1
|
Graham JJ, Subramani SV, Yang X, Russell TM, Zhang F, Keten S. Charting the envelope of mechanical properties of synthetic silk fibers through predictive modeling of the drawing process. SCIENCE ADVANCES 2025; 11:eadr3833. [PMID: 40053589 PMCID: PMC11887809 DOI: 10.1126/sciadv.adr3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
A major challenge in synthesizing strong and tough protein fibers based on spider silk motifs is understanding the coupling between protein sequence and the postspin drawing process. We clarify how drawing-induced elongational force affects ordering, chain extension, interchain contacts, and molecular mobility through mesoscale simulations of silk-based fibers. We show that these emergent features can be used to predict mechanical property enhancements arising from postspin drawing. Simulations recapitulate a purely process-dependent mechanical property envelope in which order enhances fiber strength while preserving toughness. The relationship between chain extension and crystalline domain alignment observed in simulations is validated by Raman spectroscopy of wet-spun fibers. Property enhancements attributed to the progression of anisotropic extension are verified by mechanical tests of drawn silk fibers and justified by theory. These findings elucidate how drawing enhances properties of protein-based fibers and shed light on how to incorporate this effect into predictive models.
Collapse
Affiliation(s)
- Jacob J. Graham
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shri V. Subramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xinyan Yang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Timothy M. Russell
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Qin D, Wang M, Cheng W, Chen J, Wang F, Sun J, Ma C, Zhang Y, Zhang H, Li H, Liu K, Li J. Spidroin-mimetic Engineered Protein Fibers with High Toughness and Minimized Batch-to-batch Variations through β-sheets Co-assembly. Angew Chem Int Ed Engl 2024; 63:e202400595. [PMID: 38321642 DOI: 10.1002/anie.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Synthetic spidroin fibers have not yet attained the same level of toughness and stability as natural spider silks due to the complexity of composition and hierarchical structure. Particularly, understanding the intricate interactions between spidroin components in spider fiber is still elusive. Herein, we report modular design and preparation of spidroin-mimetic fibers composed of a conservative C-terminus spidroin module, two different natural β-sheets modules, and a non-spidroin random-coil module. The resulting fibers exhibit a toughness of ~200 MJ/m3, reaching the highest value among the reported artificial spider silks. The interactions between two components of recombinant spidroins facilitate the intermolecular co-assembly of β-sheets, thereby enhancing the mechanical strength and reducing batch-to-batch variability in the dual-component spidroin fibers. Additionally, the dual-component spidroin fibers offer potential applications in implantable or even edible devices. Therefore, our work presents a generic strategy to develop high-performance protein fibers for diverse translations in different scenarios.
Collapse
Affiliation(s)
- Dawen Qin
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 200241, Shanghai, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Huanrong Li
- School of Chemical Engineering and Technology, Hebei University of Technology, 300130, Tianjin, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials of the Ministry of Education, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
3
|
Herrera-Rodríguez AM, Dasanna AK, Daday C, Cruz-Chú ER, Aponte-Santamaría C, Schwarz US, Gräter F. The role of flow in the self-assembly of dragline spider silk proteins. Biophys J 2023; 122:4241-4253. [PMID: 37803828 PMCID: PMC10645567 DOI: 10.1016/j.bpj.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/14/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%-80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.
Collapse
Affiliation(s)
| | - Anil Kumar Dasanna
- BioQuant, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Csaba Daday
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Eduardo R Cruz-Chú
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ulrich S Schwarz
- BioQuant, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Zhang X, Li J, Ma C, Zhang H, Liu K. Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance. Acc Chem Res 2023; 56:2664-2675. [PMID: 37738227 DOI: 10.1021/acs.accounts.3c00372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Protein-based biomaterials attract growing interests due to their encoded and programmable robust mechanical properties, superelasticity, plasticity, shape adaptability, excellent interfacial behavior, etc., derived from sequence-guided backbone structures, particularly compared to chemically synthetic counterparts in materials science and biomedical engineering. For example, protein materials have been successfully fabricated as (1) artificial implants (man-made tendons, cartilages, or dental tissues), due to programmable chemistry and biocompatibility; (2) smart biodevices with temperature/light-response and self-healing effects; and (3) impact resistance materials having great mechanical performance due to biomimetics. However, the existing method of regenerating protein materials from natural sources has two critical issues, low yield and structural damage, making it unable to meet demands. Therefore, it is crucial to develop an alternative strategy for fabricating protein materials. Heterologous expression of natural proteins with a modular assembly approach is an effective strategy for material preparation. Standardized, easy-to-assemble protein modules with specific structures and functions are developed through experimental and computational tools based on natural functional protein sequences. Through recombination and heterologous expression, these artificial protein modules become keys to material fabrication. Undergoing an assembly process similar to supramolecular self-assembly of proteins in cells, biomimetic modules can be fabricated for formation of macroscopic materials such as fibers and adhesives. This strategy inspired by synthetic biology and supramolecular chemistry is important for improving target protein yields and assembly integrity. It also preserves and optimizes the mechanical functions of structural proteins, accelerating the design and fabrication of artificial protein materials.In this Account, we overview recent studies on fabricating biomimetic protein materials to elucidate the concept of modular assembly. We discuss the design of biomimetic structural proteins at the molecular level, providing a wealth of details determining the bulk properties of materials. Additinally, we describe the modular self-assembly and assembly driven by inducing molecules, and mechanical properties and applications of resulting fibers. We used these strategies to develop fiber materials with high tensile strength, high toughness, and properties such as anti-icing and high-temperature resistance. We also extended this approach to design protein-based adhesives with ultra-strong adhesion, biocompatibility, and biodegradability for surgical applications such as wound sealing and healing. Other protein materials, including films and hydrogels, have been developed through chemical assembly routes. Finally, we describe exploiting synthetic biology and chemistry to overcome bottlenecks in structural protein modular design, biosynthesis, and material assembly and our perspectives for future development in structural biomaterials.
Collapse
Affiliation(s)
- Xin Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
5
|
Xie Q, On Lee S, Vissamsetti N, Guo S, Johnson ME, Fried SD. Secretion-Catalyzed Assembly of Protein Biomaterials on a Bacterial Membrane Surface. Angew Chem Int Ed Engl 2023; 62:e202305178. [PMID: 37469298 PMCID: PMC11619767 DOI: 10.1002/anie.202305178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Protein-based biomaterials have played a key role in tissue engineering, and additional exciting applications as self-healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram-positive bacterium Bacillus subtilis can be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion-catalyzed assembly (SCA). Secreted silk fibers form self-healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials from Bacillus cells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.
