1
|
Ryu S, Long H, Quan X, Kim U, Zhao W, Song Y, Li L, Zhang Z. RHBDF1 promotes PERK expression through the JNK/FoxO3 pathway in breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39420837 DOI: 10.3724/abbs.2024163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Human rhomboid family-1 ( RHBDF1) gene is recognized as an oncogene involved in breast cancer development. Previous studies have indicated that RHBDF1 contributes significantly to endoplasmic reticulum (ER) protein homeostasis by stabilizing the binding immunoglobulin protein (BiP) and promoting the unfolded protein response (UPR). Here, we report a relationship between RHBDF1 and the ER stress sensors PERK, IRE1, and ATF6. We show that RHBDF1 deficiency in breast cancer cells results in decreased levels of PERK, pPERK, and peIF2α. These protein levels can be restored in RHBDF1-deficient breast cancer cells by artificial overexpression of RHBDF1 but not IRE1 or ATF6. Additionally, we show that the transcription factor FoxO3 is essential for the RHBDF1-mediated production of PERK. Subsequent analysis reveals that RHBDF1 activates JNK, which causes FoxO3 to translocate into the cell nucleus. These findings demonstrate that RHBDF1 supports the UPR by upregulating the PERK/peIF2α pathway via the JNK/FoxO3 axis and that the functions of RHBDF1 are essential for preserving the homeostasis of ER proteins.
Collapse
Affiliation(s)
- SungJu Ryu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin 300350, China
- Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Hui Long
- School of Traditional Chinese Pharmacy, Baoshan College of Traditional Chinese Medicine, Baoshan 678000, China
| | - Xiaojing Quan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin 300350, China
| | - UnChol Kim
- Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Wenwen Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin 300350, China
| | - Yuanyuan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin 300350, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin 300350, China
| | - Zhisong Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin 300350, China
| |
Collapse
|
2
|
Bach K, Dohnálek J, Škerlová J, Kuzmík J, Poláchová E, Stanchev S, Majer P, Fanfrlík J, Pecina A, Řezáč J, Lepšík M, Borshchevskiy V, Polovinkin V, Strisovsky K. Extensive targeting of chemical space at the prime side of ketoamide inhibitors of rhomboid proteases by branched substituents empowers their selectivity and potency. Eur J Med Chem 2024; 275:116606. [PMID: 38901105 DOI: 10.1016/j.ejmech.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Rhomboid intramembrane serine proteases have been implicated in several pathologies, and emerge as attractive pharmacological target candidates. The most potent and selective rhomboid inhibitors available to date are peptidyl α-ketoamides, but their selectivity for diverse rhomboid proteases and strategies to modulate it in relevant contexts are poorly understood. This gap, together with the lack of suitable in vitro models, hinders ketoamide development for relevant eukaryotic rhomboid enzymes. Here we explore the structure-activity relationship principles of rhomboid inhibiting ketoamides by medicinal chemistry and enzymatic in vitro and in-cell assays with recombinant rhomboid proteases GlpG, human mitochondrial rhomboid PARL and human RHBDL2. We use X-ray crystallography in lipidic cubic phase to understand the binding mode of one of the best ketoamide inhibitors synthesized here containing a branched terminal substituent bound to GlpG. In addition, to extend the interpretation of the co-crystal structure, we use quantum mechanical calculations and quantify the relative importance of interactions along the inhibitor molecule. These combined experimental analyses implicates that more extensive exploration of chemical space at the prime side is unexpectedly powerful for the selectivity of rhomboid inhibiting ketoamides. Together with variations in the peptide sequence at the non-prime side, or its non-peptidic alternatives, this strategy enables targeted tailoring of potent and selective ketoamides towards diverse rhomboid proteases including disease-relevant ones such as PARL and RHBDL2.
Collapse
Affiliation(s)
- Kathrin Bach
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; Department of Molecular Genetics, Faculty of Science, Charles University, Viničná 5, Prague, 128 44, Czech Republic
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; University of Chemistry and Technology, Technická 5, Prague, 166 28, Czech Republic
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Ján Kuzmík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Edita Poláchová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague, 121 08, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry) Forschungszentrum Jülich 52428 Jülich, Germany
| | - Vitaly Polovinkin
- ELI Beamlines Centre, ELI ERIC, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague, 160 00, Czech Republic.
| |
Collapse
|
3
|
Davies C, Hu RM, Kamitsuka PJ, Morais GN, de Gonzalez RS, Bustin KA, Matthews ML, Parsons WH. Activity-Based Protein Profiling of RHBDL4 Reveals Proteolysis of the Enzyme and a Distinct Inhibitor Profile. ACS Chem Biol 2024; 19:1674-1682. [PMID: 39041925 PMCID: PMC11334910 DOI: 10.1021/acschembio.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Rhomboid proteases have fascinated scientists by virtue of their membrane-embedded active sites and proposed involvement in physiological and disease pathways. The human rhomboid protease RHBDL4 has generated particular interest due to its role in endoplasmic reticulum-associated protein degradation and upregulation in several cancers; however, chemical tools for studying this enzyme are currently lacking. Here, we describe the development of an activity-based protein profiling (ABPP) assay for RHBDL4. We have employed this assay to determine that human RHBDL4 undergoes proteolytic processing in cells to produce multiple active proteoforms with truncated C-termini. We have also used this assay to identify chemical scaffolds capable of inhibiting RHBDL4 activity and have observed distinct inhibitor preferences between RHBDL4 and a second human rhomboid protease PARL. Our work demonstrates the power of ABPP technology to characterize active forms of enzymes that might otherwise elude detection and the potential to achieve selective inhibition among the human rhomboid proteases.
Collapse
Affiliation(s)
- Cassondra
C. Davies
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Ren-Ming Hu
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul J. Kamitsuka
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Gabriel N. Morais
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | | | - Katelyn A. Bustin
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Megan L. Matthews
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William H. Parsons
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| |
Collapse
|
4
|
Ryu S, Long H, Zheng XL, Song YY, Wang Y, Zhou YJ, Quan XJ, Li LY, Zhang ZS. Pentapeptide PYRAE triggers ER stress-mediated apoptosis of breast cancer cells in mice by targeting RHBDF1-BiP interaction. Acta Pharmacol Sin 2024; 45:378-390. [PMID: 37798352 PMCID: PMC10789821 DOI: 10.1038/s41401-023-01163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Reinforced cellular responses to endoplasmic reticulum (ER) stress are caused by a variety of pathological conditions including cancers. Human rhomboid family-1 protein (RHBDF1), a multiple transmembrane protein located mainly on the ER, has been shown to promote cancer development, while the binding immunoglobulin protein (BiP) is a key regulator of cellular unfolded protein response (UPR) for the maintenance of ER protein homeostasis. In this study, we investigated the role of RHBDF1 in maintaining ER protein homeostasis in breast cancer cells. We showed that deleting or silencing RHBDF1 in breast cancer cell lines MCF-7 and MDA-MB-231 caused marked aggregation of unfolded proteins in proximity to the ER. We demonstrated that RHBDF1 directly interacted with BiP, and this interaction had a stabilizing effect on the BiP protein. Based on the primary structural motifs of RHBDF1 involved in BiP binding, we found a pentapeptide (PE5) targeted BiP and inhibited BiP ATPase activity. SPR assay revealed a binding affinity of PE5 toward BiP (Kd = 57.7 μM). PE5 (50, 100, 200 μM) dose-dependently promoted ER protein aggregation and ER stress-mediated cell apoptosis in MCF-7 and MDA-MB-231 cells. In mouse 4T1 breast cancer xenograft model, injection of PE5 (10 mg/kg, s.c., every 2 days for 2 weeks) significantly inhibited the tumor growth with markedly increased ER stress and apoptosis-related proteins in tumor tissues. Our results suggest that the ability of RHBDF1 to maintain BiP protein stability is critical to ER protein homeostasis in breast cancer cells, and that the pentapeptide PE5 may serve as a scaffold for the development of a new class of anti-BiP inhibitors.
Collapse
Affiliation(s)
- SungJu Ryu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
- Institute of Microbiology, State Academy of Sciences, Pyongyang, Democratic People's Republic of Korea
| | - Hui Long
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Xin-Ling Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yuan-Yuan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Yu-Jie Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Xiao-Jing Quan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, and the Haihe Laboratory of Cell Ecosystem, Tianjin, 300350, China.
