1
|
Zhu F, Yang M, Wang D, Jiang Y, Jia C, Fu Y, Yu A, Liu H, Wang M, Wang T, Liu H, Li J. Spatial distribution of maternal factors in pig mature oocytes. Anim Biotechnol 2024; 35:2394692. [PMID: 39185998 DOI: 10.1080/10495398.2024.2394692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
It is known that asymmetrical maternal transcripts play an important role in the cell fate of the early embryo, but few studies are available in mammal oocytes especially in pig. To investigate the spatial factors in pig oocytes, the oriented bisection was established for collecting karyoplasts (NSOs) and cytoplasts (SSOs) with more than 95% efficiency. Subsequently, RNA-Seq and LC-MS/MS analysis were performed on NSOs and SSOs. Although no differentially expressed genes (DEGs) could be detected between NSOs and SSOs, 89 of the differentially expressed proteins (DEPs) were detected, that 58 proteins higher expressed but 31 proteins lower expressed in NSOs compared with SSOs. These DEPs mainly participated in the 'cell cycle' and 'ribosome' pathway, while the up-regulated DEPs were mainly GO in 'spindle' and 'positive regulation of translation', and the down-regulated DEPs were in 'cytosolic small ribosomal subunit' and 'mRNA binding'. The up-regulated DEP SIRT5 which are related to the regulation of gene expression, epigenetic were further detected and revealed. A spatial asymmetry of maternal factors at the protein level was firstly detected in pig mature oocytes.
Collapse
Affiliation(s)
- Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Kulkarni H, Dagar N, Gaikwad AB. Targeting polo-like kinase 1 to treat kidney diseases. Cell Biochem Funct 2024; 42:e4099. [PMID: 39016459 DOI: 10.1002/cbf.4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Globally, ∼850 million individuals suffer from some form of kidney disease. This staggering figure underscores the importance of continued research and innovation in the field of nephrology to develop effective treatments and improve overall global kidney health. In current research, the polo-like kinase (Plk) family has emerged as a group of highly conserved enzyme kinases vital for proper cell cycle regulation. Plks are defined by their N-terminal kinase domain and C-terminal polo-box domain, which regulate their catalytic activity, subcellular localization, and substrate recognition. Among the Plk family members, Plk1 has garnered significant attention due to its pivotal role in regulating multiple mitotic processes, particularly in the kidneys. It is a crucial serine-threonine (Ser-Thr) kinase involved in cell division and genomic stability. In this review, we delve into the types and functions of Plks, focusing on Plk1's significance in processes such as cell proliferation, spindle assembly, and DNA damage repair. The review also underscores Plk1's vital contributions to maintaining kidney homeostasis, elucidating its involvement in nuclear envelope breakdown, anaphase-promoting complex/cyclosome activation, and the regulation of mRNA translation machinery. Furthermore, the review discusses how Plk1 contributes to the development and progression of kidney diseases, emphasizing its overexpression in conditions such as acute kidney injury, chronic kidney disease, and so forth. It also highlights the importance of exploring Plk1 modulators as targeted therapies for kidney diseases in future. This review will help in understanding the role of Plk1 in kidney disease development, paving the way for the discovery and development of novel therapeutic approaches to manage kidney diseases effectively.
Collapse
Affiliation(s)
- Hrushikesh Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
3
|
Galatidou S, Petelski AA, Pujol A, Lattes K, Latorraca LB, Fair T, Popovic M, Vassena R, Slavov N, Barragán M. Single-cell proteomics reveals decreased abundance of proteostasis and meiosis proteins in advanced maternal age oocytes. Mol Hum Reprod 2024; 30:gaae023. [PMID: 38870523 DOI: 10.1093/molehr/gaae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed data-independent acquisition, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.
Collapse
Affiliation(s)
- Styliani Galatidou
- Research and Development, EUGIN Group, Barcelona, Spain
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Aleksandra A Petelski
- Department of Bioengineering, Single Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | | | - Lais B Latorraca
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Mina Popovic
- Research and Development, EUGIN Group, Barcelona, Spain
| | - Rita Vassena
- Research and Development, EUGIN Group, Barcelona, Spain
| | - Nikolai Slavov
- Department of Bioengineering, Single Cell Proteomics Center and Barnett Institute, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
4
|
Galatidou S, Petelski A, Pujol A, Lattes K, Latorraca LB, Fair T, Popovic M, Vassena R, Slavov N, Barragan M. Single-cell proteomics reveals decreased abundance of proteostasis and meiosis proteins in advanced maternal age oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595547. [PMID: 38903107 PMCID: PMC11188101 DOI: 10.1101/2024.05.23.595547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.
Collapse
|
5
|
Lamacova L, Jansova D, Jiang Z, Dvoran M, Aleshkina D, Iyyappan R, Jindrova A, Fan HY, Jiao Y, Susor A. CPEB3 Maintains Developmental Competence of the Oocyte. Cells 2024; 13:850. [PMID: 38786074 PMCID: PMC11119423 DOI: 10.3390/cells13100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.
Collapse
Affiliation(s)
- Lucie Lamacova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Anna Jindrova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuxuan Jiao
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
6
|
Conti M, Kunitomi C. A genome-wide perspective of the maternal mRNA translation program during oocyte development. Semin Cell Dev Biol 2024; 154:88-98. [PMID: 36894378 PMCID: PMC11250054 DOI: 10.1016/j.semcdb.2023.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Transcriptional and post-transcriptional regulations control gene expression in most cells. However, critical transitions during the development of the female gamete relies exclusively on regulation of mRNA translation in the absence of de novo mRNA synthesis. Specific temporal patterns of maternal mRNA translation are essential for the oocyte progression through meiosis, for generation of a haploid gamete ready for fertilization and for embryo development. In this review, we will discuss how mRNAs are translated during oocyte growth and maturation using mostly a genome-wide perspective. This broad view on how translation is regulated reveals multiple divergent translational control mechanisms required to coordinate protein synthesis with progression through the meiotic cell cycle and with development of a totipotent zygote.
Collapse
Affiliation(s)
- Marco Conti
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.
| | - Chisato Kunitomi
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in the phosphorylation of CPEB1 to activate translation during mouse oocyte meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575938. [PMID: 38293116 PMCID: PMC10827138 DOI: 10.1101/2024.01.17.575938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in the regulation of mRNA translation in oocytes. However, the nature of protein kinase cascades modulating the activity of CPEB1 is still a matter of controversy. Using genetic and pharmacological tools and detailed time courses, here we have reevaluated the relationship between CPEB1 phosphorylation and the activation of translation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on the phosphorylation of CPEB1 during prometaphase. Only inactivation of the CDK1/MAPK pathway disrupts translation, while inactivation of either pathway leads to CPEB1 stabilization. However, stabilization of CPEB1 induced by inactivation of the AURKA/PLK1 does not affect translation, indicating that destabilization/degradation can be dissociated from translational activation. The accumulation of the endogenous CCNB1 protein closely recapitulates the translation data. These findings support the overarching hypothesis that the activation of translation in prometaphase in mouse oocytes relies on a CDK1-dependent CPEB1 phosphorylation, and this translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Iyyappan R, Aleshkina D, Ming H, Dvoran M, Kakavand K, Jansova D, del Llano E, Gahurova L, Bruce AW, Masek T, Pospisek M, Horvat F, Kubelka M, Jiang Z, Susor A. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res 2023; 51:12076-12091. [PMID: 37950888 PMCID: PMC10711566 DOI: 10.1093/nar/gkad996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023] Open
Abstract
Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.