Collapse
Affiliation(s)
- Qi Xie
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sea On Lee
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Nitya Vissamsetti
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sikao Guo
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| |
Collapse
|
6
|
Sun J, He H, Zhao K, Cheng W, Li Y, Zhang P, Wan S, Liu Y, Wang M, Li M, Wei Z, Li B, Zhang Y, Li C, Sun Y, Shen J, Li J, Wang F, Ma C, Tian Y, Su J, Chen D, Fan C, Zhang H, Liu K. Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat Commun 2023; 14:5348. [PMID: 37660126 PMCID: PMC10475138 DOI: 10.1038/s41467-023-41084-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
The manipulation of internal interactions at the molecular level within biological fibers is of particular importance but challenging, severely limiting their tunability in macroscopic performances and applications. It thus becomes imperative to explore new approaches to enhance biological fibers' stability and environmental tolerance and to impart them with diverse functionalities, such as mechanical recoverability and stimulus-triggered responses. Herein, we develop a dynamic imine fiber chemistry (DIFC) approach to engineer molecular interactions to fabricate strong and tough protein fibers with recoverability and actuating behaviors. The resulting DIF fibers exhibit extraordinary mechanical performances, outperforming many recombinant silks and synthetic polymer fibers. Remarkably, impaired DIF fibers caused by fatigue or strong acid treatment are quickly recovered in water directed by the DIFC strategy. Reproducible mechanical performance is thus observed. The DIF fibers also exhibit exotic mechanical stability at extreme temperatures (e.g., -196 °C and 150 °C). When triggered by humidity, the DIFC endows the protein fibers with diverse actuation behaviors, such as self-folding, self-stretching, and self-contracting. Therefore, the established DIFC represents an alternative strategy to strengthen biological fibers and may pave the way for their high-tech applications.
Collapse
Affiliation(s)
- Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Haonan He
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kelu Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Yuanxin Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Peng Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Sikang Wan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Ming Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Zheng Wei
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yi Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Cong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Chen
- College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| |
Collapse
|
7
|
Greco G, Schmuck B, Jalali SK, Pugno NM, Rising A. Influence of experimental methods on the mechanical properties of silk fibers: A systematic literature review and future road map. BIOPHYSICS REVIEWS 2023; 4:031301. [PMID: 38510706 PMCID: PMC10903380 DOI: 10.1063/5.0155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 03/22/2024]
Abstract
Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.
Collapse
Affiliation(s)
| | | | - S. K. Jalali
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | | | - Anna Rising
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
8
|
Lu W, Lee NA, Buehler MJ. Modeling and design of heterogeneous hierarchical bioinspired spider web structures using deep learning and additive manufacturing. Proc Natl Acad Sci U S A 2023; 120:e2305273120. [PMID: 37487072 PMCID: PMC10401013 DOI: 10.1073/pnas.2305273120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/09/2023] [Indexed: 07/26/2023] Open
Abstract
Spider webs are incredible biological structures, comprising thin but strong silk filament and arranged into complex hierarchical architectures with striking mechanical properties (e.g., lightweight but high strength, achieving diverse mechanical responses). While simple 2D orb webs can easily be mimicked, the modeling and synthesis of 3D-based web structures remain challenging, partly due to the rich set of design features. Here, we provide a detailed analysis of the heterogeneous graph structures of spider webs and use deep learning as a way to model and then synthesize artificial, bioinspired 3D web structures. The generative models are conditioned based on key geometric parameters (including average edge length, number of nodes, average node degree, and others). To identify graph construction principles, we use inductive representation sampling of large experimentally determined spider web graphs, to yield a dataset that is used to train three conditional generative models: 1) an analog diffusion model inspired by nonequilibrium thermodynamics, with sparse neighbor representation; 2) a discrete diffusion model with full neighbor representation; and 3) an autoregressive transformer architecture with full neighbor representation. All three models are scalable, produce complex, de novo bioinspired spider web mimics, and successfully construct graphs that meet the design objectives. We further propose an algorithm that assembles web samples produced by the generative models into larger-scale structures based on a series of geometric design targets, including helical and parametric shapes, mimicking, and extending natural design principles toward integration with diverging engineering objectives. Several webs are manufactured using 3D printing and tested to assess mechanical properties.
Collapse
Affiliation(s)
- Wei Lu
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Nic A. Lee
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA02139
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
9
|
De Oliveira DH, Biler M, Mim C, Enstedt L, Kvick M, Norman P, Linares M, Hedhammar M. Silk Assembly against Hydrophobic Surfaces─Modeling and Imaging of Formation of Nanofibrils. ACS APPLIED BIO MATERIALS 2023; 6:1011-1018. [PMID: 36791416 PMCID: PMC10031558 DOI: 10.1021/acsabm.2c00878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A detailed insight about the molecular organization behind spider silk assembly is valuable for the decoding of the unique properties of silk. The recombinant partial spider silk protein 4RepCT contains four poly-alanine/glycine-rich repeats followed by an amphiphilic C-terminal domain and has shown the capacity to self-assemble into fibrils on hydrophobic surfaces. We herein use molecular dynamic simulations to address the structure of 4RepCT and its different parts on hydrophobic versus hydrophilic surfaces. When 4RepCT is placed in a wing arrangement model and periodically repeated on a hydrophobic surface, β-sheet structures of the poly-alanine repeats are preserved, while the CT part is settled on top, presenting a fibril with a height of ∼7 nm and a width of ∼11 nm. Both atomic force microscopy and cryo-electron microscopy imaging support this model as a possible fibril formation on hydrophobic surfaces. These results contribute to the understanding of silk assembly and alignment mechanism onto hydrophobic surfaces.
Collapse
Affiliation(s)
- Danilo Hirabae De Oliveira
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Michal Biler
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Hälsovägen 11C, SE-141 27 Huddinge, Sweden
| | - Linnea Enstedt
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | | | - Patrick Norman
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics and Scientific Visualization Group, ITN, Linköping University, SE-581 83 Linköping, Sweden
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Lin S, Zhao L, Liu S, Wang Y, Fu G. Modeling the viscoelastic relaxation dynamics of soft particles via molecular dynamics simulation-informed multi-dimensional transition-state theory. SOFT MATTER 2023; 19:502-511. [PMID: 36541141 DOI: 10.1039/d2sm00848c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Viscoelastic soft colloidal particles have been widely explored in mechanical, chemical, pharmaceutical and other engineering applications due to their unique combination of viscosity and elasticity. The characteristic viscoelastic relaxation time shows an Arrhenius-type (or super-Arrhenius due to temperature-dependent transition attempts) thermally-activated behavior, but a holistic explanation from the relevant transition-state theory remains elusive. In this paper, the viscoelastic relaxation times of Lennard-Jones soft colloidal particle systems, including a single particle type system and a binary particle mixture based on the Kob-Andersen model, are determined using molecular dynamics (MD) simulations as the benchmark. First, the particle systems show a non-Maxwellian behavior after comparing the MD-predicted viscoelastic relaxation time and dynamic moduli (storage and loss modulus) to the classic Maxwell viscoelastic model and the recent particle local connectivity theory. Surprisingly, neither the Maxwell relaxation time τMaxwell (obtained from the static shear viscosity η and the high-frequency shear modulus G∞) nor the particle local connectivity lifetime τLC can capture the super-Arrhenius temperature-dependent behavior in the MD-predicted relaxation time τMD. Then, the particle dissociation and association transition kinetics, fractal dimensions of the particle systems, and neighbor particle structure (obtained from the radial distribution functions) are shown to collectively determine the viscoelastic relaxation time. These factors are embedded into a new multi-dimensional transition kinetics model to directly estimate the viscoelastic relaxation time τModel, which is found to agree with the MD-predicted τMD remarkably well. This work highlights the microscopic origin of viscoelastic relaxation dynamics of soft colloidal particles, and theoretically connects rheological dynamics and transition kinetics in soft matters.