| |
Collapse
|
5
|
Long F, Zhong C, Long Q, Zhu K, Wang J, Yu Y, Xie C, Hu G. Circular RNA RHBDD1 regulates tumorigenicity and ferroptosis in colorectal cancer by mediating the ELAVL1/SCD mRNA interaction. Cancer Gene Ther 2024; 31:237-249. [PMID: 38072968 DOI: 10.1038/s41417-023-00698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/29/2023] [Accepted: 11/09/2023] [Indexed: 02/20/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed noncoding RNA molecules that play multiple roles in tumorigenesis and metastasis. Ferroptosis is an iron-dependent, regulated form of cell death and has emerged as a promising target for cancer treatment. However, whether and how circRNAs regulate ferroptotic cell death in colorectal cancer (CRC) remains largely unknown. Three circRNA microarrays were used to screen differentially expressed circRNAs in CRC tissues. A series of functional experiments were conducted to investigate the effects of circRNA on CRC cell proliferation, migration and ferroptosis. We found that hsa_circ_0058495 (circRHBDD1), a novel circRNA, was significantly upregulated in colorectal cancer tissues and cells. The expression levels of circRHBDD1 in serum samples were strongly associated with the advancement of CRC. Silencing of circRHBDD1 remarkably suppressed the proliferation and migration of CRC cells in vitro. Moreover, the depletion of circRHBDD1 notably increased ferroptotic cell death and enhanced RSL3-induced ferroptosis in CRC cells. Mechanistically, circRHBDD1 upregulated the expression of stearoyl-CoA desaturase (SCD), a ferroptosis suppressor mediating lipid remodelling, by enhancing the ELAVL1/SCD mRNA interaction. Finally, circRHBDD1 knockdown repressed the tumorigenesis and ferroptosis of CRC cells in vivo. In conclusion, circRHBDD1 facilitates tumour progression and obstructs ferroptosis in CRC by regulating SCD expression in an ELAVL1-dependent manner.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
- Postdoctoral Station of Basic Medicine, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
| | - Chonglei Zhong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China
| | - Qinpeng Long
- Department of Pediatrics, The First Affiliated Hospital, University of South China, 421001, Hengyang, Hunan, China
| | - Kaiyu Zhu
- School of Basic Medical Science, Central South University, 410078, Changsha, Hunan, China
| | - Jia Wang
- State Key Laboratory of Oncology in South China, Sun Yat‑Sen University Cancer Center, 510060, Guangzhou, Guangdong, China
| | - Yang Yu
- Department of Gastrointestinal & Thyroid Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, 510405, Guangzhou, Guangdong, China
| | - Canbin Xie
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
6
|
Wang Z, Zhang X, Liu Y, Shi X, Li L, Jia Y, Wu F, Cui H, Li L. MiR-5195-3p functions as a tumor suppressor by targeting RHBDD1 in ovarian cancer. Histol Histopathol 2023; 38:1403-1413. [PMID: 36825753 DOI: 10.14670/hh-18-595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Recent studies have reported the tumor suppressive role of miR-5195-3p in the progression of several cancers, but the potential roles of miR-5195-3p in ovarian cancer (OC) remain largely unknown. METHODS We first analyzed the expression levels of miR-5195-3p in 83 pairs of human OC tissues and adjacent specimens by reverse transcription-quantitative PCR. The correlation of miR-5195-3p/rhomboid domain containing 1 (RHBDD1) and clinicopathological parameters was analyzed by chi-square test. The prognostic value of miR-5195-3p was evaluated by Kaplan-Meier method Cox proportional hazards models. The effects of miR-5195-3p on cell proliferation, cell cycle distribution, migration and invasion were examined by CCK-8 assay, colony formation assay, flow cytometry and transwell assay. Tumor forming was evaluated by nude mice model in vivo. The association between miR-5195-3p and RHBDD1 was verified by luciferase reporter assay. RESULTS We observed that miR-5195-3p level was remarkably reduced in OC tissues as compared to adjacent tissues. The expression of miR-5195-3p was associated with FIGO stage, depth of invasion and poor survival prognosis in OC patients. Overexpression of miR-5195-3p significantly suppressed cell proliferation, cell cycle G1/S transition, migration and invasion in OC cell lines (SKOV-3 and OVCAR3), while knockdown of miR-5195-3p obtained the opposite results. We further confirmed miR-5195-3p as a negative post-transcriptional modulator of RHBDD1. RHBDD1 expression was upregulated in OC tissues compared with adjacent tissues, which was inversely correlated with miR-5195-3p expression. The expression of RHBDD1 was associated with FIGO stage and distant metastasis. RHBDD1 overexpression reversed the suppressive role of miR-5195-3p on OC cell proliferation, migration and invasion. Consistent with the in vitro results, miR-5195-3p overexpression decreased the growth of subcutaneously inoculated tumors in nude mice. CONCLUSIONS Taken together, the present results indicated that miR-5195-3p acts a tumor suppressor by targeting RHBDD1 in OC.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Xiaoping Zhang
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Yongying Liu
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Xiaoyan Shi
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Lijun Li
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Yun Jia
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Fangfang Wu
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Haosen Cui
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China
| | - Liang Li
- Department of Gynecology and Obstetrics, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui Province, China.
| |
Collapse
|
7
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
9
|
Hsiao JM, Penalva YCM, Wu HYL, Xiao B, Jansen G, Dejgaard K, Young JC, Munter LM. Putative Protein Interactome of the Rhomboid Protease RHBDL4. Biochemistry 2023; 62:1209-1218. [PMID: 36857408 DOI: 10.1021/acs.biochem.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The physiological functions of the rhomboid-related protein 4 (RHBDL4) are emerging, but their molecular details remain unclear. Because increased expression of RHBDL4 has been clinically linked to poorer outcomes in cancer patients, this association urgently demands a better understanding of RHBDL4. To elucidate the molecular interactions and pathways that RHBDL4 may be involved in, we conducted proximity-dependent biotin identification (BioID) assays. Our analyses corroborated several of the expected protein interactors such as the transitional endoplasmic reticulum (ER) ATPase VCP/p97 (TERA), but they also described novel putative interactors including IRS4, PGAM5, and GORS2. Using proximity-ligation assays, we validated VCP/p97, COPB, and VRK2 as proteins that are in proximity to RHBDL4. Overall, our results support the emerging functions of RHBDL4 in ER quality control and also point toward putative RHBDL4 functions in protein membrane insertion and membrane organization and trafficking.
Collapse
Affiliation(s)
| | - Ylauna Christine Mégane Penalva
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 0B1, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 2B4, Québec, Canada
- Cell Information Systems Group, Bellini Life Sciences Complex, McGill University, Montreal H3G 0B1, Québec, Canada
| | - Helen Yee-Li Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 0B1, Québec, Canada
- Cell Information Systems Group, Bellini Life Sciences Complex, McGill University, Montreal H3G 0B1, Québec, Canada
| | - Bin Xiao
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 0B1, Québec, Canada
- Cell Information Systems Group, Bellini Life Sciences Complex, McGill University, Montreal H3G 0B1, Québec, Canada
| | - Gregor Jansen
- Department of Biochemistry, McGill University, Montreal H3G 0B1, Québec, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montreal H3G 0B1, Québec, Canada
| | - Jason C Young
- Department of Biochemistry, McGill University, Montreal H3G 0B1, Québec, Canada
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 0B1, Québec, Canada
- Cell Information Systems Group, Bellini Life Sciences Complex, McGill University, Montreal H3G 0B1, Québec, Canada
| |
Collapse
|
10
|
Bhaduri S, Scott NA, Neal SE. The Role of the Rhomboid Superfamily in ER Protein Quality Control: From Mechanisms and Functions to Diseases. Cold Spring Harb Perspect Biol 2023; 15:a041248. [PMID: 35940905 PMCID: PMC9899648 DOI: 10.1101/cshperspect.a041248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells and is a major site for protein folding, modification, and lipid synthesis. Perturbations within the ER, such as protein misfolding and high demand for protein folding, lead to dysregulation of the ER protein quality control network and ER stress. Recently, the rhomboid superfamily has emerged as a critical player in ER protein quality control because it has diverse cellular functions, including ER-associated degradation (ERAD), endosome Golgi-associated degradation (EGAD), and ER preemptive quality control (ERpQC). This breadth of function both illustrates the importance of the rhomboid superfamily in health and diseases and emphasizes the necessity of understanding their mechanisms of action. Because dysregulation of rhomboid proteins has been implicated in various diseases, such as neurological disorders and cancers, they represent promising potential therapeutic drug targets. This review provides a comprehensive account of the various roles of rhomboid proteins in the context of ER protein quality control and discusses their significance in health and disease.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nicola A Scott
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Sonya E Neal
- School of Biological Sciences, the Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Poláchová E, Bach K, Heuten E, Stanchev S, Tichá A, Lampe P, Majer P, Langer T, Lemberg MK, Stříšovský K. Chemical Blockage of the Mitochondrial Rhomboid Protease PARL by Novel Ketoamide Inhibitors Reveals Its Role in PINK1/Parkin-Dependent Mitophagy. J Med Chem 2022; 66:251-265. [PMID: 36540942 PMCID: PMC9841525 DOI: 10.1021/acs.jmedchem.2c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrial rhomboid protease PARL regulates mitophagy by balancing intramembrane proteolysis of PINK1 and PGAM5. It has been implicated in the pathogenesis of Parkinson's disease, but its investigation as a possible therapeutic target is challenging in this context because genetic deficiency of PARL may result in compensatory mechanisms. To address this problem, we undertook a hitherto unavailable chemical biology strategy. We developed potent PARL-targeting ketoamide inhibitors and investigated the effects of acute PARL suppression on the processing status of PINK1 intermediates and on Parkin activation. This approach revealed that PARL inhibition leads to a robust activation of the PINK1/Parkin pathway without major secondary effects on mitochondrial properties, which demonstrates that the pharmacological blockage of PARL to boost PINK1/Parkin-dependent mitophagy is a feasible approach to examine novel therapeutic strategies for Parkinson's disease. More generally, this study showcases the power of ketoamide inhibitors for cell biological studies of rhomboid proteases.
Collapse
Affiliation(s)
- Edita Poláchová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,First
Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Kathrin Bach
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,Department
of Molecular Genetics, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Elena Heuten
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Stancho Stanchev
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Anežka Tichá
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Philipp Lampe
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany
| | - Pavel Majer
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic
| | - Thomas Langer
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Center
for Molecular Medicine (CMMC), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,Max-Planck-Institute
for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne 50931, Germany
| | - Marius K. Lemberg
- Center
for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer
Feld 282, Heidelberg 69120, Germany,Center
for Biochemistry and Cologne Excellence Cluster on Cellular Stress
Responses in Aging-Associated Diseases (CECAD), Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne 50931, Germany,
| | - Kvido Stříšovský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 160 00, Czech Republic,
| |
Collapse
|
12
|
Anti-Tumor Effects of Engineered VNP20009-Abvec-Igκ-mPD-1 Strain in Melanoma Mice via Combining the Oncolytic Therapy and Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122789. [PMID: 36559282 PMCID: PMC9781615 DOI: 10.3390/pharmaceutics14122789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death protein 1/Programmed cell death ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors are the most promising treatments for malignant tumors currently, but the low response rate limits their further clinical utilization. To address this problem, our group constructed an engineered strain of VNP20009-Abvec-Igκ-mPD-1 [V-A-mPD-1 (mPD-1, murine PD-1)] to combine oncolytic bacterial therapy with immunotherapy. Further, we evaluated its growth performance and mPD-1 expression ability in vitro while establishing the melanoma mice model to explore its potential anti-cancer effects in tumor therapy. Our results indicated that the V-A-mPD-1 strain has superior growth performance and can invade B16F10 melanoma cells and express PD-1. In addition, in the melanoma mice model, we observed a marked reduction in tumor volume and the formation of a larger necrotic area. V-A-mPD-1 administration resulted in a high expression of mPD-1 at the tumor site, inhibiting tumor cell proliferation via the down-regulation of the expression of rat sarcoma (Ras), phosphorylated mitogen-activated protein kinase (p-MEK)/MEK, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK expression significantly inhibited tumor cell proliferation. Tumor cell apoptosis was promoted by down-regulating phosphoinositide 3 kinase (PI3K) and protein kinase B (AKT) signaling pathways, as evidenced by an increased Bcl-2-associated X protein/B cell lymphoma-2 (Bax/Bcl-2) expression ratio. Meanwhile, the expression levels of systemic inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were substantially reduced. In conclusion, our research demonstrated that V-A-mPD-1 has an excellent anti-tumor effect, prompting that the combined application of microbial therapy and immunotherapy is a feasible cancer treatment strategy.
