1
|
Wang F, Liang S, Wang G, Hu T, Fu C, Wang Q, Xu Z, Fan Y, Che L, Min L, Li B, Long L, Gao W, Zhang X, Jin S. CRISPR-Cas9-mediated construction of a cotton CDPK mutant library for identification of insect-resistance genes. PLANT COMMUNICATIONS 2024; 5:101047. [PMID: 39138865 DOI: 10.1016/j.xplc.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/10/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) act as key signal transduction enzymes in plants, especially in response to diverse stresses, including herbivory. In this study, a comprehensive analysis of the CDPK gene family in upland cotton revealed that GhCPKs are widely expressed in multiple cotton tissues and respond positively to various biotic and abiotic stresses. We developed a strategy for screening insect-resistance genes from a CRISPR-Cas9 mutant library of GhCPKs. The library was created using 246 single-guide RNAs targeting the GhCPK gene family to generate 518 independent T0 plants. The average target-gene coverage was 86.18%, the genome editing rate was 89.49%, and the editing heritability was 82%. An insect bioassay in the field led to identification of 14 GhCPK mutants that are resistant or susceptible to insects. The mutant that showed the clearest insect resistance, cpk33/74 (in which the homologous genes GhCPK33 and GhCPK74 were knocked out), was selected for further study. Oral secretions from Spodoptera litura induced a rapid influx of Ca2+ in cpk33/74 leaves, resulting in a significant increase in jasmonic acid content. S-adenosylmethionine synthase is an important protein involved in plant stress response, and protein interaction experiments provided evidence for interactions of GhCPK33 and GhCPK74 with GhSAMS1 and GhSAM2. In addition, virus-induced gene silencing of GhSAMS1 and GhSAM2 in cotton impaired defense against S. litura. This study demonstrates an effective strategy for constructing a mutant library of a gene family in a polyploid plant species and offers valuable insights into the role of CDPKs in the interaction between plants and herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, Henan 463000, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianlian Che
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Min
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091 Xinjiang, China.
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Badiali C, Beccaccioli M, Sciubba F, Chronopoulou L, Petruccelli V, Palocci C, Reverberi M, Miccheli A, Pasqua G, Brasili E. Pterostilbene-loaded PLGA nanoparticles alter phenylpropanoid and oxylipin metabolism in Solanum lycopersicum L. leaves. Sci Rep 2024; 14:21941. [PMID: 39304705 DOI: 10.1038/s41598-024-73313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Due to the fast-changing global climate, conventional agricultural systems have to deal with more unpredictable and harsh environmental conditions leading to compromise food production. The application of phytonanotechnology can ensure safer and more sustainable crop production, allowing the target-specific delivery of bioactive molecules with great and partially explored positive effects for agriculture, such as an increase in crop production and plant pathogen reduction. In this study, the effect of free pterostilbene (PTB) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) loaded with pterostilbene was investigated on Solanum lycopersicum L. metabolism. An untargeted NMR-based metabolomics approach was used to examine primary and secondary metabolism whereas a targeted HPLC-MS/MS-based approach was used to explore the impact on defense response subjected to anti-oxidant effect of PTB, such as free fatty acids, oxylipins and them impact on hormone biosynthesis, in particular salicylic and jasmonic acid. In tomato leaves after treatment with PTB and PLGA NPs loaded with PTB (NPs + PTB), both NPs + PTB and free PTB treatments increased GABA levels in tomato leaves. In addition, a decrease of quercetin-3-glucoside associated with the increase in caffeic acid was observed suggesting a shift in secondary metabolism towards the biosynthesis of phenylpropanoids and other phenolic compounds. An increase of behenic acid (C22:0) and a remodulation of oxylipin metabolism deriving from the linoleic acid (i.e. 9-HpODE, 13-HpODE and 9-oxo-ODE) and linolenic acid (9-HOTrE and 9-oxoOTrE) after treatment with PLGA NPs and PLGA NPs + PTB were also found as a part of mechanisms of plant redox modulation. To the best of our knowledge, this is the first study showing the role of PLGA nanoparticles loaded with pterostilbene in modulating leaf metabolome and physiology in terms of secondary metabolites, fatty acids, oxylipins and hormones. In perspective, PLGA NPs loaded with PTB could be used to reshape the metabolic profile to allow plant to react more quickly to stresses.
Collapse
Affiliation(s)
- Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Marzia Beccaccioli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Valerio Petruccelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Han Y, Sun Y, Wang H, Li H, Jiang M, Liu X, Cao Y, Wang W, Yin H, Chen J, Sun J, Zhu QH, Zhu S, Zhao T. Biosynthesis and Signaling of Strigolactones Act Synergistically With That of ABA and JA to Enhance Verticillium dahliae Resistance in Cotton (Gossypium hirsutum L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39286958 DOI: 10.1111/pce.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Verticillium wilt (VW) caused by the soil-borne fungal pathogen Verticillium dahliae reduces cotton productivity and quality. Numerous studies have explored the genetic and molecular mechanisms regulating VW resistance in cotton, but the role and mechanism of strigolactone (SL) is still elusive. We investigated the function of SL in cotton's immune response to V. dahliae infection by exogenously applying SL analog, blocking or enhancing biosynthesis of endogenous SLs in combination with comparative transcriptome analysis and by exploring cross-talk between SL and other phytohormones. Silencing GhDWARF27 and applying the SL analog GR24 or overexpressing GhDWARF27 decreased and enhanced V. dahliae resistance, respectively. Transcriptome analysis revealed SL-mediated activation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signaling pathways. Enhanced ABA biosynthesis and signaling led to increased activity of antioxidant enzymes and reduced buildup of excess reactive oxygen species. Enhanced JA biosynthesis and signaling facilitated transcription of JA-dependent disease resistance genes. One of the components of the SL signal transduction pathway, GhD53, was found to interact with GhNCED5 and GhLOX2, the key enzymes of ABA and JA biosynthesis, respectively. We revealed the molecular mechanism underlying SL-enabled V. dahliae resistance and provided potential solutions for improving VW resistance in cotton.
Collapse
Affiliation(s)
- Yifei Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yue Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoqi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huazu Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Jiang
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuefen Cao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Wanru Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Yin
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinhong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Jie Sun
- Agricultural College, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Shuijin Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| | - Tianlun Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Institute of Hainan, Zhejiang University, Sanya, China
| |
Collapse
|
4
|
Zeng W, Shi C, Kong W, Meng Y, Song C, Xu F, Huang H, Deng L, Gao Q, Wang K, Cui M, Ning Y, Xiang H, Wang Q. A P450 superfamily member NtCYP82C4 promotes nicotine biosynthesis in Nicotiana tabacum. Biochem Biophys Res Commun 2024; 739:150550. [PMID: 39181070 DOI: 10.1016/j.bbrc.2024.150550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
In plants, cytochrome P450s are monooxygenase that play key roles in the synthesis and degradation of intracellular substances. In tobacco, the majority of studies examining the P450 superfamily have concentrated on the CYP82E subfamily, where multiple family members function as demethylases, facilitating the synthesis of nornicotine. In this study, NtCYP82C4, a tobacco P450 superfamily member, was identified from a gene-edited tobacco mutant that nicotine biosynthesis in tobacco leaves is evidently reduced. Compared to the wild-type plants, the knockout of NtCYP82C4 resulted in a significantly lower nicotine content and biomass in tobacco leaves. Transcriptome and metabolome analyses indicated that the knockout of NtCYP82C4 inhibites secondary metabolic processes in tobacco plants, leading to the accumulation of some important precursors in the nicotine synthesis process, including aspartic acid and nicotinic acid, and increases nitrogen partitioning associated with those processes such as amino acid synthesis and utilization. It is speculated that NtCYP82C4 may function as an important catalase downstream of the nicotine synthesis. Currently, most of the steps and enzymes involved in the nicotine biosynthesis process in tobacco have been elucidated. Here, our study deepens the current understanding of nicotine biosynthesis process and provides new enzyme targets for nicotine synthesis in tobacco plants.
Collapse
Affiliation(s)
- Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Weisong Kong
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Yang Meng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chunman Song
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Fangzheng Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China
| | - Haitao Huang
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Lele Deng
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Kunmiao Wang
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106, PR China.
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266100, PR China.
| |
Collapse
|
5
|
Gao S, Hao X, Chen G, Hu W, Zhao Z, Shao W, Li J, Huang Q. A novel role of the cotton calcium sensor CBL3 was involved in Verticillium wilt resistance in cotton. Genes Genomics 2024; 46:967-975. [PMID: 38879677 DOI: 10.1007/s13258-024-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/22/2023] [Indexed: 08/17/2024]
Abstract
BACKGROUND Verticillium wilt, causes mainly by the soilborne pathogen Verticillium dahliae, is a devastated vascular disease resulting in huge financial losses in cotton, so research on improving V. dahliae stress tolerance in cotton is the utmost importance. Calcium as the second messenger acts as a crucial role in plant innate immunity. Cytosolic Ca2+during the pathogen infection is a significant increase in plant immune responses. Calcineurin B-like (CBL) proteins are widely known calcium sensors that regulate abiotic stress responses. However, the role of cotton CBLs in response to V. dahliae stress remains unclear. OBJECTIVE To discover and utilize the gene to Verticillium wilt resistance and defense response mechanism of cotton. METHODS Through screening the gene to Verticillium wilt resistance in cotton, four GhCBL3 copies were obtained from the current common cotton genome sequences. The protein domain and phylogenetic analyses of GhCBL3 were performed using NCBI Blast, DNAMAN, and MotifScan programs. Real-time RT-PCR was used to detect the expression of GhCBL3 gene in cotton seedlings under various stress treatments. The expression construct including GhCBL3 cDNA was transduced into Agrobacterium tumefaciens (GV3101) by heat shock method and transformed into cotton plants by Virus-Induced Gene Silencing (VIGS) method. The results of silencing of GhCBl3 on ROS accumulation and plant disease resistance in cotton plants were assessed. RESULTS A member of calcineurin B-like proteins (defined as GhCBL3) in cotton was obtained. The expression of GhCBL3 was significantly induced and raised by various stressors, including dahliae, jasmonic acid (JA) and H2O2 stresses. Knockdown GhCBL3 in cotton by Virus-Induced Gene Silencing analysis enhanced Verticillium wilt tolerance and changed the occurrence of reactive oxygen species. Some disease-resistant genes were increased in GhCBL3-silencing cotton lines. CONCLUSION GhCBL3 may function on regulating the Verticillium dahliae stress response of plants.
