1
|
Del Castillo FA, Emerson NT, Yang H. Evaluating the Accuracy of the COMSOL-Based Finite-Element Method for Simulating Plasmon-Modified Fluorescence. J Phys Chem B 2024. [PMID: 39442172 DOI: 10.1021/acs.jpcb.4c04008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Accurately modeling plasmon-modified fluorescence is important for understanding and guiding the design of experimental nanostructures that reliably enhance fluorescence. They are of particular interest due to their potential to allow localized "hot spots" of high fluorescence enhancement in a reproducible manner. Given the increasingly prevalent use of the COMSOL Multiphysics software package for simulating these phenomena, we investigate its accuracy using an analytically tractable model consisting of a gold nanosphere interacting with either a plane wave or a radiating point dipole. COMSOL simulation results were compared with a formally exact analytical theory. It was found that simulation parameters commonly used for plane-wave scattering do not necessarily produce accurate results for the nanoparticle-plasmon-coupled dipole emission case. Instead, user-input adaptive meshing parameters were found to be helpful in achieving quantitative agreements between COMSOL and analytical theory results for plasmon-modified fluorescence. Our studies suggest convergence to analytically calculated values when a minimum of two additional user-input mesh elements separate the point-dipole position and the nanoparticle surface. This practical insight is expected to aid in the application of COMSOL simulations to planning and interpreting fluorescence modification experiments.
Collapse
Affiliation(s)
| | - Nyssa T Emerson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haw Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Herkert EK, Lau L, Pons Lanau R, Garcia-Parajo MF. Hexagonal Plasmonic Arrays for High-Throughput Multicolor Single-Molecule Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41271-41280. [PMID: 39041362 PMCID: PMC11310910 DOI: 10.1021/acsami.4c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Nanophotonic biosensors offer exceptional sensitivity in the presence of strong background signals by enhancing and confining light in subwavelength volumes. In the field of nanophotonic biosensors, antenna-in-box (AiB) designs consisting of a nanoantenna within a nanoaperture have demonstrated remarkable single-molecule fluorescence detection sensitivities under physiologically relevant conditions. However, their full potential has not yet been exploited as current designs prohibit insightful correlative multicolor single-molecule studies and are limited in terms of throughput. Here, we overcome these constraints by introducing aluminum-based hexagonal close-packed AiB (HCP-AiB) arrays. Our approach enables the parallel readout of over 1000 HCP-AiBs with multicolor single-molecule sensitivity up to micromolar concentrations using an alternating three-color excitation scheme and epi-fluorescence detection. Notably, the high-density HCP-AiB arrays not only enable high-throughput studies at micromolar concentrations but also offer high single-molecule detection probabilities in the nanomolar range. We demonstrate that robust and alignment-free correlative multicolor studies are possible using optical fiducial markers even when imaging in the low millisecond range. These advancements pave the way for the use of HCP-AiB arrays as biosensor architectures for high-throughput multicolor studies on single-molecule dynamics.
Collapse
Affiliation(s)
- Ediz Kaan Herkert
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lukas Lau
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Roger Pons Lanau
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Maria F. Garcia-Parajo
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Lu F, Li L, Zhang M, Yu C, Pan Y, Cheng F, Hu W, Lu X, Wang Q, Fan Q. Confined semiconducting polymers with boosted NIR light-triggered H 2O 2 production for hypoxia-tolerant persistent photodynamic therapy. Chem Sci 2024; 15:12086-12097. [PMID: 39092116 PMCID: PMC11290442 DOI: 10.1039/d4sc01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
Hypoxia featured in malignant tumors and the short lifespan of photo-induced reactive oxygen species (ROS) are two major issues that limit the efficiency of photodynamic therapy (PDT) in oncotherapy. Developing efficient type-I photosensitizers with long-term ˙OH generation ability provides a possible solution. Herein, a semiconducting polymer-based photosensitizer PCPDTBT was found to generate 1O2, ˙OH, and H2O2 through type-I/II PDT paths. After encapsulation within a mesoporous silica matrix, the NIR-II fluorescence and ROS generation are enhanced by 3-4 times compared with the traditional phase transfer method, which can be attributed to the excited-state lifetime being prolonged by one order of magnitude, resulting from restricted nonradiative decay channels, as confirmed by femtosecond spectroscopy. Notably, H2O2 production reaches 15.8 μM min-1 under a 730 nm laser (80 mW cm-2). Further adsorption of Fe2+ ions on mesoporous silica not only improves the loading capacity of the chemotherapy drug doxorubicin but also triggers a Fenton reaction with photo-generated H2O2 in situ to produce ˙OH continuously after the termination of laser irradiation. Thus, semiconducting polymer-based nanocomposites enables NIR-II fluorescence imaging guided persistent PDT under hypoxic conditions. This work provides a promising paradigm to fabricate persistent photodynamic therapy platforms for hypoxia-tolerant phototheranostics.
Collapse
Affiliation(s)
- Feng Lu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Lili Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Meng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Chengwu Yu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Yonghui Pan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Fangfang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Wenbo Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University Xi'an 710072 China
| | - Xiaomei Lu
- Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University Nanjing 211816 China
- Zhengzhou Institute of Biomedical Engineering and Technology Zhengzhou 450001 China
| | - Qi Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| |
Collapse
|
4
|
Grabenhorst L, Sturzenegger F, Hasler M, Schuler B, Tinnefeld P. Single-Molecule FRET at 10 MHz Count Rates. J Am Chem Soc 2024; 146:3539-3544. [PMID: 38266173 DOI: 10.1021/jacs.3c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A bottleneck in many studies utilizing single-molecule Förster resonance energy transfer is the attainable photon count rate, as it determines the temporal resolution of the experiment. As many biologically relevant processes occur on time scales that are hardly accessible with currently achievable photon count rates, there has been considerable effort to find strategies to increase the stability and brightness of fluorescent dyes. Here, we use DNA nanoantennas to drastically increase the achievable photon count rates and observe fast biomolecular dynamics in the small volume between two plasmonic nanoparticles. As a proof of concept, we observe the coupled folding and binding of two intrinsically disordered proteins, which form transient encounter complexes with lifetimes on the order of 100 μs. To test the limits of our approach, we also investigated the hybridization of a short single-stranded DNA to its complementary counterpart, revealing a transition path time of 17 μs at photon count rates of around 10 MHz, which is an order-of-magnitude improvement compared to the state of the art. Concomitantly, the photostability was increased, enabling many seconds long megahertz fluorescence time traces. Due to the modular nature of the DNA origami method, this platform can be adapted to a broad range of biomolecules, providing a promising approach to study previously unobservable ultrafast biophysical processes.
Collapse
Affiliation(s)
- Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | | | - Moa Hasler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
- Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| |
Collapse
|
5
|
Yang S, Klughammer N, Barth A, Tanenbaum ME, Dekker C. Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells. ACS NANO 2023; 17:20179-20193. [PMID: 37791900 PMCID: PMC10604100 DOI: 10.1021/acsnano.3c05959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule observations can be achieved in live cells through a drastic reduction in the observation volume using overmilled zero-mode waveguides (ZMWs- subwavelength-size holes in a metal film). Overmilling of the ZMW in a palladium film creates a nanowell of tunable size in the glass layer below the aperture, which cells can penetrate. We present a thorough theoretical and experimental characterization of the optical properties of these nanowells over a wide range of ZMW diameters and overmilling depths, showing an excellent signal confinement and a 5-fold fluorescence enhancement of fluorescent molecules inside nanowells. ZMW nanowells facilitate live-cell imaging as cells form stable protrusions into the nanowells. Importantly, the nanowells greatly reduce the cytoplasmic background fluorescence, enabling the detection of individual membrane-bound fluorophores in the presence of high cytoplasmic expression levels, which could not be achieved with TIRF microscopy. Zero-mode waveguide nanowells thus provide great potential to study individual proteins in living cells.
