1
|
Angelicola S, Giunchi F, Ruzzi F, Frascino M, Pitzalis M, Scalambra L, Semprini MS, Pittino OM, Cappello C, Siracusa I, Chillico IC, Di Noia M, Turato C, De Siervi S, Lescai F, Ciavattini T, Lopatriello G, Bertoli L, De Jonge H, Iamele L, Altimari A, Gruppioni E, Ardizzoni A, Rossato M, Gelsomino F, Lollini PL, Palladini A. PD-L1 and IFN-γ modulate Non-Small Cell Lung Cancer (NSCLC) cell plasticity associated to immune checkpoint inhibitor (ICI)-mediated hyperprogressive disease (HPD). J Transl Med 2025; 23:2. [PMID: 39748404 PMCID: PMC11697469 DOI: 10.1186/s12967-024-06023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death worldwide. Although immune checkpoint inhibitors (ICIs) have shown remarkable clinical efficacy, they can also induce a paradoxical cancer acceleration, known as hyperprogressive disease (HPD), whose causative mechanisms are still unclear. METHODS This study investigated the mechanisms of ICI resistance in an HPD-NSCLC model. Two primary cell cultures were established from samples of a NSCLC patient, before ICI initiation ("baseline", NSCLC-B) and during HPD ("hyperprogression", NSCLC-H). The cell lines were phenotypically and molecularly characterized through immunofluorescence, Western Blotting and RNA-Seq analysis. To assess cell plasticity and aggressiveness, cellular growth patterns were evaluated both in vitro and in vivo through 2D and 3D cell growth assays and patient-derived xenografts establishment. In vitro investigations, including the evaluation of cell sensitivity to interferon-gamma (IFN-γ) and cell response to PD-L1 modulation, were conducted to explore the influence of these factors on cell plasticity regulation. RESULTS NSCLC-H exhibited increased expression of specific CD44 isoforms and a more aggressive phenotype, including organoid formation ability, compared to NSCLC-B. Plastic changes in NSCLC-H were well described by a deep transcriptome shift, that also affected IFN-γ-related genes, including PD-L1. IFN-γ-mediated cell growth inhibition was compromised in both 2D-cultured NSCLC-B and NSCLC-H cells. Further, the cytokine induced a partial activation of both type I and type II IFN-pathway mediators, together with a striking increase in NSCLC-B growth in 3D cell culture systems. Finally, low IFN-γ doses and PD-L1 modulation both promoted plastic changes in NSCLC-B, increasing CD44 expression and its ability to produce spheres. CONCLUSIONS Our findings identified plasticity as a relevant hallmark of ICI-mediated HPD by demonstrating that ICIs can modulate the IFN-γ and PD-L1 pathways, driving tumor cell plasticity and fueling HPD development.
Collapse
Affiliation(s)
- Stefania Angelicola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Mary Pitzalis
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Olga Maria Pittino
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Chiara Cappello
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Irene Siracusa
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Martina Di Noia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia De Siervi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Lescai
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | - Luca Bertoli
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Hugo De Jonge
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luisa Iamele
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
- Genartis S.R.L., Verona, Italy
| | - Francesco Gelsomino
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Unità Operativa di Oncologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
2
|
Jafri Z, Zhang J, O'Meara CH, Joshua AM, Parish CR, Khachigian LM. Interplay between CD28 and PD-1 in T cell immunotherapy. Vascul Pharmacol 2024; 158:107461. [PMID: 39734005 DOI: 10.1016/j.vph.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Immune checkpoint therapy targeting the PD-1/PD-L1 axis has revolutionised the treatment of solid tumors. However, T cell exhaustion underpins resistance to current anti-PD-1 therapies, resulting in lower response rates in cancer patients. CD28 is a T cell costimulatory receptor that can influence the PD-1 signalling pathway (and vice versa). CD28 signalling has the potential to counter T cell exhaustion by serving as a potential complementary response to traditional anti-PD-1 therapies. Here we discuss the interplay between PD-1 and CD28 in T cell immunotherapy and additionally how CD28 transcriptionally modulates T cell exhaustion. We also consider clinical attempts at targeting CD28; the challenges faced by past attempts and recent promising developments.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H O'Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA; Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney and Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Seo S, Hattori M, Yoshida T. Establishing an evaluation system for T cell activation and anergy based on CD25 expression levels as an indicator. Cytotechnology 2024; 76:749-759. [PMID: 39435413 PMCID: PMC11490625 DOI: 10.1007/s10616-024-00651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 10/23/2024] Open