Collapse
Affiliation(s)
- Shengqi Gao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xiaoyan Hao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Guo Chen
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Wenran Hu
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhun Zhao
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Wukui Shao
- College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jianping Li
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Quansheng Huang
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
- Xinjiang Key Laboratory of Crop Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
6
|
Wang H, Li P, Wang Y, Chi C, Ding G. Genome-wide identification of the CYP82 gene family in cucumber and functional characterization of CsCYP82D102 in regulating resistance to powdery mildew. PeerJ 2024; 12:e17162. [PMID: 38560464 PMCID: PMC10981884 DOI: 10.7717/peerj.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
The cytochrome P450 (CYP450) gene family plays a vital role in basic metabolism, hormone signaling, and enhances plant resistance to stress. Among them, the CYP82 gene family is primarily found in dicots, and they are typically activated in response to various specific environmental stresses. Nevertheless, their roles remain considerably obscure, particularly within the context of cucumber. In the present study, 12 CYP82 subfamily genes were identified in the cucumber genome. Bioinformatics analysis included gene structure, conserved motif, cis-acting promoter element, and so on. Subcellular localization predicted that all CYP82 genes were located in the endoplasmic reticulum. The results of cis element analysis showed that CYP82s may significantly affect the response to stress, hormones, and light exposure. Expression patterns of the CYP82 genes were characterized by mining available RNA-seq data followed by qRT-PCR (quantitative real-time polymerase chain reaction) analysis. Members of CYP82 genes display specific expression profiles in different tissues, and in response to PM and abiotic stresses in this study, the role of CsCYP82D102, a member of the CYP82 gene family, was investigated. The upregulation of CsCYP82D102 expression in response to powdery mildew (PM) infection and treatment with methyl jasmonate (MeJA) or salicylic acid (SA) was demonstrated. Further research found that transgenic cucumber plants overexpressing CsCYP82D102 display heightened resistance against PM. Wild-type (WT) leaves exhibited average lesion areas of approximately 29.7% at 7 dpi upon powdery mildew inoculation. In contrast, the two independent CsCYP82D102 overexpression lines (OE#1 and OE#3) displayed significantly reduced necrotic areas, with average lesion areas of approximately 13.4% and 5.7%. Additionally, this enhanced resistance is associated with elevated expression of genes related to the SA/MeJA signaling pathway in transgenic cucumber plants. This study provides a theoretical basis for further research on the biological functions of the P450 gene in cucumber plants.
Collapse
Affiliation(s)
- Hongyu Wang
- Harbin Normal University, Harbin, Harbin, China
| | - Pengfei Li
- Harbin Normal University, Harbin, Harbin, China
| | - Yu Wang
- Harbin Normal University, Harbin, Harbin, China
| | - Chunyu Chi
- Harbin Normal University, Harbin, Harbin, China
| | - Guohua Ding
- Harbin Normal University, Harbin, Harbin, China
| |
Collapse
|
7
|
Gong J, Sun S, Zhu QH, Qin J, Yang Y, Zheng Z, Cheng S, Sun J. Gh4CL20/20A involved in flavonoid biosynthesis is essential for male fertility in cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108484. [PMID: 38452452 DOI: 10.1016/j.plaphy.2024.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Flavonoids have been shown to play an essential role in plant growth and fertility. 4-Coumarate CoA ligase (4CL) is one of the indispensable enzymes involved in the biosynthesis of flavonoids. However, the role of 4CL and flavonoids in impact on cotton fertility is still unknown. In this study, on the basis of identification of an additional Gh4CL gene, Gh4CL20A, by using an updated G. hirsutum genome, we found that Gh4CL20A and its homologous Gh4CL20 were preferentially expressed in petals and stamens. The petals of the loss-of-function Gh4CL20/Gh4CL20A mutant generated by CRISPR/Cas9 gene editing remained white until wilting. Notably, the mutant showed indehiscent anthers, reduced number of pollen grains and pollen viability, leading to male sterility. Histological analysis revealed that abnormal degradation of anther tapetum at the tetrad stage and abnormal pollen grain development at the mature stage caused male sterility of the gene editing mutant. Analysis of the anther transcriptome identified a total of 10574 and 11962 genes up- and down-regulated in the mutant, respectively, compared to the wild-type. GO, KEGG, and WGCNA analyses linked the abnormality of the mutant anthers to the defective flavonoid biosynthetic pathway, leading to decreased activity of 4CL and chalcone isomerase (CHI) and reduced accumulation of flavonoids in the mutant. These results imply a role of Gh4CL20/Gh4CL20A in assuring proper development of cotton anthers by regulating flavonoid metabolism. This study elucidates a molecular mechanism underlying cotton anther development and provides candidate genes for creating cotton male sterile germplasm that has the potential to be used in production of hybrid seeds.
Collapse
Affiliation(s)
- Junming Gong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Shichao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia.
| | - Jianghong Qin
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Zhihong Zheng
- Cotton Research Institute, Shihezi Academy of Agricultural Sciences, Shihezi, China.
| | - Shuaishuai Cheng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
8
|
Qiu P, Zheng B, Yuan H, Yang Z, Lindsey K, Wang Y, Ming Y, Zhang L, Hu Q, Shaban M, Kong J, Zhang X, Zhu L. The elicitor VP2 from Verticillium dahliae triggers defence response in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:497-511. [PMID: 37883523 PMCID: PMC10826990 DOI: 10.1111/pbi.14201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non-defoliating pathotype 1cd3-2 during the early response of cotton. Combined with analysis of the secretome during the V991-cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3-2-cotton interaction. Full-length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock-out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2-overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild-type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Zhaoguang Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | | | - Yan Wang
- College of Plant Protection, Nanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Department of Plant Breeding and GeneticsUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural SciencesUrumqiPeople's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| |
Collapse
|
9
|
Wang HY, Li PF, Wang Y, Chi CY, Jin XX, Ding GH. Overexpression of cucumber CYP82D47 enhances resistance to powdery mildew and Fusarium oxysporum f. sp. cucumerinum. Funct Integr Genomics 2024; 24:14. [PMID: 38236308 DOI: 10.1007/s10142-024-01287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
Cytochrome P450s are a large family of protein-encoding genes in plant genomes, many of which have not yet been comprehensively characterized. Here, a novel P450 gene, CYP82D47, was isolated and functionally characterized from cucumber (Cucumis sativus L.). Quantitative real-time reverse-transcription polymerase chain reaction analysis revealed that CYP82D47 expression was triggered by salicylic acid (SA) and ethephon (ETH). Expression analysis revealed a correlation between CYP82D47 transcript levels and plant defense responses against powdery mildew (PM) and Fusarium oxysporum f. sp. cucumerinum (Foc). Although no significant differences were observed in disease resistance between CYP82D47-RNAi and wild-type cucumber, overexpression (OE) of CYP82D47 enhanced PM and Foc resistance in cucumber. Furthermore, the expression levels of SA-related genes (PR1, PR2, PR4, and PR5) increased in CYP82D47-overexpressing plants 7 days post fungal inoculation. The levels of ETH-related genes (EIN3 and EBF2) were similarly upregulated. The observed enhanced resistance was associated with the upregulation of SA/ETH-signaling-dependent defense genes. These findings indicate the crucial role of CYP82D47 in pathogen defense in cucumber. CYP82D47-overexpressing cucumber plants exhibited heightened susceptibility to both diseases. The study results offer important insights that could aid in the development of disease-resistant cucumber cultivars and elucidate the molecular mechanisms associated with the functions of CYP82D47.
Collapse
Affiliation(s)
| | - Peng-Fei Li
- Harbin Normal University, Harbin, 150025, China
| | - Yu Wang
- Harbin Normal University, Harbin, 150025, China
| | - Chun-Yu Chi
- Harbin Normal University, Harbin, 150025, China
| | - Xiao-Xia Jin
- Harbin Normal University, Harbin, 150025, China.
| | - Guo-Hua Ding
- Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
10
|
Ahmed R, Dey KK, Senthil-Kumar M, Modi MK, Sarmah BK, Bhorali P. Comparative transcriptome profiling reveals differential defense responses among Alternaria brassicicola resistant Sinapis alba and susceptible Brassica rapa. FRONTIERS IN PLANT SCIENCE 2024; 14:1251349. [PMID: 38304451 PMCID: PMC10831657 DOI: 10.3389/fpls.2023.1251349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.
Collapse
Affiliation(s)
- Reshma Ahmed
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Kuntal Kumar Dey
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Biotechnology - Northeast Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
11
|
Qiu P, Li J, Zhang L, Chen K, Shao J, Zheng B, Yuan H, Qi J, Yue L, Hu Q, Ming Y, Liu S, Long L, Gu J, Zhang X, Lindsey K, Gao W, Wu H, Zhu L. Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis. Nat Commun 2023; 14:7392. [PMID: 37968319 PMCID: PMC10651998 DOI: 10.1038/s41467-023-43192-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiayue Li
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jianmin Shao
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Qi
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Yue
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jiangjiang Gu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- School of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
12
|
Xu J, Zhao J, Liu J, Dong C, Zhao L, Ai N, Xu P, Feng G, Xu Z, Guo Q, Cheng J, Wang Y, Wang X, Wang N, Xiao S. GbCYP72A1 Improves Resistance to Verticillium Wilt via Multiple Signaling Pathways. PLANT DISEASE 2023; 107:3198-3210. [PMID: 36890127 DOI: 10.1094/pdis-01-23-0033-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Verticillium dahliae is a fungal pathogen that causes Verticillium wilt (VW), which seriously reduces the yield of cotton owing to biological stress. The mechanism underlying the resistance of cotton to VW is highly complex, and the resistance breeding of cotton is consequently limited by the lack of in-depth research. Using quantitative trait loci (QTL) mapping, we previously identified a novel cytochrome P450 (CYP) gene on chromosome D4 of Gossypium barbadense that is associated with resistance to the nondefoliated strain of V. dahliae. In this study, the CYP gene on chromosome D4 was cloned together with its homologous gene on chromosome A4 and were denoted as GbCYP72A1d and GbCYP72A1a, respectively, according to their genomic location and protein subfamily classification. The two GbCYP72A1 genes were induced by V. dahliae and phytohormone treatment, and the findings revealed that the VW resistance of the lines with silenced GbCYP72A1 genes decreased significantly. Transcriptome sequencing and pathway enrichment analyses revealed that the GbCYP72A1 genes primarily affected disease resistance via the plant hormone signal transduction, plant-pathogen interaction, and mitogen-activated protein kinase (MAPK) signaling pathways. Interestingly, the findings revealed that although GbCYP72A1d and GbCYP72A1a had high sequence similarity and both genes enhanced the disease resistance of transgenic Arabidopsis, there was a difference between their disease resistance abilities. Protein structure analysis revealed that this difference was potentially attributed to the presence of a synaptic structure in the GbCYP72A1d protein. Altogether, the findings suggested that the GbCYP72A1 genes play an important role in plant response and resistance to VW.