Collapse
Affiliation(s)
- Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Hao Ming
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Edgar del Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Lenka Gahurova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology & Genetics, Faculty of Science, University of South Bohemia in České Budějovice, Branisovšká 31a, České Budějovice, Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Martin Pospisek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Filip Horvat
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
9
|
Xiong X, Yang M, Hai Z, Fei X, Zhu Y, Pan B, Yang Q, Xie Y, Cheng Y, Xiong Y, Lan D, Fu W, Li J. Maternal Kdm2a-mediated PI3K/Akt signaling and E-cadherin stimulate the morula-to-blastocyst transition revealing crucial roles in early embryonic development. Theriogenology 2023; 209:60-75. [PMID: 37356280 DOI: 10.1016/j.theriogenology.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Manzhen Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Zhuo Hai
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yumian Xie
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Du Y, Gupta P, Qin S, Sieber M. The role of metabolism in cellular quiescence. J Cell Sci 2023; 136:jcs260787. [PMID: 37589342 PMCID: PMC10445740 DOI: 10.1242/jcs.260787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Cellular quiescence is a dormant, non-dividing cell state characterized by significant shifts in physiology and metabolism. Quiescence plays essential roles in a wide variety of biological processes, ranging from microbial sporulation to human reproduction and wound repair. Moreover, when the regulation of quiescence is disrupted, it can drive cancer growth and compromise tissue regeneration after injury. In this Review, we examine the dynamic changes in metabolism that drive and support dormant and transiently quiescent cells, including spores, oocytes and adult stem cells. We begin by defining quiescent cells and discussing their roles in key biological processes. We then examine metabolic factors that influence cellular quiescence in both healthy and disease contexts, and how these could be leveraged in the treatment of cancer.
Collapse
Affiliation(s)
- Yipeng Du
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| | - Parul Gupta
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| | - Shenlu Qin
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| | - Matthew Sieber
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, MC9040 ND13.214, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Gahurova L, Tomankova J, Cerna P, Bora P, Kubickova M, Virnicchi G, Kovacovicova K, Potesil D, Hruska P, Zdrahal Z, Anger M, Susor A, Bruce AW. Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m 7G-cap-dependent translation at the 8- to 16-cell transition. Open Biol 2023; 13:230081. [PMID: 37553074 PMCID: PMC10409569 DOI: 10.1098/rsob.230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
Collapse
Affiliation(s)
- Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Jana Tomankova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pavlina Cerna
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Michaela Kubickova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Giorgio Virnicchi
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Kristina Kovacovicova
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - David Potesil
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Pavel Hruska
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Martin Anger
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
12
|
Kalous J, Aleshkina D, Anger M. A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development. Cells 2023; 12:1830. [PMID: 37508495 PMCID: PMC10378481 DOI: 10.3390/cells12141830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Praha, Czech Republic
| | - Martin Anger
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 277 21 Libechov, Czech Republic
| |
Collapse
|
13
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
14
|
Guo J, Zhao H, Zhang J, Lv X, Zhang S, Su R, Zheng W, Dai J, Meng F, Gong F, Lu G, Xue Y, Lin G. Selective Translation of Maternal mRNA by eIF4E1B Controls Oocyte to Embryo Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205500. [PMID: 36755190 PMCID: PMC10104655 DOI: 10.1002/advs.202205500] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Maternal messenger ribonucleic acids (mRNAs) are driven by a highly orchestrated scheme of recruitment to polysomes and translational activation. However, selecting and regulating individual mRNAs for the translation from a competitive pool of mRNAs are little-known processes. This research shows that the maternal eukaryotic translation initiation factor 4e1b (Eif4e1b) expresses during the oocyte-to-embryo transition (OET), and maternal deletion of Eif4e1b leads to multiple defects concerning oogenesis and embryonic developmental competence during OET. The linear amplification of complementary deoxyribonucleic acid (cDNA) ends, and sequencing (LACE-seq) is used to identify the distinct subset of mRNA and its CG-rich binding sites within the 5' untranslated region (UTR) targeted by eIF4E1B. The proteomics analyses indicate that eIF4E1B-specific bound genes show stronger downregulation at the protein level, which further verify a group of proteins that plays a crucial role in oocyte maturation and embryonic developmental competence is insufficiently synthesized in Eif4e1b-cKO oocytes during OET. Moreover, the biochemical results in vitro are combined to further confirm the maternal-specific translation activation model assembled by eIF4E1B and 3'UTR-associated mRNA binding proteins. The findings demonstrate the indispensability of eIF4E1B for selective translation activation in mammalian oocytes and provide a potential network regulated by eIF4E1B in OET.
Collapse
Affiliation(s)
- Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Hailian Zhao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Xiangjiang Lv
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Shen Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Jing Dai
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| |
Collapse
|
15
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
16
|
In vivo and in vitro matured bovine oocytes present a distinct pattern of single-cell gene expression. ZYGOTE 2023; 31:31-43. [PMID: 36263617 DOI: 10.1017/s0967199422000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oocyte gene expression is a well controlled event that promotes gamete competence to undergo maturation, fertilization, and to support early embryo development, directly affecting reproductive outcomes. Considering that in vivo controlled ovarian stimulation or in vitro maturation (IVM) for the acquisition of mature oocytes has distinct implications for gene expression, we sought to evaluate the effects of these procedures on the expression of competence-related genes in single-cell oocytes. Healthy Nelore cows of reproductive age were synchronized to harvest in vivo matured oocytes; ovaries from slaughtered animals were used to obtain cumulus-oocyte complexes that were in vitro matured. Single-cell gene expression was performed using TaqMan Low-Density Arrays and 42 genes were evaluated. In silico analysis of protein interactions and Gene Ontology (GO) analysis was performed. Reduced gene expression was observed for 24 targets in IVM oocytes when compared with those of in vivo matured oocytes (P < 0.05). Differences ranged from 1.5-fold to 4.8-fold higher in in vivo oocytes and the BMP15 (5.28), GDF9 (6.23), NOBOX (7.25), HSPA8 (7.85) and MSX1 (11.00) showed the greatest fold increases. The strongest score of functional interactions was observed between the CDC20 and CKS2, with the differentially expressed gene CDC20 being the main marker behind GO enrichment. IVM negatively affected the expression of important genes related to oocyte competency, and showed higher expression levels in in vivo matured oocytes. In vivo controlled ovarian stimulation may be a better strategy to achieve proper oocyte competence and increase the success of assisted reproductive technologies.