Collapse
Affiliation(s)
- Sora Yang
- Oncode
Institute, Hubrecht Institute−KNAW
and University Medical Center Utrecht, Uppsalalaan 8, 3584
CT, Utrecht, The
Netherlands
| | - Nils Klughammer
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Anders Barth
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Marvin E. Tanenbaum
- Oncode
Institute, Hubrecht Institute−KNAW
and University Medical Center Utrecht, Uppsalalaan 8, 3584
CT, Utrecht, The
Netherlands
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
6
|
Yeşilyurt ATM, Sanz-Paz M, Zhu F, Wu X, Sunil KS, Acuna GP, Huang JS. Unidirectional Meta-Emitters Based on the Kerker Condition Assembled by DNA Origami. ACS NANO 2023; 17:19189-19196. [PMID: 37721852 DOI: 10.1021/acsnano.3c05649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Optical quantum emitters near nanostructures have access to additional relaxation channels and thus exhibit structure-dependent emission properties, including quantum yield and emission directionality. A well-engineered quantum emitter-plasmonic nanostructure hybrid can be considered as an optical meta-emitter consisting of a transmitting nanoantenna driven by an optical-frequency generator. In this work, the DNA origami fabrication method is used to construct ultracompact unidirectional meta-emitters composed of a plasmonic trimer nanoantenna driven by a single dye molecule. The origami is designed to bring the dye to the gap to simultaneously excite the electric and magnetic dipole modes of the trimer nanoantenna. The interference of these modes fulfills the Kerker condition at the fluorophore's emission band, enabling unidirectional emission. We report unidirectional emission from a single molecule with a front-to-back ratio of up to 10.7 dB accompanied by a maximum emission enhancement of 23-fold.
Collapse
Affiliation(s)
| | - Maria Sanz-Paz
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Fangjia Zhu
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Karthika Suma Sunil
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
- National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena 07743, Germany
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
7
|
White D, Smith MA, Chanda B, Goldsmith RH. Strategies for Overcoming the Single-Molecule Concentration Barrier. ACS MEASUREMENT SCIENCE AU 2023; 3:239-257. [PMID: 37600457 PMCID: PMC10436376 DOI: 10.1021/acsmeasuresciau.3c00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 08/22/2023]
Abstract
Fluorescence-based single-molecule approaches have helped revolutionize our understanding of chemical and biological mechanisms. Unfortunately, these methods are only suitable at low concentrations of fluorescent molecules so that single fluorescent species of interest can be successfully resolved beyond background signal. The application of these techniques has therefore been limited to high-affinity interactions despite most biological and chemical processes occurring at much higher reactant concentrations. Fortunately, recent methodological advances have demonstrated that this concentration barrier can indeed be broken, with techniques reaching concentrations as high as 1 mM. The goal of this Review is to discuss the challenges in performing single-molecule fluorescence techniques at high-concentration, offer applications in both biology and chemistry, and highlight the major milestones that shatter the concentration barrier. We also hope to inspire the widespread use of these techniques so we can begin exploring the new physical phenomena lying beyond this barrier.
Collapse
Affiliation(s)
- David
S. White
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mackinsey A. Smith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Baron Chanda
- Center
for
Investigation of Membrane Excitability Diseases, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Ghosh S, Ross U, Chizhik AM, Kuo Y, Jeong BG, Bae WK, Park K, Li J, Oron D, Weiss S, Enderlein J, Chizhik AI. Excitation Intensity-Dependent Quantum Yield of Semiconductor Nanocrystals. J Phys Chem Lett 2023; 14:2702-2707. [PMID: 36892266 PMCID: PMC10026174 DOI: 10.1021/acs.jpclett.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
One of the key phenomena that determine the fluorescence of nanocrystals is the nonradiative Auger-Meitner recombination of excitons. This nonradiative rate affects the nanocrystals' fluorescence intensity, excited state lifetime, and quantum yield. Whereas most of the above properties can be directly measured, the quantum yield is the most difficult to assess. Here we place semiconductor nanocrystals inside a tunable plasmonic nanocavity with subwavelength spacing and modulate their radiative de-excitation rate by changing the cavity size. This allows us to determine absolute values of their fluorescence quantum yield under specific excitation conditions. Moreover, as expected considering the enhanced Auger-Meitner rate for higher multiple excited states, increasing the excitation rate reduces the quantum yield of the nanocrystals.
Collapse
Affiliation(s)
- Subhabrata Ghosh
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Ulrich Ross
- IV. Physical
Institute - Solids and Nanostructures, Georg
August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Anna M. Chizhik
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Yung Kuo
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Byeong Guk Jeong
- School of
Chemical and Biomolecular Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Wan Ki Bae
- SKKU Advanced
Institute of Nanotechnology (SAINT), Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Kyoungwon Park
- Korea Electronics
Technology Institute, Seongnam-si, Gyeonggi-do 13509, Republic of Korea
| | - Jack Li
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Dan Oron
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shimon Weiss
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California
Los Angeles, Los Angeles, California 90095, United States
- Department
of Physiology, University of California
Los Angeles, Los Angeles, California 90095, United States
- Department
of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Jörg Enderlein
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells,” (MBExC), Georg August University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Alexey I. Chizhik
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Zheng J, Zhang J, Lu F, Du Y, Cao D, Hu S, Yang Y, Yuan Z. Visualization of Polymer–Surfactant Interaction by Dual-Emissive Gold Nanocluster Labeling. BIOSENSORS 2022; 12:bios12090686. [PMID: 36140071 PMCID: PMC9496207 DOI: 10.3390/bios12090686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Polymer-surfactant interaction decides the performance of corresponding complexes, making its rapid and intuitionistic visualization important for enhancing the performance of products and/or processing in related fields. In this study, the fluorescence visualization of the interaction between cationic hyperbranched polyethyleneimine and anionic sodium dodecyl sulfonate surfactant was realized by dual-emissive gold nanocluster labeling. The sensing mechanism was due to the interaction-induced polymer conformation change, which regulated the molecular structure and subsequent photoradiation process of the gold nanoclusters. All three inflection points of the interactions between the polymers and the surfactants were obtained by the change in fluorescence emission ratio of the designed dual-emissive gold nanoclusters. Moreover, these inflection points are verified by the hydrodynamic diameter and zeta potential measurements.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengniu Lu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Du
- Analysis Center, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ding Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Correspondence: (Y.Y.); (Z.Y.)
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Y.Y.); (Z.Y.)
| |
Collapse
|
10
|
Strobl K, Selivanovitch E, Ibáñez-Freire P, Moreno-Madrid F, Schaap IAT, Delgado-Buscalioni R, Douglas T, de Pablo PJ. Electromechanical Photophysics of GFP Packed Inside Viral Protein Cages Probed by Force-Fluorescence Hybrid Single-Molecule Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200059. [PMID: 35718881 PMCID: PMC9528512 DOI: 10.1002/smll.202200059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Packing biomolecules inside virus capsids has opened new avenues for the study of molecular function in confined environments. These systems not only mimic the highly crowded conditions in nature, but also allow their manipulation at the nanoscale for technological applications. Here, green fluorescent proteins are packed in virus-like particles derived from P22 bacteriophage procapsids. The authors explore individual virus cages to monitor their emission signal with total internal reflection fluorescence microscopy while simultaneously changing the microenvironment with the stylus of atomic force microscopy. The mechanical and electronic quenching can be decoupled by ≈10% each using insulator and conductive tips, respectively. While with conductive tips the fluorescence quenches and recovers regardless of the structural integrity of the capsid, with the insulator tips quenching only occurs if the green fluorescent proteins remain organized inside the capsid. The electronic quenching is associated with the coupling of the protein fluorescence emission with the tip surface plasmon resonance. In turn, the mechanical quenching is a consequence of the unfolding of the aggregated proteins during the mechanical disruption of the capsid.
Collapse
Affiliation(s)
- Klara Strobl
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | | | - Pablo Ibáñez-Freire
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Francisco Moreno-Madrid
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | | | - Rafael Delgado-Buscalioni
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute of Condensed Matter Physics (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Pedro J de Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute of Condensed Matter Physics (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
11
|
Messina TC, Srijanto BR, Collier CP, Kravchenko II, Richards CI. Gold Ion Beam Milled Gold Zero-Mode Waveguides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1755. [PMID: 35630978 PMCID: PMC9147361 DOI: 10.3390/nano12101755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
Zero-mode waveguides (ZMWs) are widely used in single molecule fluorescence microscopy for their enhancement of emitted light and the ability to study samples at physiological concentrations. ZMWs are typically produced using photo or electron beam lithography. We report a new method of ZMW production using focused ion beam (FIB) milling with gold ions. We demonstrate that ion-milled gold ZMWs with 200 nm apertures exhibit similar plasmon-enhanced fluorescence seen with ZMWs fabricated with traditional techniques such as electron beam lithography.