Collapse
Affiliation(s)
- Jianwen Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Zhao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chengguang Dong
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Peng Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junling Cheng
- College of Agricultural, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yueping Wang
- College of Agricultural, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin Wang
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Songhua Xiao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
13
|
Zhang L, Wu Y, Yu Y, Zhang Y, Wei F, Zhu QH, Zhou J, Zhao L, Zhang Y, Feng Z, Feng H, Sun J. Acetylation of GhCaM7 enhances cotton resistance to Verticillium dahliae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1405-1424. [PMID: 36948889 DOI: 10.1111/tpj.16200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
Protein lysine acetylation is an important post-translational modification mechanism involved in cellular regulation in eukaryotes. Calmodulin (CaM) is a ubiquitous Ca2+ sensor in eukaryotes and is crucial for plant immunity, but it is so far unclear whether acetylation is involved in CaM-mediated plant immunity. Here, we found that GhCaM7 is acetylated upon Verticillium dahliae (V. dahliae) infection and a positive regulator of V. dahliae resistance. Overexpressing GhCaM7 in cotton and Arabidopsis enhances V. dahliae resistance and knocking-down GhCaM7 makes cotton more susceptible to V. dahliae. Transgenic Arabidopsis plants overexpressing GhCaM7 with mutation at the acetylation site are more susceptible to V. dahliae than transgenics overexpressing the wild-type GhCaM7, implying the importance of the acetylated GhCaM7 in response to V. dahliae infection. Yeast two-hybrid, bimolecular fluorescent complementation, luciferase complementation imaging, and coimmunoprecipitation assays demonstrated interaction between GhCaM7 and an osmotin protein GhOSM34 that was shown to have a positive role in V. dahliae resistance. GhCaM7 and GhOSM34 are co-localized in the cell membrane. Upon V. dahliae infection, the Ca2+ content reduces almost instantly in plants with downregulated GhCaM7 or GhOSM34. Down regulating GhOSM34 enhances accumulation of Na+ and increases cell osmotic pressure. Comparative transcriptomic analyses between cotton plants with an increased or reduced expression level of GhCaM7 and wild-type plants indicate the involvement of jasmonic acid signaling pathways and reactive oxygen species in GhCaM7-enabled disease resistance. Together, these results demonstrate the involvement of CaM protein in the interaction between cotton and V. dahliae, and more importantly, the involvement of the acetylated CaM in the interaction.
Collapse
Affiliation(s)
- Lei Zhang
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yajie Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
14
|
Gupta R. Melatonin: A promising candidate for maintaining food security under the threat of phytopathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107691. [PMID: 37031544 DOI: 10.1016/j.plaphy.2023.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Plant immune response is tightly controlled by an interplay of various phytohormones and plant growth regulators. Among them, the role of salicylic acid, jasmonic acid, and ethylene is well established while some others such as nitric oxide, polyamines, and hydrogen sulfide have appeared to be key regulators of plant immunity. In addition, some other chemicals, such as melatonin (N-acetyl-5-methoxytryptamine), are apparently turning out to be the novel regulators of plant defense responses. Melatonin has shown promising results in enhancing resistance of plants to a variety of pathogens including fungi, bacteria, and viruses, however, the molecular mechanism of melatonin-mediated plant immune regulation is currently elusive. Evidence gathered so far indicates that melatonin regulates plant immunity by (1) facilitating the maintenance of ROS homeostasis, (2) interacting with other phytohormones and growth regulators, and (3) inducing the accumulation of defense molecules. Therefore, engineering crops with improved melatonin production could enhance crop productivity under stress conditions. This review extends our understanding of the multifaceted role of melatonin in the regulation of plant defense response and presents a putative pathway of melatonin functioning and its interaction with phytohormones during biotic stress.
Collapse
Affiliation(s)
- Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
15
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
16
|
Alariqi M, Ramadan M, Wang Q, Yang Z, Hui X, Nie X, Ahmed A, Chen Q, Wang Y, Zhu L, Zhang X, Jin S. Cotton 4-coumarate-CoA ligase 3 enhanced plant resistance to Verticillium dahliae by promoting jasmonic acid signaling-mediated vascular lignification and metabolic flux. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36994650 DOI: 10.1111/tpj.16223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 05/17/2023]
Abstract
Lignins and their antimicrobial-related polymers cooperatively enhance plant resistance to pathogens. Several isoforms of 4-coumarate-coenzyme A ligases (4CLs) have been identified as indispensable enzymes involved in lignin and flavonoid biosynthetic pathways. However, their roles in plant-pathogen interaction are still poorly understood. This study uncovers the role of Gh4CL3 in cotton resistance to the vascular pathogen Verticillium dahliae. The cotton 4CL3-CRISPR/Cas9 mutant (CR4cl) exhibited high susceptibility to V. dahliae. This susceptibility was most probably due to the reduction in the total lignin content and the biosynthesis of several phenolic metabolites, e.g., rutin, catechin, scopoletin glucoside, and chlorogenic acid, along with jasmonic acid (JA) attenuation. These changes were coupled with a significant reduction in 4CL activity toward p-coumaric acid substrate, and it is likely that recombinant Gh4CL3 could specifically catalyze p-coumaric acid to form p-coumaroyl-coenzyme A. Thus, overexpression of Gh4CL3 (OE4CL) showed increasing 4CL activity that augmented phenolic precursors, cinnamic, p-coumaric, and sinapic acids, channeling into lignin and flavonoid biosyntheses and enhanced resistance to V. dahliae. Besides, Gh4CL3 overexpression activated JA signaling that instantly stimulated lignin deposition and metabolic flux in response to pathogen, which all established an efficient plant defense response system, and inhibited V. dahliae mycelium growth. Our results propose that Gh4CL3 acts as a positive regulator for cotton resistance against V. dahliae by promoting JA signaling-mediated enhanced cell wall rigidity and metabolic flux.
Collapse
Affiliation(s)
- Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agronomy and Pastures, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Mohamed Ramadan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Xi Hui
- Shihezi University, Shihezi, Xinjiang, China
| | - Xinhui Nie
- Shihezi University, Shihezi, Xinjiang, China
| | - Amani Ahmed
- College of Food Science, Huazhong Agricultural University, Wuhan, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yanyin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, 843300, China
| | - Longfu Zhu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Zhu Y, Zhao M, Li T, Wang L, Liao C, Liu D, Zhang H, Zhao Y, Liu L, Ge X, Li B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2023; 14:1174281. [PMID: 37152175 PMCID: PMC10161258 DOI: 10.3389/fpls.2023.1174281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Cotton is widely grown in many countries around the world due to the huge economic value of the total natural fiber. Verticillium wilt, caused by the soil-borne pathogen Verticillium dahliae, is the most devastating disease that led to extensive yield losses and fiber quality reduction in cotton crops. Developing resistant cotton varieties through genetic engineering is an effective, economical, and durable strategy to control Verticillium wilt. However, there are few resistance gene resources in the currently planted cotton varieties, which has brought great challenges and difficulties for breeding through genetic engineering. Further revealing the molecular mechanism between V. dahliae and cotton interaction is crucial to discovering genes related to disease resistance. In this review, we elaborated on the pathogenic mechanism of V. dahliae and the resistance mechanism of cotton to Verticillium wilt. V. dahliae has evolved complex mechanisms to achieve pathogenicity in cotton, mainly including five aspects: (1) germination and growth of microsclerotia; (2) infection and successful colonization; (3) adaptation to the nutrient-deficient environment and competition of nutrients; (4) suppression and manipulation of cotton immune responses; (5) rapid reproduction and secretion of toxins. Cotton has evolved multiple physiological and biochemical responses to cope with V. dahliae infection, including modification of tissue structures, accumulation of antifungal substances, homeostasis of reactive oxygen species (ROS), induction of Ca2+ signaling, the mitogen-activated protein kinase (MAPK) cascades, hormone signaling, and PAMPs/effectors-triggered immune response (PTI/ETI). This review will provide an important reference for the breeding of new cotton germplasm resistant to Verticillium wilt through genetic engineering.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dongxiao Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yanpeng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| |
Collapse
|
18
|
Liang W, Wang M, Du B, Ling L, Bi Y, Zhang J, Sun Y, Zhou S, Zhang L, Ma X, Ma J, Wu L, Guo C. Transcriptome analysis of strawberry ( Fragaria × ananasa) responsive to Colletotrichum gloeosporioides inoculation and mining of resistance genes. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Wenwei Liang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Mingjie Wang
- Grape Laboratory, Gardening Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Binghao Du
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Yingdong Bi
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jinghua Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Yimin Sun
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Shuang Zhou
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Xiao Ma
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jun Ma
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Liren Wu
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| |
Collapse
|
19
|
Sun L, Qin J, Wu X, Zhang J, Zhang J. TOUCH 3 and CALMODULIN 1/4/6 cooperate with calcium-dependent protein kinases to trigger calcium-dependent activation of CAM-BINDING PROTEIN 60-LIKE G and regulate fungal resistance in plants. THE PLANT CELL 2022; 34:4088-4104. [PMID: 35863056 PMCID: PMC9516039 DOI: 10.1093/plcell/koac209] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 05/24/2023]
Abstract
Plants utilize localized cell-surface and intracellular receptors to sense microbes and activate the influx of calcium, which serves as an important second messenger in eukaryotes to regulate cellular responses. However, the mechanisms through which plants decipher calcium influx to activate immune responses remain largely unknown. Here, we show that pathogen-associated molecular patterns (PAMPs) trigger calcium-dependent phosphorylation of CAM-BINDING PROTEIN 60-LIKE G (CBP60g) in Arabidopsis (Arabidopsis thaliana). CALCIUM-DEPENDENT PROTEIN KINASE5 (CPK5) phosphorylates CBP60g directly, thereby enhancing its transcription factor activity. TOUCH 3 (TCH3) and its homologs CALMODULIN (CAM) 1/4/6 and CPK4/5/6/11 are required for PAMP-induced CBP60g phosphorylation. TCH3 interferes with the auto-inhibitory region of CPK5 and promotes CPK5-mediated CBP60g phosphorylation. Furthermore, CPKs-mediated CBP60g phosphorylation positively regulates plant resistance to soil-borne fungal pathogens. These lines of evidence uncover a novel calcium signal decoding mechanism during plant immunity through which TCH3 relieves auto-inhibition of CPK5 to phosphorylate and activate CBP60g. The findings reveal cooperative interconnections between different types of calcium sensors in eukaryotes.