Abstract
T cell anergy refers to a state where T cells become unresponsive, playing an important role in several types of immune tolerance, such as oral tolerance. This tolerance is vital for preventing some diseases, including food allergies. Understanding the mechanism underlying T cell anergy is essential to addressing food allergies. Previous studies often identified anergic T cells by their decreased ability to produce cytokine compared to the control cells. In the studies, unstimulated or naïve T cells were commonly used as the control cells. These systems could evaluate the hyporesponsiveness of anergic T cells; however, it was challenging to distinguish whether the decrease in cytokine production by anergic T cells was owing to anergy induction or merely a temporarily response to a certain stimulation. This complexity arises because some T cell responses are temporarily suppressed, even by activating stimuli. Therefore, this study aims to explore a new evaluation index that can differentiate the responsiveness of activated T cells from that of anergic T cells compared to the control cells. It was demonstrated that CD25 expression levels serve as an appropriate indicator for distinguishing between T-cell activation and anergy. Conversely, cytokine-producing ability proved inadequate for this purpose. It was found that CD25 expression increased in activated T cells than in naïve T cells, whereas it decreased in anergic T cells after restimulation. This occurred despite decreased cytokine production in the activated and anergic T cells than in the naïve T cells. This new evaluation system, centered on CD25 expression, may help in identifying the mechanism for determining T cell activation and anergy.
Collapse
Affiliation(s)
- Sangwon Seo
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| | - Makoto Hattori
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| |
Collapse
|
4
|
Fusco C, Nardella G, Di Filippo L, Dejana E, Cacchiarelli D, Petracca A, Micale L, Malinverno M, Castori M. Transcriptome Analysis Reveals Altered Expression of Genes Involved in Hypoxia, Inflammation and Immune Regulation in Pdcd10-Depleted Mouse Endothelial Cells. Genes (Basel) 2022; 13:genes13060961. [PMID: 35741725 PMCID: PMC9222422 DOI: 10.3390/genes13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral cavernous malformations (CCM) are capillary malformations affecting the central nervous system and commonly present with headaches, epilepsy and stroke. Treatment of CCM is symptomatic, and its prevention is limited. CCM are often sporadic but sometimes may be multifocal and/or affect multiple family members. Heterozygous pathogenic variants in PDCD10 cause the rarest and apparently most severe genetic variant of familial CCM. We carried out an RNA-Seq and a Q-PCR validation analysis in Pdcd10-silenced and wild-type mouse endothelial cells in order to better elucidate CCM molecular pathogenesis. Ninety-four differentially expressed genes presented an FDR-corrected p-value < 0.05. A functionally clustered dendrogram showed that differentially expressed genes cluster in cell proliferation, oxidative stress, vascular processes and immune response gene-ontology functions. Among differentially expressed genes, the major cluster fell in signaling related to inflammation and pathogen recognition, including HIF1α and Nos2 signaling and immune regulation. Validation analysis performed on wild-type, Pdcd10-null and Pdcd10-null reconstituted cell lines was consistent with RNA-Seq data. This work confirmed previous mouse transcriptomic data in endothelial cells, which are recognized as a critical tissue for CCM formation and expands the potential molecular signatures of PDCD10-related familial CCM to alterations in inflammation and pathogen recognition pathways.
Collapse
Affiliation(s)
- Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
- Correspondence: ; Tel.: +39-0882-416350; Fax: +39-0882-411616
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | | | - Elisabetta Dejana
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy; (E.D.); (M.M.)