Collapse
Affiliation(s)
- Shangchao Lin
- Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lingling Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu, 210096, China
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuai Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Ge Fu
- Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Nie K, Zhou S, Li H, Tian J, Shen W, Huang W. Advanced silk materials for musculoskeletal tissue regeneration. Front Bioeng Biotechnol 2023; 11:1199507. [PMID: 37200844 PMCID: PMC10185897 DOI: 10.3389/fbioe.2023.1199507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Musculoskeletal diseases are the leading causes of chronic pain and physical disability, affecting millions of individuals worldwide. Over the past two decades, significant progress has been made in the field of bone and cartilage tissue engineering to combat the limitations of conventional treatments. Among various materials used in musculoskeletal tissue regeneration, silk biomaterials exhibit unique mechanical robustness, versatility, favorable biocompatibility, and tunable biodegradation rate. As silk is an easy-to-process biopolymer, silks have been reformed into various materials formats using advanced bio-fabrication technology for the design of cell niches. Silk proteins also offer active sites for chemical modifications to facilitate musculoskeletal system regeneration. With the emergence of genetic engineering techniques, silk proteins have been further optimized from the molecular level with other functional motifs to introduce new advantageous biological properties. In this review, we highlight the frontiers in engineering natural and recombinant silk biomaterials, as well as recent progress in the applications of these new silks in the field of bone and cartilage regeneration. The future potentials and challenges of silk biomaterials in musculoskeletal tissue engineering are also discussed. This review brings together perspectives from different fields and provides insight into improved musculoskeletal engineering.
Collapse
Affiliation(s)
- Kexin Nie
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Sicheng Zhou
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hu Li
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Tian
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Huang
- Centre for Regeneration and Cell Therapy, The Zhejiang University—University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Wenwen Huang,
| |
Collapse
|
12
|
Chung SC, Park JS, Jha RK, Kim J, Kim J, Kim M, Choi J, Kim H, Park DH, Gogurla N, Lee TY, Jeon H, Park JY, Choi J, Kim G, Kim S. Engineering Silk Protein to Modulate Polymorphic Transitions for Green Lithography Resists. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56623-56634. [PMID: 36524808 DOI: 10.1021/acsami.2c17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silk protein is being increasingly introduced as a prospective material for biomedical devices. However, a limited locus to intervene in nature-oriented silk protein makes it challenging to implement on-demand functions to silk. Here, we report how polymorphic transitions are related with molecular structures of artificially synthesized silk protein and design principles to construct a green-lithographic and high-performative protein resist. The repetition number and ratio of two major building blocks in synthesized silk protein are essential to determine the size and content of β-sheet crystallites, and radicals resulting from tyrosine cleavages by the 193 nm laser irradiation induce the β-sheet to α-helix transition. Synthesized silk is designed to exclusively comprise homogeneous building blocks and exhibit high crystallization and tyrosine-richness, thus constituting an excellent basis for developing a high-performance deep-UV photoresist. Additionally, our findings can be conjugated to design an electron-beam resist governed by the different irradiation-protein interaction mechanisms. All synthesis and lithography processes are fully water-based, promising green lithography. Using the engineered silk, a nanopatterned planar color filter showing the reduced angle dependence can be obtained. Our study provides insights into the industrial scale production of silk protein with on-demand functions.
Collapse
Affiliation(s)
- Soon-Chun Chung
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Joon-Song Park
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Rakesh Kumar Jha
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Jieun Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Jinha Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Muyoung Kim
- Department of Plasma Engineering, Korea Institute of Machinery and Materials, Daejeon 34103, Korea
| | - Juwan Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
| | - Hongdeok Kim
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea
| | - Da-Hye Park
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Narendar Gogurla
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Tae-Yun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Heonsu Jeon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Ji-Yong Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Joonmyung Choi
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea
| | - Ginam Kim
- Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon 16678, Korea
| | - Sunghwan Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
13
|
Wani SUD, Zargar MI, Masoodi MH, Alshehri S, Alam P, Ghoneim MM, Alshlowi A, Shivakumar HG, Ali M, Shakeel F. Silk Fibroin as an Efficient Biomaterial for Drug Delivery, Gene Therapy, and Wound Healing. Int J Mol Sci 2022; 23:ijms232214421. [PMID: 36430901 PMCID: PMC9692988 DOI: 10.3390/ijms232214421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Silk fibroin (SF), an organic material obtained from the cocoons of a silkworm Bombyx mori, is used in several applications and has a proven track record in biomedicine owing to its superior compatibility with the human body, superb mechanical characteristics, and its controllable propensity to decay. Due to its robust biocompatibility, less immunogenic, non-toxic, non-carcinogenic, and biodegradable properties, it has been widely used in biological and biomedical fields, including wound healing. The key strategies for building diverse SF-based drug delivery systems are discussed in this review, as well as the most recent ways for developing functionalized SF for controlled or redirected medicines, gene therapy, and wound healing. Understanding the features of SF and the various ways to manipulate its physicochemical and mechanical properties enables the development of more effective drug delivery devices. Drugs are encapsulated in SF-based drug delivery systems to extend their shelf life and control their release, allowing them to travel further across the bloodstream and thus extend their range of operation. Furthermore, due to their tunable properties, SF-based drug delivery systems open up new possibilities for drug delivery, gene therapy, and wound healing.
Collapse
Affiliation(s)
- Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Mubashir Hussain Masoodi
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Jammu and Kashmir, Srinagar 190006, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Areej Alshlowi
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - H. G. Shivakumar
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida 201301, India
| | - Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore 560049, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.A.); (F.S.)
| |
Collapse
|
14
|
Shen X, Shi H, Wei H, Wu B, Xia Q, Yeo J, Huang W. Engineering Natural and Recombinant Silks for Sustainable Biodevices. Front Chem 2022; 10:881028. [PMID: 35601555 PMCID: PMC9117649 DOI: 10.3389/fchem.2022.881028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023] Open
Abstract
Silk fibroin (SF) is a structural protein derived from natural silkworm silks. Materials fabricated based on SF usually inherit extraordinary physical and biological properties, including high mechanical strength, toughness, optical transparency, tailorable biodegradability, and biocompatibility. Therefore, SF has attracted interest in the development of sustainable biodevices, especially for emergent bio-electronic technologies. To expand the function of current silk devices, the SF characteristic sequence has been used to synthesize recombinant silk proteins that benefit from SF and other functional peptides, such as stimuli-responsive elastin peptides. In addition to genetic engineering methods, innovated chemistry modification approaches and improved material processing techniques have also been developed for fabricating advanced silk materials with tailored chemical features and nanostructures. Herein, this review summarizes various methods to synthesize functional silk-based materials from different perspectives. This review also highlights the recent advances in the applications of natural and recombinant silks in tissue regeneration, soft robotics, and biosensors, using B. mori SF and silk-elastin-like proteins (SELPs) as examples.