Collapse
|
17
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
18
|
SphK-produced S1P in somatic cells is indispensable for LH-EGFR signaling-induced mouse oocyte maturation. Cell Death Dis 2022; 13:963. [PMID: 36396932 PMCID: PMC9671891 DOI: 10.1038/s41419-022-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Germ cell division and differentiation require intimate contact and interaction with the surrounding somatic cells. Luteinizing hormone (LH) triggers epidermal growth factor (EGF)-like growth factors to promote oocyte maturation and developmental competence by activating EGF receptor (EGFR) in somatic cells. Here, we showed that LH-EGFR signaling-activated sphingosine kinases (SphK) in somatic cells. The activation of EGFR by EGF increased S1P and calcium levels in cumulus-oocyte complexes (COCs), and decreased the binding affinity of natriuretic peptide receptor 2 (NPR2) for natriuretic peptide type C (NPPC) to release the cGMP-mediated meiotic arrest. These functions of EGF were blocked by the SphK inhibitor SKI-II, which could be reversed by the addition of S1P. S1P also activated the Akt/mTOR cascade reaction in oocytes and promoted targeting protein for Xklp2 (TPX2) accumulation and oocyte developmental competence. Specifically depleting Sphk1/2 in somatic cells reduced S1P levels and impaired oocyte meiotic maturation and developmental competence, resulting in complete female infertility. Collectively, SphK-produced S1P in somatic cells serves as a functional transmitter of LH-EGFR signaling from somatic cells to oocytes: acting on somatic cells to induce oocyte meiotic maturation, and acting on oocytes to improve oocyte developmental competence.
Collapse
|
19
|
Wan Y, Muhammad T, Huang T, Lv Y, Sha Q, Yang S, Lu G, Chan WY, Ma J, Liu H. IGF2 reduces meiotic defects in oocytes from obese mice and improves embryonic developmental competency. Reprod Biol Endocrinol 2022; 20:101. [PMID: 35836183 PMCID: PMC9281013 DOI: 10.1186/s12958-022-00972-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Maternal obesity is a global issue that has devastating effects across the reproductive spectrum such as meiotic defects in oocytes, consequently worsening pregnancy outcomes. Different studies have shown that such types of meiotic defects originated from the oocytes of obese mothers. Thus, there is an urgent need to develop strategies to reduce the incidence of obesity-related oocyte defects that adversely affect pregnancy outcomes. Multiple growth factors have been identified as directly associated with female reproduction; however, the impact of various growth factors on female fertility in response to obesity remains poorly understood. METHODS The immature GV-stage oocytes from HFD female mice were collected and cultured in vitro in two different groups (HFD oocytes with and without 50 nM IGF2), however; the oocytes from ND mice were used as a positive control. HFD oocytes treated with or without IGF2 were further used to observe the meiotic structure using different analysis including, the spindle and chromosomal analysis, reactive oxygen species levels, mitochondrial functional activities, and early apoptotic index using immunofluorescence. Additionally, the embryonic developmental competency and embryos quality of IGF2-treated zygotes were also determined. RESULTS In our findings, we observed significantly reduced contents of insulin-like growth factor 2 (IGF2) in the serum and oocytes of obese mice. Our data indicated supplementation of IGF2 in a culture medium improves the blastocyst formation: from 46% in the HFD group to 61% in the HFD + IGF2-treatment group (50 nM IGF2). Moreover, adding IGF2 to the culture medium reduces the reactive oxygen species index and alleviates the frequency of spindle/chromosome defects. We found increased mitochondrial functional activity in oocytes from obese mice after treating the oocytes with IGF2: observed elevated level of adenosine triphosphate, increased mitochondrial distribution, higher mitochondrial membrane potentials, and reduced mitochondrial ultrastructure defects. Furthermore, IGF2 administration also increases the overall protein synthesis and decreases the apoptotic index in oocytes from obese mice. CONCLUSIONS Collectively, our findings are strongly in favor of adding IGF2 in culture medium to overcome obesity-related meiotic structural-developmental defects by helping ameliorate the known sub-optimal culturing conditions that are currently standard with assisted reproduction technologies.
Collapse
Affiliation(s)
- Yanling Wan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Tahir Muhammad
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yue Lv
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianqian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Shuang Yang
- Department of Physiology School of Basic Medical Sciences Cheeloo College of Medicine Shandong University, Jinan, Shandong, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Beijing, China.
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022; 10:biomedicines10071689. [PMID: 35884994 PMCID: PMC9313063 DOI: 10.3390/biomedicines10071689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
Collapse
|
21
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
22
|
Aleshkina D, Iyyappan R, Lin CJ, Masek T, Pospisek M, Susor A. ncRNA BC1 influences translation in the oocyte. RNA Biol 2021; 18:1893-1904. [PMID: 33491548 PMCID: PMC8583082 DOI: 10.1080/15476286.2021.1880181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 01/06/2023] Open
Abstract
Regulation of translation is essential for the diverse biological processes involved in development. Particularly, mammalian oocyte development requires the precisely controlled translation of maternal transcripts to coordinate meiotic and early embryo progression while transcription is silent. It has been recently reported that key components of mRNA translation control are short and long noncoding RNAs (ncRNAs). We found that the ncRNABrain cytoplasmic 1 (BC1) has a role in the fully grown germinal vesicle (GV) mouse oocyte, where is highly expressed in the cytoplasm associated with polysomes. Overexpression of BC1 in GV oocyte leads to a minute decrease in global translation with a significant reduction of specific mRNA translation via interaction with the Fragile X Mental Retardation Protein (FMRP). BC1 performs a repressive role in translation only in the GV stage oocyte without forming FMRP or Poly(A) granules. In conclusion, BC1 acts as the translational repressor of specific mRNAs in the GV stage via its binding to a subset of mRNAs and physical interaction with FMRP. The results reported herein contribute to the understanding of the molecular mechanisms of developmental events connected with maternal mRNA translation.
Collapse
Affiliation(s)
- D. Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - R. Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Ch. J. Lin
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - T. Masek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - M. Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - A. Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
23
|
Li J, Chen H, Gou M, Tian C, Wang H, Song X, Keefe DL, Bai X, Liu L. Molecular Features of Polycystic Ovary Syndrome Revealed by Transcriptome Analysis of Oocytes and Cumulus Cells. Front Cell Dev Biol 2021; 9:735684. [PMID: 34552933 PMCID: PMC8450412 DOI: 10.3389/fcell.2021.735684] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is typically characterized by a polycystic ovarian morphology, hyperandrogenism, ovulatory dysfunction, and infertility. Furthermore, PCOS patients undergoing ovarian stimulation have more oocytes; however, the poor quality of oocytes leads to lower fertilization and implantation rates, decreased pregnancy rates, and increased miscarriage rates. The complex molecular mechanisms underlying PCOS and the poor quality of oocytes remain to be elucidated. We obtained matched oocytes and cumulus cells (CCs) from PCOS patients, compared them with age-matched controls, and performed RNA sequencing analysis to explore the transcriptional characteristics of their oocytes and CCs. Moreover, we validated our newly confirmed candidate genes for PCOS by immunofluorescence. Unsupervised clustering analysis showed that the overall global gene expression patterns and transposable element (TE) expression profiles of PCOS patients tightly clustered together, clearly distinct from those of controls. Abnormalities in functionally important pathways are found in PCOS oocytes. Notably, genes involved in microtubule processes, TUBB8 and TUBA1C, are overexpressed in PCOS oocytes. The metabolic and oxidative phosphorylation pathways are also dysregulated in both oocytes and CCs from PCOS patients. Moreover, in oocytes, differentially expressed TEs are not uniformly dispersed in human chromosomes. Endogenous retrovirus 1 (ERV1) elements located on chromosomes 2, 3, 4, and 5 are rather highly upregulated. Interestingly, these correlate with the most highly expressed protein-coding genes, including tubulin-associated genes TUBA1C, TUBB8P8, and TUBB8, linking the ERV1 elements to the occurrence of PCOS. Our comprehensive analysis of gene expression in oocytes and CCs, including TE expression, revealed the specific molecular features of PCOS. The aberrantly elevated expression of TUBB8 and TUBA1C and ERV1 provides additional markers for PCOS and may contribute to the compromised oocyte developmental competence in PCOS patients. Our findings may also have implications for treatment strategies to improve oocyte maturation and the pregnancy outcomes for women with PCOS.