Collapse
Affiliation(s)
- Lifan Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyun Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding, Hebei 710023, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Liu F, Ma Z, Cai S, Dai L, Gao J, Zhou B. ATP-citrate lyase B (ACLB) negatively affects cell death and resistance to Verticillium wilt. BMC PLANT BIOLOGY 2022; 22:443. [PMID: 36114469 PMCID: PMC9479425 DOI: 10.1186/s12870-022-03834-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/09/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND ATP-citrate lyase (ACL) plays a pivotal role in histone acetylation and aerobic glycolysis. In plant, ACL is a heteromeric enzyme composed of ACLA (45 kD) and ACLB (65 kD). So far, the function of ACL genes in cotton still remains unknown. RESULTS Here, we identified three ACLA homologous sequences and two ACLB homologous in each genome/sub-genome of cotton species. Silencing ACLB in cotton led to cell death at newly-grown leaves and stem apexes. Simultaneously, in ACLB-silenced plants, transcription factors related to senescence including SGR, WRKY23 and Osl57 were observed to be activated. Further investigation showed that excessive H2O2 was accumulated, salicylic acid-dependent defense response and pathogenesis-related gene expressions were evidently enhanced in ACLB-silenced plants, implying that knockdown of ACLB genes leads to hypersensitive response-like cell death in cotton seedlings. However, as noted, serious cell death happened in newly-grown leaves and stem apexes in ACLB-silenced plants, which led to the failure of subsequent fungal pathogenicity assays. To confirm the role of ACLB gene in regulating plant immune response, the dicotyledonous model plant Arabidopsis was selected for functional verification of ACLB gene. Our results indicate the resistance to Verticillium dahliae infection in the Arabidopsis mutant aclb-2 were enhanced without causing strong cell death. Ectopic expression of GausACLB-2 in Arabidopsis weakened its resistance to V. dahliae either in Col-0 or in aclb-2 background, in which the expression level of ACLB is negatively correlated with the resistance to V. dahliae. CONCLUSIONS These results indicate that ACLB has a new function in negatively affecting the induction of plant defense response and cell death in cotton, which provides theoretical guidance for developing cotton varieties with resistance against Verticillium wilt.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOE Cotton Germplasm Enhancement Engineering Research Center, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Sarmah N, Kaldis A, Kalampokis I, Aliferis KA, Voloudakis A, Perdikis D. Metabolomic and Genomic Approach to Study Defense Induction by Nesidiocoris tenuis against Tuta absoluta and Tetranychus urticae in Tomato Plants. Metabolites 2022; 12:metabo12090838. [PMID: 36144242 PMCID: PMC9504375 DOI: 10.3390/metabo12090838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The phytophagy of the predator Nesidiocoris tenuis (Hemiptera: Miridae) can trigger defense responses in tomato plants against pests, such as two spotted spider mite Tetranychus urticae (Acari: Tetranychidae) and South American leaf miner Tuta absoluta (Lepidoptera: Gelechiidae). The expression of genes governing Jasmonic Acid (JA) biosynthesis pathway and fluctuations in the levels of underlying metabolites have been rarely studied in mirid-infested plants. In the present study, fifteen 3rd instar nymphs of N.tenuis were caged on each top and lower leaf of tomato plants for 4 d to induce plant defense; after this period the predators were removed. With regard to T. absoluta, oviposition preference; larval period; and pupal weight were significantly reduced in N. tenuis-punctured plants. T. urticae adults exhibited a significantly higher escape tendency and reduced survival on punctured plants. Metabolomics confirmed such observations revealing substantial differences between N. tenuis-punctured and unpunctured (control) plants. Metabolites directly associated with the activation of the JA defense pathway, such as the precursor α-linolenic acid, had increased concentrations. The expression of the defense-related genes PI-II, MYC2, VSP2, and HEL was increased in the top leaves and only VSP2 and MBP2 in the lower leaves; interestingly, in the middle (unpunctured) leaves VSP2, HEL, and MBP2 were also upregulated, indicating systemic signaling. Collectively, phytophagy of N. tenuis caused adverse effects on T. absoluta and T. urticae, whereas the multi-omics approach (phenomics, metabolomics, and genomics) offered valuable insights into the nature of the plant defense responses and provided useful evidence for future applications in integrated pest management, plausibly resulting in the reduction in the required pesticide volumes.
Collapse
Affiliation(s)
- Nomi Sarmah
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis Kalampokis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology and Entomology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: ; Tel.: +30-210-529-4581
| |
Collapse
|
22
|
Wang A, Ma L, Shu X, Jiang Y, Liang J, Zheng A. Rice (Oryza sativa L.) cytochrome P450 protein 716A subfamily CYP716A16 regulates disease resistance. BMC Genomics 2022; 23:343. [PMID: 35505282 PMCID: PMC9066777 DOI: 10.1186/s12864-022-08568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The sustainable development of rice production is facing severe threats by a variety of pathogens, such as necrotrophic Rhizoctonia solani and hemibiotrophic Xanthomonas oryzae pv. oryzae (Xoo). Mining and applying resistance genes to increase the durable resistance of rice is an effective method that can be used to control these diseases. RESULTS In this research, we isolated and characterized CYP716A16, which is a positive regulator of rice to R. solani AG1-IA and Xoo, and belongs to the cytochrome P450 (CYP450) protein 716A subfamily. Overexpression (OE) of CYP716A16 resulted in enhanced resistance to R. solani AG1-IA and Xoo, while RNA interference (RNAi) of CYP716A16 resulted in increased susceptibility compared with wild-type (WT) plants. Additionally, jasmonic acid (JA)-dependent defense responses and reactive oxygen species (ROS) were activated in the CYP716A16-OE lines after R. solani AG1-IA inoculation. The comparative transcriptomic and metabolomics analysis of CYP716A16-OE and the WT lines showed that OE of CYP716A16 activated the biosynthesis of flavonoids and increased the amounts of narcissoside, methylophiopogonanone A, oroxin A, and amentoflavone in plants. CONCLUSION Based on these results, we suggest that JA-dependent response, ROS level, multiple resistance-related proteins, and flavonoid contents play an important role in CYP716A16-regulated R. solani AG1-IA and Xoo resistance. Our results broaden our knowledge regarding the function of a P450 protein 716A subfamily in disease resistance and provide new insight into the molecular mechanism of rice immune response.
Collapse
Affiliation(s)
- Aijun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xinyue Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Juan Liang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
23
|
Xing S, Zhu H, Zhou Y, Xue L, Wei Z, Wang Y, He S, Zhang H, Gao S, Zhao N, Zhai H, Liu Q. A cytochrome P450 superfamily gene, IbCYP82D47, increases carotenoid contents in transgenic sweet potato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111233. [PMID: 35351305 DOI: 10.1016/j.plantsci.2022.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 superfamily (CYP450) is one of the largest protein families in plants, and its members play diverse roles in primary and secondary metabolic biosynthesis. In this study, the CYP450 family gene IbCYP82D47 was cloned from the high carotenoid line HVB-3 of sweet potato (Ipomoea batatas). The IbCYP82D47 protein harbored two transmembrane domains and dynamically localized between plastid stroma and membrane. Overexpression of IbCYP82D47 not only increased total carotenoid, lutein, zeaxanthin and violaxanthin contents by 32.2-48.0%, 10.5-13.3%, 40.2-136% and 82.4-106%, respectively, but also increased the number of carotenoid globules in sweet potato storage roots. Furthermore, genes associated with the carotenoid biosynthesis (IbDXS, IbPSY, IbLCYE, IbBCH, IbZEP) were upregulated in transgenic sweet potato. In addition, IbCYP82D47 physically interacts with geranylgeranyl diphosphate synthase 12 (IbGGPPS12). Our findings suggest that IbCYP82D47 increases carotenoid contents by interacting with the carotenoid biosynthesis related protein IbGGPPS12, and influencing the expressions of carotenoid biosynthesis related genes in transgenic sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Luyao Xue
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zihao Wei
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuxin Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Chen H, Su H, Zhang S, Jing T, Liu Z, Yang Y. Transcriptomic and Metabolomic Responses in Cotton Plant to Apolygus lucorum Infestation. INSECTS 2022; 13:391. [PMID: 35447833 PMCID: PMC9025427 DOI: 10.3390/insects13040391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023]
Abstract
With the wide-scale adoption of transgenic Bacillus thuringiensis (Bt) cotton, Apolygus lucorum (Meyer-Dür) has become the most serious pest and has caused extensive yield loss in cotton production. However, little is known about the defense responses of cotton at the seedling stage to A. lucorum feeding. In this study, to elucidate the cotton defense mechanism, cotton leaves were damaged by A. lucorum for 0, 4, 12 and 24 h. The transcriptomic results showed that A. lucorum feeding elicits a rapid and strong defense response in gene expression during the whole infestation process in cotton plants. Further analysis revealed that at each assessment time, more differentially expressed genes were up-regulated than down-regulated. The integrated analysis of transcriptomic and metabolic data showed that most of the genes involved in jasmonic acid (JA) biosynthesis were initially up-regulated, and this trend continued during an infestation. Meanwhile, the content levels of JA and its intermediate products were also significantly increased throughout the whole infestation process. The similar trend was displayed in condensed tannins biosynthesis. This research proved that, after plants are damaged by A. lucorum, the JA pathway mediates the defense mechanisms in cotton plants by promoting the accumulation of condensed tannins as a defense mechanism against A. lucorum. These results will help us to discover unknown defensive genes and improve the integrated pest management of A. lucorum.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhong Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225007, China; (H.C.); (H.S.); (S.Z.); (T.J.); (Z.L.)