Collapse
|
13
|
Jiang J, Cheng Y, Dai S, Zou B, Guo X. Suppression of rhomboid domain-containing 1 produces anticancer effects in pancreatic adenocarcinoma through affection of the AKT/GSK-3β/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1944-1956. [PMID: 35442567 DOI: 10.1002/tox.23541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/20/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The protumor role of rhomboid domain-containing 1 (RHBDD1) has been observed in multiple cancers. However, the relationship between RHBDD1 and pancreatic adenocarcinoma has not been addressed. This project focused on the potential relevance of RHBDD1 in pancreatic adenocarcinoma. Bioinformatic analysis by publicly available data revealed that RHBDD1 was abundantly expressed in pancreatic adenocarcinoma. We further verified that RHBDD1 was expressed highly in clinical specimens of pancreatic adenocarcinoma. The Kaplan-Meier curve demonstrated that high-RHBDD1 expression was associated with poor prognosis in pancreatic adenocarcinoma patients. The functional studies revealed that depletion of RHBDD1 produced in vitro anticancer effects in pancreatic adenocarcinoma cells, including retardation of proliferation, reduction of metastatic potential, and induction of cell-cycle arrest at the G0/G1 phase and apoptosis. Mechanistic studies indicated that loss of RHBDD1 affected the activation of β-catenin via regulation of AKT. Forced expression of β-catenin reversed the RHBDD1-loss-induced anticancer effects in pancreatic adenocarcinoma cells. Crucially, depletion of RHBDD1 retarded the growth of pancreatic adenocarcinoma xenografts in vivo, a phenomenon associated with the AKT/β-catenin pathway. Collectively, these findings delineated that restraint of RHBDD1 displayed remarkable anticancer effects in pancreatic adenocarcinoma by affecting the AKT/β-catenin pathway. Our work unveils a pivotal role of RHBDD1 in pancreatic adenocarcinoma and proposes it as a novel candidate target for anticancer therapy of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Jiong Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shejiao Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Baicang Zou
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Lu Y, Huang R, Ying J, Li X, Jiao T, Guo L, Zhou H, Wang H, Tuersuntuoheti A, Liu J, Chen Q, Wang Y, Su L, Guo C, Xu F, Wang Z, Lu Y, Li K, Liang J, Huang Z, Chen X, Yao J, Hu H, Cheng X, Wan Y, Chen X, Zhang N, Miao S, Cai J, Wang L, Liu C, Song W, Zhao H. RING finger 138 deregulation distorts NF-кB signaling and facilities colitis switch to aggressive malignancy. Signal Transduct Target Ther 2022; 7:185. [PMID: 35697692 PMCID: PMC9192753 DOI: 10.1038/s41392-022-00985-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Prolonged activation of nuclear factor (NF)-кB signaling significantly contributes to the development of colorectal cancer (CRC). New therapeutic opportunities are emerging from targeting this distorted cell signaling transduction. Here, we discovered the critical role of RING finger 138 (RNF138) in CRC tumorigenesis through regulating the NF-кB signaling, which is independent of its Ubiquitin-E3 ligase activity involved in DNA damage response. RNF138−/− mice were hyper-susceptible to the switch from colitis to aggressive malignancy, which coincided with sustained aberrant NF-кB signaling in the colonic cells. Furthermore, RNF138 suppresses the activation of NF-кB signaling pathway through preventing the translocation of NIK and IKK-Beta Binding Protein (NIBP) to the cytoplasm, which requires the ubiquitin interaction motif (UIM) domain. More importantly, we uncovered a significant correlation between poor prognosis and the downregulation of RNF138 associated with reinforced NF-кB signaling in clinical settings, raising the possibility of RNF138 dysregulation as an indicator for the therapeutic intervention targeting NF-кB signaling. Using the xenograft models built upon either RNF138-dificient CRC cells or the cells derived from the RNF138-dysregulated CRC patients, we demonstrated that the inhibition of NF-кB signaling effectively hampered tumor growth. Overall, our work defined the pathogenic role of aberrant NF-кB signaling due to RNF138 downregulation in the cascade events from the colitis switch to colonic neoplastic transformation and progression, and also highlights the possibility of targeting the NF-кB signaling in treating specific subtypes of CRC indicated by RNF138-ablation.
Collapse
Affiliation(s)
- Yalan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.,National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jianming Ying
- Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingchen Li
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lei Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haitao Zhou
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Han Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Amannisa Tuersuntuoheti
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianmei Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qichen Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changyuan Guo
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fu Xu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ziyi Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Chen
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinjie Yao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hanjie Hu
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaowen Cheng
- Department of Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Yufeng Wan
- Department of Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Xinyan Chen
- Department of Clinical Laboratory, the First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China
| | - Ning Zhang
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changzheng Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Hong Zhao
- Department of Hepatobiliary Surgery, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Key Laboratory of Gene Editing Screening and R&D of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Lastun VL, Levet C, Freeman M. The mammalian rhomboid protein RHBDL4 protects against endoplasmic reticulum stress by regulating the morphology and distribution of ER sheets. J Biol Chem 2022; 298:101935. [PMID: 35436469 PMCID: PMC9136127 DOI: 10.1016/j.jbc.2022.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
In metazoans, the architecture of the endoplasmic reticulum (ER) differs between cell types and undergoes major changes throughout the cell cycle and according to physiological needs. Although much is known about how the different ER morphologies are generated and maintained, especially ER tubules, how context-dependent changes in ER shape and distribution are regulated and the factors involved are less well characterized, as are the factors that contribute to the positioning of the ER within the cell. By overexpression and KO experiments, we show that the levels of RHBDL4, an ER-resident rhomboid protease, modulate the shape and distribution of the ER, especially during conditions that require rapid changes in the ER sheet distribution, such as ER stress. We demonstrate that RHBDL4 interacts with cytoskeleton-linking membrane protein 63 (CLIMP-63), a protein involved in ER sheet stabilization, as well as with the cytoskeleton. Furthermore, we found that mice lacking RHBDL4 are sensitive to ER stress and develop liver steatosis, a phenotype associated with unresolved ER stress. Taken together, these data suggest a new physiological role for RHBDL4 and also imply that this function does not require its enzymatic activity.
Collapse
|
16
|
Cheng Z, Zhang Y, Wu S, Zhao R, Yu Y, Zhou Y, Zhou Z, Dong Y, Qiu A, Xu H, Liu Y, Zhang W, Tian T, Wu Q, Gu H, Chu M. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113451. [PMID: 35378401 DOI: 10.1016/j.ecoenv.2022.113451] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Existing studies reported that some circular RNAs (circRNAs) play vital roles in the development of pulmonary fibrosis. However, few studies explored the biomarker potential of circRNAs for pulmonary fibrosis based on population data. Therefore, we aimed to identify peripheral blood circRNAs as potential biomarkers for diagnosing silicosis and idiopathic pulmonary fibrosis (IPF). In brief, an RNA-seq screening based on 4 silicosis cases and 4 controls was initially performed. Differentially expressed circRNAs were combined with the human serum circRNA dataset to identify overlapping serum-detectable circRNAs, followed by validation using the GEO dataset (3 IPF cases and 3 controls) and subsequent qRT-PCR, including 84 additional individuals. Following the above steps, 243 differentially expressed circRNAs were identified during the screening stage, with fold changes ≥ 1.5 and P < 0.05. Of note, the human serum circRNA dataset encompassed 28 of 243 circRNAs. GEO (GSE102660) validation revealed two highly expressed circRNAs (P < 0.05) in the IPF case group. Furthermore, at the enlarged sample validation stage, hsa_circ_0058493 was highly expressed in both silicosis and IPF cases (silicosis: P = 1.16 × 10-6; IPF: P = 7.46 × 10-5). Additionally, hsa_circ_0058493 expression was significantly increased in MRC-5 cells upon TGF-β1 treatment, while hsa_circ_0058493 knockdown inhibited the expression of fibrotic molecules by affecting the epithelial-mesenchymal transition process. These shreds of evidence indicated that hsa_circ_0058493 might serve as a novel biomarker for diagnosing silicosis and IPF.
Collapse
Affiliation(s)
- Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yingyi Zhang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Zhao
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Zhen Zhou
- Department of Mathematics and Applied Mathematics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Hongyan Gu
- Department of Respiratory, the Sixth People's Hospital of Nantong, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
17
|
Tang S, Beattie AT, Kafkova L, Petris G, Huguenin-Dezot N, Fiedler M, Freeman M, Chin JW. Mechanism-based traps enable protease and hydrolase substrate discovery. Nature 2022; 602:701-707. [PMID: 35173328 PMCID: PMC8866121 DOI: 10.1038/s41586-022-04414-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
Hydrolase enzymes, including proteases, are encoded by 2-3% of the genes in the human genome and 14% of these enzymes are active drug targets1. However, the activities and substrate specificities of many proteases-especially those embedded in membranes-and other hydrolases remain unknown. Here we report a strategy for creating mechanism-based, light-activated protease and hydrolase substrate traps in complex mixtures and live mammalian cells. The traps capture substrates of hydrolases, which normally use a serine or cysteine nucleophile. Replacing the catalytic nucleophile with genetically encoded 2,3-diaminopropionic acid allows the first step reaction to form an acyl-enzyme intermediate in which a substrate fragment is covalently linked to the enzyme through a stable amide bond2; this enables stringent purification and identification of substrates. We identify new substrates for proteases, including an intramembrane mammalian rhomboid protease RHBDL4 (refs. 3,4). We demonstrate that RHBDL4 can shed luminal fragments of endoplasmic reticulum-resident type I transmembrane proteins to the extracellular space, as well as promoting non-canonical secretion of endogenous soluble endoplasmic reticulum-resident chaperones. We also discover that the putative serine hydrolase retinoblastoma binding protein 9 (ref. 5) is an aminopeptidase with a preference for removing aromatic amino acids in human cells. Our results exemplify a powerful paradigm for identifying the substrates and activities of hydrolase enzymes.
