is likely to be moderate.
Collapse
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| | - Tomoji Ozeki
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.
| |
Collapse
|
38
|
Campanella AJ, Üngör Ö, Zadrozny JM. Quantum Mimicry With Inorganic Chemistry. COMMENT INORG CHEM 2023; 44:11-53. [PMID: 38515928 PMCID: PMC10954259 DOI: 10.1080/02603594.2023.2173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.
Collapse
Affiliation(s)
- Anthony J. Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| |
Collapse
|
39
|
Dorn M, Hunger D, Förster C, Naumann R, van Slageren J, Heinze K. Towards Luminescent Vanadium(II) Complexes with Slow Magnetic Relaxation and Quantum Coherence. Chemistry 2023; 29:e202202898. [PMID: 36345821 PMCID: PMC10107508 DOI: 10.1002/chem.202202898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Molecular entities with doublet or triplet ground states find increasing interest as potential molecular quantum bits (qubits). Complexes with higher multiplicity might even function as qudits and serve to encode further quantum bits. Vanadium(II) ions in octahedral ligand fields with quartet ground states and small zero-field splittings qualify as qubits with optical read out thanks to potentially luminescent spin-flip states. We identified two V2+ complexes [V(ddpd)2 ]2+ with the strong field ligand N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine (ddpd) in two isomeric forms (cis-fac and mer) as suitable candidates. The energy gaps between the two lowest Kramers doublets amount to 0.2 and 0.5 cm-1 allowing pulsed EPR experiments at conventional Q-band frequencies (35 GHz). Both isomers possess spin-lattice relaxation times T1 of around 300 μs and a phase memory time TM of around 1 μs at 5 K. Furthermore, the mer isomer displays slow magnetic relaxation in an applied field of 400 mT. While the vanadium(III) complexes [V(ddpd)2 ]3+ are emissive in the near-IR-II region, the [V(ddpd)2 ]2+ complexes are non-luminescent due to metal-to-ligand charge transfer admixture to the spin-flip states.
Collapse
Affiliation(s)
- Matthias Dorn
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Hunger
- Institute of Physical Chemistry and Center for, Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for, Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
40
|
Roseiro P, Petit L, Robert V, Yalouz S. Emergence of Spinmerism for Molecular Spin-Qubits Generation. Chemphyschem 2023; 24:e202200478. [PMID: 36161748 DOI: 10.1002/cphc.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/20/2022] [Indexed: 01/20/2023]
Abstract
Molecular platforms are regarded as promising candidates in the generation of units of information for quantum computing. Herein, a strategy combining spin-crossover metal ions and radical ligands is proposed from a model Hamiltonian first restricted to exchange interactions. Unusual spin states structures emerge from the linkage of a singlet/triplet commutable metal centre with two doublet-radical ligands. The ground state nature is modulated by charge transfers and can exhibit a mixture of triplet and singlet local metal spin states. Besides, the superposition reaches a maximum for 2 K M = K 1 + K 2 ${2{K}_{M}={K}_{1}+{K}_{2}}$ , suggesting a necessary competition between the intramolecular K M ${{K}_{M}}$ and inter-metal-ligand K 1 ${{K}_{1}}$ and K 2 ${{K}_{2}}$ direct exchange interactions. The results promote spinmerism, an original manifestation of quantum entanglement between the spin states of a metal centre and radical ligands. The study provides insights into spin-coupled compounds and inspiration for the development of molecular spin-qubits.
Collapse
Affiliation(s)
- Pablo Roseiro
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/, Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Louis Petit
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/, Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Vincent Robert
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/, Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Saad Yalouz
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/, Université de Strasbourg, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
41
|
Briganti M, Serrano G, Poggini L, Sorrentino AL, Cortigiani B, de Camargo LC, Soares JF, Motta A, Caneschi A, Mannini M, Totti F, Sessoli R. Mixed-Sandwich Titanium(III) Qubits on Au(111): Electron Delocalization Ruled by Molecular Packing. NANO LETTERS 2022; 22:8626-8632. [PMID: 36256878 PMCID: PMC9650780 DOI: 10.1021/acs.nanolett.2c03161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Indexed: 06/15/2023]
Abstract
Organometallic sandwich complexes are versatile molecular systems that have been recently employed for single-molecule manipulation and spin sensing experiments. Among related organometallic compounds, the mixed-sandwich S = 1/2 complex (η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium, here [CpTi(cot)], has attracted interest as a spin qubit because of the long coherence time. Here the structural and chemical properties of [CpTi(cot)] on Au(111) are investigated at the monolayer level by experimental and computational methods. Scanning tunneling microscopy suggests that adsorption occurs in two molecular orientations, lying and standing, with a 3:1 ratio. XPS data evidence that a fraction of the molecules undergo partial electron transfer to gold, while our computational analysis suggests that only the standing molecules experience charge delocalization toward the surface. Such a phenomenon depends on intermolecular interactions that stabilize the molecular packing in the monolayer. This orientation-dependent molecule-surface hybridization opens exciting perspectives for selective control of the molecule-substrate spin delocalization in hybrid interfaces.