| |
Collapse
|
25
|
A transcriptome-based association study of growth, wood quality, and oleoresin traits in a slash pine breeding population. PLoS Genet 2022; 18:e1010017. [PMID: 35108269 PMCID: PMC8843129 DOI: 10.1371/journal.pgen.1010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/14/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program. Slash pine is an important source of original timber and resin production on commercial forest plantations. It is necessary to implement precise breeding strategies to improve timber quality and resin yield. However, little is known about the species’ molecular genetic basis. Using a transcriptome dataset with sequencing from 240 individuals in the slash pine population, we combined multiple approaches (based on gene variation, expression variation and co-expression network) to dissect the genetic structure for slash pine major breeding traits. We found that the research population could be divided into three genetic groups with a mean heterozygosity of 0.2246. We also found that six genes with important functions in slash pine resin synthesis and timber formation through association studies. Four new SNPs associatation with the average ring width were also discovered. Our results provide new insights into the molecular genetic basis of important traits in slash pine and provide a comprehensive method for association analyses of conifer tree species with large genome.
Collapse
|
26
|
Hu GY, Ma JY, Li F, Zhao JR, Xu FC, Yang WW, Yuan M, Gao W, Long L. Optimizing the Protein Fluorescence Reporting System for Somatic Embryogenesis Regeneration Screening and Visual Labeling of Functional Genes in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 12:825212. [PMID: 35069674 PMCID: PMC8777222 DOI: 10.3389/fpls.2021.825212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Protein fluorescence reporting systems are of crucial importance to in-depth life science research, providing systematic labeling tools for visualization of microscopic biological activities in vivo and revolutionizing basic research. Cotton somatic cell regeneration efficiency is low, causing difficulty in cotton transformation. It is conducive to screening transgenic somatic embryo using the fluorescence reporting system. However, available fluorescence labeling systems in cotton are currently limited. To optimize the fluorescence reporting system of cotton with an expanded range of available fluorescent proteins, we selected 11 fluorescent proteins covering red, green, yellow, and cyan fluorescence colors and expressed them in cotton. Besides mRuby2 and G3GFP, the other nine fluorescent proteins (mCherry, tdTomato, sfGFP, Clover, EYFP, YPet, mVenus, mCerulean, and ECFP) were stably and intensely expressed in transgenic callus and embryo, and inherited in different cotton organs derive from the screened embryo. In addition, transgenic cotton expressing tdTomato appears pink under white light, not only for callus and embryo tissues but also various organs of mature plants, providing a visual marker in the cotton genetic transformation process, accelerating the evaluation of transgenic events. Further, we constructed transgenic cotton expressing mCherry-labeled organelle markers in vivo that cover seven specific subcellular compartments: plasma membrane, endoplasmic reticulum, tonoplast, mitochondrion, plastid, Golgi apparatus, and peroxisome. We also provide a simple and highly efficient strategy to quickly determine the subcellular localization of uncharacterized proteins in cotton cells using organelle markers. Lastly, we built the first cotton stomatal fluorescence reporting system using stomata-specific expression promoters (ProKST1, ProGbSLSP, and ProGC1) to drive Clover expression. The optimized fluorescence labeling system for transgenic somatic embryo screening and functional gene labeling in this study offers the potential to accelerating somatic cell regeneration efficiency and the in vivo monitoring of diverse cellular processes in cotton.
Collapse
Affiliation(s)
- Gai-Yuan Hu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jia-Yi Ma
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Fen Li
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Man Yuan
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Zheng Y, Zhu Y, Mao X, Jiang M, Wei Y, Lian L, Xu H, Chen L, Xie H, Lu G, Zhang J. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice. MOLECULAR PLANT PATHOLOGY 2022; 23:78-91. [PMID: 34633131 PMCID: PMC8659612 DOI: 10.1111/mpp.13144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 05/15/2023]
Abstract
Lesion mimic mutants resembling the hypersensitive response without pathogen attack are an ideal material to understand programmed cell death, the defence response, and the cross-talk between defence response and development in plants. In this study, mic, a lesion mimic mutant from cultivar Yunyin treated with ethyl methanesulphonate (EMS), was screened. By map-based cloning, a short-chain alcohol dehydrogenase/reductase with an atypical active site HxxxK was isolated and designated as SDR7-6. It functions as a homomultimer in rice and is localized at the endoplasmic reticulum. The lesion mimic phenotype of the mutant is light-dependent. The mutant displayed an increased resistance response to bacterial blight, but reduced resistance to rice blast disease. The mutant and knockout lines showed increased reactive oxygen species, jasmonic acid content, antioxidant enzyme activity, and expression of pathogenicity-related genes, while chlorophyll content was significantly reduced. The knockout lines showed significant reduction in grain size, seed setting rate, 1000-grain weight, grain weight per plant, panicle length, and plant height. SDR7-6 is a new lesion mimic gene that encodes a short-chain alcohol dehydrogenase with atypical catalytic site. Disruption of SDR7-6 led to cell death and had adverse effects on multiple agricultural characters. SDR7-6 may act at the interface of the two defence pathways of bacterial blight and rice blast disease in rice.
Collapse
Affiliation(s)
- Yanmei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Yongsheng Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Xiaohui Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Minrong Jiang
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Yidong Wei
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Ling Lian
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Huibin Xu
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Liping Chen
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Huaan Xie
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| |
Collapse
|
28
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Qi X, Chen X. Chitinase Chi 2 Positively Regulates Cucumber Resistance against Fusarium oxysporum f. sp. cucumerinum. Genes (Basel) 2021; 13:62. [PMID: 35052402 PMCID: PMC8775131 DOI: 10.3390/genes13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.
Collapse
Affiliation(s)
- Jun Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ningyuan Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ke Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Qianqian Xian
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Jingping Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300192, China
| |
Collapse
|
29
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 PMCID: PMC8593000 DOI: 10.3389/fpls.2021.749630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/24/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 DOI: 10.21203/rs.3.rs-388437/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Song Y, Zhai Y, Li L, Yang Z, Ge X, Yang Z, Zhang C, Li F, Ren M. BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2097-2112. [PMID: 34036698 PMCID: PMC8486250 DOI: 10.1111/pbi.13640] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Verticillium wilt is caused by the soil-borne vascular pathogen Verticillium dahliae, and affects a wide range of economically important crops, including upland cotton (Gossypium hirsutum). Previous studies showed that expression levels of BIN2 were significantly down-regulated during infestation with V. dahliae. However, the underlying molecular mechanism of BIN2 in plant regulation against V. dahliae remains enigmatic. Here, we characterized a protein kinase GhBIN2 from Gossypium hirsutum, and identified GhBIN2 as a negative regulator of resistance to V. dahliae. The Verticillium wilt resistance of Arabidopsis and cotton were significantly enhanced when BIN2 was knocked down. Constitutive expression of BIN2 attenuated plant resistance to V. dahliae. We found that BIN2 regulated plant endogenous JA content and influenced the expression of JA-responsive marker genes. Further analysis revealed that BIN2 interacted with and phosphorylated JAZ family proteins, key repressors of the JA signalling pathway in both Arabidopsis and cotton. Spectrometric analysis and site-directed mutagenesis showed that BIN2 phosphorylated AtJAZ1 at T196, resulting in the degradation of JAZ proteins. Collectively, these results show that BIN2 interacts with JAZ proteins and plays a negative role in plant resistance to V. dahliae. Thus, BIN2 may be a potential target gene for genetic engineering against Verticillium wilt in crops.
Collapse
Affiliation(s)
- Yun Song
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- School of Life SciencesLiaocheng UniversityLiaochengChina
| | - Yaohua Zhai
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Linxuan Li
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
| | - Zhaoen Yang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Xiaoyang Ge
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Chaojun Zhang
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Maozhi Ren
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
- Institute of Urban AgricultureChinese Academy of Agricultural SciencesChengduChina
| |
Collapse
|
32
|
Zhang H, Xu X, Wang M, Wang H, Deng P, Zhang Y, Wang Y, Wang C, Wang Y, Ji W. A dominant spotted leaf gene TaSpl1 activates endocytosis and defense-related genes causing cell death in the absence of dominant inhibitors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110982. [PMID: 34315598 DOI: 10.1016/j.plantsci.2021.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The spotted leaf lesion mimic trait simulates cell death in a plant responding to pathogen infection. Some spotted leaf genes are recessive, while others are dominant. A small number of plants with a lesion mimic phenotype appeared in a segregating population obtained by crossing two normal green wheat strains, XN509 and N07216. Here, we clarified the genetic model and its breeding value. Phenotyping of the consecutive progeny populations over six cropping seasons showed that the spotted leaf lesion mimic phenotype was controlled by a dominant gene designated TaSpl1, which was inhibited by two other dominant genes, designated TaSpl1-I1 and TaSpl1-I2. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed KASP-PCR markers, the TaSpl1 and TaSpl1-I1 loci in N07216 were mapped to the end of chromosomes 3DS and 3BS, respectively. Plants with the spotted phenotype showed lower levels of stripe rust and powdery mildew than those with the normal green phenotype. Compared with normal leaves, the differentially expressed genes in spotted leaves were significantly enriched in plant-pathogen interaction and endocytosis pathways. There were no differences in the yield parameters of the F5 and F6 sister lines, N13039S with TaSpl1 and N13039 N without TaSpl1. These results provide a greater understanding of spotted leaf phenotyping and the breeding value of the lesion mimic allele in developing disease-resistance varieties.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; China-Australia Joint Research Center for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xiaomin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengmeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaoyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
33
|
Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C, Li Z, Wu L, Zhang G, Duan H, Ma Z. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:1041-1056. [PMID: 34169624 PMCID: PMC8358998 DOI: 10.1111/mpp.13093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.