Collapse
Affiliation(s)
- Shan Tang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Adam T Beattie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Lucie Kafkova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Marc Fiedler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
18
|
Qiao X, Hou L, Wang J, Jin Y, Kong N, Li J, Wang S, Wang L, Song L. Identification and characterization of an apoptosis-inducing factor 1 involved in apoptosis and immune defense of oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2021; 119:173-181. [PMID: 34610453 DOI: 10.1016/j.fsi.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The apoptosis-inducing factor (AIF) is a phylogenetically old protein with classic function of inducing caspase-independent apoptosis, which extensively present in all primary kingdoms. In the present study, an AIF homologue (designated as CgAIF1) was identified from oyster Crassostrea gigas. The open reading frame of CgAIF1 cDNA was of 1836 bp encoding a peptide of 611 amino acid residues. There are a Pyr_redox_2 domain and an AIF_C domain in the predicted CgAIF1 protein. The deduced amino acid sequence of CgAIF1 shared 35.44%-79.22% similarity with AIF1s from other species. In the phylogenetic tree, CgAIF1 firstly clustered with mollusc AIF1s, and then with insect AIF1s, displaying separation from vertebrate AIF1s. The mRNA transcripts of CgAIF1 were constitutively distributed in all the tested oyster tissues, with the highest level in gills (12.98-fold of that in haemocytes, p < 0.05). After LPS and Poly (I:C) stimulation, the mRNA transcripts of CgAIF1 in gills were significantly increased at 6 h and 24 h (5.79-fold, p < 0.001, and 21.96-fold compared to the control group, p < 0.05), respectively. In immunocytochemical assay, the CgAIF1 positive signals were mainly distributed in the cytoplasm of haemocytes, while after Poly (I:C) stimulation, the increased CgAIF1 positive signals were observed in the nucleus. Moreover, in the HEK293T cells transfected with pcDNA3.1-CgAIF1 recombinant plasmid, green signal of CgAIF1 were observed in both the cytoplasm and nucleus. The cell mortality rate, cell shrinking and the phosphatidylserine (PS) ectropion (Annexin V+/PI- cells and Annexin V+/PI+ cells) of CgAIF1 transfected HEK293T cells were significantly increased, compared to the groups with or without pcDNA3.1 transfection. These results collectively suggested that CgAIF1 was a conserved AIF1 member in oysters, and participated in immune response by inducing cell apoptosis.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jihan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jialuo Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
19
|
Wang L, Liu XX, Yang YM, Wang Y, Song YY, Gao S, Li LY, Zhang ZS. RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression. Cancer Cell Int 2021; 21:590. [PMID: 34736454 PMCID: PMC8567583 DOI: 10.1186/s12935-021-02277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/18/2021] [Indexed: 01/05/2023] Open
Abstract
Background The rhomboids are a family of multi-transmembrane proteins, many of which have been implicated in facilitating tumor progression. Little is yet known, however, about rhomboid-associated biomarkers in cancers. An analysis of such biomarkers could yield important insights into the role of the rhomboids in cancer pathology. Methods In this study, we carried out the univariate Cox regression analysis and compared gene expression patterns of several rhomboid genes in 30 types of cancers by using The Cancer Genome Atlas (TCGA) database and the methods delineated in Gene Expression Profiling Interactive Analysis (GEPIA). We then used datasets GSE47032, GSE126964, GSE68417 and 75 paired pathological specimens to verify the influences of the rhomboid genes in cancer progression. Moreover, we carried out Weighted Gene Correlation Network Analysis (WGCNA) to investigate gene-related functions and we exploited potential correlations between rhomboid genes expression and immune cell infiltration in cancer tissues. Furthermore, we constructed gene-knockdown cancer cell lines to investigate rhomboid gene functions. Results We find that kidney renal clear cell carcinoma (KIRC) disease progression is affected by fluctuations in the expression of a number of the rhomboid family of genes and, more specifically, high levels of RHBDF2 gene expression are a good indicator of poor prognosis of the disease, as patients with high RHBDF2 expression levels exhibit less favorable survival rates compared to those with low RHBDF2 levels. Silencing of the RHBDF2 gene in KIRC cell lines leads to significantly diminished cell proliferation and migration; this is in good agreement with the identification of an enhanced presence of a number of cell growth and migration promoting signaling molecules in KIRC tumors. We found that, although high level of RHBDF2 correlated with increased infiltration of lymphocytes in cancer tissues, artificially overexpressed RHBDF2 led to an inhibition of the activity of the infiltrated immune cells through sustaining PD-L1 protein level. Furthermore, we show that RHBDF2 related cell migration and PD-L1 regulation were potentially mediated by EGFR signaling pathway. Conclusions RHBDF2 gene functions are correlated to facilitated renal clear cell carcinoma progression and may serve as a critical prognostic biomarker for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02277-0.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xiu-Xiu Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yu-Meng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Yuan-Yuan Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
20
|
Lee SH, Goo TW, Yun EY. Allomyrina dichotoma larval extract has protective effects against gut permeability of dextran sulfate sodium-fed Drosophila by E-cadherin and armadillo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113786. [PMID: 33421598 DOI: 10.1016/j.jep.2021.113786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Larvae of the rhinoceros beetle (Allomyrina dichotoma) (ADL) are used ethnopharmacologically to treat gut-related disorders in Korea and China since 1596 and are also approved as a safe novel food with high nutritional value. AIM OF THE STUDY We investigated the protective effects of ADL extract against leaky gut disease using a Drosophila model and sought to elucidate the underlying biological mechanisms. MATERIALS AND METHODS We examined the protective effects of ADL extract (2 mg/mL) against the leaky gut disease using a dextran sulfate sodium (DSS)-induced leaky gut Drosophila melanogaster model. RESULTS We found that oral administration of ADL extracts significantly increase the survival rate of DSS-fed Drosophila. Under conditions of DSS-induced gut damage, ADL extract reduced gut cell apoptosis and gut permeability, resulting in the maintenance of gut tissue homeostasis. Furthermore, we observed that oral administration of ADL extract can induce high levels of E-cadherin gene expression and also restored the original membrane localization of DSS-disrupted E-cadherin contiguous with the armadillo. CONCLUSION We concluded that ADL extract plays an important role in maintaining gut homeostasis through the up-regulation of E-cadherin and that it may have a protective effect against leaky gut syndrome.
Collapse
Affiliation(s)
- Seung Hun Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, South Korea
| | - Tae-Won Goo
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Kyeongbuk, 38066, South Korea
| | - Eun-Young Yun
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
21
|
RHBDD1 promotes proliferation, migration, invasion and EMT in renal cell carcinoma via the EGFR/AKT signaling pathway. Mol Med Rep 2021; 24:826. [PMID: 34581421 PMCID: PMC8503741 DOI: 10.3892/mmr.2021.12466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system with a poor prognosis and high mortality rate. The increasing incidence of RCC poses a serious threat to human health. It is well-documented that rhomboid domain-containing protein 1 (RHBDD1) plays a vital role in cancer progression. The present study was designed to identify the biological functions of RHBDD1 in RCC and investigate the underlying regulatory mechanism, aiming to explore the novel molecular therapeutic targets for RCC. The protein and mRNA expression levels of RHBDD1 in normal renal tubule epithelium and human RCC cell lines were analyzed using western blotting and reverse transcription-quantitative PCR. Cell proliferation was determined using Cell Counting Kit-8 assays. Wound healing and Transwell assays were performed to determine cell migration and invasion, respectively. In addition, key proteins related to migration, invasion and epithelial-mesenchymal transition (EMT), such as matrix metalloproteinase (MMP)2, MMP9, MMP13, E-cadherin, N-cadherin, vimentin and Slug, were analyzed using western blotting. In addition, the EGFR/AKT signaling pathway was further studied using western blotting to determine the potential molecular mechanism. The results of the present study revealed that RHBDD1 expression levels were significantly upregulated in RCC cell lines. The knockdown of RHBDD1 inhibited cell proliferation, migration, invasion and EMT, while the overexpression of RHBDD1 promoted cell proliferation, migration, invasion and EMT in RCC. In addition, the knockdown of RHBDD1 suppressed the activation of the EGFR/AKT signaling pathway, while the overexpression of RHBDD1 activated the EGFR/AKT signaling pathway. Moreover, these stimulatory effects of RHBDD1 overexpression on RCC progression and the EGFR/AKT signaling pathway were partly reversed by gefitinib, an EGFR inhibitor. In conclusion, the findings of the present study suggested that RHBDD1 may be a crucial regulator of RCC by modulating the EGFR/AKT signaling pathway. The present study may provide a theoretical basis and potential targets for RCC treatment.
Collapse
|
22
|
Carbone A, De Santis E, Cela O, Giambra V, Miele L, Marrone G, Grieco A, Buschbeck M, Capitanio N, Mazza T, Mazzoccoli G. The Histone Variant MacroH2A1 Impacts Circadian Gene Expression and Cell Phenotype in an In Vitro Model of Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9081057. [PMID: 34440260 PMCID: PMC8391426 DOI: 10.3390/biomedicines9081057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. A foremost risk factor for HCC is obesity/metabolic syndrome-related non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is prompted by remarkable changes in transcription patterns of genes enriching metabolic, immune/inflammatory, and circadian pathways. Epigenetic mechanisms play a role in NAFLD-associated HCC, and macroH2A1, a variant of histone H2A, is involved in the pathogenesis modulating the expression of oncogenes and/or tumor suppressor genes and interacting with SIRT1, which crucially impacts the circadian clock circuitry. Hence, we aimed to appraise if and how macroH2A1 regulated the expression patterns of circadian genes in the setting of NAFLD-associated HCC. We took advantage of an in vitro model of liver cancer represented by HepG2 (human hepatocarcinoma) cells stably knocked down for macroH2A1 and conducted whole transcriptome profiling and deep phenotyping analysis. We found up-regulation of PER1 along with several deregulated circadian genes, enriching several important pathways and functions related to cancer onset and progression, such as epithelial-to-mesenchymal transition, cell cycle deregulation, and DNA damage. PER1 silencing partially mitigated the malignant phenotype induced by the loss of macroH2A1 in HCC cells. In conclusion, our findings suggest a modulatory role for the core circadian protein PER1 in liver carcinogenesis in the context of a lack of the macroH2A1 epigenetic and transcriptional landscape.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Elisabetta De Santis
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.S.); (V.G.)
| | - Luca Miele
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Giuseppe Marrone
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Antonio Grieco
- Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (L.M.); (G.M.); (A.G.)
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, IJC Building, Can Ruti Campus Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (O.C.); (N.C.)