Collapse
Affiliation(s)
- Jie Li
- The State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Haixia Chen
- The Center for Reproductive Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Mo Gou
- The State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglei Tian
- The State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Huasong Wang
- The State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueru Song
- The Center for Reproductive Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - David L Keefe
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY, United States
| | - Xiaohong Bai
- The Center for Reproductive Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Liu
- The State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Wu T, Lane SIR, Morgan SL, Tang F, Jones KT. Loss of centromeric RNA activates the spindle assembly checkpoint in mammalian female meiosis I. J Cell Biol 2021; 220:212548. [PMID: 34379093 PMCID: PMC8360762 DOI: 10.1083/jcb.202011153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/01/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
The repetitive sequences of DNA centromeric regions form the structural basis for kinetochore assembly. Recently they were found to be transcriptionally active in mitosis, with their RNAs providing noncoding functions. Here we explore the role, in mouse oocytes, of transcripts generated from within the minor satellite repeats. Depletion of minor satellite transcripts delayed progression through meiosis I by activation of the spindle assembly checkpoint. Arrested oocytes had poorly congressed chromosomes, and centromeres were frequently split by microtubules. Thus, we have demonstrated that the centromeric RNA plays a specific role in female meiosis I compared with mitosis and is required for maintaining the structural integrity of centromeres. This may contribute to the high aneuploidy rates observed in female meiosis.
Collapse
Affiliation(s)
- Tianyu Wu
- Department of Central Laboratory, Clinical Laboratory, Jing'an District Centre Hospital of Shanghai, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism and Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Simon I R Lane
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Stephanie L Morgan
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Feng Tang
- Discipline of Obstetrics and Gynecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Keith T Jones
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
25
|
Jansova D, Aleshkina D, Jindrova A, Iyyappan R, An Q, Fan G, Susor A. Single Molecule RNA Localization and Translation in the Mammalian Oocyte and Embryo. J Mol Biol 2021; 433:167166. [PMID: 34293340 DOI: 10.1016/j.jmb.2021.167166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
During oocyte growth the cell accumulates RNAs to contribute to oocyte and embryo development which progresses with ceased transcription. To investigate the subcellular distribution of specific RNAs and their translation we developed a technique revealing several instances of localized translation with distinctive regulatory implications. We analyzed the localization and expression of candidate non-coding and mRNAs in the mouse oocyte and embryo. Furthermore, we established simultaneous visualization of mRNA and in situ translation events validated with polysomal occupancy. We discovered that translationally dormant and abundant mRNAs CyclinB1 and Mos are localized in the cytoplasm of the fully grown GV oocyte forming cloud-like structures with consequent abundant translation at the center of the MII oocyte. Coupling detection of the localization of specific single mRNA molecules with their translation at the subcellular context is a valuable tool to quantitatively study temporal and spatial translation of specific target mRNAs to understand molecular processes in the developing cell.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov 277 21, Czech Republic.
| | - Daria Aleshkina
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov 277 21, Czech Republic
| | - Anna Jindrova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov 277 21, Czech Republic
| | - Rajan Iyyappan
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov 277 21, Czech Republic
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7088, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7088, USA
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov 277 21, Czech Republic.
| |
Collapse
|
26
|
Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 2021; 148:268308. [PMID: 34013332 PMCID: PMC8254863 DOI: 10.1242/dev.190793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e−/−) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e−/− embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development. Summary: Combined use of a PB [Act-RFP] transgenesis model, selective pharmacological inhibition and expression analyses verified the essential role of eIF4E in the transition from maternal to embryonic control of mouse development.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jianan Tang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xu Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Min-Min Hua
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Miao Liu
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Chang
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Christopher O'Neill
- Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Xingliang Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.,Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
27
|
Jiang JC, Zhang H, Cao LR, Dai XX, Zhao LW, Liu HB, Fan HY. Oocyte meiosis-coupled poly(A) polymerase α phosphorylation and activation trigger maternal mRNA translation in mice. Nucleic Acids Res 2021; 49:5867-5880. [PMID: 34048556 PMCID: PMC8191758 DOI: 10.1093/nar/gkab431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 01/25/2023] Open
Abstract
Mammalian oocyte maturation is driven by strictly regulated polyadenylation and translational activation of maternal mRNA stored in the cytoplasm. However, the poly(A) polymerase (PAP) that directly mediates cytoplasmic polyadenylation in mammalian oocytes has not been determined. In this study, we identified PAPα as the elusive enzyme that catalyzes cytoplasmic mRNA polyadenylation implicated in mouse oocyte maturation. PAPα was mainly localized in the germinal vesicle (GV) of fully grown oocytes but was distributed to the ooplasm after GV breakdown. Inhibition of PAPα activity impaired cytoplasmic polyadenylation and translation of maternal transcripts, thus blocking meiotic cell cycle progression. Once an oocyte resumes meiosis, activated CDK1 and ERK1/2 cooperatively mediate the phosphorylation of three serine residues of PAPα, 537, 545 and 558, thereby leading to increased activity. This mechanism is responsible for translational activation of transcripts lacking cytoplasmic polyadenylation elements in their 3′-untranslated region (3′-UTR). In turn, activated PAPα stimulated polyadenylation and translation of the mRNA encoding its own (Papola) through a positive feedback circuit. ERK1/2 promoted Papola mRNA translation in a 3′-UTR polyadenylation signal-dependent manner. Through these mechanisms, PAPα activity and levels were significantly amplified, improving the levels of global mRNA polyadenylation and translation, thus, benefiting meiotic cell cycle progression.
Collapse
Affiliation(s)
- Jun-Chao Jiang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan-Rui Cao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
28
|
Papageorgiou K, Mastora E, Zikopoulos A, Grigoriou ME, Georgiou I, Michaelidis TM. Interplay Between mTOR and Hippo Signaling in the Ovary: Clinical Choice Guidance Between Different Gonadotropin Preparations for Better IVF. Front Endocrinol (Lausanne) 2021; 12:702446. [PMID: 34367070 PMCID: PMC8334720 DOI: 10.3389/fendo.2021.702446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
One of the most widely used types of assisted reproduction technology is the in vitro fertilization (IVF), in which women undergo controlled ovarian stimulation through the administration of the appropriate hormones to produce as many mature follicles, as possible. The most common hormone combination is the co-administration of gonadotropin-releasing hormone (GnRH) analogues with recombinant or urinary-derived follicle-stimulating hormone (FSH). In the last few years, scientists have begun to explore the effect that different gonadotropin preparations have on granulosa cells' maturation and apoptosis, aiming to identify new predictive markers of oocyte quality and successful fertilization. Two major pathways that control the ovarian development, as well as the oocyte-granulosa cell communication and the follicular growth, are the PI3K/Akt/mTOR and the Hippo signaling. The purpose of this article is to briefly review the current knowledge about the effects that the different gonadotropins, used for ovulation induction, may exert in the biology of granulosa cells, focusing on the importance of these two pathways, which are crucial for follicular maturation. We believe that a better understanding of the influence that the various ovarian stimulation protocols have on these critical molecular cascades will be invaluable in choosing the best approach for a given patient, thereby avoiding cancelled cycles, reducing frustration and potential treatment-related complications, and increasing the pregnancy rate. Moreover, individualizing the treatment plan will help clinicians to better coordinate assisted reproductive technology (ART) programs, discuss the specific options with the couples undergoing IVF, and alleviate stress, thus making the IVF experience easier.
