1
|
Wen M, Huang Z, Yin Y, Wang Y, Wang M, Huang X, Chen T, Ke G, Chen M, Zhang XB. Dual mature microRNA-responsive logic biosensing platform based on CRISPR/Cas12a and DNA nanocage. Talanta 2024; 283:127078. [PMID: 39467440 DOI: 10.1016/j.talanta.2024.127078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Mature microRNAs play crucial roles in tumorigenesis and progression. However, their potential as cancer biomarkers is limited by the sequence interference of precursor microRNAs and the occurrence of false positive signals mediated by single microRNAs. Herein, we reported a dual mature microRNA-responsive second-order (YES-AND) logic biosensing platform for accurate cancer diagnosis. Specifically, DNA nanocages were conceived as the first stage of "YES" gates, capable of signal transduction through strand displacement reactions, and realizing size-selective discrimination of mature microRNAs and pre-microRNAs. Subsequently, CRISPR/Cas12a system served as the second stage of "AND" gate, wherein dual activators cooperatively triggered trans-cleavage. As a proof-of-concept, this second-order logic biosensing platform was successfully applied to detect non-small cell lung cancer-related mature microRNA in clinical serum, and showed remarkable sensitivity (Lod = 100 pM) and trueness (recovery ≥90 %). Our study represents a significant step forward in the development of intelligent biosensors capable of performing complex computations within pathological networks, and opens up broader possibilities for applications in biological science study and clinic disease diagnosis.
Collapse
Affiliation(s)
- Mei Wen
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Zhaoxin Huang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Yao Yin
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Yin Wang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Menghui Wang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410083, China
| | - Ting Chen
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Guoliang Ke
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China.
| | - Mei Chen
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiao-Bing Zhang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
2
|
Shao J, Qiu X, Zhang L, Li S, Xue S, Si Y, Li Y, Jiang J, Wu Y, Xiong Q, Wang Y, Chen Q, Gao T, Zhu L, Wang H, Xie M. Multi-layered computational gene networks by engineered tristate logics. Cell 2024; 187:5064-5080.e14. [PMID: 39089254 DOI: 10.1016/j.cell.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
So far, biocomputation strictly follows traditional design principles of digital electronics, which could reach their limits when assembling gene circuits of higher complexity. Here, by creating genetic variants of tristate buffers instead of using conventional logic gates as basic signal processing units, we introduce a tristate-based logic synthesis (TriLoS) framework for resource-efficient design of multi-layered gene networks capable of performing complex Boolean calculus within single-cell populations. This sets the stage for simple, modular, and low-interference mapping of various arithmetic logics of interest and an effectively enlarged engineering space within single cells. We not only construct computational gene networks running full adder and full subtractor operations at a cellular level but also describe a treatment paradigm building on programmable cell-based therapeutics, allowing for adjustable and disease-specific drug secretion logics in vivo. This work could foster the evolution of modern biocomputers to progress toward unexplored applications in precision medicine.
Collapse
Affiliation(s)
- Jiawei Shao
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China; College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Lihang Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
| | - Shichao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Xue
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yaqing Si
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yilin Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuhang Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiqi Xiong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yukai Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qidi Chen
- Department of Pharmacy, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, China
| | - Ting Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Hui Wang
- Research Center for Life Sciences Computing, Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China.
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
| |
Collapse
|
3
|
Zhang Y, Xia H, Peng W, Liu L, Liu L, Yang P. Application of Repetitive Sequences in Fish Cell Depletion as a Target for the CRISPR/Cas9 System. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:639-648. [PMID: 38833200 DOI: 10.1007/s10126-024-10328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Specific cell depletion is a common means to study the physiological function of cell lineages and tissue regeneration. However, 100% depletion is difficult to achieve with existing cell depletion strategies. With the increasing maturity of CRISPR/Cas9 technology, it is increasingly used for the depletion of various cells. However, even with this technology, it is difficult to complete the depletion of specific gene knockout cells. For this reason, cell depletion with the use of repetitive sequences as the target of CRISPR/Cas9 was explored using zebrafish. All cells were used as the target cells for the first set of experiments. The results showed that injection of a mixture of DANA-gRNA and Cas9 mRNA into zygotes resulted in substantial cell apoptosis. Cells are almost invisible in the embryonic animal pole during the dome stage. The activities of the caspase-3 and caspase-9 proteins and the mRNA level of the P53 gene were significantly increased. Then, primordial germ cells (PGCs) in embryos were used as the target cells in subsequent experiments. To specifically knock out PGCs, we injected the mix of DANA-gRNA, pkop: Cas9 plasmid (the kop promotor allows Cas9 expression only in PGCs), and eGFP-nos3'UTR mRNA into zebrafish fertilized eggs. The results revealed that the activity of the caspase-3 protein was significantly increased, and the mRNA levels of P53, ku70, and ku80 were significantly upregulated, while the number of PGCs decreased gradually. Few PGCs labeled with GFP could be seen 20 h post-fertilization (hpf), and no PGCs could be seen at the germinal ridge 24 hpf. Therefore, the combination of CRISPR/Cas9 technology and repetitive sequences can achieve efficient cell depletion regardless of whether there is generalized expression or expression in specific cells. These results indicate that it is feasible to eliminate cells by using repeat sequences as CRISPR/Cas9 system target sites.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, Changde Research Center for Agricultural Biomacromolecule, Innovation Team of Microbial Technology, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China.
| | - Hu Xia
- Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, Changde Research Center for Agricultural Biomacromolecule, Innovation Team of Microbial Technology, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Wei Peng
- Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, Changde Research Center for Agricultural Biomacromolecule, Innovation Team of Microbial Technology, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lanhai Liu
- Changde Fishery Administration Station, Changde, China
| | - Liangguo Liu
- Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, Changde Research Center for Agricultural Biomacromolecule, Innovation Team of Microbial Technology, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Pinhong Yang
- Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, Changde Research Center for Agricultural Biomacromolecule, Innovation Team of Microbial Technology, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| |
Collapse
|
4
|
Kanbar K, El Darzi R, Jaalouk DE. Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed. Front Genet 2024; 15:1434002. [PMID: 39144725 PMCID: PMC11321987 DOI: 10.3389/fgene.2024.1434002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024] Open
Abstract
Cancer continues to present a substantial global health challenge, with its incidence and mortality rates persistently reflecting its significant impact. The emergence of precision oncology has provided a breakthrough in targeting oncogenic drivers previously deemed "undruggable" by conventional therapeutics and by limiting off-target cytotoxicity. Two groundbreaking technologies that have revolutionized the field of precision oncology are primarily CRISPR-Cas9 gene editing and more recently PROTAC (PROteolysis TArgeting Chimeras) targeted protein degradation technology. CRISPR-Cas9, in particular, has gained widespread recognition and acclaim due to its remarkable ability to modify DNA sequences precisely. Rather than editing the genetic code, PROTACs harness the ubiquitin proteasome degradation machinery to degrade proteins of interest selectively. Even though CRISPR-Cas9 and PROTAC technologies operate on different principles, they share a common goal of advancing precision oncology whereby both approaches have demonstrated remarkable potential in preclinical and promising data in clinical trials. CRISPR-Cas9 has demonstrated its clinical potential in this field due to its ability to modify genes directly and indirectly in a precise, efficient, reversible, adaptable, and tissue-specific manner, and its potential as a diagnostic tool. On the other hand, the ability to administer in low doses orally, broad targeting, tissue specificity, and controllability have reinforced the clinical potential of PROTAC. Thus, in the field of precision oncology, gene editing using CRISPR technology has revolutionized targeted interventions, while the emergence of PROTACs has further expanded the therapeutic landscape by enabling selective protein degradation. Rather than viewing them as mutually exclusive or competing methods in the field of precision oncology, their use is context-dependent (i.e., based on the molecular mechanisms of the disease) and they potentially could be used synergistically complementing the strengths of CRISPR and vice versa. Herein, we review the current status of CRISPR and PROTAC designs and their implications in the field of precision oncology in terms of clinical potential, clinical trial data, limitations, and compare their implications in precision clinical oncology.