Collapse
Affiliation(s)
- Matteo Briganti
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
- Department
of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900 Curitiba, PR Brazil
| | - Giulia Serrano
- Department
of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy
| | - Lorenzo Poggini
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
- Institute
for Chemistry of OrganoMetallic Compounds (ICCOM-CNR), Via Madonna del Piano, 50019 Sesto Fiorentino (FI) Italy
| | - Andrea Luigi Sorrentino
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
- Department
of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy
| | - Brunetto Cortigiani
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Luana Carol de Camargo
- Department
of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900 Curitiba, PR Brazil
| | - Jaísa Fernandes Soares
- Department
of Chemistry, Federal University of Parana, Centro Politecnico, Jardim das Americas, 81530-900 Curitiba, PR Brazil
| | - Alessandro Motta
- “La
Sapienza” and INSTM Research Unit, University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Caneschi
- Department
of Industrial Engineering (DIEF) and INSTM Research Unit, University of Florence, Via di Santa Marta, 3, 50139 Florence, Italy
| | - Matteo Mannini
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Federico Totti
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| | - Roberta Sessoli
- Department
of Chemistry “U. Schiff” (DICUS) and INSTM Research
Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
42
|
Kazmierczak NP, Hadt RG. Illuminating Ligand Field Contributions to Molecular Qubit Spin Relaxation via T1 Anisotropy. J Am Chem Soc 2022; 144:20804-20814. [DOI: 10.1021/jacs.2c08729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
43
|
Sun L, Yang L, Dou JH, Li J, Skorupskii G, Mardini M, Tan KO, Chen T, Sun C, Oppenheim JJ, Griffin RG, Dincă M, Rajh T. Room-Temperature Quantitative Quantum Sensing of Lithium Ions with a Radical-Embedded Metal-Organic Framework. J Am Chem Soc 2022; 144:19008-19016. [PMID: 36201712 DOI: 10.1021/jacs.2c07692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advancements in quantum sensing have sparked transformative detection technologies with high sensitivity, precision, and spatial resolution. Owing to their atomic-level tunability, molecular qubits and ensembles thereof are promising candidates for sensing chemical analytes. Here, we show quantum sensing of lithium ions in solution at room temperature with an ensemble of organic radicals integrated in a microporous metal-organic framework (MOF). The organic radicals exhibit electron spin coherence and microwave addressability at room temperature, thus behaving as qubits. The high surface area of the MOF promotes accessibility of the guest analytes to the organic qubits, enabling unambiguous identification of lithium ions and quantitative measurement of their concentration through relaxometric and hyperfine spectroscopic methods based on electron paramagnetic resonance (EPR) spectroscopy. The sensing principle presented in this work is applicable to other metal ions with nonzero nuclear spin.
Collapse
Affiliation(s)
- Lei Sun
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Jin-Hu Dou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Jian Li
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm10044, Sweden
| | - Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael Mardini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Kong Ooi Tan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois60439, United States.,The School for Molecular Sciences, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
44
|
Sauza-de la Vega A, Pandharkar R, Stroscio GD, Sarkar A, Truhlar DG, Gagliardi L. Multiconfiguration Pair-Density Functional Theory for Chromium(IV) Molecular Qubits. JACS AU 2022; 2:2029-2037. [PMID: 36186551 PMCID: PMC9516709 DOI: 10.1021/jacsau.2c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 05/30/2023]
Abstract
Pseudotetrahedral organometallic complexes containing chromium(IV) and aryl ligands have been experimentally identified as promising molecular qubit candidates. Here we present a computational protocol based on multiconfiguration pair-density functional theory for computing singlet-triplet gaps and zero-field splitting (ZFS) parameters in Cr(IV) aryl complexes. We find that two multireference methods, multistate complete active space second-order perturbation theory (MS-CASPT2) and hybrid multistate pair-density functional theory (HMS-PDFT), perform better than Kohn-Sham density functional theory for singlet-triplet gaps. Despite the very small values of the ZFS parameters, both multireference methods performed qualitatively well. MS-CASPT2 and HMS-PDFT performed particularly well for predicting the trend in the ratio of the rhombic and axial ZFS parameters, |E/D|. We have also investigated the dependence and sensitivity of the calculated ZFS parameters on the active space and the molecular geometry. The methodologies outlined here can guide future prediction of ZFS parameters in molecular qubit candidates.