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
- Correspondence: ; Tel./Fax: +39-(0882)-410-255
| |
Collapse
|
23
|
Parsons WH, Rutland NT, Crainic JA, Cardozo JM, Chow AS, Andrews CL, Sheehan BK. Development of succinimide-based inhibitors for the mitochondrial rhomboid protease PARL. Bioorg Med Chem Lett 2021; 49:128290. [PMID: 34311087 DOI: 10.1016/j.bmcl.2021.128290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023]
Abstract
While the biochemistry of rhomboid proteases has been extensively studied since their discovery two decades ago, efforts to define the physiological roles of these enzymes are ongoing and would benefit from chemical probes that can be used to manipulate the functions of these proteins in their native settings. Here, we describe the use of activity-based protein profiling (ABPP) technology to conduct a targeted screen for small-molecule inhibitors of the mitochondrial rhomboid protease PARL, which plays a critical role in regulating mitophagy and cell death. We synthesized a series of succinimide-containing sulfonyl esters and sulfonamides and discovered that these compounds serve as inhibitors of PARL with the most potent sulfonamides having submicromolar affinity for the enzyme. A counterscreen against the bacterial rhomboid protease GlpG demonstrates that several of these compounds display selectivity for PARL over GlpG by as much as two orders of magnitude. Both the sulfonyl ester and sulfonamide scaffolds exhibit reversible binding and are able to engage PARL in mammalian cells. Collectively, our findings provide encouraging precedent for the development of PARL-selective inhibitors and establish N-[(arylsulfonyl)oxy]succinimides and N-arylsulfonylsuccinimides as new molecular scaffolds for inhibiting members of the rhomboid protease family.
Collapse
Affiliation(s)
- William H Parsons
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States.
| | - Nicholas T Rutland
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Jennifer A Crainic
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Joaquin M Cardozo
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Alyssa S Chow
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Charlotte L Andrews
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| | - Brendan K Sheehan
- Department of Chemistry and Biochemistry, Oberlin College, Room A263, Science Center, 119 Woodland St., Oberlin, OH 44074, United States
| |
Collapse
|
24
|
Zhang K, Ren Y, Xu S, Lu W, Xie S, Qu J, Wang X, Shen B, Pang P, Cai X, Sun J. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer. Med Phys 2021; 48:4872-4882. [PMID: 34042185 DOI: 10.1002/mp.15001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Lymphovascular invasion (LVI) and perineural invasion (PNI) are independent prognostic factors in patients with colorectal cancer (CRC). In this study, we aimed to develop and validate a preoperative predictive model based on high-throughput radiomic features and clinical factors for accurate prediction of LVI/PNI in these patients. METHODS Two hundred and sixty-three patients who underwent colorectal resection for histologically confirmed CRC between 1 February 2011 and 30 June 2020 were retrospectively enrolled. Between 1 February 2011 and 30 September 2018, 213 patients were randomly divided into a training cohort (n = 149) and a validation cohort (n = 64) by a ratio of 7:3. We used a 10000-iteration bootstrap analysis to estimate the prediction error and confidence interval for two cohorts. The independent test cohort consisted of 50 patients between 1 October 2018 and 30 June 2020. Regions of interest (ROIs) were manually delineated in high-resolution T2-weighted and diffusion-weighted images using ITK-SNAP software on each CRC tumor slice. In total, 3356 radiomic features were extracted from each ROI. Next, we used the maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms to select the strongest of these features to establish a clinical-radiomics model for predicting LVI/PNI. Receiver-operating characteristic and calibration curves were then plotted to evaluate the predictive performance of the model in the training, validation, and independent test cohorts. RESULTS A multiparametric clinical-radiomics model combining MRI-reported extramural vascular invasion (EMVI) status and a Radiomics score for the LVI/PNI estimation was established. This model had significant predictive power in the training cohort (area under the curve [AUC] 0.91; 95% confidence interval [CI]: 0.85-0.97), validation cohort (AUC: 0.88; 95% CI: 0.79-89), and independent test cohorts (AUC 0.83, 95% CI 0.72-0.95). The model performed well in the independent test cohort with sensitivity of 0.818, specificity of 0.714, and accuracy of 0.760. Calibration curve and decision curve analysis demonstrated clinical benefits. CONCLUSION Multiparametric clinical-radiomics models can accurately predict LVI/PNI in patients with CRC. Our model has predictive ability that should improve preoperative diagnostic performance and allow more individualized treatment decisions.
Collapse
Affiliation(s)
- Ke Zhang
- Shaoxing University School of Medicine, Shaoxing, China.,Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yiyue Ren
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shufeng Xu
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiology, People's Hospital of Quzhou, Quzhou Hospital affiliated to Wenzhou Medical University, Quzhou, China
| | - Wei Lu
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shengnan Xie
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiali Qu
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyan Wang
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Bo Shen
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Peipei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jihong Sun
- Shaoxing University School of Medicine, Shaoxing, China.,Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Susmi TF, Rahman A, Khan MMR, Yasmin F, Islam MS, Nasif O, Alharbi SA, Batiha GES, Hossain MU. Prognostic and clinicopathological insights of phosphodiesterase 9A gene as novel biomarker in human colorectal cancer. BMC Cancer 2021; 21:577. [PMID: 34016083 PMCID: PMC8136133 DOI: 10.1186/s12885-021-08332-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND PDE9A (Phosphodiesterase 9A) plays an important role in proliferation of cells, their differentiation and apoptosis via intracellular cGMP (cyclic guanosine monophosphate) signaling. The expression pattern of PDE9A is associated with diverse tumors and carcinomas. Therefore, PDE9A could be a prospective candidate as a therapeutic target in different types of carcinoma. The study presented here was designed to carry out the prognostic value as a biomarker of PDE9A in Colorectal cancer (CRC). The present study integrated several cancer databases with in-silico techniques to evaluate the cancer prognosis of CRC. RESULTS The analyses suggested that the expression of PDE9A was significantly down-regulated in CRC tissues than in normal tissues. Moreover, methylation in the DNA promoter region might also manipulate PDE9A gene expression. The Kaplan-Meier curves indicated that high level of expression of PDE9A gene was associated to higher survival in OS, RFS, and DSS in CRC patients. PDE9A demonstrated the highest positive correlation for rectal cancer recurrence with a marker gene CEACAM7. Furtheremore, PDE9A shared consolidated pathways with MAPK14 to induce survival autophagy in CRC cells and showed interaction with GUCY1A2 to drive CRPC. CONCLUSIONS Overall, the prognostic value of PDE9A gene could be used as a potential tumor biomarker for CRC.
Collapse
Affiliation(s)
- Tasmina Ferdous Susmi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Atikur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
- Department of Fermentation Engineering, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Md. Moshiur Rahman Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Farzana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Shariful Islam
- Department of Reproductive and Developmental Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 5 Chome Kita 8 Jonishi, Kita Ward, Sapporo, Hokkaido 060-0808 Japan
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506-022 USA
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University [Medical City], King Khalid University Hospital, PO Box 2925, Riyadh, 11461 Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh, 11451 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511 Egypt
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349 Bangladesh
| |
Collapse
|
26
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
27
|
Xu Z, Wang R, Li X, Yang L, Peng H, Wang Y, Wang P. RHBDD1 silencing inhibited cell growth and invasion of non-small cell lung cancer by mediating ZEB1/PI3K/AKT signaling pathway. J Mol Histol 2021; 52:503-510. [PMID: 33515112 DOI: 10.1007/s10735-020-09943-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Rhomboid domain containing 1 (RHBDD1) gene, which was reported to be upregulated in human several cancer, was associated with carcinogenesis. However, the potential biological function of RHBDD1 in non-small cell lung cancer (NSCLC) carcinogenesis remains still not known. In this study, we aimed to investigate the role of RHBDD1 and its underlying molecular mechanism in NSCLC. The gene RHBDD1 expression was detected in NSCLC tissues and matched nontumor adjacent tissues. In vitro experiments, NSCLC cell lines (A549, H1650, H358 and H1299) were performed to investigate the biological function of RHBDD1 and its molecular mechanism. Our findings showed that the mRNA and protein expression levels of RHBDD1 were notably increased in human NSCLC tissues and cell lines, especially in A549 and H1650 cells. Moreover, silencing of RHBDD1 by RNAi notably inhibited NSCLC cell proliferation and increased cell apoptosis. Caspase-3/7 activity was remarkably increased in cells treated with RHBDD1 siRNA. RHBDD1 silencing notably reduced the number of invading cells. Furthermore, our findings showed that silencing of RHBDD1 notably inhibited the mRNA and protein expression levels of ZEB1 in A549 and H1650 cells. The phosphorylation of PI3K and AKT was also remarkably decreased by RHBDD1 silencing. ZEB1/AKT overexpression reversed the effect of RHBDD1 silencing on NSCLC cell growth and invasion. Taken together, our findings indicated that RHBDD1 silencing inhibited cell growth and invasion of non-small cell lung cancer by mediating ZEB1/PI3K/AKT signaling pathway, implying that RHBDD1 was possibly a potential diagnostic and therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Zheyuan Xu
- Department of Thoracic surgery, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, Yunnan, China
| | - Ran Wang
- Mailman School of Public Health, Columbia University, New York, USA
| | - Xu Li
- Department of Thoracic surgery, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, Yunnan, China
| | - Limin Yang
- Department of Thoracic surgery, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, Yunnan, China
| | - Hao Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yang Wang
- Department of Thoracic surgery, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, Yunnan, China
| | - Ping Wang
- Department of Thoracic surgery, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, Yunnan, China.
| |
Collapse
|
28
|
Wang H, Chen X, Yang B, Xia Z, Chen Q. MiR-924 as a tumor suppressor inhibits non-small cell lung cancer by inhibiting RHBDD1/Wnt/β-catenin signaling pathway. Cancer Cell Int 2020; 20:491. [PMID: 33041671 PMCID: PMC7542747 DOI: 10.1186/s12935-020-01516-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background MiR-924 has been reported to be a tumor suppressor in hepatocellular carcinoma. However, the functions and mechanisms of miR-924 in non-small cell lung cancer (NSCLC) remain unclear. Methods The expression of miR-924 was determined in NSCLC tissues and cell lines using quantitative real time PCR. The Chi-squared test was used to evaluate the correlation between miR-924 levels and clinicopathological parameters in patients with NSCLC. Cell proliferation was assessed by CCK-8 assay. Cell migration and invasion were detected by transwell assay. The combination of miR-924 and RHBDD1 was analyzed via the luciferase reporter assay. The expression level of RHBDD1 was evaluated in lung cancer tissues using public microarray datasets form Oncomine and its prognostic value was assessed by Kaplan-Meier Plotter databases. A tumor xenograft mouse model was established to illustrate the effects of miR-924 on the tumorigenesis of NSCLC in vivo. Results In this study, we found miR-924 was strikingly decreased in NSCLC tissues and cell lines. Decreased miR-924 was closely correlated with advanced tumor-node-metastasis (TNM) stage and lymphatic metastasis in NSCLC patients. Noticeably, rhomboid domain-containing protein 1 (RHBDD1) was predicted and confirmed as a direct target of miR-924. Moreover, the expression level of RHBDD1 was significantly increased and inversely associated with prognosis using public microarray datasets form Oncomine and Kaplan-Meier Plotter databases. MiR-924 overexpression suppressed cell proliferation, migration and invasion. The in vivo experiments further demonstrated that miR-924 overexpression reduced NSCLC xenograft growth through inhibiting RHBDD1/Wnt/β-catenin signaling pathway. Conclusions In summary, these findings demonstrated that miR-924 blocked the progression of NSCLC by targeting RHBDD1 and miR-924/RHBDD1 axis might provide a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China
| | - Xi Chen
- Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China
| | - Zhi Xia
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Kandel RR, Neal SE. The role of rhomboid superfamily members in protein homeostasis: Mechanistic insight and physiological implications. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118793. [PMID: 32645330 PMCID: PMC7434706 DOI: 10.1016/j.bbamcr.2020.118793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Cells are equipped with protein quality control pathways in order to maintain a healthy proteome; a process known as protein homeostasis. Dysfunction in protein homeostasis leads to the development of many diseases that are associated with proteinopathies. Recently, the rhomboid superfamily has attracted much attention concerning their involvement in protein homeostasis. While their functional role has become much clearer in the last few years, their systemic significance in mammals remains elusive. Here we delineate the current knowledge of rhomboids in protein quality control and how these functions are integrated at the organismal level.