Collapse
Affiliation(s)
- Karim Kanbar
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Roy El Darzi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Smith DJ, Lunj S, Adamson AD, Nagarajan S, Smith TAD, Reeves KJ, Hoskin PJ, Choudhury A. CRISPR-Cas9 potential for identifying novel therapeutic targets in muscle-invasive bladder cancer. Nat Rev Urol 2024:10.1038/s41585-024-00901-y. [PMID: 38951705 DOI: 10.1038/s41585-024-00901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/03/2024]
Abstract
Gene editing technologies help identify the genetic perturbations driving tumour initiation, growth, metastasis and resistance to therapeutics. This wealth of information highlights tumour complexity and is driving cancer research towards precision medicine approaches based on an individual's tumour genetics. Bladder cancer is the 11th most common cancer in the UK, with high rates of relapse and low survival rates in patients with muscle-invasive bladder cancer (MIBC). MIBC is highly heterogeneous and encompasses multiple molecular subtypes, each with different responses to therapeutics. This evidence highlights the need to identify innovative therapeutic targets to address the challenges posed by this heterogeneity. CRISPR-Cas9 technologies have been used to advance our understanding of MIBC and determine novel drug targets through the identification of drug resistance mechanisms, targetable cell-cycle regulators, and novel tumour suppressor and oncogenes. However, the use of these technologies in the clinic remains a substantial challenge and will require careful consideration of dosage, safety and ethics. CRISPR-Cas9 offers considerable potential for revolutionizing bladder cancer therapies, but substantial research is required for validation before these technologies can be used in the clinical setting.
Collapse
Affiliation(s)
- Danielle J Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Sapna Lunj
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health Research and Innovation, University of Manchester, Manchester, UK
| | - Sankari Nagarajan
- Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Tim A D Smith
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Nuclear Futures Institute, Bangor University, Bangor, UK
| | | | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Zhan T, Li X, Liu J, Ye C. CRISPR-based gene expression platform for precise regulation of bladder cancer. Cell Mol Biol Lett 2024; 29:66. [PMID: 38724931 PMCID: PMC11080256 DOI: 10.1186/s11658-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and β-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular β-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.
Collapse
Affiliation(s)
- Tianying Zhan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- Department of Urology, Carson International Cancer Centre, Shenzhen University General Hospital, Shenzhen, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guang Dong Medical Academic Exchange Center, Guangzhou, China.
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guang Dong Medical Academic Exchange Center, Guangzhou, China.
| |
Collapse
|
7
|
Mahmood M, Taufiq I, Mazhar S, Hafeez F, Malik K, Afzal S. Revolutionizing personalized cancer treatment: the synergy of next-generation sequencing and CRISPR/Cas9. Per Med 2024; 21:175-190. [PMID: 38708901 DOI: 10.1080/17410541.2024.2341610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
In the context of cancer heterogeneity, the synergistic action of next-generation sequencing (NGS) and CRISPR/Cas9 plays a promising role in the personalized treatment of cancer. NGS enables high-throughput genomic profiling of tumors and pinpoints specific mutations that primarily lead to cancer. Oncologists use this information obtained from NGS in the form of DNA profiling or RNA analysis to tailor precision strategies based on an individual's unique molecular signature. Furthermore, the CRISPR technique enables precise editing of cancer-specific mutations, allowing targeted gene modifications. Harnessing the potential insights of NGS and CRISPR/Cas9 heralds a remarkable frontier in cancer therapeutics with unprecedented precision, effectiveness and minimal off-target effects.
Collapse
Affiliation(s)
- Muniba Mahmood
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Izza Taufiq
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Sana Mazhar
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Faiqa Hafeez
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| | - Samia Afzal
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab, 53700, Pakistan
| |
Collapse
|
8
|
Li M, Chen F, Yang Q, Tang Q, Xiao Z, Tong X, Zhang Y, Lei L, Li S. Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment. Biomater Res 2024; 28:0023. [PMID: 38694229 PMCID: PMC11062511 DOI: 10.34133/bmr.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
CRISPR/Cas9 gene editing technology is characterized by high specificity and efficiency, and has been applied to the treatment of human diseases, especially tumors involving multiple genetic modifications. However, the clinical application of CRISPR/Cas9 still faces some major challenges, the most urgent of which is the development of optimized delivery vectors. Biomaterials are currently the best choice for use in CRISPR/Cas9 delivery vectors owing to their tunability, biocompatibility, and efficiency. As research on biomaterial vectors continues to progress, hope for the application of the CRISPR/Cas9 system for clinical oncology therapy builds. In this review, we first detail the CRISPR/Cas9 system and its potential applications in tumor therapy. Then, we introduce the different delivery forms and compare the physical, viral, and non-viral vectors. In addition, we analyze the characteristics of different types of biomaterial vectors. We further review recent research progress in the use of biomaterials as vectors for CRISPR/Cas9 delivery to treat specific tumors. Finally, we summarize the shortcomings and prospects of biomaterial-based CRISPR/Cas9 delivery systems.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Fenglei Chen
- College of Veterinary Medicine, Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses,
Yangzhou University, Yangzhou 225009, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Ying Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Institute of Translational Medicine,
Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
9
|
Zheng B, Chen Y, Niu L, Zhang X, Yang Y, Wang S, Chen W, Cai Z, Huang W, Huang W. Modulating the tumoral SPARC content to enhance albumin-based drug delivery for cancer therapy. J Control Release 2024; 366:596-610. [PMID: 38184232 DOI: 10.1016/j.jconrel.2023.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Insufficient delivery of therapeutic agents into solid tumors by systemic administration remains a major challenge in cancer treatment. Secreted protein acidic and rich in cysteine (SPARC) has high binding affinity to albumin and has been shown to enhance the penetration and uptake of albumin-based drug carriers in tumors. Here, we developed a strategy to alter the tumor microenvironment (TME) by upregulating SPARC to enhance the delivery efficiency of albumin-based drug carriers into tumors. We prepared albumin nanoparticles encapsulating an NF-κB controllable CRISPR activation system (SP-NPs). SP-NPs achieved tumor-selective SPARC upregulation by responding to the highly activated NF-κB in tumor cells. Whereas a single dose of SP-NPs only modestly upregulated SPARC expression, serial administration of SP-NPs created a positive feedback loop that induced progressive increases in SPARC expression as well as tumor cell uptake and tumor penetration of the nanoparticles in vitro, in organoids, and in subcutaneous tumors in vivo. Additionally, pre-treatment with SP-NPs significantly enhanced the anti-tumor efficacy of Abraxane, a commercialized albumin-bound paclitaxel nanoformulation. Our data provide evidence that modulating SPARC in the TME can enhance the efficiency of albumin-based drug delivery to solid tumors, which may result in new strategies to increase the efficacy of nanoparticle-based cancer drugs.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yanping Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Liman Niu
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xinyuan Zhang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Yubin Yang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Shanzhao Wang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China
| | - Wei Chen
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Zhiming Cai
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Weiren Huang
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen 518039, PR China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen 518035, PR China.
| |
Collapse
|
10
|
Wang X, Liang Q, Luo Y, Ye J, Yu Y, Chen F. Engineering the next generation of theranostic biomaterials with synthetic biology. Bioact Mater 2024; 32:514-529. [PMID: 38026437 PMCID: PMC10660023 DOI: 10.1016/j.bioactmat.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Biomaterials have evolved from inert materials to responsive entities, playing a crucial role in disease diagnosis, treatment, and modeling. However, their advancement is hindered by limitations in chemical and mechanical approaches. Synthetic biology enabling the genetically reprograming of biological systems offers a new paradigm. It has achieved remarkable progresses in cell reprogramming, engineering designer cells for diverse applications. Synthetic biology also encompasses cell-free systems and rational design of biological molecules. This review focuses on the application of synthetic biology in theranostics, which boost rapid development of advanced biomaterials. We introduce key fundamental concepts of synthetic biology and highlight frontier applications thereof, aiming to explore the intersection of synthetic biology and biomaterials. This integration holds tremendous promise for advancing biomaterial engineering with programable complex functions.
Collapse
Affiliation(s)
- Xiang Wang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qianyi Liang
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yixuan Luo
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianwen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yin Yu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
11
|
Ou Y, Guo S. Safety risks and ethical governance of biomedical applications of synthetic biology. Front Bioeng Biotechnol 2023; 11:1292029. [PMID: 37941726 PMCID: PMC10628459 DOI: 10.3389/fbioe.2023.1292029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Background: In recent years, biomedicine has witnessed rapid advancements in applying synthetic biology. While these advancements have brought numerous benefits to patients, they have also given rise to a series of safety concerns. Methods: This article provides a succinct overview of the current research on synthetic biology's application in biomedicine and systematically analyzes the safety risks associated with this field. Based on this analysis, the article proposes fundamental principles for addressing these issues and presents practical recommendations for ethical governance. Results: This article contends that the primary safety risks associated with the application of synthetic biology in biomedicine include participant safety, biosafety risks, and biosecurity risks. In order to effectively address these risks, it is essential to adhere to the principles of human-centeredness, non-maleficence, sustainability, and reasonable risk control. Guided by these fundamental principles and taking into account China's specific circumstances, this article presents practical recommendations for ethical governance, which include strengthening ethical review, promoting the development and implementation of relevant policies, improving legal safeguards through top-level design, and enhancing technical capabilities for biocontainment. Conclusion: As an emerging field of scientific technology, synthetic biology presents numerous safety risks and challenges in its application within biomedicine. In order to address these risks and challenges, it is imperative that appropriate measures be implemented. From a Chinese perspective, the solutions we propose serve not only to advance the domestic development of synthetic biology but also to contribute to its global progress.