Collapse
Affiliation(s)
- Kyriaki Papageorgiou
- Department of Biological Applications & Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology – Hellas, Ioannina, Greece
| | - Eirini Mastora
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics of Human Reproduction, Medical School, University of Ioannina, Ioannina, Greece
- Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Ioannina University Hospital, Ioannina, Greece
| | - Theologos M. Michaelidis
- Department of Biological Applications & Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology – Hellas, Ioannina, Greece
- *Correspondence: Theologos M. Michaelidis, ;
| |
Collapse
|
29
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
30
|
Muhammad T, Wan Y, Sha Q, Wang J, Huang T, Cao Y, Li M, Yu X, Yin Y, Chan WY, Chen ZJ, You L, Lu G, Liu H. IGF2 improves the developmental competency and meiotic structure of oocytes from aged mice. Aging (Albany NY) 2020; 13:2118-2134. [PMID: 33318299 PMCID: PMC7880328 DOI: 10.18632/aging.202214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Advanced maternal-age is a major factor adversely affecting oocyte quality, consequently worsening pregnancy outcomes. Thus, developing strategies to reduce the developmental defects associated with advanced maternal-age would benefit older mothers. Multiple growth factors involved in female fertility have been extensively studied; however, the age-related impacts of various growth factors remain poorly studied. In the present study, we identified that levels of insulin-like growth factor 2 (IGF2) are significantly reduced in the serum and oocytes of aged mice. We found that adding IGF2 in culture medium promotes oocyte maturation and significantly increases the proportion of blastocysts: from 41% in the untreated control group to 64% (50 nM IGF2) in aged mice (p < 0.05). Additionally, IGF2 supplementation of the culture medium reduced reactive oxygen species production and the incidence of spindle/chromosome defects. IGF2 increases mitochondrial functional activity in oocytes from aged mice: we detected increased ATP levels, elevated fluorescence intensity of mitochondria, higher mitochondrial membrane potentials, and increased overall protein synthesis, as well as increased autophagy activity and decreased apoptosis. Collectively, our findings demonstrate that IGF2 supplementation in culture media improves oocyte developmental competence and reduces meiotic structure defects in oocytes from aged mice.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yanling Wan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Qianqian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Yingying Yin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Wai Yee Chan
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Li You
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China
| | - Gang Lu
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, Shandong, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, Shandong, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
31
|
Zhang MY, Tian Y, Yan ZH, Li WD, Zang CJ, Li L, Sun XF, Shen W, Cheng SF. Maternal Bisphenol S exposure affects the reproductive capacity of F1 and F2 offspring in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115382. [PMID: 32866863 DOI: 10.1016/j.envpol.2020.115382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol S (BPS) is an endocrine disruptor which is widely used in commercial plastic products. Previous studies have shown that exposure to BPS has toxic effects on various aspects of mammalian, but there are few reports about reproductive toxicity. In order to investigate the effects of maternal BPS exposure on the reproductive of F1 and F2 female mice, the pregnant mice were orally administered with different dosages of BPS only once every day from 12.5 to 15.5 days post-coitus (dpc). The results showed that maternal BPS exposure to 2 μg per kg of body weight per day (2 μg/kg) and 10 μg/kg accelerated the meiotic prophase I (MPI) of F1 female mice and the expression of the genes related to meiotic were increased. Further studies showed that maternal BPS exposure resulted in a significant increase in the percentage of oocytes enclosed in primordial follicles in the 3 days post-partum (3 dpp) ovaries of F1 female mice. And at the time of 21 days post-partum (21 dpp) in F1 female mice, the number of antral follicles were significantly lower compare to controls. In the study of five-week female mice of F1, we found that BPS disturbed the folliculogenesis, and the maturation rates and fertilization rates of oocytes were significantly decreased. Of note, maternal BPS exposure disrupted H3K4 and H3K9 tri-methylation levels in F1 ovaries. Maternal BPS exposure only affected the cyst breakdown in F2 female mice. Taken together, our results suggest that, maternal BPS exposure impaired the process of meiosis and oogenesis of F1 and F2 offspring, resulting in abnormal follicular development and serious damage to the reproduction.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Tian
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei-Dong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuan-Jie Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
32
|
Zamfirescu RC, Day ML, Morris MB. mTORC1/2 signaling is downregulated by amino acid-free culture of mouse preimplantation embryos and is only partially restored by amino acid readdition. Am J Physiol Cell Physiol 2020; 320:C30-C44. [PMID: 33052068 DOI: 10.1152/ajpcell.00385.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of the mammalian preimplantation embryo is influenced by autocrine/paracrine factors and the availability of nutrients. Deficiencies of these during in vitro culture reduce the success of assisted reproductive technologies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway integrates external and internal signals, including those by amino acids (AAs), to promote normal preimplantation development. For this reason, AAs are often included in embryo culture media. In this study, we examined how withdrawal and addition of AAs to culture media modulate mTORC1 pathway activity compared with its activity in mouse embryos developed in vivo. Phosphorylation of signaling components downstream of mTORC1, namely, p70 ribosomal protein S6 kinase (p70S6K), ribosomal protein S6, and 4E binding protein 1 (4E-BP1), and that of protein kinase B (Akt), which lies upstream of mTORC1, changed significantly across stages of embryos developed in vivo. For freshly isolated blastocysts placed in vitro, the absence of AAs in the culture medium, even for a few hours, decreased mTORC1 signaling, which could only be partially restored by their addition. Long-term culture of early embryos to blastocysts in the absence of AAs decreased mTORC1 signaling to a greater extent and again this could only be partially restored by their inclusion. This failure to fully restore is probably due to decreased phosphatidylinositol 3-kinase (PI3K)/Akt/mTORC2 signaling in culture, as indicated by decreased P-AktS473. mTORC2 lies upstream of mTORC1 and is insensitive to AAs, and its reduced activity probably results from loss of maternal/autocrine factors. These data highlight reduced mTORC1/2 signaling activity correlating with compromised development in vitro and show that the addition of AAs can only partially offset these effects.