Collapse
Affiliation(s)
- Troy C. Messina
- Department of Physics, Berea College, 101 Chestnut Street, Berea, KY 40404, USA
| | - Bernadeta R. Srijanto
- Center for Nanophase Materials Science, Oak Ridge National Labs, Oak Ridge, TN 37831, USA; (B.R.S.); (C.P.C.); (I.I.K.)
| | - Charles Patrick Collier
- Center for Nanophase Materials Science, Oak Ridge National Labs, Oak Ridge, TN 37831, USA; (B.R.S.); (C.P.C.); (I.I.K.)
| | - Ivan I. Kravchenko
- Center for Nanophase Materials Science, Oak Ridge National Labs, Oak Ridge, TN 37831, USA; (B.R.S.); (C.P.C.); (I.I.K.)
| | - Christopher I. Richards
- Department of Chemistry, University of Kentucky, 209 Chemistry-Physics Building, Lexington, KY 40202, USA;
| |
Collapse
|
12
|
Glembockyte V, Grabenhorst L, Trofymchuk K, Tinnefeld P. DNA Origami Nanoantennas for Fluorescence Enhancement. Acc Chem Res 2021; 54:3338-3348. [PMID: 34435769 DOI: 10.1021/acs.accounts.1c00307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The possibility to increase fluorescence by plasmonic effects in the near-field of metal nanostructures was recognized more than half a century ago. A major challenge, however, was to use this effect because placing single quantum emitters in the nanoscale plasmonic hotspot remained unsolved for a long time. This not only presents a chemical problem but also requires the nanostructure itself to be coaligned with the polarization of the excitation light. Additional difficulties arise from the complex distance dependence of fluorescence emission: in contrast to other surface-enhanced spectroscopies (such as Raman spectroscopy), the emitter should not be placed as close as possible to the metallic nanostructure but rather needs to be at an optimal distance on the order of a few nanometers to avoid undesired quenching effects.Our group addressed these challenges almost a decade ago by exploiting the unique positioning ability of DNA nanotechnology and reported the first self-assembled DNA origami nanoantennas. This Account summarizes our work spanning from this first proof-of-principle study to recent advances in utilizing DNA origami nanoantennas for single DNA molecule detection on a portable smartphone microscope.We summarize different aspects of DNA origami nanoantennas that are essential for achieving strong fluorescence enhancement and discuss how single-molecule fluorescence studies helped us to gain a better understanding of the interplay between fluorophores and plasmonic hotspots. Practical aspects of preparing the DNA origami nanoantennas and extending their utility are also discussed.Fluorescence enhancement in DNA origami nanoantennas is especially exciting for signal amplification in molecular diagnostic assays or in single-molecule biophysics, which could strongly benefit from higher time resolution. Additionally, biophysics can greatly profit from the ultrasmall effective detection volumes provided by DNA nanoantennas that allow single-molecule detection at drastically elevated concentrations as is required, e.g., in single-molecule DNA sequencing approaches.Finally, we describe our most recent progress in developing DNA NanoAntennas with Cleared HOtSpots (NACHOS) that are fully compatible with biomolecular assays. The developed DNA origami nanoantennas have proven robustness and remain functional after months of storage. As an example, we demonstrated for the first time the single-molecule detection of DNA specific to antibiotic-resistant bacteria on a portable and battery-driven smartphone microscope enabled by DNA origami nanoantennas. These recent developments mark a perfect moment to summarize the principles and the synthesis of DNA origami nanoantennas and give an outlook of new exciting directions toward using different nanomaterials for the construction of nanoantennas as well as for their emerging applications.
Collapse
Affiliation(s)
- Viktorija Glembockyte
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Lennart Grabenhorst
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Kateryna Trofymchuk
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| |
Collapse
|
13
|
Kelm A, Ostapko J, Gajewska A, Sánchez-Iglesias A, Waluk J. Spectral and photophysical modifications of porphyrins attached to core-shell nanoparticles. Theory and experiment. Methods Appl Fluoresc 2021; 9. [PMID: 34256360 DOI: 10.1088/2050-6120/ac1400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022]
Abstract
Plasmonic nanostructures, of which gold nanoparticles are the most elementary example, owe their unique properties to localized surface plasmons (LSP), the modes of free electron oscillation. LSP alter significantly electromagnetic field in the nanostructure neighborhood (i.e., near-field), which can modify the electric dipole transition rates in organic emitters. This study aims at investigating the influence of Au@SiO2core-shell nanoparticles on the photophysics of porphyrins covalently attached to the nanoparticles surface. Guided by theoretical predictions, three sets of gold nanoparticles of different sizes were coated with a silica layer of similar thickness. The outer silica surface was functionalized with either free-basemeso-tetraphenylporphyrin or its zinc complex. Absorption and emission bands of porphyrin overlap in energy with a gold nanoparticle LSP resonance that provides the field enhancement. Silica separates the emitters from the gold surface, while the gold core size tunes the energy of the LSP resonance. The signatures of weak-coupling regime have been observed. Apart from modified emission profiles and shortened S1lifetimes, Q band part intensity of the excitation spectra significantly increased with respect to the Soret band. The results were explained using classical transfer matrix simulations and electronic states kinetics, taking into account the photophysical properties of each chromophore. The calculations could reasonably well predict and explain the experimental outcomes. The discrepancies between the two were discussed.
Collapse
Affiliation(s)
- A Kelm
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - J Ostapko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - A Gajewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - A Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain.,Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - J Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
14
|
Emerson NT, Yang H. Reproducibly Measuring Plasmon-Enhanced Fluorescence in Bulk Solution Across a 20-Fold Range of Optical Densities. Anal Chem 2021; 93:8045-8053. [PMID: 34038099 DOI: 10.1021/acs.analchem.1c01210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well-known that plasmonic nanoparticles can modify the spectroscopic properties of nearby optical probes, for example, enhanced emission of a fluorescent dye. Yet, the detection and quantification of this effect in bulk solution remain challenging even while size- and shape-controlled nanoparticles have become readily available. We investigated this problem and identified two main difficulties which we were able to overcome through systematic studies. For the detection of fluorescence emanating from optically dense nanoparticle solutions, we describe an analytical model that provides guidelines for experimentalists to maximize the fluorescence intensity by optimizing the concentration, light paths, and excitation-detection volume of the sample. For the quantification of enhancement, which critically hinges upon the comparison to an accurate reference sample, we exploit the tools of DNA nanotechnology to remove the fluorophore from plasmonic coupling on-demand, forming an in situ reference. Using a model system of fluorophore Cy3 and 80 nm gold nanoparticles, we show that these strategies enable the quantitative measurement of plasmonic enhancement across a 20-fold range of optical densities. We anticipate that the presented experimental framework will allow for routine, quantitative measurements for the research and development of plasmon-enhanced phenomena.
Collapse
Affiliation(s)
- Nyssa T Emerson
- Department of Chemistry, Princeton University 225A Frick Laboratory, Princeton, New Jersey 08544-1023, United States
| | - Haw Yang
- Department of Chemistry, Princeton University 225A Frick Laboratory, Princeton, New Jersey 08544-1023, United States
| |
Collapse
|
15
|
Maccaferri N, Barbillon G, Koya AN, Lu G, Acuna GP, Garoli D. Recent advances in plasmonic nanocavities for single-molecule spectroscopy. NANOSCALE ADVANCES 2021; 3:633-642. [PMID: 36133836 PMCID: PMC9418431 DOI: 10.1039/d0na00715c] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/04/2020] [Indexed: 05/12/2023]
Abstract
Plasmonic nanocavities are able to engineer and confine electromagnetic fields to subwavelength volumes. In the past decade, they have enabled a large set of applications, in particular for sensing, optical trapping, and the investigation of physical and chemical phenomena at a few or single-molecule levels. This extreme sensitivity is possible thanks to the highly confined local field intensity enhancement, which depends on the geometry of plasmonic nanocavities. Indeed, suitably designed structures providing engineered local optical fields lead to enhanced optical sensing based on different phenomena such as surface enhanced Raman scattering, fluorescence, and Förster resonance energy transfer. In this mini-review, we illustrate the most recent results on plasmonic nanocavities, with specific emphasis on the detection of single molecules.