Collapse
Affiliation(s)
- Yakun Ou
- School of Marxism, Huazhong University of Science and Technology, Wuhan, China
- Center for Bioethics, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjia Guo
- School of Marxism, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Przybyszewska-Podstawka A, Czapiński J, Kałafut J, Rivero-Müller A. Synthetic circuits based on split Cas9 to detect cellular events. Sci Rep 2023; 13:14988. [PMID: 37696879 PMCID: PMC10495424 DOI: 10.1038/s41598-023-41367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
Synthetic biology involves the engineering of logic circuit gates that process different inputs to produce specific outputs, enabling the creation or control of biological functions. While CRISPR has become the tool of choice in molecular biology due to its RNA-guided targetability to other nucleic acids, it has not been frequently applied to logic gates beyond those controlling the guide RNA (gRNA). In this study, we present an adaptation of split Cas9 to generate logic gates capable of sensing biological events, leveraging a Cas9 reporter (EGxxFP) to detect occurrences such as cancer cell origin, epithelial to mesenchymal transition (EMT), and cell-cell fusion. First, we positioned the complementing halves of split Cas9 under different promoters-one specific to cancer cells of epithelial origin (phCEA) and the other a universal promoter. The use of self-assembling inteins facilitated the reconstitution of the Cas9 halves. Consequently, only cancer cells with an epithelial origin activated the reporter, exhibiting green fluorescence. Subsequently, we explored whether this system could detect biological processes such as epithelial to mesenchymal transition (EMT). To achieve this, we designed a logic gate where one half of Cas9 is expressed under the phCEA, while the other is activated by TWIST1. The results showed that cells undergoing EMT effectively activated the reporter. Next, we combined the two inputs (epithelial origin and EMT) to create a new logic gate, where only cancer epithelial cells undergoing EMT activated the reporter. Lastly, we applied the split-Cas9 logic gate as a sensor of cell-cell fusion, both in induced and naturally occurring scenarios. Each cell type expressed one half of split Cas9, and the induction of fusion resulted in the appearance of multinucleated syncytia and the fluorescent reporter. The simplicity of the split Cas9 system presented here allows for its integration into various cellular processes, not only as a sensor but also as an actuator.
Collapse
Affiliation(s)
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
| |
Collapse
|
13
|
Anderson CE, Ferreira SS, Antunes MS. Integration of multiple stress signals in plants using synthetic Boolean logic gates. PLANT PHYSIOLOGY 2023; 192:3189-3202. [PMID: 37119276 PMCID: PMC10400031 DOI: 10.1093/plphys/kiad254] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
As photosynthetic organisms, plants have a potential role in the sustainable production of high-value products such as medicines, biofuels, and chemical feedstocks. With effective engineering using synthetic biology approaches, plant-based platforms could conceivably be designed to minimize the costs and waste of production for materials that would otherwise be uneconomical. Additionally, modern agricultural crops could be engineered to be more productive, resilient, or restorative in different or rapidly changing environments and climates. Information-processing genetic devices and circuits containing multiple interacting parts that behave predictably must be developed to achieve these complex goals. A genetic Boolean AND logic gate is a device that computes the presence or absence of 2 inputs (signals and stimuli) and produces an output (response) only when both inputs are present. We optimized individual genetic components and used synthetic protein heterodimerizing domains to rationally assemble genetic AND logic gates that integrate 2 hormonal inputs in transgenic Arabidopsis thaliana plants. These AND gates produce an output only in the presence of both abscisic acid and auxin but not when either or neither hormone is present. The AND logic gate can also integrate signals resulting from 2 plant stresses, cold temperature and bacterial infection, to produce a response. The design principles used here are generalizable, and, therefore, multiple orthogonal AND gates could be assembled and rationally layered to process complex genetic information in plants. These layered logic gates may be used in genetic circuits to probe fundamental questions in plant biology, such as hormonal crosstalk, in addition to plant engineering for bioproduction.
Collapse
Affiliation(s)
- Charles E Anderson
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
14
|
Deng C, Li S, Liu Y, Bao W, Xu C, Zheng W, Wang M, Ma X. Split-Cas9-based targeted gene editing and nanobody-mediated proteolysis-targeting chimeras optogenetically coordinated regulation of Survivin to control the fate of cancer cells. Clin Transl Med 2023; 13:e1382. [PMID: 37620295 PMCID: PMC10449816 DOI: 10.1002/ctm2.1382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Precise regulation of partial critical proteins in cancer cells, such as anti-apoptotic proteins, is one of the crucial strategies for treating cancer and discovering related molecular mechanisms. Still, it is also challenging in actual research and practice. The widely used CRISPR/Cas9-based gene editing technology and proteolysis-targeting chimeras (PROTACs) have played an essential role in regulating gene expression and protein function in cells. However, the accuracy and controllability of their targeting remain necessary. METHODS Construction of UMUC-3-EGFP stable transgenic cell lines using the Sleeping Beauty system, Flow cytometry, quantitative real-time PCR, western blot, fluorescence microplate reader and fluorescence inverted microscope analysis of EGFP intensity. Characterization of Survivin inhibition was done by using Annexin V-FITC/PI apoptosis, calcein/PI/DAPI cell viability/cytotoxicity assay, cloning formation assay and scratch assay. The cell-derived xenograft (CDX) model was constructed to assess the in vivo effects of reducing Survivin expression. RESULTS Herein, we established a synergistic control platform that coordinated photoactivatable split-Cas9 targeted gene editing and light-induced protein degradation, on which the Survivin gene in the nucleus was controllably edited by blue light irradiation (named paCas9-Survivin) and simultaneously the Survivin protein in the cytoplasm was degraded precisely by a nanobody-mediated target (named paProtacL-Survivin). Meanwhile, in vitro experiments demonstrated that reducing Survivin expression could effectively promote apoptosis and decrease the proliferation and migration of bladder cancerous cells. Furthermore, the CDX model was constructed using UMUC-3 cell lines, results from animal studies indicated that both the paCas9-Survivin system and paProtacL-Survivin significantly inhibited tumour growth, with higher inhibition rates when combined. CONCLUSIONS In short, the coordinated regulatory strategies and combinable technology platforms offer clear advantages in controllability and targeting, as well as an excellent reference value and universal applicability in controlling the fate of cancer cells through multi-level regulation of key intracellular factors.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Shihui Li
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Wen Bao
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Chengnan Xu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Meiyan Wang
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory BiologyInstitute of BiomedicalSciences and School of Life SciencesEast China Normal UniversityShanghaiP. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| |
Collapse
|
15
|