Collapse
Affiliation(s)
- Arturo Sauza-de la Vega
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Riddhish Pandharkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Gautam D. Stroscio
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Arup Sarkar
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis, Minnesota 55455−0431, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
45
|
Lockyer S, Chiesa A, Brookfield A, Timco GA, Whitehead GFS, McInnes EJL, Carretta S, Winpenny REP. Five-Spin Supramolecule for Simulating Quantum Decoherence of Bell States. J Am Chem Soc 2022; 144:16086-16092. [PMID: 36007954 PMCID: PMC9460766 DOI: 10.1021/jacs.2c06384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/28/2022]
Abstract
We report a supramolecule that contains five spins of two different types and with, crucially, two different and predictable interaction energies between the spins. The supramolecule is characterized, and the interaction energies are demonstrated by electron paramagnetic resonance (EPR) spectroscopy. Based on the measured parameters, we propose experiments that would allow this designed supramolecule to be used to simulate quantum decoherence in maximally entangled Bell states that could be used in quantum teleportation.
Collapse
Affiliation(s)
- Selena
J. Lockyer
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alessandro Chiesa
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - Adam Brookfield
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Grigore A. Timco
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stefano Carretta
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - Richard E. P. Winpenny
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
46
|
Chiesa A, Petiziol F, Chizzini M, Santini P, Carretta S. Theoretical Design of Optimal Molecular Qudits for Quantum Error Correction. J Phys Chem Lett 2022; 13:6468-6474. [PMID: 35816705 PMCID: PMC9310095 DOI: 10.1021/acs.jpclett.2c01602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 05/08/2023]
Abstract
We pinpoint the key ingredients ruling decoherence in multispin clusters, and we engineer the system Hamiltonian to design optimal molecules embedding quantum error correction. These are antiferromagnetically coupled systems with competing exchange interactions, characterized by many low-energy states in which decoherence is dramatically suppressed and does not increase with the system size. This feature allows us to derive optimized code words, enhancing the power of the quantum error correction code by orders of magnitude. We demonstrate this by a complete simulation of the system dynamics, including the effect of decoherence driven by a nuclear spin bath and the full sequence of pulses to implement error correction and logical gates between protected states.
Collapse
Affiliation(s)
- A. Chiesa
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - F. Petiziol
- Institut
für Theoretische Physik, Technische
Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - M. Chizzini
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
| | - P. Santini
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - S. Carretta
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
47
|
Amdur MJ, Mullin KR, Waters MJ, Puggioni D, Wojnar MK, Gu M, Sun L, Oyala PH, Rondinelli JM, Freedman DE. Chemical control of spin-lattice relaxation to discover a room temperature molecular qubit. Chem Sci 2022; 13:7034-7045. [PMID: 35774181 PMCID: PMC9200133 DOI: 10.1039/d1sc06130e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
The second quantum revolution harnesses exquisite quantum control for a slate of diverse applications including sensing, communication, and computation. Of the many candidates for building quantum systems, molecules offer both tunability and specificity, but the principles to enable high temperature operation are not well established. Spin-lattice relaxation, represented by the time constant T 1, is the primary factor dictating the high temperature performance of quantum bits (qubits), and serves as the upper limit on qubit coherence times (T 2). For molecular qubits at elevated temperatures (>100 K), molecular vibrations facilitate rapid spin-lattice relaxation which limits T 2 to well below operational minimums for certain quantum technologies. Here we identify the effects of controlling orbital angular momentum through metal coordination geometry and ligand rigidity via π-conjugation on T 1 relaxation in three four-coordinate Cu2+ S = ½ qubit candidates: bis(N,N'-dimethyl-4-amino-3-penten-2-imine) copper(ii) (Me2Nac)2 (1), bis(acetylacetone)ethylenediamine copper(ii) Cu(acacen) (2), and tetramethyltetraazaannulene copper(ii) Cu(tmtaa) (3). We obtain significant T 1 improvement upon changing from tetrahedral to square planar geometries through changes in orbital angular momentum. T 1 is further improved with greater π-conjugation in the ligand framework. Our electronic structure calculations reveal that the reduced motion of low energy vibrations in the primary coordination sphere slows relaxation and increases T 1. These principles enable us to report a new molecular qubit candidate with room temperature T 2 = 0.43 μs, and establishes guidelines for designing novel qubit candidates operating above 100 K.