Collapse
Affiliation(s)
- Rachel R Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States of America.
| |
Collapse
|
30
|
Ngo S, Liang J, Su YH, O'Brien LE. Disruption of EGF Feedback by Intestinal Tumors and Neighboring Cells in Drosophila. Curr Biol 2020; 30:1537-1546.e3. [PMID: 32243854 PMCID: PMC7409949 DOI: 10.1016/j.cub.2020.01.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
In healthy adult organs, robust feedback mechanisms control cell turnover to enforce homeostatic equilibrium between cell division and death [1, 2]. Nascent tumors must subvert these mechanisms to achieve cancerous overgrowth [3-7]. Elucidating the nature of this subversion can reveal how cancers become established and may suggest strategies to prevent tumor progression. In adult Drosophila intestine, a well-studied model of homeostatic cell turnover, the linchpin of cell equilibrium is feedback control of the epidermal growth factor (EGF) protease Rhomboid (Rho). Expression of Rho in apoptotic cells enables them to secrete EGFs, which stimulate nearby stem cells to undergo replacement divisions [8]. As in mammals, loss of adenomatous polyposis coli (APC) causes Drosophila intestinal stem cells to form adenomas [9]. Here, we demonstrate that Drosophila APC-/- tumors trigger widespread Rho expression in non-apoptotic cells, resulting in chronic EGF signaling. Initially, nascent APC-/- tumors induce rho in neighboring wild-type cells via acute, non-autonomous activation of Jun N-terminal kinase (JNK). During later growth and multilayering, APC-/- tumors induce rho in tumor cells by autonomous downregulation of E-cadherin (E-cad) and consequent activity of p120-catenin. This sequential dysregulation of tumor non-autonomous and -autonomous EGF signaling converts tissue-level feedback into feed-forward activation that drives cancerous overgrowth. Because Rho, EGF receptor (EGFR), and E-cad are associated with colorectal cancer in humans [10-17], our findings may shed light on how human colorectal tumors progress.
Collapse
Affiliation(s)
- Sang Ngo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jackson Liang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Knopf JD, Landscheidt N, Pegg CL, Schulz BL, Kühnle N, Chao CW, Huck S, Lemberg MK. Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation. J Cell Sci 2020; 133:jcs243790. [PMID: 32005703 DOI: 10.1242/jcs.243790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 08/31/2023] Open
Abstract
The endoplasmic reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosaccharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalysed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation. RHBDL4 thereby controls the abundance and activity of OST, suggesting a novel link between the ERAD machinery and glycosylation tuning.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Nina Landscheidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chao-Wei Chao
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Simon Huck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Rhomboid-Like-2 Intramembrane Protease Mediates Metalloprotease-Independent Regulation of Cadherins. Int J Mol Sci 2019; 20:ijms20235958. [PMID: 31783481 PMCID: PMC6928865 DOI: 10.3390/ijms20235958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Cadherins are a major family of cell-cell adhesive receptors, which are implicated in development, tissue homeostasis, and cancer. Here, we show a novel mechanism of post-translational regulation of E-cadherin in cancer cells by an intramembrane protease of the Rhomboid family, RHBDL2, which leads to the shedding of E-cadherin extracellular domain. In addition, our data indicate that RHBDL2 mediates a similar activity on VE-cadherin, which is selectively expressed by endothelial cells. We show that RHBDL2 promotes cell migration, which is consistent with its ability to interfere with the functional role of cadherins as negative regulators of motility; moreover, the two players appear to lie in the same functional pathway. Importantly, we show that RHBDL2 expression is induced by the inflammatory chemokine TNFα. The E-cadherin extracellular domain is known to be released by metalloproteases (MMPs); however, here, we provide evidence of a novel MMP-independent, TNFα inducible, E-cadherin processing mechanism that is mediated by RHBDL2. Thus, the intramembrane protease RHBDL2 is a novel regulator of cadherins promoting cell motility.
Collapse
|
33
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
34
|
miR-145-5p restrained cell growth, invasion, migration and tumorigenesis via modulating RHBDD1 in colorectal cancer via the EGFR-associated signaling pathway. Int J Biochem Cell Biol 2019; 117:105641. [PMID: 31693935 DOI: 10.1016/j.biocel.2019.105641] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022]
Abstract
miR-145-5p has been reported to be downregulated and described functioning as a tumor suppressive gene in colorectal cancer (CRC), yet its detailed regulatory function and mechanism in malignant progression of the disease have not been thoroughly understood. In our study, miR-145-5p and rhomboid domain containing 1 (RHBDD1) in CRC tissues and cells were examined by qRT-PCR and western blot. MTT, colony formation, wound healing, Transwell invasion, and flow cytometry assays were performed to evaluate the malignant phenotypes of CRC cells. Xenograft tumor, qRT-PCR, and western blot assays were applied to validate the roles and mechanism of miR-145-5p in CRC in vivo. The interaction between miR-145-5p and RHBDD1 was investigated by luciferase reporter assay and western blot. The changes of the EGFR/Raf/MEK/ERK pathway were detected by western blot. We found miR-145-5p was lowly expressed and low miR-145-5p predicted poor prognosis in CRC, while RHBDD1 was greatly enhanced in CRC cells and tissues. RHBDD1 silencing resulted in inhibiting cell proliferative, invasive, and migratory potentials as well as elevating apoptotic ones in CRC cells. miR-145-5p was inversely related with RHBDD1 expression in CRC tissues. miR-145-5p was found to directly bind to RHBDD1 and restrained its expression in CRC cells. miR-145-5p overexpression repressed CRC cell proliferation, invasion, migration and induced apoptosis, and these effects were reversed by RHBDD1 upregulation. Moreover, in CRC xenograft tumor, its growth was impeded by miR-145-5p via suppressing RHBDD1. Furthermore, miR-145-5p inhibited the expression of EGFR, p-MEK1/2 and p-ERK1/2, in vitro and in vivo by targeting RHBDD1. In conclusion, our study revealed that miR-145-5p overexpression inhibited tumorigenesis in CRC by downregulating RHBDD1 via suppressing the EGFR-associated signaling pathway (EGFR/Raf/MEK/ERK cascades).
Collapse
|
35
|
Ikeda KN, Freeman M. Spatial proteomics reveal that the protein phosphatase PTP1B interacts with and may modify tyrosine phosphorylation of the rhomboid protease RHBDL4. J Biol Chem 2019; 294:11486-11497. [PMID: 31177093 PMCID: PMC6663880 DOI: 10.1074/jbc.ra118.007074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Rhomboid-like proteins are evolutionarily conserved, ubiquitous polytopic membrane proteins, including the canonical rhomboid intramembrane serine proteases and also others that have lost protease activity during evolution. We still have much to learn about their cellular roles, and evidence suggests that some may have more than one function. For example, RHBDL4 (rhomboid-like protein 4) is an endoplasmic reticulum (ER)-resident protease that forms a ternary complex with ubiquitinated substrates and p97/VCP (valosin-containing protein), a major driver of ER-associated degradation (ERAD). RHBDL4 is required for ERAD of some substrates, such as the pre-T-cell receptor α chain (pTα) and has also been shown to cleave amyloid precursor protein to trigger its secretion. In another case, RHBDL4 enables the release of full-length transforming growth factor α in exosomes. Using the proximity proteomic method BioID, here we screened for proteins that interact with or are in close proximity to RHBDL4. Bioinformatics analyses revealed that BioID hits of RHBDL4 overlap with factors related to protein stress at the ER, including proteins that interact with p97/VCP. PTP1B (protein-tyrosine phosphatase nonreceptor type 1, also called PTPN1) was also identified as a potential proximity factor and interactor of RHBDL4. Analysis of RHBDL4 peptides highlighted the presence of tyrosine phosphorylation at the cytoplasmic RHBDL4 C terminus. Site-directed mutagenesis targeting these tyrosine residues revealed that their phosphorylation modifies binding of RHBDL4 to p97/VCP and Lys63-linked ubiquitinated proteins. Our work lays a critical foundation for future mechanistic studies of the roles of RHBDL4 in ERAD and other important cellular pathways.
Collapse
Affiliation(s)
- Kyojiro N Ikeda
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
36
|
Paschkowsky S, Hsiao JM, Young JC, Munter LM. The discovery of proteases and intramembrane proteolysis. Biochem Cell Biol 2019; 97:265-269. [DOI: 10.1139/bcb-2018-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Jacqueline Melissa Hsiao
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, McIntyre Building, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
37
|
Recinto SJ, Paschkowsky S, Munter LM. An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4. Biol Chem 2018; 399:1399-1408. [DOI: 10.1515/hsz-2018-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
AbstractSince the first genetic description of a rhomboid inDrosophila melanogaster, tremendous efforts have been geared towards elucidating the proteolytic mechanism of this particular class of intramembrane proteases. In particular, mammalian rhomboid proteases sparked our interest and we aimed to investigate the human homologue RHBDL4. In light of our recent finding of the amyloid precursor protein (APP) family as efficient substrates of RHBDL4, we were enticed to further study the specific proteolytic mechanism of this enzyme by comparing cleavage patterns of wild type APP and APP TMS chimeras. Here, we demonstrate that the introduction of positively charged amino acid residues in the TMS redirects the RHBDL4-mediated cleavage of APP from its ectodomain closer towards the TMS, possibly inducing an ER-associated degradation (ERAD) of the substrate. In addition, we concluded that the cytoplasmic tail and proposed palmitoylation sites in the ectodomain of APP are not essential for the RHBDL4-mediated APP processing. In summary, our previously identified APP ectodomain cleavages by RHBDL4 are a subsidiary mechanism to the proposed RHBDL4-mediated ERAD of substrates likely through a single cleavage near or within the TMS.