Zhang J, Guo F, Zhu J, He Z, Hao L, Weng L, Wang L, Chao J. Ultrasensitive Electrochemiluminescence Immunosensor for Bladder Marker Human Complement Factor H-Related Protein Detection. Anal Chem 2023. [PMID: 37478154 DOI: 10.1021/acs.analchem.3c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The development of noninvasive and sensitive detection methods for the early diagnosis and monitoring of bladder cancer is critical but challenging. Herein, an ultrasensitive electrochemiluminescence (ECL) immunosensor that uses Ru(bpy)32+-metal-organic framework (Ru-MOF) nanospheres and a DNA tetrahedral (TDN) probe was established for bladder cancer marker complement factor H-related protein (CFHR1) detection. The synthesized Ru(bpy)32+-metal-organic frameworks (Ru-MOFs) served as a linked substrate for immobilization of AuNPs and antibody (Ab2) to prepare the ECL signal probe (Ru-MOF@AuNPs-Ab2), exhibiting a stable and strengthened ECL emission. At the same time, the inherent advantages of TDN probes on the electrode as the capture probe (TDN-Ab1) improve the accessibility of targets to probes. In the presence of CFHR1, the signal probe Ru-MOF@AuNPs-Ab2 was modified on the electrode through immune binding, thereby obtaining an outstanding ECL signal. As expected, the developed ECL immunosensor exhibited splendid performance for CFHR1 detection in the range of 0.1 fg/mL to 10 pg/mL with a quite low detection limit of 0.069 fg/mL. By using the proposed strategy to detect CFHR1 from urine, it showed acceptable accuracy, which can effectively distinguish between bladder cancer patients and healthy samples. This work contributes to a novel, noninvasive, and accurate method for early clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Fenglian Guo
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingfeng Zhu
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhimei He
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Lixing Weng
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jie Chao
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
16
|
Meng X, Wu T, Lou Q, Niu K, Jiang L, Xiao Q, Xu T, Zhang L. Optimization of CRISPR-Cas system for clinical cancer therapy. Bioeng Transl Med 2023; 8:e10474. [PMID: 36925702 PMCID: PMC10013785 DOI: 10.1002/btm2.10474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is a genetic disease caused by alterations in genome and epigenome and is one of the leading causes for death worldwide. The exploration of disease development and therapeutic strategies at the genetic level have become the key to the treatment of cancer and other genetic diseases. The functional analysis of genes and mutations has been slow and laborious. Therefore, there is an urgent need for alternative approaches to improve the current status of cancer research. Gene editing technologies provide technical support for efficient gene disruption and modification in vivo and in vitro, in particular the use of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Currently, the applications of CRISPR-Cas systems in cancer rely on different Cas effector proteins and the design of guide RNAs. Furthermore, effective vector delivery must be met for the CRISPR-Cas systems to enter human clinical trials. In this review article, we describe the mechanism of the CRISPR-Cas systems and highlight the applications of class II Cas effector proteins. We also propose a synthetic biology approach to modify the CRISPR-Cas systems, and summarize various delivery approaches facilitating the clinical application of the CRISPR-Cas systems. By modifying the CRISPR-Cas system and optimizing its in vivo delivery, promising and effective treatments for cancers using the CRISPR-Cas system are emerging.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Tian‐gang Wu
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qiu‐yue Lou
- Anhui Provincial Center for Disease Control and PreventionHefeiPeople's Republic of China
| | - Kai‐yuan Niu
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
- Department of OtolaryngologyThe Third Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Lei Jiang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
| | - Qing‐zhong Xiao
- Clinical Pharmacology, William Harvey Research Institute (WHRI), Barts and The London School of Medicine and DentistryQueen Mary University of London (QMUL) Heart Centre (G23)LondonUK
| | - Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural ProductsAnhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceHefeiChina
| | - Lei Zhang
- College & Hospital of StomatologyAnhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiPeople's Republic of China
- Department of PeriodontologyAnhui Stomatology Hospital Affiliated to Anhui Medical UniversityHefeiChina
| |
Collapse
|
17
|
Abraha BW, Marchisio MA. Design of Gene Boolean Gates and Circuits with Convergent Promoters. Methods Mol Biol 2023; 2553:121-154. [PMID: 36227542 DOI: 10.1007/978-1-0716-2617-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gene digital circuits are the subject of many research works due to their various potential applications, from hazard detection to medical diagnostic. Moreover, a remarkable number of techniques, developed in electronics, can be used for the construction of biological digital systems. In our previous works, we showed how to automatize the design and modeling of gene digital circuits whose gates were based on transcription and translation regulation. In this chapter, we illustrate how Boolean gates could be implemented by following a particular architecture, the convergent promoter one, rather diffuse in nature but seldom adopted in Synthetic Biology. Beside gate design, we also explain how to extend our previous modeling approach, based on composable parts and pools of molecules, to quantitatively describe and simulate this particular kind of digital biological devices.
Collapse
Affiliation(s)
- Biruck Woldai Abraha
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | |
Collapse
|
18
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
19
|
Shaytan AK, Novikov RV, Vinnikov RS, Gribkova AK, Glukhov GS. From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Front Mol Biosci 2022; 9:1070526. [PMID: 36589238 PMCID: PMC9795063 DOI: 10.3389/fmolb.2022.1070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
In the last decade, the CRISPR-Cas technology has gained widespread popularity in different fields from genome editing and detecting specific DNA/RNA sequences to gene expression control. At the heart of this technology is the ability of CRISPR-Cas complexes to be programmed for targeting particular DNA loci, even when using catalytically inactive dCas-proteins. The repertoire of naturally derived and engineered dCas-proteins including fusion proteins presents a promising toolbox that can be used to construct functional synthetic genetic circuits. Rational genetic circuit design, apart from having practical relevance, is an important step towards a deeper quantitative understanding of the basic principles governing gene expression regulation and functioning of living organisms. In this minireview, we provide a succinct overview of the application of CRISPR-dCas-based systems in the emerging field of synthetic genetic circuit design. We discuss the diversity of dCas-based tools, their properties, and their application in different types of genetic circuits and outline challenges and further research directions in the field.
Collapse
Affiliation(s)
- A. K. Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Computer Science, HSE University, Moscow, Russia,*Correspondence: A. K. Shaytan,
| | - R. V. Novikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - R. S. Vinnikov
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - A. K. Gribkova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - G. S. Glukhov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia,Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Kim SK, Kim H, Woo SG, Kim TH, Rha E, Kwon KK, Lee H, Lee SG, Lee DH. CRISPRi-based programmable logic inverter cascade for antibiotic-free selection and maintenance of multiple plasmids. Nucleic Acids Res 2022; 50:13155-13171. [PMID: 36511859 PMCID: PMC9825151 DOI: 10.1093/nar/gkac1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been widely used for plasmid-mediated cell engineering. However, continued use of antibiotics increases the metabolic burden, horizontal gene transfer risks, and biomanufacturing costs. There are limited approaches to maintaining multiple plasmids without antibiotics. Herein, we developed an inverter cascade using CRISPRi by building a plasmid containing a single guide RNA (sgRNA) landing pad (pSLiP); this inhibited host cell growth by repressing an essential cellular gene. Anti-sgRNAs on separate plasmids restored cell growth by blocking the expression of growth-inhibitory sgRNAs in pSLiP. We maintained three plasmids in Escherichia coli with a single antibiotic selective marker. To completely avoid antibiotic use and maintain the CRISPRi-based logic inverter cascade, we created a novel d-glutamate auxotrophic E. coli. This enabled the stable maintenance of the plasmid without antibiotics, enhanced the production of the terpenoid, (-)-α-bisabolol, and generation of an antibiotic-resistance gene-free plasmid. CRISPRi is therefore widely applicable in genetic circuits and may allow for antibiotic-free biomanufacturing.