Collapse
Affiliation(s)
- Radu C Zamfirescu
- Discipline of Physiology and Bosch Institute, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Margot L Day
- Discipline of Physiology and Bosch Institute, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael B Morris
- Discipline of Physiology and Bosch Institute, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
33
|
Llano E, Masek T, Gahurova L, Pospisek M, Koncicka M, Jindrova A, Jansova D, Iyyappan R, Roucova K, Bruce AW, Kubelka M, Susor A. Age-related differences in the translational landscape of mammalian oocytes. Aging Cell 2020; 19:e13231. [PMID: 32951297 PMCID: PMC7576272 DOI: 10.1111/acel.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing maternal age in mammals is associated with poorer oocyte quality, involving higher aneuploidy rates and decreased developmental competence. Prior to resumption of meiosis, fully developed mammalian oocytes become transcriptionally silent until the onset of zygotic genome activation. Therefore, meiotic progression and early embryogenesis are driven largely by translational utilization of previously synthesized mRNAs. We report that genome‐wide translatome profiling reveals considerable numbers of transcripts that are differentially translated in oocytes obtained from aged compared to young females. Additionally, we show that a number of aberrantly translated mRNAs in oocytes from aged females are associated with cell cycle. Indeed, we demonstrate that four specific maternal age‐related transcripts (Sgk1, Castor1, Aire and Eg5) with differential translation rates encode factors that are associated with the newly forming meiotic spindle. Moreover, we report substantial defects in chromosome alignment and cytokinesis in the oocytes of young females, in which candidate CASTOR1 and SGK1 protein levels or activity are experimentally altered. Our findings indicate that improper translation of specific proteins at the onset of meiosis contributes to increased chromosome segregation problems associated with female ageing.
Collapse
Affiliation(s)
- Edgar Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Lenka Gahurova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
- Laboratory of Early Mammalian Developmental Biology (LEMDB) Department of Molecular Biology and Genetics Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Martin Pospisek
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Marketa Koncicka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Anna Jindrova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Kristina Roucova
- Laboratory of RNA Biochemistry Department of Genetics and Microbiology Faculty of Science Charles University in Prague Prague Czech Republic
| | - Alexander W. Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB) Department of Molecular Biology and Genetics Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells Institute of Animal Physiology and Genetics CAS Libechov Czech Republic
| |
Collapse
|
34
|
Tetkova A, Susor A, Kubelka M, Nemcova L, Jansova D, Dvoran M, Del Llano E, Holubcova Z, Kalous J. Follicle-stimulating hormone administration affects amino acid metabolism in mammalian oocytes†. Biol Reprod 2020; 101:719-732. [PMID: 31290535 DOI: 10.1093/biolre/ioz117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
Culture media used in assisted reproduction are commonly supplemented with gonadotropin hormones to support the nuclear and cytoplasmic maturation of in vitro matured oocytes. However, the effect of gonadotropins on protein synthesis in oocytes is yet to be fully understood. As published data have previously documented a positive in vitro effect of follicle-stimulating hormone (FSH) on cytoplasmic maturation, we exposed mouse denuded oocytes to FSH in order to evaluate the changes in global protein synthesis. We found that dose-dependent administration of FSH resulted in a decrease of methionine incorporation into de novo synthesized proteins in denuded mouse oocytes and oocytes cultured in cumulus-oocyte complexes. Similarly, FSH influenced methionine incorporation in additional mammalian species including human. Furthermore, we showed the expression of FSH-receptor protein in oocytes. We found that major translational regulators were not affected by FSH treatment; however, the amino acid uptake became impaired. We propose that the effect of FSH treatment on amino acid uptake is influenced by FSH receptor with the effect on oocyte metabolism and physiology.
Collapse
Affiliation(s)
- Anna Tetkova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Lucie Nemcova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Denisa Jansova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Michal Dvoran
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Edgar Del Llano
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Zuzana Holubcova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| |
Collapse
|
35
|
Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals†. Biol Reprod 2020; 101:579-590. [PMID: 30715134 DOI: 10.1093/biolre/ioz012] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023] Open
Abstract
In mammals, maternal-to-zygotic transition (MZT), or oocyte-to-embryo transition, begins with oocyte meiotic resumption due to the sequential translational activation and destabilization of dormant maternal transcripts stored in the ooplasm. It then continues with the elimination of maternal transcripts during oocyte maturation and fertilization and ends with the full transcriptional activation of the zygotic genome during embryonic development. A hallmark of MZT in mammals is its reliance on translation and the utilization of stored RNAs and proteins, rather than de novo transcription of genes, to sustain meiotic maturation and early development. Impaired maternal mRNA clearance at the onset of MZT prevents zygotic genome activation and causes early arrest of developing embryos. In this review, we discuss recent advances in our knowledge of the mechanisms whereby mRNA translation and degradation are controlled by cytoplasmic polyadenylation and deadenylation which set up the competence of maturing oocyte to accomplish MZT. The emphasis of this review is on the mouse as a model organism for mammals and BTG4 as a licensing factor of MZT under the translational control of the MAPK cascade.
Collapse
Affiliation(s)
- Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jue Zhang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Kalous J, Jansová D, Šušor A. Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase. Cells 2020; 9:cells9071568. [PMID: 32605021 PMCID: PMC7408968 DOI: 10.3390/cells9071568] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis.
Collapse
|
37
|
Zhang J, Zhang YL, Zhao LW, Pi SB, Zhang SY, Tong C, Fan HY. The CRL4-DCAF13 ubiquitin E3 ligase supports oocyte meiotic resumption by targeting PTEN degradation. Cell Mol Life Sci 2020; 77:2181-2197. [PMID: 31492966 PMCID: PMC11105099 DOI: 10.1007/s00018-019-03280-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of oocyte survival and meiotic cell cycle progression. DCAF13, a novel CRL4 adaptor, is essential for oocyte development. But the mechanisms by which CRL4-DCAF13 supports meiotic maturation remained unclear. In this study, we demonstrated that DCAF13 stimulates the meiotic resumption-coupled activation of protein synthesis in oocytes, partially by maintaining the activity of PI3K signaling pathway. CRL4-DCAF13 targets the polyubiquitination and degradation of PTEN, a lipid phosphatase that inhibits PI3K pathway as well as oocyte growth and maturation. Dcaf13 knockout in oocytes caused decreased CDK1 activity and impaired meiotic cell cycle progression and chromosome condensation defects. As a result, chromosomes fail to be aligned at the spindle equatorial plate, the spindle assembly checkpoint is activated, and most Dcaf13 null oocytes are arrested at the prometaphase I. The DCAF13-dependent PTEN degradation mechanism fits in as a missing link between CRL4 ubiquitin E3 ligase and PI3K pathway, both of which are crucial for translational activation during oocyte GV-MII transition.
Collapse
Affiliation(s)
- Jue Zhang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Shuai-Bo Pi
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Heng-Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China.
| |
Collapse
|
38
|
Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos†. Biol Reprod 2020; 100:896-906. [PMID: 30535233 DOI: 10.1093/biolre/ioy254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
The mechanism of maternal protein degradation during preimplantation development has not been clarified yet. It is thought that a lot of maternal proteins are degraded by the ubiquitin-proteasome system. In this study, we focused on the role of the SCF (Skp1-Cullin-F-box) complexes during early bovine embryogenesis. We inhibited them using MLN4924, an inhibitor of SCF complex ligases controlled by neddylation. Oocytes maturated in MLN4924 could be fertilized, but we found no cumulus cell expansion and a high number of polyspermy after in vitro fertilization. We also found a statistically significant deterioration of development after MLN4924 treatment. After treatment with MLN4924 from the four-cell to late eight-cell stage, we found a statistically significant delay in their development; some of the treated embryos were, however, able to reach the blastocyst stage later. We found reduced levels of mRNA of EGA markers PAPOLA and U2AF1A, which can be related to this developmental delay. The cultivation with MLN4924 caused a significant increase in protein levels in MLN4924-treated oocytes and embryos; no such change was found in cumulus cells. To detect the proteins affected by MLN4924 treatment, we performed a Western blot analysis of selected proteins (SMAD4, ribosomal protein S6, centromeric protein E, P27, NFKB inhibitor alpha, RNA-binding motif protein 19). No statistically significant increase in protein levels was detected in either treated embryos or oocytes. In summary, our study shows that SCF ligases are necessary for the correct maturation of oocytes, cumulus cell expansion, fertilization, and early preimplantation development of cattle.