Collapse
Affiliation(s)
- Shaojing Mo
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| |
Collapse
|
34
|
Chen B, Zhang Y, Sun Z, Liu Z, Zhang D, Yang J, Wang G, Wu J, Ke H, Meng C, Wu L, Yan Y, Cui Y, Li Z, Wu L, Zhang G, Wang X, Ma Z. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease and insect resistance by regulating metabolic flux redirection in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:831-846. [PMID: 34008265 DOI: 10.1111/tpj.15349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
Cotton (Gossypium hirsutum) is constantly attacked by pathogens and insects. The most efficient control strategy is to develop resistant varieties using broad-spectrum gene resources. Several resistance loci harboured by superior varieties have been identified through genome-wide association studies. However, the key genes and/or loci have not been functionally identified. In this study, we identified a locus significantly associated with Verticillium wilt (VW) resistance, and within a 145.5-kb linkage disequilibrium, two non-specific lipid transfer protein genes (named GhnsLTPsA10) were highly expressed under Verticillium pathogen stress. The expression of GhnsLTPsA10 significantly increased in roots upon Verticillium dahliae stress but significantly decreased in leaves under insect attack. Furthermore, GhnsLTPsA10 played antagonistic roles in positively regulating VW and Fusarium wilt resistance and negatively mediating aphid and bollworm resistance in transgenic Arabidopsis and silenced cotton. By combining transcriptomic, histological and physiological analyses, we determined that GhnsLTPsA10-mediated phenylpropanoid metabolism further affected the balance of the downstream metabolic flux of flavonoid and lignin biosynthesis. The divergent expression of GhnsLTPsA10 in roots and leaves coordinated resistance of cotton against fungal pathogens and insects via the redirection of metabolic flux. In addition, GhnsLTPsA10 contributed to reactive oxygen species accumulation. Therefore, in this study, we elucidated the novel function of GhnsLTP and the molecular association between disease resistance and insect resistance, balanced by GhnsLTPsA10. This broadens our knowledge of the biological function of GhnsLTPsA10 in crops and provides a useful locus for genetic improvement of cotton.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yuanyuan Yan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yanru Cui
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| |
Collapse
|
35
|
Shaban M, Khan AH, Noor E, Malik W, Ali HMW, Shehzad M, Akram U, Qayyum A. A 13-Lipoxygenase, GhLOX2, positively regulates cotton tolerance against Verticillium dahliae through JA-mediated pathway. Gene 2021; 796-797:145797. [PMID: 34175389 DOI: 10.1016/j.gene.2021.145797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Verticillium wilt is a major limiting factor for sustainable production of cotton but the mechanism of controlling this disease is still poorly understood. Lipoxygenase (LOX)-derived oxylipins have been implicated in defense responses against diverse pathogens; however there is limited information about the functional characterization of LOXs in response to Verticillium dahliae infection. In this study, we report the characterization of a cotton LOX gene, GhLOX2, which phylogenetically clustered into 13-LOX subfamily and is closely related to Arabidopsis LOX2 gene. GhLOX2 was predominantly expressed in leaves and strongly induced following V. dahliae inoculation and treatment of methyl jasmonate (MeJA). RNAi-mediated knock-down of GhLOX2 enhanced cotton susceptibility to V. dahliae and was coupled with suppression of jasmonic acid (JA)-related genes both after inoculation with the cotton defoliating strain V991 or MeJA treatment. Interestingly, lignin contents, transcripts of lignin synthesis genes and H2O2 contents were also decreased in GhLOX2-silenced plants. This study suggests that GhLOX2 is involved in defense responses against infection of V. dahliae in cotton and supports that JA is one of the major defense hormones against this pathogen.
Collapse
Affiliation(s)
- Muhammad Shaban
- Genomics Lab, Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan.
| | - Aamir Hamid Khan
- Department of Plant Breeding and Genetics, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Etrat Noor
- Genomics Lab, Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Waqas Malik
- Genomics Lab, Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Hafiz Muhammad Wasif Ali
- Genomics Lab, Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, PR China
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Abdul Qayyum
- Genomics Lab, Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
36
|
Xiao S, Hu Q, Zhang X, Si H, Liu S, Chen L, Chen K, Berne S, Yuan D, Lindsey K, Zhang X, Zhu L. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4721-4743. [PMID: 33928361 DOI: 10.1093/jxb/erab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) and brassinosteroids (BRs) are well known to regulate diverse processes of plant development and stress responses, but the mechanisms by which these phytohormones mediate the growth and defense trade-off are largely unclear. In addition, little is known about the roles of DEHYDRATION RESPONSIVE ELEMENT BINDING transcription factors, especially in biotic stress and plant growth. Here, we identified a cotton (Gossypium hirsutum) APETALA2/ETHYLENE RESPONSIVE FACTOR gene GhTINY2 that is strongly induced by Verticillium dahliae. Overexpression of GhTINY2 in cotton and Arabidopsis enhanced tolerance to V. dahliae, while knockdown of expression increased the susceptibility of cotton to the pathogen. GhTINY2 was found to promote SA accumulation and SA signaling transduction by directly activating expression of WRKY51. Moreover, GhTINY2-overexpressing cotton and Arabidopsis showed retardation of growth, increased sensitivity to inhibitors of BR biosynthesis, down-regulation of several BR-induced genes, and up-regulation of BR-repressed genes, while GhTINY2-RNAi cotton showed the opposite effects. We further determined that GhTINY2 negatively regulates BR signaling by interacting with BRASSINAZOLE-RESISTANT 1 (BZR1) and restraining its transcriptional activation of the expression of INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). These findings indicate that GhTINY2 fine-tunes the trade-off between immunity and growth via indirect crosstalk between WRKY51-mediated SA biosynthesis and BZR1-IAA19-regulated BR signaling.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430000, Hubei, China
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
37
|
Ren Z, Wang X, Tao Q, Guo Q, Zhou Y, Yi F, Huang G, Li Y, Zhang M, Li Z, Duan L. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment. BMC PLANT BIOLOGY 2021; 21:202. [PMID: 33906598 PMCID: PMC8077928 DOI: 10.1186/s12870-021-02962-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/07/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.
Collapse
Affiliation(s)
- Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qun Tao
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Guanmin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yanxia Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping, Beijing, 102206, China.
| |
Collapse
|
38
|
Xiao S, Hu Q, Shen J, Liu S, Yang Z, Chen K, Klosterman SJ, Javornik B, Zhang X, Zhu L. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae. PLANT CELL REPORTS 2021; 40:735-751. [PMID: 33638657 DOI: 10.1007/s00299-021-02672-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 05/15/2023]
Abstract
GhMYB4 acts as a negative regulator in lignin biosynthesis, which results in alteration of cell wall integrity and activation of cotton defense response. Verticillium wilt of cotton (Gossypium hirsutum) caused by the soil-borne fungus Verticillium dahliae (V. dahliae) represents one of the most important constraints of cotton production worldwide. Mining of the genes involved in disease resistance and illuminating the molecular mechanisms that underlie this resistance is of great importance in cotton breeding programs. Defense-induced lignification in plants is necessary for innate immunity, and there are reports of a correlation between increased lignification and disease resistance. In this study, we present an example in cotton whereby plants with reduced lignin content also exhibit enhanced disease resistance. We identified a negative regulator of lignin synthesis, in cotton encoded in GhMYB4. Overexpression of GhMYB4 in cotton and Arabidopsis enhanced resistance to V. dahliae with reduced lignin deposition. Moreover, GhMYB4 could bind the promoters of several genes involved in lignin synthesis, such as GhC4H-1, GhC4H-2, Gh4CL-4, and GhCAD-3, and impair their expression. The reduction of lignin content in GhMYB4-overexpressing cotton led to alterations of cell wall integrity (CWI) and released more oligogalacturonides (OGs) which may act as damage-associated molecular patterns (DAMPs) to stimulate plant defense responses. In support of this hypothesis, exogenous application with polygalacturonic acid (PGA) in cotton activated biosynthesis of jasmonic acid (JA) and JA-mediated defense against V. dahliae, similar to that described for cotton plants overexpressing GhMYB4. This study provides a new candidate gene for cotton disease-resistant breeding and an increased understanding of the relationship between lignin synthesis, OG release, and plant immunity.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qin Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430000, Hubei, China
| | - Jili Shen
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaoguang Yang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Salinas, CA, 93905, USA
| | - Branka Javornik
- Centre for Plant Biotechnology and Breeding, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
39
|
Xiong XP, Sun SC, Zhu QH, Zhang XY, Li YJ, Liu F, Xue F, Sun J. The Cotton Lignin Biosynthetic Gene Gh4CL30 Regulates Lignification and Phenolic Content and Contributes to Verticillium Wilt Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:240-254. [PMID: 33507814 DOI: 10.1094/mpmi-03-20-0071-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Verticillium wilt is a vascular disease causing tremendous damage to cotton production worldwide. However, our knowledge of the mechanisms of cotton resistance or susceptibility to this disease is very limited. In this study, we compared the defense transcriptomes of cotton (Gossypium hirsutum) cultivars Shidalukang 1 (Verticillium dahliae resistant, HR) and Junmian 1 (V. dahliae susceptible, HS) before and after V. dahliae infection, identified hub genes of the network associated with responses to V. dahliae infection, and functionally characterized one of the hub genes involved in biosynthesis of lignin and phenolics. We identified 6,831 differentially expressed genes (DEGs) between the basal transcriptomes of HR and HS; 3,685 and 3,239 of these DEGs were induced in HR and HS, respectively, at different time points after V. dahliae infection. KEGG pathway analysis indicated that DEGs were enriched for genes involved in lignin biosynthesis. In all, 23 hub genes were identified based on a weighted gene coexpression network analysis of the 6,831 DEGs and their expression profiles at different time points after V. dahliae infection. Knockdown of Gh4CL30, one of the hub genes related to the lignin biosynthesis pathway, by virus-induced gene silencing, led to a decreased content of flavonoids, lignin, and S monomer but an increased content of G monomer, G/S lignin monomer, caffeic acid, and ferulic acid, and enhanced cotton resistance to V. dahliae. These results suggest that Gh4CL30 is a key gene modulating the outputs of different branches of the lignin biosynthesis pathway, and provide new insights into cotton resistance to V. dahliae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
40
|
Wei T, Tang Y, Jia P, Zeng Y, Wang B, Wu P, Quan Y, Chen A, Li Y, Wu J. A Cotton Lignin Biosynthesis Gene, GhLAC4, Fine-Tuned by ghr-miR397 Modulates Plant Resistance Against Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2021; 12:743795. [PMID: 34868127 PMCID: PMC8636836 DOI: 10.3389/fpls.2021.743795] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 05/16/2023]
Abstract
Plant lignin is a component of the cell wall, and plays important roles in the transport potential of water and mineral nutrition and plant defence against biotic stresses. Therefore, it is necessary to identify lignin biosynthesis-related genes and dissect their functions and underlying mechanisms. Here, we characterised a cotton LAC, GhLAC4, which participates in lignin biosynthesis and plant resistance against Verticillium dahliae. According to degradome sequencing and GUS reporter analysis, ghr-miR397 was identified to directedly cleave the GhLAC4 transcript through base complementary. GhLAC4 knockdown and ghr-miR397 overexpression significantly reduced basal lignin content compared to the control, whereas ghr-miR397 silencing significantly increased basal lignin levels. Based on staining patterns and GC/MS analysis, GhLAC4 acted in G-lignin biosynthesis. Under V. dahliae infection, we found that G-lignin content in ghr-miR397-knockdowned plants significantly increased, compared to these plants under the mock treatment, while G-lignin contents in GhLAC4-silenced plants and ghr-miR397-overexpressed plants treated with pathogen were comparable with these plants treated with mock, indicating that GhLAC4 participates in defence-induced G-lignin biosynthesis in the cell wall. Knockdown of ghr-miR397 in plants inoculated with V. dahliae promoted lignin accumulation and increased plant resistance. The overexpression of ghr-miR397 and knockdown of GhLAC4 reduced lignin content and showed higher susceptibility of plants to the fungal infection compared to the control. The extract-free stems of ghr-miR397-knockdowned plants lost significantly less weight when treated with commercial cellulase and V. dahliae secretion compared to the control, while the stems of ghr-miR397-overexpressed and GhLAC4-silenced plants showed significantly higher loss of weight. These results suggest that lignin protects plant cell walls from degradation mediated by cellulase or fungal secretions. In summary, the ghr-miR397-GhLAC4 module regulates both basal lignin and defence-induced lignin biosynthesis and increases plant resistance against infection by V. dahliae.