Collapse
Affiliation(s)
| | | | - Seung Gyun Woo
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34143, Republic of Korea
| | - Tae Hyun Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34143, Republic of Korea
| | - Eugene Rha
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seung-Goo Lee
- To whom correspondence should be addressed. Tel: +82 42 860 4373; Fax: +82 42 860 4489;
| | - Dae-Hee Lee
- Correspondence may also be addressed to Dae-Hee Lee. Tel: +82 42 879 8225; Fax: +82 42 860 4489;
| |
Collapse
|
21
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
22
|
Presnell KV, Melhem O, Morse NJ, Alper HS. Modular, Synthetic Boolean Logic Gates Enabled in Saccharomyces cerevisiae through T7 Polymerases/CRISPR dCas9 Designs. ACS Synth Biol 2022; 11:3414-3425. [PMID: 36206523 DOI: 10.1021/acssynbio.2c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic control of gene expression, whether simply promoter selection or higher-order Boolean-style logic, is an important tool for metabolic engineering and synthetic biology. This work develops a suite of orthogonal T7 RNA polymerase systems capable of exerting AND/OR switchlike control over transcription in the yeastSaccharomyces cerevisiae. When linked with CRISPR dCas9-based regulation systems, more complex circuitry is possible including AND/OR/NAND/NOR style control in response to combinations of extracellular copper and galactose. Additionally, we demonstrate that these T7 system designs are modular and can accommodate alternative stimuli sensing as demonstrated through blue light induction. These designs should greatly reduce the time and labor necessary for developing Boolean gene circuits in yeast with novel applications including metabolic pathway control in the future.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Omar Melhem
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Nicholas J Morse
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Wang J, Tao Y, Juan Y, Zhou H, Zhao X, Cheng X, Wang X, Quan X, Li J, Huang K, Wei W, Zhao J. Hierarchical Assembly of Flexible Biopolymer Polyphosphate-Manganese into Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203200. [PMID: 36084167 DOI: 10.1002/smll.202203200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphate (polyP) is one of the most compact inorganic polyanionic biopolymers that participates in various physiological processes. However, the development of polyP-based nanomaterials is still in its infancy. Here, biocompatible polyphosphate-manganese nanosheets are designed and synthesized by a hierarchical assembly strategy. The thickness and the lateral size of the resulting polyP-Mn nanosheets (PMNSs) are 5 nm and 120-130 nm, respectively. Molecular dynamics simulations suggested that the polyP-hexadecyl trimethyl ammonium bromide flat structure possesses a strong aggregating capacity and serves as the template for the 2D assembly of polyP-Mn. The PMNSs can activate the inflammatory response of macrophages resulting in the recovery of innate immunological functions to inhibit tumor proliferation. This work has initiated a new direction in constructing layered polyP-based nanomaterials and provides guidance for biocompatible and biodegradable biopolymer-based materials in the regulation of innate responses.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Yucheng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Yewen Juan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Hang Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiaomei Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Junyan Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| |
Collapse
|
24
|
Ding M, Lin J, Qin C, Wei P, Tian J, Lin T, Xu T. Application of synthetic biology in bladder cancer. Chin Med J (Engl) 2022; 135:2178-2187. [PMID: 36209735 PMCID: PMC9771244 DOI: 10.1097/cm9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Bladder cancer (BC) is the most common malignant tumor of the genitourinary system. The age of individuals diagnosed with BC tends to decrease in recent years. A variety of standard therapeutic options are available for the clinical management of BC, but limitations exist. It is difficult to surgically eliminate small lesions, while radiation and chemotherapy damage normal tissues, leading to severe side effects. Therefore, new approaches are required to improve the efficacy and specificity of BC treatment. Synthetic biology is a field emerging in the last decade that refers to biological elements, devices, and materials that are artificially synthesized according to users' needs. In this review, we discuss how to utilize genetic elements to regulate BC-related gene expression periodically and quantitatively to inhibit the initiation and progression of BC. In addition, the design and construction of gene circuits to distinguish cancer cells from normal cells to kill the former but spare the latter are elaborated. Then, we introduce the development of genetically modified T cells for targeted attacks on BC. Finally, synthetic nanomaterials specializing in detecting and killing BC cells are detailed. This review aims to describe the innovative details of the clinical diagnosis and treatment of BC from the perspective of synthetic biology.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Jiaxing Lin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 528403, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
25
|
Dong K, Zhang W, Hu H, Cheng S, Mu Y, Yan B, Shu W, Li L, Wang H, Xiao X. A sensitive and specific nano-vehicle based on self-amplified dual-input synthetic gene circuit for intracellular imaging and treatment. Biosens Bioelectron 2022; 218:114746. [DOI: 10.1016/j.bios.2022.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
|
26
|
Yang Y, Luo T, He Y, Deng Z, Li J, Liu H, Nie J, Wang D, Huang J, Zhong S. Nanoflare Couple: Multiplexed mRNA Imaging and Logic-Controlled Combinational Therapy. Anal Chem 2022; 94:12204-12212. [PMID: 36007146 DOI: 10.1021/acs.analchem.2c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theranostics, which combines both diagnostic and therapeutic capabilities in one dose, has always been an intractable challenge in personalized cancer treatment. Herein, a versatile nanotheranostic platform "nanoflare couple (NC)" has been developed for in situ multiplex cancer-related mRNA imaging and subsequent logic-controlled aggregation of gold nanoparticles, leading to gene therapy and photothermal therapy upon irradiation with infrared light. As a proof of concept, TK1 and survivin mRNAs that are highly expressed in most tumor tissues are selected as endogenous cancer indicators and therapy triggers to design the NC. Mice bearing breast cancer cells MCF-7 are prepared as a model to test its efficacy. The in vitro and in vivo assays validate that the NC show the capability for multiplexed mRNA imaging and high efficiency for logic-controlled combinational therapy of breast cancer.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
27
|
Hao Y, Li M, Zhang Q, Shi J, Li J, Li Q, Fan C, Wang F. DNA Origami‐Based Single‐Molecule CRISPR Machines for Spatially Resolved Searching. Angew Chem Int Ed Engl 2022; 61:e202205460. [DOI: 10.1002/anie.202205460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yaya Hao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiye Shi
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiang Li
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
28
|
Chen XZ, Guo R, Zhao C, Xu J, Song H, Yu H, Pilarsky C, Nainu F, Li JQ, Zhou XK, Zhang JY. A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Front Pharmacol 2022; 13:939090. [PMID: 35935840 PMCID: PMC9353945 DOI: 10.3389/fphar.2022.939090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Cancer becomes one of the main causes of human deaths in the world due to the high incidence and mortality rate and produces serious economic burdens. With more and more attention is paid on cancer, its therapies are getting more of a concern. Previous research has shown that the occurrence, progression, and treatment prognosis of malignant tumors are closely related to genetic and gene mutation. CRISPR/Cas9 has emerged as a powerful method for making changes to the genome, which has extensively been applied in various cell lines. Establishing the cell and animal models by CRISPR/Cas9 laid the foundation for the clinical trials which possibly treated the tumor. CRISPR-Cas9-mediated genome editing technology brings a great promise for inhibiting migration, invasion, and even treatment of tumor. However, the potential off-target effect limits its clinical application, and the effective ethical review is necessary. The article reviews the molecular mechanisms of CRISPR/Cas9 and discusses the research and the limitation related to cancer clinical trials.
Collapse
Affiliation(s)
- Xin-Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Rong Guo
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cong Zhao
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Christian Pilarsky
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Jing-Quan Li, ; Xin-Ke Zhou, ; Jian-Ye Zhang,
| | - Xin-Ke Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing-Quan Li, ; Xin-Ke Zhou, ; Jian-Ye Zhang,
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing-Quan Li, ; Xin-Ke Zhou, ; Jian-Ye Zhang,
| |
Collapse
|
29
|
He M, Zhou X, Li Z, Yin X, Han W, Zhou J, Sun X, Liu X, Yao D, Liang H. Programmable Transcriptional Modulation with a Structured RNA-Mediated CRISPR-dCas9 Complex. J Am Chem Soc 2022; 144:12690-12697. [DOI: 10.1021/jacs.2c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miao He
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang Zhou
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhigang Li
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xue Yin
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenjie Han
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junxiang Zhou
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyun Sun
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyu Liu
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongbao Yao
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haojun Liang
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Hao Y, Li M, Zhang Q, Shi J, Li J, Li Q, Fan C, Wang F. DNA origami‐based single‐molecule CRISPR machines for spatially resolved searching. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaya Hao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHRISTMAS ISLAND
| | - Mingqiang Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qian Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jiye Shi
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Division of Physical Biology CHINA
| | - Jiang Li
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Division of Physical Biology CHINA
| | - Qian Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering Dongchuan Rd 800 200240 Shanghai CHINA
| | - Fei Wang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
31
|
Wang Y, Zhang G, Meng Q, Huang S, Guo P, Leng Q, Sun L, Liu G, Huang X, Liu J. Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nat Commun 2022; 13:1454. [PMID: 35304449 PMCID: PMC8933567 DOI: 10.1038/s41467-022-29120-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Nevertheless, the precise delivery of immunotherapeutic activities to the tumors remains challenging. Here, we explore a synthetic gene circuit-based strategy for specific tumor identification, and for subsequently engaging immune activation. By design, these circuits are assembled from two interactive modules, i.e., an oncogenic TF-driven CRISPRa effector, and a corresponding p53-inducible off-switch (NOT gate), which jointly execute an AND-NOT logic for accurate tumor targeting. In particular, two forms of the NOT gate are developed, via the use of an inhibitory sgRNA or an anti-CRISPR protein, with the second form showing a superior performance in gating CRISPRa by p53 loss. Functionally, the optimized AND-NOT logic circuit can empower a highly specific and effective tumor recognition/immune rewiring axis, leading to therapeutic effects in vivo. Taken together, our work presents an adaptable strategy for the development of precisely delivered immunotherapy. “Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Here the authors present an adaptable gene circuit to harness the CRISPRa for tumorlocalized immune activation.”
Collapse
Affiliation(s)
- Yafeng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China.,Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guiquan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China
| | - Qingzhou Meng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Zhejiang Laboratory, Hangzhou, 311100, China.