Collapse
Affiliation(s)
- Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| | - Veronika Petruskova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| |
Collapse
|
39
|
Rong Y, Ji SY, Zhu YZ, Wu YW, Shen L, Fan HY. ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res 2020; 47:11387-11402. [PMID: 31598710 PMCID: PMC6868374 DOI: 10.1093/nar/gkz863] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023] Open
Abstract
Zar1 was one of the earliest mammalian maternal-effect genes to be identified. Embryos derived from Zar1-null female mice are blocked before zygotic genome activation; however, the underlying mechanism remains unclear. By knocking out Zar1 and its homolog Zar2 in mice, we revealed a novel function of these genes in oocyte meiotic maturation. Zar1/2-deleted oocytes displayed delayed meiotic resumption and polar body-1 emission and a higher incidence of abnormal meiotic spindle formation and chromosome aneuploidy. The grown oocytes of Zar1/2-null mice contained decreased levels of many maternal mRNAs and displayed a reduced level of protein synthesis. Key maturation-associated changes failed to occur in the Zar1/2-null oocytes, including the translational activation of maternal mRNAs encoding the cell-cycle proteins cyclin B1 and WEE2, as well as maternal-to-zygotic transition (MZT) licensing factor BTG4. Consequently, maternal mRNA decay was impaired and MZT was abolished. ZAR1/2 bound mRNAs to regulate the translational activity of their 3′-UTRs and interacted with other oocyte proteins, including mRNA-stabilizing protein MSY2 and cytoplasmic lattice components. These results countered the traditional view that ZAR1 only functions after fertilization and highlight a previously unrecognized role of ZAR1/2 in regulating the maternal transcriptome and translational activation in maturing oocytes.
Collapse
Affiliation(s)
- Yan Rong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yun-Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
40
|
Luong XG, Daldello EM, Rajkovic G, Yang CR, Conti M. Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption. Nucleic Acids Res 2020; 48:3257-3276. [PMID: 31970406 PMCID: PMC7102970 DOI: 10.1093/nar/gkaa010] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
During oocyte maturation, changes in gene expression depend exclusively on translation and degradation of maternal mRNAs rather than transcription. Execution of this translation program is essential for assembling the molecular machinery required for meiotic progression, fertilization, and embryo development. With the present study, we used a RiboTag/RNA-Seq approach to explore the timing of maternal mRNA translation in quiescent oocytes as well as in oocytes progressing through the first meiotic division. This genome-wide analysis reveals a global switch in maternal mRNA translation coinciding with oocyte re-entry into the meiotic cell cycle. Messenger RNAs whose translation is highly active in quiescent oocytes invariably become repressed during meiotic re-entry, whereas transcripts repressed in quiescent oocytes become activated. Experimentally, we have defined the exact timing of the switch and the repressive function of CPE elements, and identified a novel role for CPEB1 in maintaining constitutive translation of a large group of maternal mRNAs during maturation.
Collapse
Affiliation(s)
- Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Gabriel Rajkovic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
41
|
Ganesh S, Horvat F, Drutovic D, Efenberkova M, Pinkas D, Jindrova A, Pasulka J, Iyyappan R, Malik R, Susor A, Vlahovicek K, Solc P, Svoboda P. The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution. Nucleic Acids Res 2020; 48:3211-3227. [PMID: 31956907 PMCID: PMC7102984 DOI: 10.1093/nar/gkz1239] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1−/− oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.
Collapse
Affiliation(s)
- Sravya Ganesh
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Michaela Efenberkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Pinkas
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Jindrova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Josef Pasulka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rajan Iyyappan
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
42
|
Kordowitzki P, Hamdi M, Derevyanko A, Rizos D, Blasco M. The effect of rapamycin on bovine oocyte maturation success and metaphase telomere length maintenance. Aging (Albany NY) 2020; 12:7576-7584. [PMID: 32339158 PMCID: PMC7202508 DOI: 10.18632/aging.103126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Maternal aging-associated reduction of oocyte viability is a common feature in mammals, but more research is needed to counteract this process. In women, the first aging phenotype appears with a decline in reproductive function, and the follicle number gradually decreases from menarche to menopause. Cows can be used as a model of early human embryonic development and reproductive aging because both species share a very high degree of similarity during follicle selection, cleavage, and blastocyst formation. Recently, it has been proposed that the main driver of aging is the mammalian target of rapamycin (mTOR) signaling rather than reactive oxygen species. Based on these observations, the study aimed to investigate for the first time the possible role of rapamycin on oocyte maturation, embryonic development, and telomere length in the bovine species, as a target for future strategies for female infertility caused by advanced maternal age. The 1nm rapamycin in vitro treatment showed the best results for maturation rates (95.21±4.18%) of oocytes and was considered for further experiments. In conclusion, rapamycin influenced maturation rates of oocytes in a concentration-dependent manner. Our results also suggest a possible link between mTOR, telomere maintenance, and bovine blastocyst formation.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.,Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Meriem Hamdi
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Department of Animal Reproduction, Madrid, Spain
| | - Aksinya Derevyanko
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Dimitrios Rizos
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Department of Animal Reproduction, Madrid, Spain
| | - Maria Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
43
|
Investigating the role of BCAR4 in ovarian physiology and female fertility by genome editing in rabbit. Sci Rep 2020; 10:4992. [PMID: 32193429 PMCID: PMC7081282 DOI: 10.1038/s41598-020-61689-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
Breast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo. BCAR4 displayed preferential expression in the ovary compared to somatic organs, and within the ovarian follicle in the oocyte compared to somatic cells. The transcript was detected in follicles as early as the preantral stage. Abundance decreased throughout embryo development until the blastocyst stage. A lineage of genome-edited rabbits was produced; BCAR4 expression was abolished in follicles from homozygous animals. Females of wild-type, heterozygous and homozygous genotypes were examined for ovarian physiology and reproductive parameters. Follicle growth and the number of ovulations in response to hormonal stimulation were not significantly different between genotypes. Following insemination, homozygous females displayed a significantly lower delivery rate than their heterozygous counterparts (22 ± 7% vs 71 ± 11% (mean ± SEM)), while prolificacy was 1.8 ± 0.7 vs 6.0 ± 1.4 kittens per insemination. In conclusion, BCAR4 is not essential for follicular growth and ovulation but it contributes to optimal fertility in rabbits.