Collapse
Affiliation(s)
- M Jeremy Amdur
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Kathleen R Mullin
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Michael J Waters
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Danilo Puggioni
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Michael K Wojnar
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Mingqiang Gu
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Lei Sun
- Center for Nanoscale Materials, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena California 91125 USA
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Danna E Freedman
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA .,Department of Chemistry, Northwestern University Evanston Illinois 60208 USA
| |
Collapse
|
48
|
Borilovic I, Roubeau O, Le Guennic B, van Slageren J, Lenz S, Teat SJ, Aromí G. Three individually addressable spin qubits in a single molecule. Chem Commun (Camb) 2022; 58:7530-7533. [PMID: 35703317 DOI: 10.1039/d2cc02495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric bis-phenol-β-diketone (H4L) has been designed as a ligand programmed to promote the assembly of a molecular arrangement composed of three magnetically exchanged [NiCu] pairs, each exhibiting an S = 1/2 spin. The latter are shown by EPR and magnetometry to be good qubit realizations and non-equivalent within the molecule in the solid state, as required for conditional quantum gates.
Collapse
Affiliation(s)
- Ivana Borilovic
- Departament de Química Inorgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Samuel Lenz
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Guillem Aromí
- Departament de Química Inorgànica and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
49
|
Gómez-Piñeiro R, Drosou M, Bertaina S, Decroos C, Simaan AJ, Pantazis DA, Orio M. Decoding the Ambiguous Electron Paramagnetic Resonance Signals in the Lytic Polysaccharide Monooxygenase from Photorhabdus luminescens. Inorg Chem 2022; 61:8022-8035. [PMID: 35549254 PMCID: PMC9131454 DOI: 10.1021/acs.inorgchem.2c00766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/29/2022]
Abstract
Understanding the structure and function of lytic polysaccharide monooxygenases (LPMOs), copper enzymes that degrade recalcitrant polysaccharides, requires the reliable atomistic interpretation of electron paramagnetic resonance (EPR) data on the Cu(II) active site. Among various LPMO families, the chitin-active PlAA10 shows an intriguing phenomenology with distinct EPR signals, a major rhombic and a minor axial signal. Here, we combine experimental and computational investigations to uncover the structural identity of these signals. X-band EPR spectra recorded at different pH values demonstrate pH-dependent population inversion: the major rhombic signal at pH 6.5 becomes minor at pH 8.5, where the axial signal dominates. This suggests that a protonation change is involved in the interconversion. Precise structural interpretations are pursued with quantum chemical calculations. Given that accurate calculations of Cu g-tensors remain challenging for quantum chemistry, we first address this problem via a thorough calibration study. This enables us to define a density functional that achieves accurate and reliable prediction of g-tensors, giving confidence in our evaluation of PlAA10 LPMO models. Large models were considered that include all parts of the protein matrix surrounding the Cu site, along with the characteristic second-sphere features of PlAA10. The results uniquely identify the rhombic signal with a five-coordinate Cu ion bearing two water molecules in addition to three N-donor ligands. The axial signal is attributed to a four-coordinate Cu ion where only one of the waters remains bound, as hydroxy. Alternatives that involve decoordination of the histidine brace amino group are unlikely based on energetics and spectroscopy. These results provide a reliable spectroscopy-consistent view on the plasticity of the resting state in PlAA10 LPMO as a foundation for further elucidating structure-property relationships and the formation of catalytically competent species. Our strategy is generally applicable to the study of EPR parameters of mononuclear copper-containing metalloenzymes.
Collapse
Affiliation(s)
| | - Maria Drosou
- Inorganic
Chemistry Laboratory, National and Kapodistrian
University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Sylvain Bertaina
- Aix-Marseille
Université, CNRS, IM2NP UMR 7334, Marseille 13397, France
| | - Christophe Decroos
- Aix
Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - A. Jalila Simaan
- Aix
Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Maylis Orio
- Aix
Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| |
Collapse
|
50
|
Răducă M, Martins DOTA, Spinu CA, Hillebrand M, Tuna F, Ionita G, Mădălan AM, Lecourt C, Sutter JP, Andruh M. A new nitronyl‐nitroxide ligand for designing binuclear LnIII complexes: syntheses, crystal structures, magnetic and EPR studies. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mihai Răducă
- Universitatea din Bucuresti Inorganic chemistry ROMANIA
| | | | | | | | - Floriana Tuna
- University of Manchester Department of Chemistry and Photon Science Institute UNITED KINGDOM
| | - Gabriela Ionita
- Institute of Physical Chemistry Bucarest Spectroscopy ROMANIA
| | | | - Constance Lecourt
- Universite de Touluuse Laboratoire de Chimie de Coordination du CNRS FRANCE
| | - Jean-Pascal Sutter
- Universite de Toulouse Laboratoire de Chimie de Coordination du CNRS FRANCE
| | - Marius Andruh
- Fac. of Chem - Inorg. Chem Lab University of Bucharest Str. Dumbrava Rosie nr. 23 20464 Bucharest ROMANIA
| |
Collapse
|