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
32
|
Tickman BI, Burbano DA, Chavali VP, Kiattisewee C, Fontana J, Khakimzhan A, Noireaux V, Zalatan JG, Carothers JM. Multi-layer CRISPRa/i circuits for dynamic genetic programs in cell-free and bacterial systems. Cell Syst 2022; 13:215-229.e8. [PMID: 34800362 DOI: 10.1016/j.cels.2021.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
CRISPR-Cas transcriptional circuits hold great promise as platforms for engineering metabolic networks and information processing circuits. Historically, prokaryotic CRISPR control systems have been limited to CRISPRi. Creating approaches to integrate CRISPRa for transcriptional activation with existing CRISPRi-based systems would greatly expand CRISPR circuit design space. Here, we develop design principles for engineering prokaryotic CRISPRa/i genetic circuits with network topologies specified by guide RNAs. We demonstrate that multi-layer CRISPRa/i cascades and feedforward loops can operate through the regulated expression of guide RNAs in cell-free expression systems and E. coli. We show that CRISPRa/i circuits can program complex functions by designing type 1 incoherent feedforward loops acting as fold-change detectors and tunable pulse-generators. By investigating how component characteristics relate to network properties such as depth, width, and speed, this work establishes a framework for building scalable CRISPRa/i circuits as regulatory programs in cell-free expression systems and bacterial hosts. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Benjamin I Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Venkata P Chavali
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Cholpisit Kiattisewee
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Jason Fontana
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesse G Zalatan
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA 98195, USA; Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Zhan Y, Li A, Cao C, Liu Y. CRISPR signal conductor 2.0 for redirecting cellular information flow. Cell Discov 2022; 8:26. [PMID: 35288535 PMCID: PMC8921274 DOI: 10.1038/s41421-021-00371-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
A key challenge in designing intelligent artificial gene circuits is generating flexible connections between arbitrary components and directly coupling them with endogenous signaling pathways. The CRISPR signal conductor based on conditionally inducible artificial transcriptional regulators can link classic cellular protein signals with targeted gene expression, but there are still problems with multiple signal processing and gene delivery. With the discovery and characterization of new Cas systems and long noncoding RNA (lncRNA) functional motifs, and because of the compatibility of guide RNA with noncoding RNA elements at multiple sites, it is increasingly possible to solve these problems. In this study, we developed CRISPR signal conductor version 2.0 by integrating various lncRNA functional motifs into different parts of the crRNA in the CRISPR-dCasΦ system. This system can directly regulate the expression of target genes by recruiting cellular endogenous transcription factors and efficiently sense a variety of protein signals that are not detected by a classical synthetic system. The new system solved the problems of background leakage and insensitive signaling responses and enabled the construction of logic gates with as many as six input signals, which can be used to specifically target cancer cells. By rewiring endogenous signaling networks, we further demonstrated the effectiveness and biosafety of this system for in vivo cancer gene therapy.
Collapse
Affiliation(s)
- Yonghao Zhan
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aolin Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Congcong Cao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China. .,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
34
|
Bellato M, Frusteri Chiacchiera A, Salibi E, Casanova M, De Marchi D, Castagliuolo I, Cusella De Angelis MG, Magni P, Pasotti L. CRISPR Interference Modules as Low-Burden Logic Inverters in Synthetic Circuits. Front Bioeng Biotechnol 2022; 9:743950. [PMID: 35155399 PMCID: PMC8831695 DOI: 10.3389/fbioe.2021.743950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR and CRISPRi systems have revolutionized our biological engineering capabilities by enabling the editing and regulation of virtually any gene, via customization of single guide RNA (sgRNA) sequences. CRISPRi modules can work as programmable logic inverters, in which the dCas9-sgRNA complex represses a target transcriptional unit. They have been successfully used in bacterial synthetic biology to engineer information processing tasks, as an alternative to the traditionally adopted transcriptional regulators. In this work, we investigated and modulated the transfer function of several model systems with specific focus on the cell load caused by the CRISPRi logic inverters. First, an optimal expression cassette for dCas9 was rationally designed to meet the low-burden high-repression trade-off. Then, a circuit collection was studied at varying levels of dCas9 and sgRNAs targeting three different promoters from the popular tet, lac and lux systems, placed at different DNA copy numbers. The CRISPRi NOT gates showed low-burden properties that were exploited to fix a high resource-consuming circuit previously exhibiting a non-functional input-output characteristic, and were also adopted to upgrade a transcriptional regulator-based NOT gate into a 2-input NOR gate. The obtained data demonstrate that CRISPRi-based modules can effectively act as low-burden components in different synthetic circuits for information processing.
Collapse
Affiliation(s)
- Massimo Bellato
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Angelica Frusteri Chiacchiera
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Elia Salibi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Michela Casanova
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Davide De Marchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | | | - Maria Gabriella Cusella De Angelis
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Pavia, Italy
- *Correspondence: Lorenzo Pasotti,
| |
Collapse
|
35
|
Yu G, Zhang M, Gao L, Zhou Y, Qiao L, Yin J, Wang Y, Zhou J, Ye H. Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control. Mol Ther 2022; 30:341-354. [PMID: 34530162 PMCID: PMC8753431 DOI: 10.1016/j.ymthe.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Diabetes affects almost half a billion people, and all individuals with type 1 diabetes (T1D) and a large portion of individuals with type 2 diabetes rely on self-administration of the peptide hormone insulin to achieve glucose control. However, this treatment modality has cumbersome storage and equipment requirements and is susceptible to fatal user error. Here, reasoning that a cell-based therapy could be coupled to an external induction circuit for blood glucose control, as a proof of concept we developed far-red light (FRL)-activated human islet-like designer (FAID) cells and demonstrated how FAID cell implants achieved safe and sustained glucose control in diabetic model mice. Specifically, by introducing a FRL-triggered optogenetic device into human mesenchymal stem cells (hMSCs), which we encapsulated in poly-(l-lysine)-alginate and implanted subcutaneously under the dorsum of T1D model mice, we achieved FRL illumination-inducible secretion of insulin that yielded improvements in glucose tolerance and sustained blood glucose control over traditional insulin glargine treatment. Moreover, the FAID cell implants attenuated both oxidative stress and development of multiple diabetes-related complications in kidneys. This optogenetics-controlled "living cell factory" platform could be harnessed to develop multiple synthetic designer therapeutic cells to achieve long-term yet precisely controllable drug delivery.
Collapse
Affiliation(s)
- Guiling Yu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Yang Zhou
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Longliang Qiao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jianli Yin
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yiwen Wang
- Electron Microscopy Center, School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
36
|
Targeting Cancer with CRISPR/Cas9-Based Therapy. Int J Mol Sci 2022; 23:ijms23010573. [PMID: 35008996 PMCID: PMC8745084 DOI: 10.3390/ijms23010573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a devastating condition characterised by the uncontrolled division of cells with many forms remaining resistant to current treatment. A hallmark of cancer is the gradual accumulation of somatic mutations which drive tumorigenesis in cancerous cells, creating a mutation landscape distinctive to a cancer type, an individual patient or even a single tumour lesion. Gene editing with CRISPR/Cas9-based tools now enables the precise and permanent targeting of mutations and offers an opportunity to harness this technology to target oncogenic mutations. However, the development of safe and effective gene editing therapies for cancer relies on careful design to spare normal cells and avoid introducing other mutations. This article aims to describe recent advancements in cancer-selective treatments based on the CRISPR/Cas9 system, especially focusing on strategies for targeted delivery of the CRISPR/Cas9 machinery to affected cells, controlling Cas9 expression in tissues of interest and disrupting cancer-specific genes to result in selective death of malignant cells.
Collapse
|
37
|
Simmons TR, Ellington AD, Contreras LM. RNP-Based Control Systems for Genetic Circuits in Synthetic Biology Beyond CRISPR. Methods Mol Biol 2022; 2518:1-31. [PMID: 35666436 DOI: 10.1007/978-1-0716-2421-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ribonucleoproteins (RNPs) are RNA-protein complexes utilized natively in both prokaryotes and eukaryotes to regulate essential processes within the cell. Over the past few years, many of these native systems have been adapted to provide control over custom genetic targets. Engineered RNP-based control systems allow for fine-tune regulation of desired targets, by providing customizable nucleotide-nucleotide interactions. However, as there have been several engineered RNP systems developed recently, identifying an optimal system for various bioprocesses is challenging. Here, we review the most successful engineered RNP systems and their applications to survey the current state of the field. Additionally, we provide selection criteria to provide users a streamlined method for identifying an RNP control system most useful to their own work. Lastly, we discuss future applications of RNP control systems and how they can be utilized to address the current grand challenges of the synthetic biology community.
Collapse
Affiliation(s)
- Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
38
|
Ma S, Lv J, Feng Z, Rong Z, Lin Y. Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. J Gene Med 2021; 23:e3377. [PMID: 34270141 DOI: 10.1002/jgm.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing.