Collapse
|
44
|
Christou-Kent M, Dhellemmes M, Lambert E, Ray PF, Arnoult C. Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte. Cells 2020; 9:cells9030662. [PMID: 32182827 PMCID: PMC7140715 DOI: 10.3390/cells9030662] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
The oocyte faces a particular challenge in terms of gene regulation. When oocytes resume meiosis at the end of the growth phase and prior to ovulation, the condensed chromatin state prevents the transcription of genes as they are required. Transcription is effectively silenced from the late germinal vesicle (GV) stage until embryonic genome activation (EGA) following fertilisation. Therefore, during its growth, the oocyte must produce the mRNA transcripts needed to fulfil its protein requirements during the active period of meiotic completion, fertilisation, and the maternal-to zygote-transition (MZT). After meiotic resumption, gene expression control can be said to be transferred from the nucleus to the cytoplasm, from transcriptional regulation to translational regulation. Maternal RNA-binding proteins (RBPs) are the mediators of translational regulation and their role in oocyte maturation and early embryo development is vital. Understanding these mechanisms will provide invaluable insight into the oocyte's requirements for developmental competence, with important implications for the diagnosis and treatment of certain types of infertility. Here, we give an overview of post-transcriptional regulation in the oocyte, emphasising the current knowledge of mammalian RBP mechanisms, and develop the roles of these mechanisms in the timely activation and elimination of maternal transcripts.
Collapse
Affiliation(s)
- Marie Christou-Kent
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Magali Dhellemmes
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Emeline Lambert
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
| | - Pierre F. Ray
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- CHU de Grenoble, UM GI-DPI, F-38000 Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, F-38000 Grenoble, France; (M.C.-K.); (M.D.); (E.L.); (P.F.R.)
- Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, F-38000 Grenoble, France
- Correspondence: ; Tel.: +33-(0)4-76-63-74-08
| |
Collapse
|
45
|
Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method. Int J Mol Sci 2020; 21:ijms21041254. [PMID: 32070012 PMCID: PMC7072993 DOI: 10.3390/ijms21041254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)—a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.
Collapse
|
46
|
Zebrafish embryogenesis – A framework to study regulatory RNA elements in development and disease. Dev Biol 2020; 457:172-180. [DOI: 10.1016/j.ydbio.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
|
47
|
Prokešová Š, Ghaibour K, Liška F, Klein P, Fenclová T, Štiavnická M, Hošek P, Žalmanová T, Hošková K, Řimnáčová H, Petr J, Králíčková M, Nevoral J. Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod Toxicol 2019; 93:19-27. [PMID: 31881267 DOI: 10.1016/j.reprotox.2019.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/30/2022]
Abstract
Bisphenol S (BPS) is widely used to replace the known endocrine disruptor BPA in various products. We evaluated the effect of acute in vivo BPS exposure on oocyte quality, simulating the oral route of exposure via oral gavage. Eight-week-old ICR female mice (N = 15 per experimental group) were exposed to vehicle or BPS1-BPS4 (0.001, 0.1, 10, and 100 ng BPS x g bw-1 day-1, respectively) for seven days. Oocytes were isolated and matured in vitro. We observed that BPS exposure increased aberrant spindle formation in mature oocytes and induced DNA damage. Moreover, BPS3 significantly increased the chromatin repressive marks 5-methyl cytosine (5meC) and H3K27me2 in immature oocytes. In the BPS2 group, the increase in 5meC occurred during oocyte maturation. Transcriptome analysis revealed differential expression of early embryonic development transcripts in BPS2-exposed oocytes. These findings indicate that the biological effect of BPS is non-monotonic, affecting oocyte quality even at concentrations that are orders of magnitude below those measured in humans.
Collapse
Affiliation(s)
- Šárka Prokešová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic; Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Kamar Ghaibour
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Université Lille1, Sciences et Technologies, FR3688 CNRS, Villeneuve d´Ascq Cedex, France; Université de Strasbourg, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | - František Liška
- 1(st) Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Klein
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriama Štiavnická
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Hošek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Žalmanová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Kristýna Hošková
- Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Hedvika Řimnáčová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
48
|
Mitchell DC, Menon A, Garner AL. Cyclin-dependent kinase 4 inhibits the translational repressor 4E-BP1 to promote cap-dependent translation during mitosis-G1 transition. FEBS Lett 2019; 594:1307-1318. [PMID: 31853978 DOI: 10.1002/1873-3468.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
Phosphorylation of translational repressor eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) controls the initiation of cap-dependent translation, a type of protein synthesis that is frequently upregulated in human diseases such as cancer. Because of its critical cellular function, it is not surprising that multiple kinases can post-translationally modify 4E-BP1 to drive aberrant cap-dependent translation. We recently reported a site-selective chemoproteomic method for uncovering kinase-substrate interactions, and using this approach, we discovered the cyclin-dependent kinase (CDK)4 as a new 4E-BP1 kinase. Herein, we describe our extension of this work and reveal the role of CDK4 in modulating 4E-BP1 activity in the transition from mitosis to G1, thereby demonstrating a novel role for this kinase in cell cycle regulation.
Collapse
Affiliation(s)
- Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci Rep 2019; 9:13121. [PMID: 31511568 PMCID: PMC6739377 DOI: 10.1038/s41598-019-49483-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization, and translation. A subset of maternal transcripts is stored in a translationally dormant state in the oocyte, and temporally driven translation of specific mRNAs propel meiotic progression, oocyte-to-embryo transition and early embryo development. We identified Ank2.3 as the only transcript variant present in the mouse oocyte and discovered that it is translated after nuclear envelope breakdown. Here we show that Ank2.3 mRNA is localized in higher concentration in the oocyte nucleoplasm and, after nuclear envelope breakdown, in the newly forming spindle where its translation occurs. Furthermore, we reveal that Ank2.3 mRNA contains an oligo-pyrimidine motif at 5'UTR that predetermines its translation through a cap-dependent pathway. Lastly, we show that prevention of ANK2 translation leads to abnormalities in oocyte cytokinesis.
Collapse
|
50
|
Liu H, Muhammad T, Guo Y, Li M, Sha Q, Zhang C, Liu H, Zhao S, Zhao H, Zhang H, Du Y, Sun K, Liu K, Lu G, Guo X, Sha J, Fan H, Gao F, Chen Z. RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900295. [PMID: 31406667 PMCID: PMC6685478 DOI: 10.1002/advs.201900295] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/10/2019] [Indexed: 05/29/2023]
Abstract
A number of genes involved in zygotic genome activation (ZGA) have been identified, but the RNA-binding maternal factors that are directly related to ZGA in mice remain unclear. The present study shows that maternal deletion of Igf 2bp2 (also commonly known as Imp2) in mouse embryos causes early embryonic developmental arrest in vitro at the 2-cell-stage. Transcriptomics and proteomics analyses of 2-cell-stage embryos in mice reveal that deletion of IMP2 downregulates the expression of Ccar1 and Rps14, both of which are required for early embryonic developmental competence. IGF2, a target of IMP2, when added in culture media, increases the proportion of wild-type embryos that develop successfully to the blastocyst stage: from 29% in untreated controls to 65% (50 × 10-9 m IGF2). Furthermore, in an experiment related to embryo transfer, foster mothers receiving IGF2-treated embryos deliver more pups per female than females who receive untreated control embryos. In clinically derived human oocytes, the addition of IGF2 to the culture media significantly enhances the proportion of embryos that develop successfully. Collectively, the findings demonstrate that IMP2 is essential for the regulation and activation of genes known to be involved in ZGA and reveal the potential embryonic development-related utility of IGF2 for animal biotechnology and for assisted reproduction in humans.
Collapse
|