Collapse
Affiliation(s)
- Taiping Wei
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Tang
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pei Jia
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanming Zeng
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bingting Wang
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pan Wu
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yonggang Quan
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds Co. Ltd., Changji, China
| | - Aimin Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture, Join Hope Seeds Co. Ltd., Changji, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- *Correspondence: Yucheng Li,
| | - Jiahe Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Jiahe Wu,
| |
Collapse
|
41
|
Luo X, Li Z, Xiao S, Ye Z, Nie X, Zhang X, Kong J, Zhu L. Phosphate deficiency enhances cotton resistance to Verticillium dahliae through activating jasmonic acid biosynthesis and phenylpropanoid pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110724. [PMID: 33288028 DOI: 10.1016/j.plantsci.2020.110724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 05/09/2023]
Abstract
Living in natural environment, plants often suffer from various biotic and abiotic stresses. Phosphate deficiency is a common factor affecting crop production in field, while pathogen invasion is another serious problem. Here we report that Pi-deficient cotton plants exhibit enhanced resistance to Verticillium dahliae. Transcriptomic and histochemical analysis revealed that cotton phenylpropanoid pathway was activated under phosphate deficiency, including lignin and flavonoid biosynthesis. Metabolomic data showed that Pi-deficient cotton accumulates many flavonoids metabolites and displays obvious anti-fungi activity in terms of methanolic extract. Additionally, JA biosynthesis was activated under phosphate deficiency and the Pi-deficiency induced disease resistance was significantly attenuated in GhAOS knock down plants. Taken together, our study demonstrated that phosphate deficiency enhanced cotton resistance to V. dahliae through activating phenylpropanoid pathway and JA biosynthesis, providing new insights into how phosphate deficiency affects plant disease resistance.
Collapse
Affiliation(s)
- Xiangyin Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China; Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco-agriculture of the Xinjiang Production and Construction Crops, College of Agronomy, Shihezi University, Shihezi 832000, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Xinjiang 842000, China.
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Xiong XP, Sun SC, Zhu QH, Zhang XY, Liu F, Li YJ, Xue F, Sun J. Transcriptome Analysis and RNA Interference Reveal GhGDH2 Regulating Cotton Resistance to Verticillium Wilt by JA and SA Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:654676. [PMID: 34177978 PMCID: PMC8226099 DOI: 10.3389/fpls.2021.654676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Verticillium wilt, caused by Verticillium dahliae, is one of the most damaging and widespread soil-borne cotton diseases. The molecular mechanisms underlying the cotton defense against V. dahliae remain largely elusive. Here, we compared the transcriptional differences between Upland cotton cultivars: one highly resistant (HR; Shidalukang 1) and one highly susceptible (HS; Junmian 1). This was done at multiple time points after V. dahliae inoculation, which identified 2010 and 1275 differentially expressed genes (DEGs) in HR and HS, respectively. Plant hormone signal transduction-related genes were enriched in HR, whereas genes related to lignin biosynthesis were enriched in both HR and HS. Weighted gene co-expression network analysis (WGCNA) using the 2868 non-redundant genes differentially expressed between the V. dahliae infected and uninfected samples in HR or HS identified 10 different gene network modules and 22 hub genes with a potential role in regulating cotton defense against V. dahliae infection. GhGDH2, encoding glutamate dehydrogenase (GDH), was selected for functional characterization. Suppressing the expression level of GhGDH2 by virus-induced gene silencing (VIGS) in HS led to inhibition of the salicylic acid (SA) biosynthesis/signaling pathways and activation of the jasmonic acid (JA) biosynthesis/signaling pathways, which resulted in an increase of 42.1% JA content and a reduction of 78.9% SA content in cotton roots, and consequently enhanced V. dahliae resistance. Our finding provides new insights on the molecular mechanisms of cotton resistance to V. dahliae infection and candidate genes for breeding V. dahliae resistance cotton cultivars by genetic modification.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- Fei Xue,
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Jie Sun,
| |
Collapse
|
43
|
Liu S, Sun R, Zhang X, Feng Z, Wei F, Zhao L, Zhang Y, Zhu L, Feng H, Zhu H. Genome-Wide Analysis of OPR Family Genes in Cotton Identified a Role for GhOPR9 in Verticillium dahliae Resistance. Genes (Basel) 2020; 11:E1134. [PMID: 32992523 PMCID: PMC7600627 DOI: 10.3390/genes11101134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs) have been proven to play a major role in plant development and growth. Although the classification and functions of OPRs have been well understood in Arabidopsis, tomato, rice, maize, and wheat, the information of OPR genes in cotton genome and their responses to biotic and abiotic stresses have not been reported. In this study, we found 10 and 9 OPR genes in Gossypium hirsutum and Gossypium barbadense, respectively. They were classified into three groups, based on the similar gene structure and conserved protein motifs. These OPR genes just located on chromosome 01, chromosome 05, and chromosome 06. In addition, the whole genome duplication (WGD) or segmental duplication events contributed to the evolution of the OPR gene family. The analyses of cis-acting regulatory elements of GhOPRs showed that the functions of OPR genes in cotton might be related to growth, development, hormone, and stresses. Expression patterns showed that GhOPRs were upregulated under salt treatment and repressed by polyethylene glycol 6000 (PEG6000). The expression patterns of GhOPRs were different in leaf, root, and stem under V. dahliae infection. GhOPR9 showed a higher expression level than other OPR genes in cotton root. The virus-induced gene silencing (VIGS) analysis suggested that knockdown of GhOPR9 could increase the susceptibility of cotton to V. dahliae infection. Furthermore, GhOPR9 also modulated the expressions of jasmonic acid (JA) pathway-regulated genes under the V. dahliae infection. Overall, our results provided the evolution and potential functions of the OPR genes in cotton. These findings suggested that GhOPR9 might play an important role in cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Shichao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ruibin Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Xiaojian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
| | - Longfu Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (S.L.); (R.S.); (Z.F.); (F.W.); (L.Z.); (Y.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| |
Collapse
|
44
|
Wang Q, Du X, Zhou Y, Xie L, Bie S, Tu L, Zhang N, Yang X, Xiao S, Zhang X. The β-ketoacyl-CoA synthase KCS13 regulates the cold response in cotton by modulating lipid and oxylipin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5615-5630. [PMID: 32443155 DOI: 10.1093/jxb/eraa254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 05/05/2023]
Abstract
Cold stress is a key environmental factor that affects plant development and productivity. In this study, RNA-seq in cotton following cold-stress treatment resulted in the identification of 5239 differentially expressed genes (DEGs) between two cultivars with differing sensitivity to low temperatures, among which GhKCS13 was found to be involved in the response. Transgenic plants overexpressing GhKCS13 showed increased sensitivity to cold stress. KEGG analysis of 418 DEGs in both GhKCS13-overexpressing and RNAi lines after treatment at 4 °C indicated that lipid biosynthesis and linoleic acid metabolism were related to cold stress. ESI-MS/MS analysis showed that overexpression of GhKCS13 led to modifications in the composition of sphingolipids and glycerolipids in the leaves, which might alter the fluidity of the cell membrane under cold conditions. In particular, differences in levels of jasmonic acid (JA) in GhKCS13 transgenic lines suggested that, together with lysophospholipids, it might mediate the cold-stress response. Our results suggest that overexpression of GhKCS13 probably causes remodeling of lipids in the endoplasmic reticulum and biosynthesis of lipid-derived JA in chloroplasts, which might account for the increased sensitivity to cold stress in the transgenic plants. Complex interactions between lipid components, lipid signaling molecules, and JA appear to determine the response to cold stress in cotton.