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy;
- Department of Translational Medicine, University of Naples “Federico II”, 80126 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples “Federico II”, 80126 Naples, Italy
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | - Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| | - Matteo Malinverno
- Vascular Biology Unit, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy; (E.D.); (M.M.)
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 Foggia, Italy; (G.N.); (A.P.); (L.M.); (M.C.)
| |
Collapse
|
5
|
Mortezaee K, Majidpoor J. CD8 + T Cells in SARS-CoV-2 Induced Disease and Cancer-Clinical Perspectives. Front Immunol 2022; 13:864298. [PMID: 35432340 PMCID: PMC9010719 DOI: 10.3389/fimmu.2022.864298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Dysregulated innate and adaptive immunity is a sign of SARS-CoV-2-induced disease and cancer. CD8+ T cells are important cells of the immune system. The cells belong to the adaptive immunity and take a front-line defense against viral infections and cancer. Extreme CD8+ T-cell activities in the lung of patients with a SARS-CoV-2-induced disease and within the tumor microenvironment (TME) will change their functionality into exhausted state and undergo apoptosis. Such diminished immunity will put cancer cases at a high-risk group for SARS-CoV-2-induced disease, rendering viral sepsis and a more severe condition which will finally cause a higher rate of mortality. Recovering responses from CD8+ T cells is a purpose of vaccination against SARS-CoV-2. The aim of this review is to discuss the CD8+ T cellular state in SARS-CoV-2-induced disease and in cancer and to present some strategies for recovering the functionality of these critical cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
6
|
Martínez-Méndez D, Mendoza L, Villarreal C, Huerta L. Continuous Modeling of T CD4 Lymphocyte Activation and Function. Front Immunol 2021; 12:743559. [PMID: 34804023 PMCID: PMC8602102 DOI: 10.3389/fimmu.2021.743559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
T CD4+ cells are central to the adaptive immune response against pathogens. Their activation is induced by the engagement of the T-cell receptor by antigens, and of co-stimulatory receptors by molecules also expressed on antigen presenting cells. Then, a complex network of intracellular events reinforce, diversify and regulate the initial signals, including dynamic metabolic processes that strongly influence both the activation state and the differentiation to effector cell phenotypes. The regulation of cell metabolism is controlled by the nutrient sensor adenosine monophosphate-activated protein kinase (AMPK), which drives the balance between oxidative phosphorylation (OXPHOS) and glycolysis. Herein, we put forward a 51-node continuous mathematical model that describes the temporal evolution of the early events of activation, integrating a circuit of metabolic regulation into the main routes of signaling. The model simulates the induction of anergy due to defective co-stimulation, the CTLA-4 checkpoint blockade, and the differentiation to effector phenotypes induced by external cytokines. It also describes the adjustment of the OXPHOS-glycolysis equilibrium by the action of AMPK as the effector function of the T cell develops. The development of a transient phase of increased OXPHOS before induction of a sustained glycolytic phase during differentiation to the Th1, Th2 and Th17 phenotypes is shown. In contrast, during Treg differentiation, glycolysis is subsequently reduced as cell metabolism is predominantly polarized towards OXPHOS. These observations are in agreement with experimental data suggesting that OXPHOS produces an ATP reservoir before glycolysis boosts the production of metabolites needed for protein synthesis, cell function, and growth.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
7
|
Ross SH, Rollings CM, Cantrell DA. Quantitative Analyses Reveal How Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes. Front Immunol 2021; 12:712402. [PMID: 34603285 PMCID: PMC8484760 DOI: 10.3389/fimmu.2021.712402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic and nutrient-sensing pathways play an important role in controlling the efficacy of effector T cells. Oxygen is a critical regulator of cellular metabolism. However, during immune responses T cells must function in oxygen-deficient, or hypoxic, environments. Here, we used high resolution mass spectrometry to investigate how the proteome of primary murine CD8+ cytotoxic T lymphocytes (CTLs) is reconfigured in response to hypoxia in vitro. We identified and quantified over 7,600 proteins and discovered that hypoxia increased the abundance of a selected number of proteins in CTLs. This included glucose transporters, metabolic enzymes, transcription factors, cytolytic effector molecules, checkpoint receptors and adhesion molecules. While some of these proteins may augment the effector functions of CTLs, others may limit their cytotoxicity. Moreover, we determined that hypoxia could inhibit IL-2-induced proliferation cues and antigen-induced pro-inflammatory cytokine production in CTLs. These data provide a comprehensive resource for understanding the magnitude of the CTL response to hypoxia and emphasise the importance of oxygen-sensing pathways for controlling CD8+ T cells. Additionally, this study provides new understanding about how hypoxia may promote the effector function of CTLs, while contributing to their dysfunction in some contexts.