Collapse
Affiliation(s)
- Nicolò Maccaferri
- Department of Physics and Materials Science, University of Luxembourg 162a avenue de la Faïencerie L-1511 Luxembourg Luxembourg
| | | | | | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Peking University Beijing 100871 China
| | - Guillermo P Acuna
- Département de Physique - Photonic Nanosystems, Université de Fribourg CH-1700 Fribourg Switzerland
| | - Denis Garoli
- Istituto Italiano di Tecnologia Via Morego 30 16163 Genova Italy
- Faculty of Science and Technology, Free University of Bozen-Bolzano Piazza università 1 39100 Bolzano Italy
| |
Collapse
|
16
|
Ruhlandt D, Andresen M, Jensen N, Gregor I, Jakobs S, Enderlein J, Chizhik AI. Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity. Commun Biol 2020; 3:627. [PMID: 33128009 PMCID: PMC7599333 DOI: 10.1038/s42003-020-01316-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state.
Collapse
Affiliation(s)
- Daja Ruhlandt
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany
| | - Martin Andresen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ingo Gregor
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- University of Göttingen Medical Faculty, Clinic of Neurology, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," (MBExC), University of Göttingen, Göttingen, Germany
| | - Jörg Enderlein
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," (MBExC), University of Göttingen, Göttingen, Germany.
| | - Alexey I Chizhik
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany.
| |
Collapse
|
17
|
Al Masud A, Martin WE, Moonschi FH, Park SM, Srijanto BR, Graham KR, Collier CP, Richards CI. Mixed metal zero-mode guides (ZMWs) for tunable fluorescence enhancement. NANOSCALE ADVANCES 2020; 2:1894-1903. [PMID: 36132495 PMCID: PMC9419232 DOI: 10.1039/c9na00641a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/25/2020] [Indexed: 05/28/2023]
Abstract
Zero-mode waveguides (ZMWs) are capable of modifying fluorescence emission through interactions with surface plasmon modes leading to either plasmon-enhanced fluorescence or quenching. Enhancement requires spectral overlap of the plasmon modes with the absorption or emission of the fluorophore. Thus, enhancement is limited to fluorophores in resonance with metals (e.g. Al, Au, Ag) used for ZMWs. The ability to tune interactions to match a wider range of fluorophores across the visible spectra would significantly extend the utility of ZMWs. We fabricated ZMWs composed of aluminum and gold individually and also in mixtures of three different ratios, (Al : Au; 75 : 25, 50 : 50, 25 : 75). We characterized the effect of mixed-metal ZMWs on single-molecule emission for a range fluorophores across the visible spectrum. Mixed metal ZMWs exhibited a shift in the spectral range where they exhibited the maximum fluorescence enhancement allowing us to match the emission of fluorophores that were nonresonant with single metal ZMWs. We also compared the effect of mixed-metal ZMWs on the photophysical properties of fluorescent molecules due to metal-molecule interactions. We quantified changes in fluorescence lifetimes and photostability that were dependent on the ratio of Au and Al. Tuning the enhancement properties of ZMWs by changing the ratio of Au and Al allowed us to match the fluorescence of fluorophores that emit in different regions of the visible spectrum.
Collapse
Affiliation(s)
- Abdullah Al Masud
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - W Elliott Martin
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Faruk H Moonschi
- Department of Physiology, School of Medicine, University of Kentucky KY 40506 USA
| | - So Min Park
- Department of Chemical and Materials Engineering, Univ. of Kentucky 40506 USA
| | - Bernadeta R Srijanto
- Center for Nanophase Materials Sciences, Oakridge National Lab Oakridge TN 37831 USA
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oakridge National Lab Oakridge TN 37831 USA
| | | |
Collapse
|
18
|
Single-particle spectroscopy for functional nanomaterials. Nature 2020; 579:41-50. [PMID: 32132689 DOI: 10.1038/s41586-020-2048-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022]
Abstract
Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles.
Collapse
|
19
|
Unveiling the radiative local density of optical states of a plasmonic nanocavity by STM. Nat Commun 2020; 11:1021. [PMID: 32094339 PMCID: PMC7039974 DOI: 10.1038/s41467-020-14827-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/29/2020] [Indexed: 11/27/2022] Open
Abstract
Atomically-sharp tips in close proximity of metal surfaces create plasmonic nanocavities supporting both radiative (bright) and non-radiative (dark) localized surface plasmon modes. Disentangling their respective contributions to the total density of optical states remains a challenge. Electroluminescence due to tunnelling through the tip-substrate gap could allow the identification of the radiative component, but this information is inherently convoluted with that of the electronic structure of the system. In this work, we present a fully experimental procedure to eliminate the electronic-structure factors from the scanning tunnelling microscope luminescence spectra by confronting them with spectroscopic information extracted from elastic current measurements. Comparison against electromagnetic calculations demonstrates that this procedure allows the characterization of the meV shifts experienced by the nanocavity plasmonic modes under atomic-scale gap size changes. Therefore, the method gives access to the frequency-dependent radiative Purcell enhancement that a microscopic light emitter would undergo when placed at such nanocavity. Disentangling the radiative and non-radiative plasmon mode contributions to the total photonic density of states is a challenge. Here, the authors report a procedure to eliminate the electronic-structure factors from scanning tunnelling microscope luminescence spectra to isolate the radiative component.
Collapse
|
20
|
Giannakopoulou N, Williams JB, Moody PR, Sayers EJ, Magnusson JP, Pope I, Payne L, Alexander C, Jones AT, Langbein W, Watson P, Borri P. Four-wave-mixing microscopy reveals non-colocalisation between gold nanoparticles and fluorophore conjugates inside cells. NANOSCALE 2020; 12:4622-4635. [PMID: 32044908 DOI: 10.1039/c9nr08512b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles have been researched for many biomedical applications in diagnostics, theranostics, and as drug delivery systems. When conjugated to fluorophores, their interaction with biological cells can be studied in situ and real time using fluorescence microscopy. However, an important question that has remained elusive to answer is whether the fluorophore is a faithful reporter of the nanoparticle location. Here, our recently developed four-wave-mixing optical microscopy is applied to image individual gold nanoparticles and in turn investigate their co-localisation with fluorophores inside cells. Nanoparticles from 10 nm to 40 nm diameter were conjugated to fluorescently-labeled transferrin, for internalisation via clathrin-mediated endocytosis, or to non-targeting fluorescently-labelled antibodies. Human (HeLa) and murine (3T3-L1) cells were imaged at different time points after incubation with these conjugates. Our technique identified that, in most cases, fluorescence originated from unbound fluorophores rather than from fluorophores attached to nanoparticles. Fluorescence detection was also severely limited by photobleaching, quenching and autofluorescence background. Notably, correlative extinction/fluorescence microscopy of individual particles on a glass surface indicated that commercial constructs contain large amounts of unbound fluorophores. These findings highlight the potential problems of data interpretation when reliance is solely placed on the detection of fluorescence within the cell, and are of significant importance in the context of correlative light electron microscopy.