Collapse
Affiliation(s)
- Xinchen Shen
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Haoyuan Shi
- J Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Hongda Wei
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Boxuan Wu
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingyuan Xia
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjie Yeo
- J Lab for Engineering Living Materials, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Wenwen Huang
- The Zhejiang University - University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Su J, Liu B, He H, Ma C, Wei B, Li M, Li J, Wang F, Sun J, Liu K, Zhang H. Engineering High Strength and Super-Toughness of Unfolded Structural Proteins and their Extraordinary Anti-Adhesion Performance for Abdominal Hernia Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200842. [PMID: 35262209 DOI: 10.1002/adma.202200842] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The utility of unfolded structural proteins with diverse sequences offers multiple potentials to create functional biomaterials. However, it is challenging to overcome their structural defects for the development of biological fibers with a combination of high strength and high toughness. Herein, robust fibers from a recombinant unfolded protein consisting of resilin and supercharged polypeptide are fabricated via wet-spinning approaches. Particularly, the highly ordered structures induced by supramolecular complexation significantly improve the fiber's mechanical performance. In contrast to chemical fibers with high strength and low toughness (or vice versa), the present fibers demonstrate exceptional high strength and super-toughness, showing a breaking strength of ≈550 MPa and a toughness of ≈250 MJ m-3 , respectively, surpassing many polymers and artificial protein fibers. Remarkably, the outstanding biocompatibility and superior mechanical properties allow application of the constructed fiber patches for efficient abdominal hernia repair in rat models. In stark contrast to clinical patches, there is no observed tissue adhesion by this treatment. Therefore, this work provides a new type of engineered protein material for surgical applications.
Collapse
Affiliation(s)
- Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baimei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haonan He
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center of PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Abstract
![]()
The tiny spider makes
dragline silk fibers with unbeatable toughness,
all under the most innocuous conditions. Scientists have persistently
tried to emulate its natural silk spinning process using recombinant
proteins with a view toward creating a new wave of smart materials,
yet most efforts have fallen short of attaining the native fiber’s
excellent mechanical properties. One reason for these shortcomings
may be that artificial spider silk systems tend to be overly simplified
and may not sufficiently take into account the true complexity of
the underlying protein sequences and of the multidimensional aspects
of the natural self-assembly process that give rise to the hierarchically
structured fibers. Here, we discuss recent findings regarding the
material constituents of spider dragline silk, including novel spidroin
subtypes, nonspidroin proteins, and possible involvement of post-translational
modifications, which together suggest a complexity that transcends
the two-component MaSp1/MaSp2 system. We subsequently consider insights
into the spidroin domain functions, structures, and overall mechanisms
for the rapid transition from disordered soluble protein into a highly
organized fiber, including the possibility of viewing spider silk
self-assembly through a framework relevant to biomolecular condensates.
Finally, we consider the concept of “biomimetics” as
it applies to artificial spider silk production with a focus on key
practical aspects of design and evaluation that may hopefully inform
efforts to more closely reproduce the remarkable structure and function
of the native silk fiber using artificial methods.
Collapse
Affiliation(s)
- Ali D Malay
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hamish C Craig
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jianming Chen
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nur Alia Oktaviani
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Choi W, Heo D, Kim T, Jung S, Choi M, Heo J, Kwon J, Kim B, Lee W, Koh W, Cho JH, Lee S, Hong J. Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105420. [PMID: 35001517 PMCID: PMC8922117 DOI: 10.1002/advs.202105420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Deokjae Heo
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Taeho Kim
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR ProjectYonsei University College of DentistrySeoul03722Republic of Korea
| | - Byeong‐Su Kim
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Wonhwa Lee
- Department of ChemistrySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Won‐Gun Koh
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangmin Lee
- School of Mechanical EngineeringChung‐ang University84, Heukseok‐ro, Dongjak‐guSeoul06974Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
18
|
Yu J, Zhai C, Wang M, Cai Z, Yeo J, Zhang Q, Zhao C, Lin S. Hybridly double-crosslinked carbon nanotube networks with combined strength and toughness via cooperative energy dissipation. NANOSCALE 2022; 14:2434-2445. [PMID: 35098959 DOI: 10.1039/d1nr06832f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although chemical crosslinking has been extensively explored to enhance the mechanical properties of network-type materials for structural and energy (electrochemical, thermal, etc.) applications, loading-induced energy dissipations usually occur through a single channel that either leads to network brittleness or low strength/stiffness. In this work, we apply coarse-grained molecular dynamics simulations to explore the potential of hybridly double-crosslinked carbon nanotube (CNT) networks as a light weight functional material with combined strength and toughness. While increasing the crosslinking density or strong crosslink composition may, in general, enhance the strength and toughness, further increasing the two parameters would surprisingly lead to deteriorated strength and toughness. We find that double-crosslinked networks can nicely achieve cooperative energy dissipation with minimal structural damage. In particular, the weak crosslinks serve as "sacrificial bonds" to dissipate elastic energies from external loading, while the strong crosslinks act as "structure holders" and break at a much later stage during the tensile test. Therefore, the combination of more than one type of crosslinking with hybrid potential energy landscapes and breaking time scales can prevent premature simultaneous breaking of multiple strong crosslinks. By deploying intermediate amounts of weak and strong crosslinks, we observe an outstanding density-normalized strength of 227-2130 kPa m3 kg-1 as compared to many structural materials and advanced nanocomposites. The crosslinking strategies developed here would pave new avenues for the rational design of functional network materials beyond CNTs, such as hydrogels, nanofibers, and nanocomposites.
Collapse
Affiliation(s)
- Jingui Yu
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingchao Wang
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhuangli Cai
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Qiaoxin Zhang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Changying Zhao
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shangchao Lin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Nutritionally induced nanoscale variations in spider silk structural and mechanical properties. J Mech Behav Biomed Mater 2021; 125:104873. [PMID: 34653899 DOI: 10.1016/j.jmbbm.2021.104873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Spider major ampullate (MA) silk is characterized by high strength and toughness and is adaptable across environments. Experiments depriving spiders of protein have enabled researchers to examine nutritionally induced changes in gene expression, protein structures, and bulk properties of MA silk. However, it has not been elucidated if it varies in a similar way at a nanoscale. Here we used Atomic Force Microscopy (AFM) to simultaneously examine the topographic, structural, and mechanical properties of silks spun by two species of spider, Argiope keyserlingi and Latrodectus hasselti, at a nanoscale when protein fed or deprived. We found height, a measure of localized width, to substantially vary across species and treatments. We also found that Young's modulus, which may be used as an estimate of localized stiffness, decreased with protein deprivation in both species' silk. Our results suggest that nanoscale skin-core structures of A. keyserlingi's MA silk varied significantly across treatments, whereas only slight structural and functional variability was found for L. hasselti's silk. These results largely agreed with examinations of the bulk properties of each species' silk. However, we could not directly attribute the decoupling between protein structures and bulk mechanics in L. hasselti's silk to nanoscale features. Our results advance the understanding of processes inducing skin and core structural variations in spider silks at a nanoscale, which serves to enhance the prospect of developing biomimetic engineering programs.