Collapse
Affiliation(s)
- Qiongshan Wang
- Economic Crop Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu Bie
- Economic Crop Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Na Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
45
|
Long L, Xu FC, Zhao JR, Li B, Xu L, Gao W. GbMPK3 overexpression increases cotton sensitivity to Verticillium dahliae by regulating salicylic acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110374. [PMID: 32005380 DOI: 10.1016/j.plantsci.2019.110374] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/16/2019] [Accepted: 12/07/2019] [Indexed: 05/16/2023]
Abstract
The soil-born vascular disease Verticillium wilt, which is caused by fungal pathogen Verticillium dahliae, is a devastating disease of cotton worldwide. In the last decade, a large number of genes have been found to participate in cotton-V. dahliae interactions, but the detailed mechanisms of cotton resistance to V. dahliae remain unclear. Here, we functionally characterized MPK3, a MAPK gene from cotton. MPK3 was induced in the roots of both resistant and susceptible cotton cultivars by V. dahliae inoculation. Transgenic cotton and tobacco with constitutively higher GbMPK3 expression conferred higher V. dahliae susceptibility, while MPK3 knockdown in cotton has limited effect on cotton resistance to V. dahliae. Expression profiling revealed that SA-mediated defense pathway genes (WRKY70, PR1, and PR5) accumulated after V. dahliae inoculation in roots of both wild-type and transgenic cotton, and the expression levels of these genes were higher in GbMPK3-overexpressing plants than in wild-type plants, indicating that GbMPK3 upregulation may reduce plant resistance to V. dahliae through regulating salicylic acid signaling transduction.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, PR China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China
| | - Bing Li
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China
| | - Li Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, PR China.
| |
Collapse
|
46
|
A TMT-Based Quantitative Proteome Analysis to Elucidate the TSWV Induced Signaling Cascade in Susceptible and Resistant Cultivars of Solanum lycopersicum. PLANTS 2020; 9:plants9030290. [PMID: 32110948 PMCID: PMC7154910 DOI: 10.3390/plants9030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 01/12/2023]
Abstract
Tomato spotted wilt virus (TSWV), transmitted by small insects known as thrips, is one of the major threats to tomato productivity across the globe. In addition to tomato, this virus infects more than 1000 other plants belonging to 85 families and is a cause of serious concern. Very little, however, is known about the molecular mechanism of TSWV induced signaling in plants. Here, we used a tandem mass tags (TMT)-based quantitative proteome approach to investigate the protein profiles of tomato leaves of two cultivars (cv 2621 and 2689; susceptible and resistant to TSWV infection, respectively) following TSWV inoculation. This approach resulted in the identification of 5112 proteins of which 1022 showed significant changes in response to TSWV. While the proteome of resistant cultivar majorly remains unaltered, the proteome of susceptible cultivar showed distinct differences following TSWV inoculation. TSWV modulated proteins in tomato included those with functions previously implicated in plant defense including secondary metabolism, reactive oxygen species (ROS) detoxification, mitogen-activated protein (MAP) kinase signaling, calcium signaling and jasmonate biosynthesis, among others. Taken together, results reported here provide new insights into the TSWV induced signaling in tomato leaves and may be useful in the future to manage this deadly disease of plants.
Collapse
|
47
|
Angeles-Shim RB, Shim J, Vinarao RB, Lapis RS, Singleton JJ. A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa). PLoS One 2020; 15:e0229155. [PMID: 32084193 PMCID: PMC7034821 DOI: 10.1371/journal.pone.0229155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major limiting factor to rice productivity worldwide. Genetic control through the identification of novel sources of bacterial blight resistance and their utilization in resistance breeding remains the most effective and economical strategy to manage the disease. Here we report the identification of a novel locus from the wild Oryza species, Oryza latifolia, conferring a race-specific resistance to Philippine Xoo race 9A (PXO339). The locus was identified from two introgression lines i.e. WH12-2252 and WH12-2256 that segregated from O. latifolia monosomic alien addition lines (MAALs). The discrete segregation ratio of susceptible and resistant phenotypes in the F2 (χ2[3:1] = 0.22 at p>0.05) and F3 (χ2[3:1] = 0.36 at p>0.05) populations indicates that PXO339 resistance in the MAAL-derived introgression lines (MDILs) is controlled by a single, recessive gene. Genotyping of a total of 216 F2, 1130 F3 and 288 F4 plants derived from crossing either of the MDILs with the recurrent parent used to generate the MAALs narrowed the candidate region to a 1,817 kb locus that extends from 10,425 to 12,266 kb in chromosome 12. Putative candidate genes that were identified by data mining and comparative sequence analysis can provide targets for further studies on mapping and cloning of the causal gene for PXO339 resistance in the MDILs. To our knowledge, this is the first report of a genetic locus from the allotetraploid wild rice, O. latifolia conferring race-specific resistance to bacterial blight.
Collapse
Affiliation(s)
| | - Junghyun Shim
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ricky B. Vinarao
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ruby S. Lapis
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Joshua J. Singleton
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
48
|
Lopes ST, Sobral D, Costa B, Perdiguero P, Chaves I, Costa A, Miguel CM. Phellem versus xylem: genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak. TREE PHYSIOLOGY 2020; 40:129-141. [PMID: 31860724 DOI: 10.1093/treephys/tpz118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 05/23/2023]
Abstract
Cork cambium (or phellogen) is a secondary meristem responsible for the formation of phelloderm and phellem/cork, which together compose the periderm. In Quercus suber L., the phellogen is active throughout the entire life of the tree, producing a continuous and renewable outer bark of cork. To identify specific candidate genes associated with cork cambium activity and phellem differentiation, we performed a comparative transcriptomic study of Q. suber secondary growth tissues (xylem and phellogen/phellem) using RNA-seq. The present work provides a high-resolution map of all the transcripts identified in the phellogen/phellem tissues. A total of 6013 differentially expressed genes were identified, with 2875 of the transcripts being specifically enriched during the cork formation process versus secondary xylem formation. Furthermore, cork samples originating from the original phellogen (`virgin' cork) and from a traumatic phellogen (`amadia' cork) were also compared. Our results point to a shortlist of potentially relevant candidate genes regulating phellogen activity and phellem differentiation, including novel genes involved in the suberization process, as well as genes associated to ethylene and jasmonate signaling and to meristem function. The future functional characterization of some of the identified candidate genes will help to elucidate the molecular mechanisms underlying cork cambium activity and phellem differentiation.
Collapse
Affiliation(s)
- Susana T Lopes
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniel Sobral
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Bruno Costa
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Perdiguero
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Inês Chaves
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Augusta Costa
- Instituto Nacional de Investigação Agrária e Veterinária, Avenida da República, Quinta do Marquês 2780-157 Oeiras, Portugal
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
49
|
Xiong XP, Sun SC, Zhang XY, Li YJ, Liu F, Zhu QH, Xue F, Sun J. GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton Through the Ethylene and Jasmonic Acid Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:69. [PMID: 32158454 PMCID: PMC7052014 DOI: 10.3389/fpls.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 05/05/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae is a destructive cotton disease causing severe yield and quality losses worldwide. WRKY transcription factors play important roles in plant defense against pathogen infection. However, little has been reported on the functions of WRKYs in cotton's resistance to V. dahliae. Here, we identified 5, 5, and 10 WRKY70 genes in Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively, and investigated the expression profiles of all GhWRKY70 genes in various cotton tissues and in response to hormone treatment or V. dahliae infection. Reverse transcription-quantitative PCR analysis showed that GhWRKY70D13 was expressed higher in roots and stems than in other tissues, and up-regulated after V. dahliae inoculation. Knock-down of GhWRKY70D13 improved resistance to V. dahliae in both resistant and susceptible cotton cultivars. Comparative analysis of transcriptomes generated from wild-type and stable RNAi (RNA interference) plant with down-regulated GhWRKY70D13 showed that genes involved in ethylene (ET) and jasmonic acid (JA) biosynthesis and signaling were significantly upregulated in the GhWRKY70D13 RNAi plants. Consistently, the contents of 1-aminocyclopropane-1-carboxylic (ACC), JA, and JA-isoleucine levels were significantly higher in the GhWRKY70D13 RNAi plants than in wild-type. Following V. dahliae infection, the levels of ACC and JA decreased in the GhWRKY70D13 RNAi plants but still significantly higher (for ACC) than that in wild-type or at the same level (for JA) as in non-infected wild-type plants. Collectively, our results suggested that GhWRKY70D13 negatively regulates cotton's resistance to V. dahliae mainly through its effect on ET and JA biosynthesis and signaling pathways.
Collapse
Affiliation(s)
- Xian-Peng Xiong
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Shi-Chao Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Xin-Yu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Yan-Jun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
| | - Qian-Hao Zhu
- Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Fei Xue, ; Jie Sun,
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, China
- *Correspondence: Fei Xue, ; Jie Sun,
| |
Collapse
|
50
|
Dhar N, Chen JY, Subbarao KV, Klosterman SJ. Hormone Signaling and Its Interplay With Development and Defense Responses in Verticillium-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:584997. [PMID: 33250913 PMCID: PMC7672037 DOI: 10.3389/fpls.2020.584997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 05/19/2023]
Abstract
Soilborne plant pathogenic species in the fungal genus Verticillium cause destructive Verticillium wilt disease on economically important crops worldwide. Since R gene-mediated resistance is only effective against race 1 of V. dahliae, fortification of plant basal resistance along with cultural practices are essential to combat Verticillium wilts. Plant hormones involved in cell signaling impact defense responses and development, an understanding of which may provide useful solutions incorporating aspects of basal defense. In this review, we examine the current knowledge of the interplay between plant hormones, salicylic acid, jasmonic acid, ethylene, brassinosteroids, cytokinin, gibberellic acid, auxin, and nitric oxide, and the defense responses and signaling pathways that contribute to resistance and susceptibility in Verticillium-host interactions. Though we make connections where possible to non-model systems, the emphasis is placed on Arabidopsis-V. dahliae and V. longisporum interactions since much of the research on this interplay is focused on these systems. An understanding of hormone signaling in Verticillium-host interactions will help to determine the molecular basis of Verticillium wilt progression in the host and potentially provide insight on alternative approaches for disease management.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
- Nikhilesh Dhar,
| | - Jie-Yin Chen
- Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
- *Correspondence: Steven J. Klosterman,
| |
Collapse
|