Collapse
Affiliation(s)
- Naya Giannakopoulou
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Grabenhorst L, Trofymchuk K, Steiner F, Glembockyte V, Tinnefeld P. Fluorophore photostability and saturation in the hotspot of DNA origami nanoantennas. Methods Appl Fluoresc 2020; 8:024003. [DOI: 10.1088/2050-6120/ab6ac8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
|
23
|
Changede R, Cai H, Wind SJ, Sheetz MP. Integrin nanoclusters can bridge thin matrix fibres to form cell-matrix adhesions. NATURE MATERIALS 2019; 18:1366-1375. [PMID: 31477904 PMCID: PMC7455205 DOI: 10.1038/s41563-019-0460-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/11/2019] [Indexed: 05/17/2023]
Abstract
Integrin-mediated cell-matrix adhesions are key to sensing the geometry and rigidity of extracellular environments and influence vital cellular processes. In vivo, the extracellular matrix is composed of fibrous arrays. To understand the fibre geometries that are required for adhesion formation, we patterned nanolines of various line widths and arrangements in single, crossing or paired arrays with the integrin-binding peptide Arg-Gly-Asp. Single thin lines (width ≤30 nm) did not support cell spreading or formation of focal adhesions, despite the presence of a high density of Arg-Gly-Asp, but wide lines (>40 nm) did. Using super-resolution microscopy, we observed stable, dense integrin clusters formed on parallel (within 110 nm) or crossing thin lines (mimicking a matrix mesh) similar to those on continuous substrates. These dense clusters bridged the line pairs by recruiting activated but unliganded integrins, as verified by integrin mutants unable to bind ligands that coclustered with ligand-bound integrins when present in an active extended conformation. Thus, in a fibrous extracellular matrix mesh, stable integrin nanoclusters bridge between thin (≤30 nm) matrix fibres and bring about downstream consequences of cell motility and growth.
Collapse
Affiliation(s)
- Rishita Changede
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Haogang Cai
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
- Center for Nanoscale Materials, Nanoscience and Technology Division, Argonne National laboratory, Lemont, IL, USA
| | - Shalom J Wind
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
24
|
Hübner K, Pilo-Pais M, Selbach F, Liedl T, Tinnefeld P, Stefani FD, Acuna GP. Directing Single-Molecule Emission with DNA Origami-Assembled Optical Antennas. NANO LETTERS 2019; 19:6629-6634. [PMID: 31449421 DOI: 10.1021/acs.nanolett.9b02886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We demonstrate the capability of DNA self-assembled optical antennas to direct the emission of an individual fluorophore, which is free to rotate. DNA origami is used to fabricate optical antennas composed of two colloidal gold nanoparticles separated by a predefined gap and to place a single Cy5 fluorophore near the gap center. Although the fluorophore is able to rotate, its excitation and far-field emission is mediated by the antenna, with the emission directionality following a dipolar pattern according to the antenna main resonant mode. This work is intended to set out the basis for manipulating the emission pattern of single molecules with self-assembled optical antennas based on colloidal nanoparticles.
Collapse
Affiliation(s)
- Kristina Hübner
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Mauricio Pilo-Pais
- Faculty of Physics and Center for NanoScience , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany
- Department of Physics , University of Fribourg , Chemin du Musée 3 , Fribourg CH-1700 , Switzerland
| | - Florian Selbach
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires , Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Güiraldes 2620, C1428EHA, Ciudad Autónoma de Buenos Aires , Argentina
| | - Guillermo P Acuna
- Department of Physics , University of Fribourg , Chemin du Musée 3 , Fribourg CH-1700 , Switzerland
| |
Collapse
|
25
|
Emergence of multiple fluorophores in individual cesium lead bromide nanocrystals. Nat Commun 2019; 10:2930. [PMID: 31266944 PMCID: PMC6606627 DOI: 10.1038/s41467-019-10870-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/06/2019] [Indexed: 12/03/2022] Open
Abstract
Cesium-based perovskite nanocrystals (PNCs) possess alluring optical and electronic properties via compositional and structural versatility, tunable bandgap, high photoluminescence quantum yield and facile chemical synthesis. Despite the recent progress, origins of the photoluminescence emission in various types of PNCs remains unclear. Here, we study the photon emission from individual three-dimensional and zero-dimensional cesium lead bromide PNCs. Using photon antibunching and lifetime measurements, we demonstrate that emission statistics of both type of PNCs are akin to individual molecular fluorophores, rather than traditional semiconductor quantum dots. Aided by density functional modelling, we provide compelling evidence that green emission in zero-dimensional PNCs stems from exciton recombination at bromide vacancy centres within lead-halide octahedra, unrelated to external confinement. These findings provide key information about the nature of defect formation and the origin of emission in cesium lead halide perovskite materials, which foster their utilization in the emerging optoelectronic applications. Inorganic perovskite nanocrystals attract lots of research attention but the origin of their photoluminescence remains debatable. Here Zhang et al. show that behavior of both CsPbBr3 and Cs4PbBr6 nanocrystals is like individual molecular fluorophores and independent of the structural dimensionalities.
Collapse
|
26
|
Wu M, Liu W, Hu J, Zhong Z, Rujiralai T, Zhou L, Cai X, Ma J. Fluorescence enhancement in an over-etched gold zero-mode waveguide. OPTICS EXPRESS 2019; 27:19002-19018. [PMID: 31252834 DOI: 10.1364/oe.27.019002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/18/2019] [Indexed: 05/26/2023]
Abstract
The fluorescence enhancement in an over-etched gold zero-mode waveguide (ZMW) was investigated through both numerical simulation and experiments. Using Cy3 and Cy5 as the fluorescent probes, the simulation showed that the undercut not only enhances the fluorescence signals of both fluorophores, but also greatly improves the radial uniformity of the excitation fields in the ZMW. Furthermore, using a focused-ion-beam tool, we fabricated Au-ZMW arrays with different radius and undercut. The fluorescence enhancement per molecule and the effective excitation volume of the Au-ZMW were then measured as functions of its radial size and over-etching depth by using fluorescence correlation spectroscopy. It was found that the undercut can significantly enhance the fluorescence signal per molecule in the ZMW, but it also slightly increased the excitation volume. Decreasing the radial size of the ZMW can efficiently reduce the excitation volume and also further enhance the fluorescence per molecule. These results together indicate that combining the undercut and reduction of radius of the ZMW can serve as a simple and effective way to essentially improve the performance of an Au-ZMW for single molecule fluorescence detection.
Collapse
|
27
|
Bohlen J, Cuartero-González Á, Pibiri E, Ruhlandt D, Fernández-Domínguez AI, Tinnefeld P, Acuna GP. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime. NANOSCALE 2019; 11:7674-7681. [PMID: 30946424 DOI: 10.1039/c9nr01204d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Metallic nanoparticles were shown to affect Förster energy transfer between fluorophore pairs. However, to date, the net plasmonic effect on FRET is still under dispute, with experiments showing efficiency enhancement and reduction. This controversy is due to the challenges involved in the precise positioning of FRET pairs in the near field of a metallic nanostructure, as well as in the accurate characterization of the plasmonic impact on the FRET mechanism. Here, we use the DNA origami technique to place a FRET pair 10 nm away from the surface of gold nanoparticles with sizes ranging from 5 to 20 nm. In this configuration, the fluorophores experience only moderate plasmonic quenching. We use the acceptor bleaching approach to extract the FRET rate constant and efficiency on immobilized single FRET pairs based solely on the donor lifetime. This technique does not require a posteriori correction factors neither a priori knowledge of the acceptor quantum yield, and importantly, it is performed in a single spectral channel. Our results allow us to conclude that, despite the plasmon-assisted Purcell enhancement experienced by donor and acceptor partners, the gold nanoparticles in our samples have a negligible effect on the FRET rate, which in turns yields a reduction of the transfer efficiency.
Collapse
Affiliation(s)
- J Bohlen
- Institute for Physical and Theoretical Chemistry - NanoBioScience and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hofmann FJ, Bodnarchuk MI, Protesescu L, Kovalenko MV, Lupton JM, Vogelsang J. Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae. J Phys Chem Lett 2019; 10:1055-1062. [PMID: 30789278 DOI: 10.1021/acs.jpclett.9b00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The extraordinary absorption cross section and high photoluminescence (PL) quantum yield of perovskite nanocrystals make this type of material attractive to a variety of applications in optoelectronics. For the same reasons, nanocrystals are also ideally suited to function as nanoantennae to excite nearby single dye molecules by fluorescence resonance energy transfer (FRET). Here, we demonstrate that FAPbBr3 perovskite nanocrystals, of cuboidal shape and approximately 10 nm in size, are capable of selectively exciting single cyanine 3 molecules at a concentration 100-fold higher than standard single-molecule concentrations. This FRET antenna mechanism increases the effective brightness of the single dye molecules 100-fold. Photon statistics and emission polarization measurements provide evidence for the FRET process by revealing photon antibunching with unprecedented fidelity and highly polarized emission stemming from single dye molecules. Remarkably, the quality of single-photon emission improves 1.5-fold compared to emission collected directly from the nanocrystals because the higher excited states of the dye molecule act as effective filters to multiexcitons. The same process gives rise to efficient deshelving of the molecular triplet state by reverse intersystem crossing (RISC), translating into a reduction of the PL saturation of the dye, thereby increasing the maximum achievable PL intensity of the dye by a factor of 3.