Collapse
|
20
|
Zhou S, Jin K, Buehler MJ. Understanding Plant Biomass via Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003206. [PMID: 32945027 DOI: 10.1002/adma.202003206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.
Collapse
Affiliation(s)
- Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Kai Jin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Mu X, Agostinacchio F, Xiang N, Pei Y, Khan Y, Guo C, Cebe P, Motta A, Kaplan DL. Recent Advances in 3D Printing with Protein-Based Inks. Prog Polym Sci 2021; 115:101375. [PMID: 33776158 PMCID: PMC7996313 DOI: 10.1016/j.progpolymsci.2021.101375] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) printing is a transformative manufacturing strategy, allowing rapid prototyping, customization, and flexible manipulation of structure-property relationships. Proteins are particularly appealing to formulate inks for 3D printing as they serve as essential structural components of living systems, provide a support presence in and around cells and for tissue functions, and also provide the basis for many essential ex vivo secreted structures in nature. Protein-based inks are beneficial in vivo due to their mechanics, chemical and physical match to the specific tissue, and full degradability, while also to promoting implant-host integration and serving as an interface between technology and biology. Exploiting the biological, chemical, and physical features of protein-based inks can provide key opportunities to meet the needs of tissue engineering and regenerative medicine. Despite these benefits, protein-based inks impose nontrivial challenges to 3D printing such as concentration and rheological features and reconstitution of the structural hierarchy observed in nature that is a source of the robust mechanics and functions of these materials. This review introduces photo-crosslinking mechanisms and rheological principles that underpins a variety of 3D printing techniques. The review also highlights recent advances in the design, development, and biomedical utility of monolithic and composite inks from a range of proteins, including collagen, silk, fibrinogen, and others. One particular focus throughout the review is to introduce unique material characteristics of proteins, including amino acid sequences, molecular assembly, and secondary conformations, which are useful for designing printing inks and for controlling the printed structures. Future perspectives of 3D printing with protein-based inks are also provided to support the promising spectrum of biomedical research accessible to these materials.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Francesca Agostinacchio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - Ning Xiang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Ying Pei
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento 38123, Italy
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
22
|
Tandon S, Kandasubramanian B, Ibrahim SM. Silk-Based Composite Scaffolds for Tissue Engineering Applications. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Saloni Tandon
- Biotechnology Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur-302004, Rajasthan, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune-411025, Maharashtra, India
| | - Sobhy M. Ibrahim
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Zhang C, Mi J, Qi H, Huang J, Liu S, Zhang L, Fan D. Engineered a novel pH-sensitive short major ampullate spidroin. Int J Biol Macromol 2020; 154:698-705. [DOI: 10.1016/j.ijbiomac.2020.03.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
|
24
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
25
|
Mani S, Cosgrove DJ, Voth GA. Anisotropic Motions of Fibrils Dictated by Their Orientations in the Lamella: A Coarse-Grained Model of a Plant Cell Wall. J Phys Chem B 2020; 124:3527-3539. [DOI: 10.1021/acs.jpcb.0c01697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sriramvignesh Mani
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel J. Cosgrove
- Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
26
|
Li Y, Li J, Sun J, He H, Li B, Ma C, Liu K, Zhang H. Bioinspired and Mechanically Strong Fibers Based on Engineered Non‐Spider Chimeric Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
27
|
Li Y, Li J, Sun J, He H, Li B, Ma C, Liu K, Zhang H. Bioinspired and Mechanically Strong Fibers Based on Engineered Non‐Spider Chimeric Proteins. Angew Chem Int Ed Engl 2020; 59:8148-8152. [DOI: 10.1002/anie.202002399] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/05/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- Department of ChemistryTsinghua University Beijing 100084 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
28
|
Pan L, Wang F, Cheng Y, Leow WR, Zhang YW, Wang M, Cai P, Ji B, Li D, Chen X. A supertough electro-tendon based on spider silk composites. Nat Commun 2020; 11:1332. [PMID: 32165612 PMCID: PMC7067870 DOI: 10.1038/s41467-020-14988-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/11/2020] [Indexed: 11/10/2022] Open
Abstract
Compared to transmission systems based on shafts and gears, tendon-driven systems offer a simpler and more dexterous way to transmit actuation force in robotic hands. However, current tendon fibers have low toughness and suffer from large friction, limiting the further development of tendon-driven robotic hands. Here, we report a super tough electro-tendon based on spider silk which has a toughness of 420 MJ/m3 and conductivity of 1,077 S/cm. The electro-tendon, mechanically toughened by single-wall carbon nanotubes (SWCNTs) and electrically enhanced by PEDOT:PSS, can withstand more than 40,000 bending-stretching cycles without changes in conductivity. Because the electro-tendon can simultaneously transmit signals and force from the sensing and actuating systems, we use it to replace the single functional tendon in humanoid robotic hand to perform grasping functions without additional wiring and circuit components. This material is expected to pave the way for the development of robots and various applications in advanced manufacturing and engineering.
Collapse
Affiliation(s)
- Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Fan Wang
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Cheng
- Institute of High Performance Computing, Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
29
|
He H, Yang C, Wang F, Wei Z, Shen J, Chen D, Fan C, Zhang H, Liu K. Mechanically Strong Globular‐Protein‐Based Fibers Obtained Using a Microfluidic Spinning Technique. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Chenjing Yang
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Dong Chen
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
30
|
Yu CH, Buehler MJ. Sonification based de novo protein design using artificial intelligence, structure prediction, and analysis using molecular modeling. APL Bioeng 2020; 4:016108. [PMID: 32206742 PMCID: PMC7078008 DOI: 10.1063/1.5133026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 11/14/2022] Open
Abstract
We report the use of a deep learning model to design de novo proteins, based on the interplay of elementary building blocks via hierarchical patterns. The deep neural network model is based on translating protein sequences and structural information into a musical score that features different pitches for each of the amino acids, and variations in note length and note volume reflecting secondary structure information and information about the chain length and distinct protein molecules. We train a deep learning model whose architecture is composed of several long short-term memory units from data consisting of musical representations of proteins classified by certain features, focused here on alpha-helix rich proteins. Using the deep learning model, we then generate de novo musical scores and translate the pitch information and chain lengths into sequences of amino acids. We use a Basic Local Alignment Search Tool to compare the predicted amino acid sequences against known proteins, and estimate folded protein structures using the Optimized protein fold RecognitION method (ORION) and MODELLER. We find that the method proposed here can be used to design de novo proteins that do not exist yet, and that the designed proteins fold into specified secondary structures. We validate the newly predicted protein by molecular dynamics equilibration in explicit water and subsequent characterization using a normal mode analysis. The method provides a tool to design novel protein materials that could find useful applications as materials in biology, medicine, and engineering.