Collapse
Affiliation(s)
- Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zinan Feng
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Afolabi LO, Afolabi MO, Sani MM, Okunowo WO, Yan D, Chen L, Zhang Y, Wan X. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunology 2021; 10:e1286. [PMID: 34188916 PMCID: PMC8219901 DOI: 10.1002/cti2.1286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
The discovery of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) technology has brought advances in the genetic manipulation of eukaryotic cells, which has revolutionised cancer research and treatment options. It is increasingly being used in cancer immunotherapy, including adoptive T and natural killer (NK) cell transfer, secretion of antibodies, cytokine stimulation and overcoming immune checkpoints. CRISPR-Cas9 technology is used in autologous T cells and NK cells to express various innovative antigen designs and combinations of chimeric antigen receptors (CARs) targeted at specific antigens for haematological and solid tumors. Additionally, advanced engineering in immune cells to enhance their sensing circuits with sophisticated functionality is now possible. Intensive research on the CRISPR-Cas9 system has provided scientists with the ability to overcome the hostile tumor microenvironment and generate more products for future clinical use, especially off-the-shelf, universal cellular products, bringing exciting milestones for immunotherapy. This review discussed the application and challenges of CRISPR technology in cancer research and immunotherapy, its advances and prospects for promoting new cell-based therapeutic beyond immune oncology.
Collapse
Affiliation(s)
- Lukman O Afolabi
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Mariam O Afolabi
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
| | - Musbahu M Sani
- Department of BiochemistryFaculty of ScienceFederal University DutseDutseNigeria
| | - Wahab O Okunowo
- Department of BiochemistryCollege of MedicineUniversity of LagosLagosNigeria
| | - Dehong Yan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liang Chen
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaou Zhang
- Open FIESTA CenterTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical OncogenomicsGraduate School at ShenzhenTsinghua UniversityShenzhenChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Xiaochun Wan
- Guangdong Immune Cell therapy Engineering and Technology research CenterCenter for Protein and Cell‐based DrugsInstitute of Biomedicine and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
40
|
Yang J, Ding S. Engineering L7Ae for RNA-Only Delivery Kill Switch Targeting CMS2 Type Colorectal Cancer Cells. ACS Synth Biol 2021; 10:1095-1105. [PMID: 33939419 DOI: 10.1021/acssynbio.0c00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lack of specific-targeting therapy to precisely identify and kill malignant cells while sparing others is a great challenge in colorectal cancer (CRC) treatment. In the era of molecular classification of tumors, CRC has been grouped into four Consensus Molecular Subtypes. Accounting for 37% of all types, the CMS2 group (canonical type) shows distinguishing features: WNT and MYC signaling activation. In this study, we designed an RNA-only delivery kill switch to specifically eliminate CMS2 type CRC cells. The sensing and logic processing functions are integrated by the newly engineered L7Ae, which can not only detect the stability of β-catenin protein and the presence of cytoplasm located Myc/Myc-nick, but also do logic computation. The circuit specifically eliminated HCT-116 cells while sparing other kinds of cells, showing a proof-of-principle approach to precisely target CMS2 type CRC.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
41
|
Singh R, Chandel S, Ghosh A, Dey D, Chakravarti R, Roy S, Ravichandiran V, Ghosh D. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules. Mol Biotechnol 2021; 63:459-476. [PMID: 33774733 DOI: 10.1007/s12033-021-00310-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated Cas protein technology area is rapidly growing technique for genome editing and modulation of transcription of several microbes. Successful engineering in microbes requires an emphasis on the aspect of efficiency and targeted aiming, which can be employed using CRISPR/Cas system. Hence, this type of system is used to modify the genome of several microbes such as yeast and bacteria. In recent years, CRISPR/Cas systems have been chosen for metabolic engineering in microbes due to their specificity, orthogonality, and efficacy. Therefore, we need to review the scheme which was acquired for the execution of the CRISPR/Cas system for the modification and metabolic engineering in yeast and bacteria. In this review, we highlighted the application of the CRISPR/Cas system which has been used for the production of small molecules in the microbial system that is chemically and biologically important.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Arijit Ghosh
- Department of Chemistry, University of Calcutta, Kolkata, 700009, India
| | - Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Syamal Roy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India.
| |
Collapse
|
42
|
Zhuang C, Zhuang C, Zhou Q, Huang X, Gui Y, Lai Y, Yang S. Engineered CRISPR/Cas13d Sensing hTERT Selectively Inhibits the Progression of Bladder Cancer In Vitro. Front Mol Biosci 2021; 8:646412. [PMID: 33816560 PMCID: PMC8017217 DOI: 10.3389/fmolb.2021.646412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptazyme and CRISPR/Cas gene editing system were widely used for regulating gene expression in various diseases, including cancer. This work aimed to reconstruct CRISPR/Cas13d tool for sensing hTERT exclusively based on the new device OFF-switch hTERT aptazyme that was inserted into the 3’ UTR of the Cas13d. In bladder cancer cells, hTERT ligand bound to aptamer in OFF-switch hTERT aptazyme to inhibit the degradation of Cas13d. Results showed that engineered CRISPR/Cas13d sensing hTERT suppressed cell proliferation, migration, invasion and induced cell apoptosis in bladder cancer 5637 and T24 cells without affecting normal HFF cells. In short, we constructed engineered CRISPR/Cas13d sensing hTERT selectively inhibited the progression of bladder cancer cells significantly. It may serve as a promising specifically effective therapy for bladder cancer cells.
Collapse
Affiliation(s)
- Chengle Zhuang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Changshui Zhuang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Qun Zhou
- Department of Urology, the Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Xueting Huang
- Department of Nephrorheumatology, Shenzhen Yantian District People's Hospital, Shenzhen, China
| | - Yaoting Gui
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
43
|
Huang HH, Bellato M, Qian Y, Cárdenas P, Pasotti L, Magni P, Del Vecchio D. dCas9 regulator to neutralize competition in CRISPRi circuits. Nat Commun 2021; 12:1692. [PMID: 33727557 PMCID: PMC7966764 DOI: 10.1038/s41467-021-21772-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPRi-mediated gene regulation allows simultaneous control of many genes. However, highly specific sgRNA-promoter binding is, alone, insufficient to achieve independent transcriptional regulation of multiple targets. Indeed, due to competition for dCas9, the repression ability of one sgRNA changes significantly when another sgRNA becomes expressed. To solve this problem and decouple sgRNA-mediated regulatory paths, we create a dCas9 concentration regulator that implements negative feedback on dCas9 level. This allows any sgRNA to maintain an approximately constant dose-response curve, independent of other sgRNAs. We demonstrate the regulator performance on both single-stage and layered CRISPRi-based genetic circuits, zeroing competition effects of up to 15-fold changes in circuit I/O response encountered without the dCas9 regulator. The dCas9 regulator decouples sgRNA-mediated regulatory paths, enabling concurrent and independent regulation of multiple genes. This allows predictable composition of CRISPRi-based genetic modules, which is essential in the design of larger scale synthetic genetic circuits.
Collapse
Affiliation(s)
- Hsin-Ho Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Massimo Bellato
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Yili Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pablo Cárdenas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lorenzo Pasotti
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Magni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Li C, Cao Y, Zhang L, Li J, Wang J, Zhou Y, Wei H, Guo M, Liu L, Liu C, Zhang S, Liu G. CRISPR-CasRx Targeting LncRNA LINC00341 Inhibits Tumor Cell Growth in vitro and in vivo. Front Mol Biosci 2021; 8:638995. [PMID: 33855047 PMCID: PMC8040045 DOI: 10.3389/fmolb.2021.638995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR-CasRx technology provides a new and powerful method for studying cellular RNA in human cancer. Herein, the pattern of expression of long noncoding RNA 00341 (LINC00341) as well as its biological function in bladder cancer were studied using CRISPR-CasRx. qRT-PCR was employed to quantify the levels of expression of LINC00341 in tumor tissues along with the matched non-tumor tissues. sgRNA targeting LINC00341 or the sgRNA negative control were transiently transfected into the T24 as well as 5,637 human bladder cancer cell lines. CCK-8, ELISA as well as wound healing methods were employed to explore cell proliferation, apoptosis and migration, respectively. The tumorigenicity experiment in nude mice also performed to detect cell proliferation. The expression of p21, Bax as well as E-cadherin were assayed using western blot. The results demonstrated that LINC00341 was overexpressed in bladder cancer in contrast with the healthy tissues. The LINC00341 expression level in high-grade tumors was higher in contrast with that in low-grade tumors. The expression of linc00341 was higher relative to that of non-invasive tumors. In T24 as well as 5637-cell lines harboring LINC00341-sgRNA, inhibition of cell proliferation (in vitro and in vivo), elevated apoptosis rate and diminished migration ability. Moreover, silencing LINC00341 upregulated the expressions of p21, Bax as well as E-cadherin. Knockout of these genes could eliminate the phenotypic changes caused by sgRNA targeting LINC00341. Our data demonstrate that LINC00341 has a carcinogenic role in human bladder cancer.