Collapse
Affiliation(s)
- Felix J Hofmann
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Maryna I Bodnarchuk
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Loredana Protesescu
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik , Universität Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Jan Vogelsang
- Department Chemie , Ludwig-Maximilians-Universität München , Butenandtstrasse 5-13 , 81377 München , Germany
| |
Collapse
|
29
|
Li H, He F, Ji C, Zhu W, Xu Y, Zhang W, Meng X, Fang X, Ding T. Polymer spacer tunable Purcell-enhanced spontaneous emission in perovskite quantum dots coupled to plasmonic nanowire networks. Phys Chem Chem Phys 2019; 21:22831-22838. [DOI: 10.1039/c9cp04415a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bright and fast emission of perovskite quantum dots has been demonstrated by using a polymer spacer to regulate the exciton–plasmon coupling.
Collapse
Affiliation(s)
- Hanmei Li
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Futao He
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Chuankun Ji
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Weiwei Zhu
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Yuanqing Xu
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Wenkai Zhang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Xianrui Meng
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Xiaomin Fang
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| | - Tao Ding
- Institute of Functional Organic Molecular Engineering
- Henan Engineering Laboratory of Flame-Retardant and Functional Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
| |
Collapse
|
30
|
Kuzyk A, Jungmann R, Acuna GP, Liu N. DNA Origami Route for Nanophotonics. ACS PHOTONICS 2018; 5:1151-1163. [PMID: 30271812 PMCID: PMC6156112 DOI: 10.1021/acsphotonics.7b01580] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 05/21/2023]
Abstract
The specificity and simplicity of the Watson-Crick base pair interactions make DNA one of the most versatile construction materials for creating nanoscale structures and devices. Among several DNA-based approaches, the DNA origami technique excels in programmable self-assembly of complex, arbitrary shaped structures with dimensions of hundreds of nanometers. Importantly, DNA origami can be used as templates for assembly of functional nanoscale components into three-dimensional structures with high precision and controlled stoichiometry. This is often beyond the reach of other nanofabrication techniques. In this Perspective, we highlight the capability of the DNA origami technique for realization of novel nanophotonic systems. First, we introduce the basic principles of designing and fabrication of DNA origami structures. Subsequently, we review recent advances of the DNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems. We conclude by outlining the future prospects of the DNA origami technique for advanced nanophotonic systems with tailored functionalities.
Collapse
Affiliation(s)
- Anton Kuzyk
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI-00076 Aalto, Finland
| | - Ralf Jungmann
- Department
of Physics and Center for Nanoscience, Ludwig
Maximilian University, 80539 Munich, Germany
- Max
Planck Institute of Biochemistry, 82152 Martinsried near Munich, Germany
| | - Guillermo P. Acuna
- Institute
for Physical & Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Na Liu
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
| |
Collapse
|
31
|
Abstract
The interaction between light and matter can be controlled efficiently by structuring materials at a length scale shorter than the wavelength of interest. With the goal to build optical devices that operate at the nanoscale, plasmonics has established itself as a discipline, where near-field effects of electromagnetic waves created in the vicinity of metallic surfaces can give rise to a variety of novel phenomena and fascinating applications. As research on plasmonics has emerged from the optics and solid-state communities, most laboratories employ top-down lithography to implement their nanophotonic designs. In this review, we discuss the recent, successful efforts of employing self-assembled DNA nanostructures as scaffolds for creating advanced plasmonic architectures. DNA self-assembly exploits the base-pairing specificity of nucleic acid sequences and allows for the nanometer-precise organization of organic molecules but also for the arrangement of inorganic particles in space. Bottom-up self-assembly thus bypasses many of the limitations of conventional fabrication methods. As a consequence, powerful tools such as DNA origami have pushed the boundaries of nanophotonics and new ways of thinking about plasmonic designs are on the rise.
Collapse
Affiliation(s)
- Na Liu
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, D-69120, Heidelberg, Germany
| | - Tim Liedl
- Fakultät für Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany
| |
Collapse
|
32
|
Deeb C, Guo Z, Yang A, Huang L, Odom TW. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays. NANO LETTERS 2018; 18:1454-1459. [PMID: 29369639 DOI: 10.1021/acs.nanolett.7b05223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.6 ± 1 ps) characteristic of individual nanocavities. Upon optical pumping at powers above threshold, lasing action emerged depending on the spacing of the array. By correlating ultrafast microscopy and far-field light emission characteristics, we found that bowtie nanoparticles acted as isolated cavities when the diffractive modes of the array did not couple to the plasmonic gap mode. These results demonstrate how ultrafast microscopy can provide insight into energy relaxation pathways and, specifically, how nanocavities in arrays can show single-unit nanolaser properties.
Collapse
Affiliation(s)
| | - Zhi Guo
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | - Libai Huang
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
33
|
Taylor A, Verhoef R, Beuwer M, Wang Y, Zijlstra P. All-Optical Imaging of Gold Nanoparticle Geometry Using Super-Resolution Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:2336-2342. [PMID: 29422979 PMCID: PMC5797984 DOI: 10.1021/acs.jpcc.7b12473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 05/29/2023]
Abstract
We demonstrate the all-optical reconstruction of gold nanoparticle geometry using super-resolution microscopy. We employ DNA-PAINT to get exquisite control over the (un)binding kinetics by the number of complementary bases and salt concentration, leading to localization accuracies of ∼5 nm. We employ a dye with an emission spectrum strongly blue-shifted from the plasmon resonance to minimize mislocalization due to plasmon-fluorophore coupling. We correlate the all-optical reconstructions with atomic force microscopy images and find that reconstructed dimensions deviate by no more than ∼10%. Numerical modeling shows that this deviation is determined by the number of events per particle, and the signal-to-background ratio in our measurement. We further find good agreement between the reconstructed orientation and aspect ratio of the particles and single-particle scattering spectroscopy. This method may provide an approach to all-optically image the geometry of single particles in confined spaces such as microfluidic circuits and biological cells, where access with electron beams or tip-based probes is prohibited.
Collapse
|
34
|
Chikkaraddy R, Turek VA, Kongsuwan N, Benz F, Carnegie C, van de Goor T, de Nijs B, Demetriadou A, Hess O, Keyser UF, Baumberg JJ. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. NANO LETTERS 2018; 18:405-411. [PMID: 29166033 PMCID: PMC5806994 DOI: 10.1021/acs.nanolett.7b04283] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/15/2017] [Indexed: 05/22/2023]
Abstract
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 103 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.
Collapse
Affiliation(s)
- Rohit Chikkaraddy
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - V. A. Turek
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Nuttawut Kongsuwan
- Blackett
Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Felix Benz
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Cloudy Carnegie
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Tim van de Goor
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Bart de Nijs
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Angela Demetriadou
- Blackett
Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Ortwin Hess
- Blackett
Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Jeremy J. Baumberg
- Cavendish Laboratory, Department
of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
- E-mail:
| |
Collapse
|
35
|
Abstract
Chemical activity of single nanoparticles can be imaged and determined by monitoring the optical signal of each individual during chemical reactions with advanced optical microscopes. It allows for clarifying the functional heterogeneity among individuals, and for uncovering the microscopic reaction mechanisms and kinetics that could otherwise be averaged out in ensemble measurements.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
36
|
Chandra B, Maity BK, Das A, Maiti S. Fluorescence quenching by lipid encased nanoparticles shows that amyloid-β has a preferred orientation in the membrane. Chem Commun (Camb) 2018; 54:7750-7753. [DOI: 10.1039/c8cc02108b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Short range plasmonic fields around a nanoparticle can modulate fluorescence or Raman processes.