Collapse
Affiliation(s)
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM),
Department of Civil and Environmental Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Ave. 1-290, Cambridge, Massachusetts 02139,
USA
| |
Collapse
|
31
|
Zhang J, Sun J, Li B, Yang C, Shen J, Wang N, Gu R, Wang D, Chen D, Hu H, Fan C, Zhang H, Liu K. Robust Biological Fibers Based on Widely Available Proteins: Facile Fabrication and Suturing Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907598. [PMID: 32003943 DOI: 10.1002/smll.201907598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Lightweight and mechanically strong protein fibers are promising for many technical applications. Despite the widespread investigation of biological fibers based on spider silk and silkworm proteins, it remains a challenge to develop low-cost proteins and convenient spinning technology for the fabrication of robust biological fibers. Since there are plenty of widely available proteins in nature, it is meaningful to investigate the preparation of fibers by the proteins and explore their biomedical applications. Here, a facile microfluidic strategy is developed for the scalable construction of biological fibers via a series of easily accessible spherical and linear proteins including chicken egg, quail egg, goose egg, bovine serum albumin, milk, and collagen. It is found that the crosslinking effect in microfluidic chips and double-drawn treatment after spinning are crucial for the formation of fibers. Thus, high tensile strength and toughness are realized in the fibers, which are comparable or even higher than that of many recombinant spider silks or regenerated silkworm fibers. Moreover, the suturing applications in rat and minipig models are realized by employing the mechanically strong fibers. Therefore, this work opens a new direction for the production of biological fibers from natural sources.
Collapse
Affiliation(s)
- Jinrui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chenjing Yang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nan Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Rui Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Daguang Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin Uuniversity, 130021, Changchun, China
| | - Dong Chen
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honggang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
32
|
Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, Zhang H. Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906360. [PMID: 31805206 DOI: 10.1002/adma.201906360] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Protein-based structural biomaterials are of great interest for various applications because the sequence flexibility within the proteins may result in their improved mechanical and structural integrity and tunability. As the two representative examples, protein-based adhesives and fibers have attracted tremendous attention. The typical protein adhesives, which are secreted by mussels, sandcastle worms, barnacles, and caddisfly larvae, exhibit robust underwater adhesion performance. In order to mimic the adhesion performance of these marine organisms, two main biological adhesives are presented, including genetically engineered protein-based adhesives and biomimetic chemically synthetized adhesives. Moreover, various protein-based fibers inspired by spider and silkworm proteins, collagen, elastin, and resilin are studied extensively. The achievements in synthesis and fabrication of structural biomaterials by DNA recombinant technology and chemical regeneration certainly will accelerate the explorations and applications of protein-based adhesives and fibers in wound healing, tissue regeneration, drug delivery, biosensors, and other high-tech applications. However, the mechanical properties of the biological structural materials still do not match those of natural systems. More efforts need to be devoted to the study of the interplay of the protein structure, cohesion and adhesion effects, fiber processing, and mechanical performance.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Juanjuan Su
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| |
Collapse
|
33
|
He H, Yang C, Wang F, Wei Z, Shen J, Chen D, Fan C, Zhang H, Liu K. Mechanically Strong Globular‐Protein‐Based Fibers Obtained Using a Microfluidic Spinning Technique. Angew Chem Int Ed Engl 2020; 59:4344-4348. [DOI: 10.1002/anie.201915262] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Chenjing Yang
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Dong Chen
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
34
|
Azimi B, Milazzo M, Lazzeri A, Berrettini S, Uddin MJ, Qin Z, Buehler MJ, Danti S. Electrospinning Piezoelectric Fibers for Biocompatible Devices. Adv Healthc Mater 2020; 9:e1901287. [PMID: 31701671 PMCID: PMC6949425 DOI: 10.1002/adhm.201901287] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/14/2022]
Abstract
The field of nanotechnology has been gaining great success due to its potential in developing new generations of nanoscale materials with unprecedented properties and enhanced biological responses. This is particularly exciting using nanofibers, as their mechanical and topographic characteristics can approach those found in naturally occurring biological materials. Electrospinning is a key technique to manufacture ultrafine fibers and fiber meshes with multifunctional features, such as piezoelectricity, to be available on a smaller length scale, thus comparable to subcellular scale, which makes their use increasingly appealing for biomedical applications. These include biocompatible fiber-based devices as smart scaffolds, biosensors, energy harvesters, and nanogenerators for the human body. This paper provides a comprehensive review of current studies focused on the fabrication of ultrafine polymeric and ceramic piezoelectric fibers specifically designed for, or with the potential to be translated toward, biomedical applications. It provides an applicative and technical overview of the biocompatible piezoelectric fibers, with actual and potential applications, an understanding of the electrospinning process, and the properties of nanostructured fibrous materials, including the available modeling approaches. Ultimately, this review aims at enabling a future vision on the impact of these nanomaterials as stimuli-responsive devices in the human body.
Collapse
Affiliation(s)
- Bahareh Azimi
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| | - Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| | - Stefano Berrettini
- Department of Surgical, Medical Molecular Pathology and Emergency Care, University of Pisa, Pisa, 56124, Italy
| | - Mohammed Jasim Uddin
- Department of Chemistry, Photonics and Energy Research Laboratory, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
35
|
Dundas AA, Sanni O, Dubern JF, Dimitrakis G, Hook AL, Irvine DJ, Alexander PW, Alexander MR. Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903513. [PMID: 31583791 PMCID: PMC7613244 DOI: 10.1002/adma.201903513] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/26/2019] [Indexed: 05/29/2023]
Abstract
Synthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical-device-centered infections. The incidence rate for catheter-associated urinary tract infections is between 3% and 7% for each day of use, which means that infection is inevitable when resident for sufficient time. The O'Neill Review on antimicrobial resistance estimates that, left unchecked, ten million people will die annually from drug-resistant infections by 2050. Development of biomaterials resistant to bacterial colonization can play an important role in reducing device-associated infections. However, rational design of new biomaterials is hindered by the lack of quantitative structure-activity relationships (QSARs). Here, the development of a predictive QSAR is reported for bacterial biofilm formation on a range of polymers, using calculated molecular descriptors of monomer units to discover and exemplify novel, biofilm-resistant (meth-)acrylate-based polymers. These predictions are validated successfully by the synthesis of new monomers which are polymerized to create coatings found to be resistant to biofilm formation by six different bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Adam A. Dundas
- Advanced Medical and Healthcare Technologies School of Pharmacy University of Nottingham Nottingham NG7 2RD, UK
| | - Olutoba Sanni
- Advanced Medical and Healthcare Technologies School of Pharmacy University of Nottingham Nottingham NG7 2RD, UK
- Department of Chemical and Environmental Engineering Faculty of Engineering University of Nottingham Nottingham NG7 2RD, UK
| | - Jean-Frédéric Dubern
- Centre of Biomolecular Sciences School of Life Sciences University of Nottingham Nottingham NG7 2RD, UK
| | - Georgios Dimitrakis
- Department of Chemical and Environmental Engineering Faculty of Engineering University of Nottingham Nottingham NG7 2RD, UK
| | - Andrew L. Hook
- Advanced Medical and Healthcare Technologies School of Pharmacy University of Nottingham Nottingham NG7 2RD, UK
| | - Derek J. Irvine
- Department of Chemical and Environmental Engineering Faculty of Engineering University of Nottingham Nottingham NG7 2RD, UK
| | - Paul Williams Alexander
- Centre of Biomolecular Sciences School of Life Sciences University of Nottingham Nottingham NG7 2RD, UK
| | | |
Collapse
|
36
|