Collapse
|
38
|
Hsu FF, Chou YT, Chiang MT, Li FA, Yeh CT, Lee WH, Chau LY. Signal peptide peptidase promotes tumor progression via facilitating FKBP8 degradation. Oncogene 2018; 38:1688-1701. [PMID: 30348988 DOI: 10.1038/s41388-018-0539-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/28/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022]
Abstract
Signal peptide peptidase (SPP) is an endoplasmic reticulum (ER)-resident aspartyl protease mediating intramembrane cleavage of type II transmembrane proteins. Increasing evidence has supported the role of SPP in ER-associated protein degradation. In the present study, we show that SPP expression is highly induced in human lung and breast cancers and correlated with disease outcome. Stable depletion of SPP expression in lung and breast cancer cell lines significantly reduced cell growth and migration/invasion abilities. Quantitative analysis of the proteomic changes of microsomal proteins in lung cancer cells by the stable isotope labeling with amino acids in cell culture (SILAC) approach revealed that the level of FKBP8, an endogenous inhibitor of mTOR, was significantly increased following SPP depletion. Co-immunoprecipitation assay and confocal immunofluorescence demonstrated that SPP interacted and colocalized with FKBP8 in ER, supporting that FKBP8 is a protein substrate of SPP. Cycloheximide chase and proteasome inhibition experiments revealed that SPP-mediated proteolysis facilitated FKBP8 protein degradation in cytosol. Further experiment demonstrated that the levels of phosphorylation in mTOR and its downstream effectors, S6K and 4E-BP1, were significantly lower in SPP-depleted cells. The reduced mTOR signaling and decreases of growth and migration/invasion abilities induced by SPP depletion in cancer cells could be reversed by FKBP8 downregulation. The implication of FKBP8 in SPP-mediated tumorigenicity was also observed in the xenograft model. Together, these findings disclose that SPP promotes tumor progression, at least in part, via facilitating the degradation of FKBP8 to enhance mTOR signaling.
Collapse
Affiliation(s)
- Fu-Fei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Tai Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Tsai Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chi-Tai Yeh
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Hwa Lee
- Cancer Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lee-Young Chau
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
39
|
Zhang X, Zhao Y, Wang C, Ju H, Liu W, Zhang X, Miao S, Wang L, Sun Q, Song W. Rhomboid domain-containing protein 1 promotes breast cancer progression by regulating the p-Akt and CDK2 levels. Cell Commun Signal 2018; 16:65. [PMID: 30286765 PMCID: PMC6172813 DOI: 10.1186/s12964-018-0267-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Background Our previous work revealed that rhomboid domain-containing protein 1 (RHBDD1) participates in the modulation of cell growth and apoptosis in colorectal cancer cells. This study aimed to investigate the function of RHBDD1 in regulating breast cancer progression and its underlying molecular basis. Methods Immunohistochemistry was performed to evaluate RHBDD1 expression in 116 breast cancer tissue and 39 adjacent normal tissue and expression of RHBDD1, phospho-Akt (p-Akt) and cyclin-dependent kinase 2 (CDK2) in the same 84 breast cancer specimens. RHBDD1-knock-out cells were established using breast cancer cell lines. In vitro studies were carried out to estimate the function of RHBDD1 in cell proliferation, migration and invasion. Fluorescence microscopy assay and flow cytometric analysis were used to measure apoptosis and cell cycle regulation. RNA sequencing and western blot analysis were used to investigate the molecular mechanisms of RHBDD1. Results RHBDD1 was highly up-regulated in breast cancer tissue compared with that in normal tissue and associated with pathological tumor (pT) stage, pathological tumor-node-metastasis (pTNM) stage and estrogen receptor (ER) expression. RHBDD1 up-regulation was associated with poor prognosis in several subtypes of breast cancer. Deletion of RHBDD1 promoted apoptosis and suppressed proliferation, migration and invasion in breast cancer cells. RHBDD1 deletion suppressed Akt activation and decreased CDK2 protein level via proteasome pathway, thus inhibited cell cycle progression and G1/S phase transition. Moreover, the protein level of RHBDD1, p-Akt and CDK2 was significantly positively correlated in breast cancer tissue. Conclusions Our study reveals that RHBDD1 promotes breast cancer progression by regulating p-Akt and CDK2 protein levels, and might be a potential biomarker and prognostic indicator for breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12964-018-0267-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.,Weifang Medical University, Weifang, 261000, China
| | - Yuechao Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Hongge Ju
- Department of Pathology, Baotou Medical College, Baotou, 014040, China.,Department of Pathology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Wenjie Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
40
|
Goel P, Jumpertz T, Tichá A, Ogorek I, Mikles DC, Hubalek M, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors. Bioorg Med Chem Lett 2018; 28:1417-1422. [DOI: 10.1016/j.bmcl.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/26/2022]
|
41
|
Zhang M, Miao F, Huang R, Liu W, Zhao Y, Jiao T, Lu Y, Wu F, Wang X, Wang H, Zhao H, Ju H, Miao S, Wang L, Song W. RHBDD1 promotes colorectal cancer metastasis through the Wnt signaling pathway and its downstream target ZEB1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:22. [PMID: 29426364 PMCID: PMC5807852 DOI: 10.1186/s13046-018-0687-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/23/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND 40-50% of colorectal cancer (CRC) patients develop metastatic disease; the presence of metastasis hinders the effective treatment of cancer through surgery, chemotherapy and radiotherapy, which makes 5-year survival rate extremely low; therefore, studying CRC metastasis is crucial for disease therapy. In the present study, we investigated the role of rhomboid domain containing 1 (RHBDD1) in tumor metastasis of CRC. METHODS The expression of RHBDD1 was analyzed in 539 colorectal tumor tissues for its correlation with lymphatic metastasis and distal metastasis. Transwell assay in vitro and pleural metastasis analysis in vivo were performed to determine the functions of RHBDD1 during CRC cells metastasis. RNA-seq analysis, TOP/FOP flash reporter assay, western blot and transwell assay were performed to investigate the underlying mechanism for the function of RHBDD1 on Wnt signaling pathway. Bioinformatics analysis was conducted to investigate epithelial-mesenchymal transition (EMT) and stemness in HCT-116 cells. Tissue microarray analysis, Q-PCR and western blot were performed to determine the correlation of RHBDD1 and Zinc Finger E-Box Binding Homeobox 1 (ZEB1). RESULTS In this study, we found that RHBDD1 expression was positively correlated with lymphatic metastasis and distal metastasis in 539 colorectal tumor tissues. RHBDD1 expression can promote CRC cells metastasis in vitro and in vivo. RNA-Seq analysis showed that the Wnt signaling pathway played a key role in this metastatic regulation. RHBDD1 mainly regulated ser552 and ser675 phosphorylation of β-catenin to activate the Wnt signaling pathway. Rescuing ser552 and ser675 phosphorylation of β-catenin resulted in the recovery of signaling pathway activity, migration, and invasion in CRC cells. RHBDD1 promoted EMT and a stem-like phenotype of CRC cells. RHBDD1 regulated the Wnt/β-catenin target gene ZEB1, a potent EMT activator, at the RNA and protein levels. Clinically, RHBDD1 expression was positively correlated with ZEB1 at the protein level in 71 colon tumor tissues. CONCLUSIONS Our findings therefore indicated that RHBDD1 can promote CRC metastasis through the Wnt signaling pathway and ZEB1. RHBDD1 may become a new therapeutic target or clinical biomarker for metastatic CRC.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Fei Miao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Rong Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wenjie Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yuechao Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Tao Jiao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yalan Lu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Fan Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiaojuan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Han Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, Cancer Hospital & Institute, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Hongge Ju
- Department of Pathology, Baotou Medical College, Baotou, 014040, China.,Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Shiying Miao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Linfang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Wei Song
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
42
|
Tichá A, Stanchev S, Vinothkumar KR, Mikles DC, Pachl P, Began J, Škerle J, Švehlová K, Nguyen MTN, Verhelst SHL, Johnson DC, Bachovchin DA, Lepšík M, Majer P, Strisovsky K. General and Modular Strategy for Designing Potent, Selective, and Pharmacologically Compliant Inhibitors of Rhomboid Proteases. Cell Chem Biol 2017; 24:1523-1536.e4. [PMID: 29107700 PMCID: PMC5746060 DOI: 10.1016/j.chembiol.2017.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/19/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022]
Abstract
Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the ketoamide nitrogen by hydrophobic groups are potent rhomboid inhibitors active in the nanomolar range, surpassing the currently used rhomboid inhibitors by up to three orders of magnitude. Such peptidyl ketoamides show selectivity for rhomboids, leaving most human serine hydrolases unaffected. Crystal structures show that these compounds bind the active site of rhomboid covalently and in a substrate-like manner, and kinetic analysis reveals their reversible, slow-binding, non-competitive mechanism. Since ketoamides are clinically used pharmacophores, our findings uncover a straightforward modular way for the design of specific inhibitors of rhomboid proteases, which can be widely applicable in cell biology and drug discovery. N-substituted peptidyl α-ketoamides are nanomolar inhibitors of rhomboid proteases Peptidyl ketoamides inhibit rhomboids covalently, reversibly, and non-competitively The peptide and ketoamide substituent independently modulate potency and selectivity Peptidyl ketoamides are selective for rhomboids, sparing most human serine proteases
Collapse
Affiliation(s)
- Anežka Tichá
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, Czech Republic
| | - Stancho Stanchev
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kutti R Vinothkumar
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David C Mikles
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44, Czech Republic
| | - Jan Škerle
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43, Czech Republic
| | - Kateřina Švehlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Minh T N Nguyen
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany
| | - Steven H L Verhelst
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227 Dortmund, Germany; KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000 Leuven, Belgium
| | - Darren C Johnson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Daniel A Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 428, New York, NY 10065, USA
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
43
|
Johnson N, Březinová J, Stephens E, Burbridge E, Freeman M, Adrain C, Strisovsky K. Quantitative proteomics screen identifies a substrate repertoire of rhomboid protease RHBDL2 in human cells and implicates it in epithelial homeostasis. Sci Rep 2017; 7:7283. [PMID: 28779096 PMCID: PMC5544772 DOI: 10.1038/s41598-017-07556-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
Rhomboids are intramembrane serine proteases conserved in all kingdoms of life. They regulate epidermal growth factor receptor signalling in Drosophila by releasing signalling ligands from their transmembrane tethers. Their functions in mammals are poorly understood, in part because of the lack of endogenous substrates identified thus far. We used a quantitative proteomics approach to investigate the substrate repertoire of rhomboid protease RHBDL2 in human cells. We reveal a range of novel substrates that are specifically cleaved by RHBDL2, including the interleukin-6 receptor (IL6R), cell surface protease inhibitor Spint-1, the collagen receptor tyrosine kinase DDR1, N-Cadherin, CLCP1/DCBLD2, KIRREL, BCAM and others. We further demonstrate that these substrates can be shed by endogenously expressed RHBDL2 and that a subset of them is resistant to shedding by cell surface metalloproteases. The expression profiles and identity of the substrates implicate RHBDL2 in physiological or pathological processes affecting epithelial homeostasis.