Collapse
Affiliation(s)
| | | | - Anirban Das
- Tata Institute of Fundamental Research
- Homi Bhabha Road
- Mumbai
- India
| | - Sudipta Maiti
- Tata Institute of Fundamental Research
- Homi Bhabha Road
- Mumbai
- India
| |
Collapse
|
37
|
Pilo-Pais M, Acuna GP, Tinnefeld P, Liedl T. Sculpting Light by Arranging Optical Components with DNA Nanostructures. MRS BULLETIN 2017; 42:936-942. [PMID: 31168224 PMCID: PMC6546597 DOI: 10.1557/mrs.2017.278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA nanotechnology has developed into a state where the design and assembly of complex nanoscale structures has become fast, reliable, cost-effective, and accessible to non-experts. Nanometer-precise positioning of organic (dyes, biomolecules, etc.) and inorganic (metal nanoparticles, colloidal quantum dots, etc.) components on DNA nanostructures is straightforward and modular. In this perspective article, we identify the opportunities and challenges that DNA-assembled devices and materials are facing for optical antennas, metamaterials, and sensing applications. With the abilities of arranging hybrid materials in defined geometries, plasmonic effects will, for example, amplify molecular recognition transduction so that single-molecule events will be measureable with simple devices. On the larger scale, DNA nanotechnology has the potential of breaking the symmetry of common self-assembled functional materials creating pre-defined optical properties such as refractive index tuning, Bragg reflection and topological insulation.
Collapse
Affiliation(s)
- Mauricio Pilo-Pais
- Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Guillermo P Acuna
- Institute for Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Philip Tinnefeld
- Department for Chemistry and Center for Nanoscience, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, 80539, München, Germany
| |
Collapse
|
38
|
Ochmann SE, Vietz C, Trofymchuk K, Acuna GP, Lalkens B, Tinnefeld P. Optical Nanoantenna for Single Molecule-Based Detection of Zika Virus Nucleic Acids without Molecular Multiplication. Anal Chem 2017; 89:13000-13007. [DOI: 10.1021/acs.analchem.7b04082] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sarah E. Ochmann
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Carolin Vietz
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Kateryna Trofymchuk
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Guillermo P. Acuna
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Birka Lalkens
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Philip Tinnefeld
- Institute
for Physical and Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
- Department
of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstrasse 5-13, 81377 Muenchen, Germany
| |
Collapse
|
39
|
Wang M, Hartmann G, Wu Z, Scarabelli L, Rajeeva BB, Jarrett JW, Perillo EP, Dunn AK, Liz-Marzán LM, Hwang GS, Zheng Y. Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201701763. [PMID: 28834225 PMCID: PMC5866054 DOI: 10.1002/smll.201701763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Indexed: 05/19/2023]
Abstract
By harnessing photoswitchable intersystem crossing (ISC) in spiropyran (SP) molecules, active control of plasmon-enhanced fluorescence in the hybrid systems of SP molecules and plasmonic nanostructures is achieved. Specifically, SP-derived merocyanine (MC) molecules formed by photochemical ring-opening reaction display efficient ISC due to their zwitterionic character. In contrast, ISC in quinoidal MC molecules formed by thermal ring-opening reaction is negligible. The high ISC rate can improve fluorescence quantum yield of the plasmon-modified spontaneous emission, only when the plasmonic electromagnetic field enhancement is sufficiently high. Along this line, extensive photomodulation of fluorescence is demonstrated by switching the ISC in MC molecules at Au nanoparticle aggregates, where strongly enhanced plasmonic hot spots exist. The ISC-mediated plasmon-enhanced fluorescence represents a new approach toward controlling the spontaneous emission of fluorophores near plasmonic nanostructures, which expands the applications of active molecular plasmonics in information processing, biosensing, and bioimaging.
Collapse
Affiliation(s)
- Mingsong Wang
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gregory Hartmann
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zilong Wu
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Leonardo Scarabelli
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bharath Bangalore Rajeeva
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeremy W Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, 20014, Donostia- San Sebastián, Spain
| | - Gyeong S Hwang
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
40
|
Taylor AB, Zijlstra P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens 2017; 2:1103-1122. [PMID: 28762723 PMCID: PMC5573902 DOI: 10.1021/acssensors.7b00382] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.
Collapse
Affiliation(s)
- Adam B. Taylor
- Molecular Biosensing for
Medical Diagnostics, Faculty of Applied Physics, & Institute for
Complex Molecular Systems, Eindhoven University
of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Molecular Biosensing for
Medical Diagnostics, Faculty of Applied Physics, & Institute for
Complex Molecular Systems, Eindhoven University
of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
41
|
Martin WE, Ge N, Srijanto BR, Furnish E, Collier CP, Trinkle CA, Richards CI. Real-Time Sensing of Single-Ligand Delivery with Nanoaperture-Integrated Microfluidic Devices. ACS OMEGA 2017; 2:3858-3867. [PMID: 28782052 PMCID: PMC5537690 DOI: 10.1021/acsomega.7b00934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 05/28/2023]
Abstract
The measurement of biological events on the surface of live cells at the single-molecule level is complicated by several factors including high protein densities that are incompatible with single-molecule imaging, cellular autofluorescence, and protein mobility on the cell surface. Here, we fabricated a device composed of an array of nanoscale apertures coupled with a microfluidic delivery system to quantify single-ligand interactions with proteins on the cell surface. We cultured live cells directly on the device and isolated individual epidermal growth factor receptors (EGFRs) in the apertures while delivering fluorescently labeled epidermal growth factor. We observed single ligands binding to EGFRs, allowing us to quantify the ligand turnover in real time. These results demonstrate that this nanoaperture-coupled microfluidic device allows for the spatial isolation of individual membrane proteins while maintaining them in their cellular environment, providing the capability to monitor single-ligand binding events while maintaining receptors in their physiological environment. These methods should be applicable to a wide range of membrane proteins.
Collapse
Affiliation(s)
- W. Elliott Martin
- Department
of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Ning Ge
- Department
of Mechanical Engineering, University of
Kentucky, 151 Ralph G.
Anderson Building, Lexington, Kentucky 40506, United
States
| | - Bernadeta R. Srijanto
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge Tennessee 37831, United States
| | - Emily Furnish
- Department
of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - C. Patrick Collier
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge Tennessee 37831, United States
| | - Christine A. Trinkle
- Department
of Mechanical Engineering, University of
Kentucky, 151 Ralph G.
Anderson Building, Lexington, Kentucky 40506, United
States
| | - Christopher I. Richards
- Department
of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| |
Collapse
|
42
|
Mack DL, Cortés E, Giannini V, Török P, Roschuk T, Maier SA. Decoupling absorption and emission processes in super-resolution localization of emitters in a plasmonic hotspot. Nat Commun 2017; 8:14513. [PMID: 28211479 PMCID: PMC5321739 DOI: 10.1038/ncomms14513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
The absorption process of an emitter close to a plasmonic antenna is enhanced due to strong local electromagnetic (EM) fields. The emission, if resonant with the plasmonic system, re-radiates to the far-field by coupling with the antenna via plasmonic states, whose presence increases the local density of states. Far-field collection of the emission of single molecules close to plasmonic antennas, therefore, provides mixed information of both the local EM field strength and the local density of states. Moreover, super-resolution localizations from these emission-coupled events do not report the real position of the molecules. Here we propose using a fluorescent molecule with a large Stokes shift in order to spectrally decouple the emission from the plasmonic system, leaving the absorption strongly resonant with the antenna's enhanced EM fields. We demonstrate that this technique provides an effective way of mapping the EM field or the local density of states with nanometre spatial resolution. Reporting the position of molecules and the electromagnetic enhancement in a plasmonic hotspot is difficult. Here Mack et al. use a large Stokes-shifted molecule to spectrally decouple the emission process of the dye from the plasmonic system, keeping the absorption on resonance with the plasmon resonance of the antenna.