Can the venerated silk be the next-generation nanobiomaterial for biomedical-device designing, regenerative medicine and drug delivery? Prospects and hitches. Biodes Manuf 2019. [DOI: 10.1007/s42242-019-00052-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Willems L, Roberts S, Weitzhandler I, Chilkoti A, Mastrobattista E, van der Oost J, de Vries R. Inducible Fibril Formation of Silk-Elastin Diblocks. ACS OMEGA 2019; 4:9135-9143. [PMID: 31172045 PMCID: PMC6545545 DOI: 10.1021/acsomega.9b01025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Silk-elastin block copolymers have such physical and biological properties that make them attractive biomaterials for applications ranging from tissue regeneration to drug delivery. Silk-elastin block copolymers that only assemble into fibrils at high concentrations can be used for a template-induced fibril assembly. This can be achieved by additionally including template-binding blocks that promote high local concentrations of polymers on the template, leading to a template-induced fibril assembly. We hypothesize that template-inducible silk-fibril formation, and hence high critical concentrations for fibril formation, requires careful tuning of the block lengths, to be close to a critical set of block lengths that separates fibril forming from nonfibril forming polymer architectures. Therefore, we explore herein the impact of tuning block lengths for silk-elastin diblock polypeptides on fibril formation. For silk-elastin diblocks ES m -SQ n , in which the elastin pentamer repeat is ES = GSGVP and the crystallizable silk octamer repeat is SQ = GAGAGAGQ, we find that no fibril formation occurs for n = 6 but that the n = 10 and 14 diblocks do show concentration-dependent fibril formation. For n = 14 diblocks, no effect is observed of the length m (with m = 40, 60, 80) of the amorphous block on the lengths of the fibrils. In contrast, for the n = 10 diblocks that are closest to the critical boundary for fibril formation, we find that long amorphous blocks (m = 80) oppose the growth of fibrils at low concentrations, making them suitable for engineering template-inducible fibril formation.
Collapse
Affiliation(s)
- Lione Willems
- Physical
Chemistry and Soft Matter and Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Stefan Roberts
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Isaac Weitzhandler
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Enrico Mastrobattista
- Department
of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - John van der Oost
- Physical
Chemistry and Soft Matter and Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Renko de Vries
- Physical
Chemistry and Soft Matter and Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| |
Collapse
|
38
|
Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS NANO 2019; 13:2749-2772. [PMID: 30768903 DOI: 10.1021/acsnano.8b09651] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural fiber systems provide inspirations for artificial fiber spinning and applications. Through a long process of trial and error, great progress has been made in recent years. The natural fiber itself, especially silks, and the formation mechanism are better understood, and some of the essential factors are implemented in artificial spinning methods, benefiting from advanced manufacturing technologies. In addition, fiber-based materials produced via bioinspired spinning methods find an increasingly wide range of biomedical, optoelectronic, and environmental engineering applications. This paper reviews recent developments in the spinning and application of bioinspired fiber systems, introduces natural fiber and spinning processes and artificial spinning methods, and discusses applications of artificial fiber materials. Views on remaining challenges and the perspective on future trends are also proposed.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
39
|
Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:187-221. [PMID: 31713200 DOI: 10.1007/978-981-13-9791-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
Collapse
|
40
|
Kaiser NJ, Kant RJ, Minor AJ, Coulombe KLK. Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes. ACS Biomater Sci Eng 2018; 5:887-899. [PMID: 30775432 PMCID: PMC6372981 DOI: 10.1021/acsbiomaterials.8b01112] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
![]()
Natural
polymer hydrogels are used ubiquitously as scaffold materials
for cardiac tissue engineering as well as for soft tissue engineering
more broadly because of FDA approval, minimal immunogenicity, and
well-defined physiological clearance pathways. However, the relationships
between natural polymer hydrogels and resident cell populations in
directing the development of engineered tissues are poorly defined.
This interaction is of particular concern for tissues prepared
with iPSC-derived cell populations, in which population purity and
batch-to-batch variability become additional critical factors to consider.
Herein, the design space for a blended fibrin and collagen scaffold
is characterized for applications in creating engineered myocardium
with human iPSC-derived cardiomyocytes. Stiffness values of the acellular
hydrogel formulations approach those of native myocardium in compression,
but deviate significantly in tension when compared to rat myocardium
in both transverse and longitudinal fiber orientations. A response
surface methodology approach to understanding the relationship between
collagen concentration, fibrin concentration, seeding density, and
cardiac purity found a statistically significant predictive model
across three repeated studies that confirms that all of these factors
contribute to tissue compaction. In these constructs, increased fibrin
concentration and seeding density were each associated with increased
compaction, while increased collagen concentration was associated
with decreased compaction. Both the lowest (24.4% cTnT+) and highest (60.2% cTnT+) cardiomyocyte purities evaluated
were associated with decreased compaction, whereas the greatest compaction
was predicted to occur in constructs prepared with a 40–50%
cTnT+ population. Constructs prepared with purified cardiomyocytes
(≥75.5% cTnT+) compacted and formed syncytia well,
although increased fibrin concentration in these groups was associated
with decreased compaction, a reversal of the trend observed in unpurified
cardiomyocytes. This study demonstrates an analytical approach to
understanding cell–scaffold interactions in engineered tissues
and provides a foundation for the development of more sophisticated
and customized scaffold platforms for human cardiac tissue engineering.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
41
|
Franco AR, Palma Kimmerling E, Silva C, Rodrigues FJ, Leonor IB, Reis RL, Kaplan DL. Silk‐Based Antimicrobial Polymers as a New Platform to Design Drug‐Free Materials to Impede Microbial Infections. Macromol Biosci 2018; 18:e1800262. [DOI: 10.1002/mabi.201800262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Albina R. Franco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory 4805 Braga/Guimarães Portugal
| | | | - Carla Silva
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory 4805 Braga/Guimarães Portugal
| | - Fernando J. Rodrigues
- ICVS/3B's – PT Government Associate Laboratory 4805 Braga/Guimarães Portugal
- Life and Health Sciences Research Institute, School of Health SciencesUniversity of Minho 4805 Braga Portugal
| | - Isabel B. Leonor
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory 4805 Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory 4805 Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho Avepark 4805‐017 Barco Guimarães Portugal
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
| |
Collapse
|
42
|
López Barreiro D, Yeo J, Tarakanova A, Martin-Martinez FJ, Buehler MJ. Multiscale Modeling of Silk and Silk-Based Biomaterials-A Review. Macromol Biosci 2018; 19:e1800253. [PMID: 30375164 DOI: 10.1002/mabi.201800253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Indexed: 12/25/2022]
Abstract
Silk embodies outstanding material properties and biologically relevant functions achieved through a delicate hierarchical structure. It can be used to create high-performance, multifunctional, and biocompatible materials through mild processes and careful rational material designs. To achieve this goal, computational modeling has proven to be a powerful platform to unravel the causes of the excellent mechanical properties of silk, to predict the properties of the biomaterials derived thereof, and to assist in devising new manufacturing strategies. Fine-scale modeling has been done mainly through all-atom and coarse-grained molecular dynamics simulations, which offer a bottom-up description of silk. In this work, a selection of relevant contributions of computational modeling is reviewed to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods. Future research directions are also pointed out, including approaches such as 3D printing and machine learning, that may enable a high throughput design and manufacturing of silk-based biomaterials.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA.,Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore.,Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Francisco J Martin-Martinez
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
43
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
44
|
Song P, Dai J, Chen G, Yu Y, Fang Z, Lei W, Fu S, Wang H, Chen ZG. Bioinspired Design of Strong, Tough, and Thermally Stable Polymeric Materials via Nanoconfinement. ACS NANO 2018; 12:9266-9278. [PMID: 30179445 DOI: 10.1021/acsnano.8b04002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The combination of high strength, great toughness, and high heat resistance for polymeric materials is a vital factor for their practical applications. Unfortunately, until now it has remained a major challenge to achieve this performance portfolio because the mechanisms of strength and toughness are mutually exclusive. In the natural world, spider silk features the combination of high strength, great toughness, and excellent thermal stability, which are governed by the nanoconfinement of hydrogen-bonded β-sheets. Here, we report a facile bioinspired methodology for fabricating advanced polymer composite films with a high tensile strength of 152.8 MPa, a high stiffness of 4.35 GPa, and a tensile toughness of 30.3 MJ/m3 in addition to high thermal stability (69 °C higher than that of the polymer matrix) only by adding 2.0 wt % of artificial β-sheets. The mechanical and thermostable performance portfolio is superior to that of its counterparts developed to date because of the nanoconfinement and hydrogen-bond cross-linking effects of artificial β-sheets. Our study offers a facile biomimetic strategy for the design of integrated mechanically robust and thermostable polymer materials, which hold promise for many applications in electrical devices and tissue engineering fields.