Collapse
Affiliation(s)
- Nicholas Johnson
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo n. 2, Prague, 166 10, Czech Republic
| | - Jana Březinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo n. 2, Prague, 166 10, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Elaine Stephens
- MRC Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom
| | | | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Cambridge, CB2 2QH, United Kingdom.,Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Colin Adrain
- Instituto Gulbenkian de Ciência, Lisbon, Portugal.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo n. 2, Prague, 166 10, Czech Republic.
| |
Collapse
|
44
|
Düsterhöft S, Künzel U, Freeman M. Rhomboid proteases in human disease: Mechanisms and future prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2200-2209. [PMID: 28460881 DOI: 10.1016/j.bbamcr.2017.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023]
Abstract
Rhomboids are intramembrane serine proteases that cleave the transmembrane helices of substrate proteins, typically releasing luminal/extracellular domains from the membrane. They are conserved in all branches of life and there is a growing recognition of their association with a wide range of human diseases. Human rhomboids, for example, have been implicated in cancer, metabolic disease and neurodegeneration, while rhomboids in apicomplexan parasites appear to contribute to their invasion of host cells. Recent advances in our knowledge of the structure and the enzyme function of rhomboids, and increasing efforts to identify specific inhibitors, are beginning to provide important insight into the prospect of rhomboids becoming future therapeutic targets. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Ulrike Künzel
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
45
|
Miao F, Zhang M, Zhao Y, Li X, Yao R, Wu F, Huang R, Li K, Miao S, Ma C, Ju H, Song W, Wang L. RHBDD1 upregulates EGFR via the AP-1 pathway in colorectal cancer. Oncotarget 2017; 8:25251-25260. [PMID: 28445956 PMCID: PMC5421926 DOI: 10.18632/oncotarget.15694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
Our previous study showed that RHBDD1 can activate the EGFR signaling pathway to promote colorectal cancer growth. In the present study, EGFR was decreased when RHBDD1 was knocked down or inactivated. Further analysis found that c-Jun and EGFR protein expression was decreased in RHBDD1 knockdown and inactivated cells. c-Jun overexpression in RHBDD1-inactivated cells rescued EGFR expression in a dose-dependent manner. RHBDD1 overexpression in RHBDD1-inactivated cells restored EGFR expression, but this effect was counteracted by c-Jun knockdown. Furthermore, EGFR and c-Jun were attenuated in the RHBDD1 knockdown and inactivated groups in animal tumor models. Tissue microarray assays demonstrated a correlation between RHBDD1 and EGFR in colorectal cancer patients. Therefore, our findings indicate that RHBDD1 stimulates EGFR expression by promoting the AP-1 pathway.
Collapse
Affiliation(s)
- Fei Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Mengmeng Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yuechao Zhao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Rongyan Yao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Fan Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Changwu Ma
- Department of Medical Oncology, Chifeng Municipal Hospital, Chifeng 024000, China
| | - Hongge Ju
- Department of Pathology, Baotou Medical College, Baotou 014040, China.,Department of Pathology, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
46
|
Akiyama K, Hizukuri Y, Akiyama Y. Involvement of a conserved GFG motif region in substrate binding by RseP, an E
scherichia coli
S2P protease. Mol Microbiol 2017; 104:737-751. [DOI: 10.1111/mmi.13659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Koichiro Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| |
Collapse
|
47
|
Tichá A, Stanchev S, Škerle J, Began J, Ingr M, Švehlová K, Polovinkin L, Růžička M, Bednárová L, Hadravová R, Poláchová E, Rampírová P, Březinová J, Kašička V, Majer P, Strisovsky K. Sensitive Versatile Fluorogenic Transmembrane Peptide Substrates for Rhomboid Intramembrane Proteases. J Biol Chem 2017; 292:2703-2713. [PMID: 28069810 DOI: 10.1074/jbc.m116.762849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
Rhomboid proteases are increasingly being explored as potential drug targets, but their potent and specific inhibitors are not available, and strategies for inhibitor development are hampered by the lack of widely usable and easily modifiable in vitro activity assays. Here we address this bottleneck and report on the development of new fluorogenic transmembrane peptide substrates, which are cleaved by several unrelated rhomboid proteases, can be used both in detergent micelles and in liposomes, and contain red-shifted fluorophores that are suitable for high-throughput screening of compound libraries. We show that nearly the entire transmembrane domain of the substrate is important for efficient cleavage, implying that it extensively interacts with the enzyme. Importantly, we demonstrate that in the detergent micelle system, commonly used for the enzymatic analyses of intramembrane proteolysis, the cleavage rate strongly depends on detergent concentration, because the reaction proceeds only in the micelles. Furthermore, we show that the catalytic efficiency and selectivity toward a rhomboid substrate can be dramatically improved by targeted modification of the sequence of its P5 to P1 region. The fluorogenic substrates that we describe and their sequence variants should find wide use in the detection of activity and development of inhibitors of rhomboid proteases.
Collapse
Affiliation(s)
- Anežka Tichá
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the First Faculty of Medicine, Charles University, Kateřinská 32, Prague 121 08, and
| | - Stancho Stanchev
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Jan Škerle
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43
| | - Jakub Began
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, Prague 128 44
| | - Marek Ingr
- the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43.,the Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Faculty of Technology, nám. T.G. Masaryka 5555, 76001, Zlín, Czech Republic
| | - Kateřina Švehlová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Lucie Polovinkin
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43
| | - Martin Růžička
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10.,the Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, Prague 128 43
| | - Lucie Bednárová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Romana Hadravová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Edita Poláchová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Petra Rampírová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Jana Březinová
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Václav Kašička
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Pavel Majer
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10
| | - Kvido Strisovsky
- From the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, Flemingovo n. 2, Prague 166 10,
| |
Collapse
|
48
|
Verhelst SHL. Intramembrane proteases as drug targets. FEBS J 2017; 284:1489-1502. [PMID: 27889944 DOI: 10.1111/febs.13979] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 01/04/2023]
Abstract
Proteases are considered attractive drug targets. Various drugs targeting classical, soluble proteases have been approved for treatment of human disease. Intramembrane proteases (IMPs) are a more recently discovered group of proteolytic enzymes. They are embedded in lipid bilayers and their active sites are located in the plane of a membrane. All four mechanistic families of IMPs have been linked to disease, but currently, no drugs against IMPs have entered the market. In this review, I will outline the function of IMPs with a focus on the ones involved in human disease, which includes Alzheimer's disease, cancer, and infectious diseases by microorganisms. Inhibitors of IMPs are known for all mechanistic classes, but are not yet very potent or selective - aside from those targeting γ-secretase. I will here describe the different features of IMP inhibitors and discuss a list of issues that need attention in the near future in order to improve the drug development for IMPs.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| |
Collapse
|
49
|
Urban S. A guide to the rhomboid protein superfamily in development and disease. Semin Cell Dev Biol 2016; 60:1-4. [PMID: 27751777 DOI: 10.1016/j.semcdb.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
Abstract
Rhomboid proteins are considered to be the most widespread membrane proteins across all forms of life. This superfamily comprises both active intramembrane serine proteases that catalyze the release of factors from the membrane, and a eukaryotic subset of non-catalytic members in which rhomboid architecture supports deviating functions. Although rhomboid was discovered in genetic studies of insect development, rhomboid research has broadened dramatically over the past 15 years; rhomboid enzymes are now the best biophysically understood of all intramembrane proteases, and are considered promising therapeutic targets for diseases ranging from parasitic infections to Parkinsonian neurodegeneration. Perhaps the most rapid progress has come with the catalytically inert rhomboid proteins, some of which regulate protein trafficking and/or function, and their prominence is underscored by clinical mutations. Such a diverse collection of advances mark an excellent point to review the state of this vibrant area of research, not because central questions have been answered, but instead because a firm grip in key areas has been established, and the field is now poised for breakthroughs.
Collapse
Affiliation(s)
- Siniša Urban
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
50
|
Paschkowsky S, Hamzé M, Oestereich F, Munter LM. Alternative Processing of the Amyloid Precursor Protein Family by Rhomboid Protease RHBDL4. J Biol Chem 2016; 291:21903-21912. [PMID: 27563067 DOI: 10.1074/jbc.m116.753582] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
The amyloid precursor protein (APP) is an ubiquitously expressed cell surface protein and a key molecule in the etiology of Alzheimer disease. Amyloidogenic processing of APP through secretases leads to the generation of toxic amyloid β (Aβ) peptides, which are regarded as the molecular cause of the disease. We report here an alternative processing pathway of APP through the mammalian intramembrane rhomboid protease RHBDL4. RHBDL4 efficiently cleaves APP inside the cell, thus bypassing APP from amyloidogenic processing, leading to reduced Aβ levels. RHBDL4 cleaves APP multiple times in the ectodomain, resulting in several N- and C-terminal fragments that are not further degraded by classical APP secretases. Knockdown of endogenous RHBDL4 results in decreased levels of C-terminal fragments derived from endogenous APP. Similarly, we found the APP family members APLP1 and APLP2 to be substrates of RHBDL4. We conclude that RHBDL4-mediated APP processing provides insight into APP and rhomboid physiology and qualifies for further investigations to elaborate its impact on Alzheimer disease pathology.
Collapse
Affiliation(s)
| | - Mehdi Hamzé
- From the Department of Pharmacology and Therapeutics and
| | - Felix Oestereich
- From the Department of Pharmacology and Therapeutics and Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | |
Collapse
|