Collapse
Affiliation(s)
- David L Mack
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Vincenzo Giannini
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Peter Török
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Tyler Roschuk
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
43
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
44
|
Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nat Commun 2017; 8:13966. [PMID: 28074833 PMCID: PMC5512867 DOI: 10.1038/ncomms13966] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/17/2016] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: a single-molecule mirage. The near-field interaction of single emitters and plasmonic structures can alter the perceived physical location of the emitter. Here, Raab et al. use DNA origami and far-field super-resolution microscopy to quantitatively evaluate this localization offset for gold nanoparticles.
Collapse
|
45
|
Liaw JW, Wu HY, Huang CC, Kuo MK. Metal-Enhanced Fluorescence of Silver Island Associated with Silver Nanoparticle. NANOSCALE RESEARCH LETTERS 2016; 11:26. [PMID: 26779917 PMCID: PMC4715017 DOI: 10.1186/s11671-016-1247-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/08/2016] [Indexed: 06/01/2023]
Abstract
The coupling plasmon of a hybrid nanostructure, silver island (SI) associated with silver nanoparticle (SNP), on metal-enhanced fluorescence (MEF) was studied theoretically. We used the multiple multipole method to analyze the plasmon-mediated enhancement factor on the fluorescence of a molecule immobilized on SNP and located in the gap zone between SI and SNP; herein, the SI was modeled as an oblate spheroid. Numerical results show that the enhancement factor of the hybrid nanostructure is higher than that of a SNP or a SI alone due to the coupled gap mode. This finding is in agreement with the previous experimental results. In addition, the plasmon band of the structure is broadband and tunable, which can be red-shifted and broadened by flattening or enlarging SI. Based on this property, the hybrid nanostructure can be tailored to obtain the optimal enhancement factor on a specific molecule according to its excitation spectrum. Moreover, we found that there is an induced optical force allowing SNP be attracted by SI. Consequently, the gap is reduced gradually to perform a stronger MEF effect.
Collapse
Affiliation(s)
- Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Taoyuan, 333, Taiwan.
- Center for Biomedical Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Taoyuan, 333, Taiwan.
- Medical Physics Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Hsin-Yu Wu
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chu-Chuan Huang
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Mao-Kuen Kuo
- Institute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
46
|
Oh E, Huston AL, Shabaev A, Efros A, Currie M, Susumu K, Bussmann K, Goswami R, Fatemi FK, Medintz IL. Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More than Just the Classical Förster Mechanism. Sci Rep 2016; 6:35538. [PMID: 27774984 PMCID: PMC5075882 DOI: 10.1038/srep35538] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/28/2016] [Indexed: 12/19/2022] Open
Abstract
Luminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with three structurally/functionally-distinct donor classes including organic dyes, metal chelates and semiconductor quantum dots (QDs). Donor quenching was observed for every donor-acceptor pair although AuNC sensitization was only observed from metal-chelates and QDs. FRET theory dramatically underestimated the observed energy transfer while NSET-based damping models provided better fits but could not reproduce the experimental data. We consider additional factors including AuNC magnetic dipoles, density of excited-states, dephasing time, and enhanced intersystem crossing that can also influence ET. Cumulatively, data suggests that AuNC sensitization is not by classical FRET or NSET and we provide a simplified distance-independent ET model to fit such experimental data.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Sotera Defense Solutions, Inc. Columbia, MD 21046, USA
| | - Alan L. Huston
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Andrew Shabaev
- Center for Computational Material Science Code 6390, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Alexander Efros
- Center for Computational Material Science Code 6390, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Marc Currie
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Kimihiro Susumu
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Sotera Defense Solutions, Inc. Columbia, MD 21046, USA
| | - Konrad Bussmann
- Materials and Sensors Branch Code 6361, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Ramasis Goswami
- Multifunctional Materials Code 6351, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Fredrik K. Fatemi
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| |
Collapse
|
47
|
Tserkezis C, Stefanou N, Wubs M, Mortensen NA. Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects. NANOSCALE 2016; 8:17532-17541. [PMID: 27722520 DOI: 10.1039/c6nr06393d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular spontaneous emission and fluorescence depend strongly on the emitter local environment. Plasmonic nanoparticles provide excellent templates for tailoring fluorophore emission, as they exhibit potential for both fluorescence enhancement and quenching, depending on emitter positioning in the nanoparticle vicinity. Here we explore the influence of hitherto disregarded nonclassical effects on the description of emitter-plasmon hybrids, focusing on the roles of the metal nonlocal response and especially size-dependent plasmon damping. Through extensive modelling of metallic nanospheres and nanoshells coupled to dipole emitters, we show that within a purely classical description a remarkable fluorescence enhancement can be achieved. However, once departing from the local-response approximation, and particularly by implementing the recent generalised nonlocal optical response theory, which provides a more complete physical description combining electron convection and diffusion, we show that not only are fluorescence rates dramatically reduced compared to the predictions of the local description and the common hydrodynamic Drude model, but the optimum emitter-nanoparticle distance is also strongly affected. In this respect, experimental measurements of fluorescence, the theoretical description of which requires a precise concurrent evaluation of far- and near-field properties of the system, constitute a novel, more sensitive probe for assessing the validity of state-of-the-art nonclassical theories.
Collapse
Affiliation(s)
- Christos Tserkezis
- Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark.
| | - Nikolaos Stefanou
- Department of Solid State Physics, National and Kapodistrian University of Athens, University Campus, GR-15784 Athens, Greece
| | - Martijn Wubs
- Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark. and Center for Nanostructured Graphene, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark.
| | - N Asger Mortensen
- Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark. and Center for Nanostructured Graphene, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
48
|
Martin WE, Srijanto BR, Collier CP, Vosch T, Richards CI. A Comparison of Single-Molecule Emission in Aluminum and Gold Zero-Mode Waveguides. J Phys Chem A 2016; 120:6719-27. [DOI: 10.1021/acs.jpca.6b03309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. Elliott Martin
- Department
of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| | - Bernadeta R. Srijanto
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C. Patrick Collier
- Center
for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tom Vosch
- Nano-science
Center/Department of Chemistry, University of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - Christopher I. Richards
- Department
of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, United States
| |
Collapse
|
49
|
Konrad A, Metzger M, Kern AM, Brecht M, Meixner AJ. Revealing the radiative and non-radiative relaxation rates of the fluorescent dye Atto488 in a λ/2 Fabry-Pérot-resonator by spectral and time resolved measurements. NANOSCALE 2016; 8:14541-14547. [PMID: 27414019 DOI: 10.1039/c6nr02380k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using a Fabry-Pérot-microresonator with controllable cavity lengths in the λ/2-regime, we show the controlled modification of the vibronic relaxation dynamics of a fluorescent dye molecule in the spectral and time domain. By altering the photonic mode density around the fluorophores we are able to shape the fluorescence spectrum and enhance specifically the probability of the radiative transitions from the electronic excited state to distinct vibronic excited states of the electronic ground state. Analysis and correlation of the spectral and time resolved measurements by a theoretical model and a global fitting procedure allows us to reveal quantitatively the spectrally distributed radiative and non-radiative relaxation dynamics of the respective dye molecule under ambient conditions at the ensemble level.
Collapse
Affiliation(s)
- Alexander Konrad
- Universität Tübingen, Institut für Physikalische und Theoretische Chemie, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Wu X, Xu L, Ma W, Liu L, Kuang H, Kotov NA, Xu C. Propeller-Like Nanorod-Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5907-15. [PMID: 27158947 DOI: 10.1002/adma.201601261] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/05/2016] [Indexed: 05/23/2023]
Abstract
Propeller-like nanoscale assemblies with exceptionally intense chiroptical activity and strong luminescence are prepared using gold nanorods and upconversion nanoparticles. The circular dichroism intensity of the tetramer reached 80.9 mdeg, with g-factor value of 2.1 × 10(-2) . The enhancement factor of upconversion luminescence is as high as 21.3 in aqueous phase. Attomolar bioanalysis of a cancer biomarker with two model is also achieved, showing potential for early disease diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wei Ma
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109-2136, USA
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|