Collapse
Affiliation(s)
- Pingan Song
- Department of Materials , Zhejiang A & F University , Hangzhou , 311300 , China
- Centre for Future Materials , University of Southern Queensland , Toowoomba , QLD 4350 , Australia
| | - Jinfeng Dai
- Department of Materials , Zhejiang A & F University , Hangzhou , 311300 , China
| | - Guorong Chen
- Research Centre of Nanoscience and Nanotechnology , Shanghai University , Shanghai , 200444 , China
| | - Youming Yu
- Department of Materials , Zhejiang A & F University , Hangzhou , 311300 , China
| | - Zhengping Fang
- Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology , Zhejiang University , Ningbo , 315100 , China
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University , Locked Bag 20000 , Geelong , VIC 3220 , Australia
| | - Shenyuan Fu
- Department of Materials , Zhejiang A & F University , Hangzhou , 311300 , China
| | - Hao Wang
- Centre for Future Materials , University of Southern Queensland , Toowoomba , QLD 4350 , Australia
| | - Zhi-Gang Chen
- Centre for Future Materials , University of Southern Queensland , Toowoomba , QLD 4350 , Australia
- Materials Engineering , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
45
|
Sparkes J, Holland C. The Energy Requirements for Flow‐Induced Solidification of Silk. Macromol Biosci 2018; 19:e1800229. [DOI: 10.1002/mabi.201800229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Indexed: 01/07/2023]
Affiliation(s)
- James Sparkes
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| | - Chris Holland
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| |
Collapse
|
46
|
Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 2018; 47:6486-6504. [PMID: 29938722 PMCID: PMC6113080 DOI: 10.1039/c8cs00187a] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Silks are natural fibrous protein polymers that are spun by silkworms and spiders. Among silk variants, there has been increasing interest devoted to the silkworm silk of B. mori, due to its availability in large quantities along with its unique material properties. Silk fibroin can be extracted from the cocoons of the B. mori silkworm and combined synergistically with other biomaterials to form biopolymer composites. With the development of recombinant DNA technology, silks can also be rationally designed and synthesized via genetic control. Silk proteins can be processed in aqueous environments into various material formats including films, sponges, electrospun mats and hydrogels. The versatility and sustainability of silk-based materials provides an impressive toolbox for tailoring materials to meet specific applications via eco-friendly approaches. Historically, silkworm silk has been used by the textile industry for thousands of years due to its excellent physical properties, such as lightweight, high mechanical strength, flexibility, and luster. Recently, due to these properties, along with its biocompatibility, biodegradability and non-immunogenicity, silkworm silk has become a candidate for biomedical utility. Further, the FDA has approved silk medical devices for sutures and as a support structure during reconstructive surgery. With increasing needs for implantable and degradable devices, silkworm silk has attracted interest for electronics, photonics for implantable yet degradable medical devices, along with a broader range of utility in different device applications. This Tutorial review summarizes and highlights recent advances in the use of silk-based materials in bio-nanotechnology, with a focus on the fabrication and functionalization methods for in vitro and in vivo applications in the field of tissue engineering, degradable devices and controlled release systems.
Collapse
Affiliation(s)
- Wenwen Huang
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA.
| | | | | | | | | |
Collapse
|
47
|
Bowen CH, Dai B, Sargent CJ, Bai W, Ladiwala P, Feng H, Huang W, Kaplan DL, Galazka JM, Zhang F. Recombinant Spidroins Fully Replicate Primary Mechanical Properties of Natural Spider Silk. Biomacromolecules 2018; 19:3853-3860. [DOI: 10.1021/acs.biomac.8b00980] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | | | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Jonathan M. Galazka
- Space Biosciences Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, California 94035, United States
| | | |
Collapse
|
48
|
Choi M, Choi D, Hong J. Multilayered Controlled Drug Release Silk Fibroin Nanofilm by Manipulating Secondary Structure. Biomacromolecules 2018; 19:3096-3103. [DOI: 10.1021/acs.biomac.8b00687] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Moonhyun Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daheui Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
49
|
Zhai C, Zhou H, Gao T, Zhao L, Lin S. Electrostatically Tuned Microdomain Morphology and Phase-Dependent Ion Transport Anisotropy in Single-Ion Conducting Block Copolyelectrolytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00451] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenxi Zhai
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Huanhuan Zhou
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Teng Gao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lingling Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy & Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shangchao Lin
- Department of Mechanical Engineering, Materials Science and Engineering Program, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
50
|
Zheng K, Ling S. De Novo Design of Recombinant Spider Silk Proteins for Material Applications. Biotechnol J 2018; 14:e1700753. [PMID: 29781251 DOI: 10.1002/biot.201700753] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/22/2018] [Indexed: 01/08/2023]
Abstract
Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies are developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, the authors first introduce the structure-property-function relationship of spider silks. Then, the recent progress in the genetic synthesis of RSSPs is discussed and their related multiscale self-assembly behaviors is summarized. Finally, the authors outline works utilizing multiscale modeling to assist RSSP material design.
Collapse
Affiliation(s)
- Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|