Collapse
Affiliation(s)
- Chunjing Li
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yu Cao
- Ningxiang Hospital, Hunan University of Traditional Chinese Medicine, NingXiang, China
| | - Li Zhang
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jierong Li
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianfeng Wang
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanfen Zhou
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Huiling Wei
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Mingjuan Guo
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Liang Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shilin Zhang
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guoqing Liu
- Affiliated Foshan Maternal and Child Healthcare Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Randhawa S. CRISPR-Cas9 in cancer therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:129-163. [PMID: 34127191 DOI: 10.1016/bs.pmbts.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a disease mainly caused by an accumulation of mutations in cells. Consequently, correcting those genetic aberrations could be a potential treatment strategy. The traditional route for cancer drug development is tedious, laborious, and time-consuming. Due to target identification, drug formulation, pre-clinical testing, clinical testing, and regulatory hurdles, on average, it takes 10-15 years for a cancer drug to go from target discovery to a marketable oncology drug. The advent of CRISPR-Cas9 technology has greatly expedited this procedure. CRISPR-Cas9 has single-handedly accelerated target identification and pre-clinical testing. Furthermore, CRISPR-Cas9 has also been used in ex vivo editing of T-cells to specifically target tumor cells. In this chapter, we will discuss the various ways in which CRISPR-Cas9 has been used for the betterment of the cancer drug development process. Additionally, we will discuss various ways in which it is currently being used as therapy and the drawbacks which restrict the use of this groundbreaking technology as direct therapy.
Collapse
|
46
|
Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther 2021; 29:571-586. [PMID: 33238136 PMCID: PMC7854284 DOI: 10.1016/j.ymthe.2020.09.028] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea; Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| |
Collapse
|
47
|
Zhang Z, Chen J, Zhu Z, Zhu Z, Liao X, Wu J, Cheng J, Zhang X, Mei H, Yang G. CRISPR-Cas13-Mediated Knockdown of lncRNA-GACAT3 Inhibited Cell Proliferation and Motility, and Induced Apoptosis by Increasing p21, Bax, and E-Cadherin Expression in Bladder Cancer. Front Mol Biosci 2021; 7:627774. [PMID: 33537343 PMCID: PMC7848205 DOI: 10.3389/fmolb.2020.627774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
The current study is to investigate the expression pattern and biological function of long non-coding RNA Focally gastric cancer-associated transcript3 (GACAT3) in bladder cancer. Real-time quantitative qPCR was used to detect the expression level of GACAT-3 in tumor tissues and paired normal tissues. Human bladder cancer T24 and 5637 cell lines were transiently transfected with specific CRISPR-Cas13 or negative control CRISPR-Cas13. Cell migration, proliferation, and apoptosis were measured by using wound healing assay CCK-8 assay and Caspase-3 ELISA assay, respectively. The expression changes of p21, Bax, and E-cadherin after knockdown of GACAT3 were detected by using Western blot. The results demonstrated that GACAT3 was up-regulated in bladder cancer tissues than that in the paired normal tissues. Inhibition of cell proliferation, increased apoptosis, and decreased motility were observed in T24 and 5637 cell lines transfected by CRISPR-Cas13 targeting GACAT3. Downregulation of GACAT3 increased p21, Bax, and E-cadherin expression and silencing these genes could eliminate the phenotypic changes induced by knockdown of GACAT3. A ceRNA mechanism for GACAT3 was also revealed. By using CRISPR-Cas13 biotechnology, we suggested that GACAT3 may be a novel target for diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Zhongfu Zhang
- The Second School of Clinical Medicine, Southern Medical University Affiliated Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jieqing Chen
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | | | - Zhongqing Zhu
- Hong Kong University Shenzhen Hospital, Shenzhen, China
| | - Xinhui Liao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianting Wu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianli Cheng
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xintao Zhang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbing Mei
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Guosheng Yang
- The Second School of Clinical Medicine, Southern Medical University Affiliated Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Huang X, Zhou Q, Wang M, Cao C, Ma Q, Ye J, Gui Y. A Light-Inducible Split-dCas9 System for Inhibiting the Progression of Bladder Cancer Cells by Activating p53 and E-cadherin. Front Mol Biosci 2021; 7:627848. [PMID: 33469550 PMCID: PMC7814291 DOI: 10.3389/fmolb.2020.627848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
Optogenetic systems have been increasingly investigated in the field of biomedicine. Previous studies had found the inhibitory effect of the light-inducible genetic circuits on cancer cell growth. In our study, we applied an AND logic gates to the light-inducible genetic circuits to inhibit the cancer cells more specifically. The circuit would only be activated in the presence of both the human telomerase reverse transcriptase (hTERT) and the human uroplakin II (hUPII) promoter. The activated logic gate led to the expression of the p53 or E-cadherin protein, which could inhibit the biological function of tumor cells. In addition, we split the dCas9 protein to reduce the size of the synthetic circuit compared to the full-length dCas9. This light-inducible system provides a potential therapeutic strategy for future bladder cancer.
Collapse
Affiliation(s)
- Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qun Zhou
- Department of Urology, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Mingxia Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Congcong Cao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
49
|
Xu X, Wu Z, Qiu H, Wu J. Circular RNA circPHC3 Promotes Cell Death and Apoptosis in Human BMECs After Oxygen Glucose Deprivation via miR-455-5p/TRAF3 Axis in vitro. Neuropsychiatr Dis Treat 2021; 17:147-156. [PMID: 33519202 PMCID: PMC7837587 DOI: 10.2147/ndt.s288669] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Brain microvascular endothelial cells (BMECs) are involved in brain vascular dysfunction in ischemic stroke. Abnormal expression of circular RNAs regulate physiological and pathophysiological processes in the central nervous system. The aim of the present study was to investigate profile circRNAs in human BMECs after oxygen glucose deprivation (OGD), which was an in vitro model of ischemic stroke, and find promising biomarkers in ischemic stroke. METHODS RNA sequencing (RNA-seq) technology was conducted to analyze the differential expression of circRNAs between BMECs after OGD and non-OGD treated BMECs. RT-qPCR, cell proliferation, cell apoptosis and dual-luciferase assay, and so on, were used to investigate the functions and molecular mechanisms of hsa_circ_0001360 (named circPHC3 in this study) in ischemic stroke. RESULTS CircPHC3 was highly expressed in human BMECs after OGD. Knockdown of circPHC3 inhibited cell death and apoptosis in human BMECs treated with OGD. Mechanistically, circPHC3 acted as miR-455-5p sponge to activate TRAF3 to promote cell death and apoptosis in human BMECs after OGD. CONCLUSION In short, circPHC3 promotes cell death and apoptosis in ischemic stroke in vitro model, which might be a novel molecular target for acute cerebrovascular protection.
Collapse
Affiliation(s)
- Xiaonan Xu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, People's Republic of China
| | - Zimu Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, People's Republic of China
| | - Hongyan Qiu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, People's Republic of China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong Province, People's Republic of China
| |
Collapse
|
50
|
Aksoy YA, Yang B, Chen W, Hung T, Kuchel RP, Zammit NW, Grey ST, Goldys EM, Deng W. Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52433-52444. [PMID: 33174413 DOI: 10.1021/acsami.0c16380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The CRISPR-Cas9 and related systems offer a unique genome-editing tool allowing facile and efficient introduction of heritable and locus-specific sequence modifications in the genome. Despite its molecular precision, temporal and spatial control of gene editing with the CRISPR-Cas9 system is very limited. We developed a light-sensitive liposome delivery system that offers a high degree of spatial and temporal control of gene editing with the CRISPR-Cas9 system. We demonstrated its efficient protein release by respectively assessing the targeted knockout of the eGFP gene in human HEK293/GFP cells and the TNFAIP3 gene in TNFα-induced HEK293 cells. We further validated our results at a single-cell resolution using an in vivo eGFP reporter system in zebrafish (77% knockout). These findings indicate that light-triggered liposomes may have new options for precise control of CRISPR-Cas9 release and editing.
Collapse
Affiliation(s)
- Yagiz Alp Aksoy
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenjie Chen
- Center for Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Tzongtyng Hung
- The Biological Resource Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathan W Zammit
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shane T Grey
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|