Collapse
Affiliation(s)
- Sarah H Ross
- Immunology Programme, The Babraham Institute, Cambridge, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Christina M Rollings
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Lone AM, Giansanti P, Jørgensen MJ, Gjerga E, Dugourd A, Scholten A, Saez-Rodriguez J, Heck AJR, Taskén K. Systems approach reveals distinct and shared signaling networks of the four PGE 2 receptors in T cells. Sci Signal 2021; 14:eabc8579. [PMID: 34609894 DOI: 10.1126/scisignal.abc8579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anna M Lone
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Piero Giansanti
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising 85354, Germany
| | - Marthe Jøntvedt Jørgensen
- K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Enio Gjerga
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine (JRC-Combine), RWTH-Aachen University Hospital, Faculty of Medicine, Aachen 52074, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg University, Heidelberg 69120, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CH Utrecht, Netherlands
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy and K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
9
|
Bevington SL, Fiancette R, Gajdasik DW, Keane P, Soley JK, Willis CM, Coleman DJL, Withers DR, Cockerill PN. Stable Epigenetic Programming of Effector and Central Memory CD4 T Cells Occurs Within 7 Days of Antigen Exposure In Vivo. Front Immunol 2021; 12:642807. [PMID: 34108962 PMCID: PMC8181421 DOI: 10.3389/fimmu.2021.642807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
T cell immunological memory is established within days of an infection, but little is known about the in vivo changes in gene regulatory networks accounting for their ability to respond more efficiently to secondary infections. To decipher the timing and nature of immunological memory we performed genome-wide analyses of epigenetic and transcriptional changes in a mouse model generating antigen-specific T cells. Epigenetic reprogramming for Th differentiation and memory T cell formation was already established by the peak of the T cell response after 7 days. The Th memory T cell program was associated with a gain of open chromatin regions, enriched for RUNX, ETS and T-bet motifs, which remained stable for 56 days. The epigenetic programs for both effector memory, associated with T-bet, and central memory, associated with TCF-1, were established in parallel. Memory T cell-specific regulatory elements were associated with greatly enhanced inducible Th1-biased responses during secondary exposures to antigen. Furthermore, memory T cells responded in vivo to re-exposure to antigen by rapidly reprograming the entire ETS factor gene regulatory network, by suppressing Ets1 and activating Etv6 expression. These data show that gene regulatory networks are epigenetically reprogrammed towards memory during infection, and undergo substantial changes upon re-stimulation.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jake K Soley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire M Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Kerr J. Early Growth Response Gene Upregulation in Epstein-Barr Virus (EBV)-Associated Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Biomolecules 2020; 10:biom10111484. [PMID: 33114612 PMCID: PMC7692278 DOI: 10.3390/biom10111484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic multisystem disease exhibiting a variety of symptoms and affecting multiple systems. Psychological stress and virus infection are important. Virus infection may trigger the onset, and psychological stress may reactivate latent viruses, for example, Epstein-Barr virus (EBV). It has recently been reported that EBV induced gene 2 (EBI2) was upregulated in blood in a subset of ME/CFS patients. The purpose of this study was to determine whether the pattern of expression of early growth response (EGR) genes, important in EBV infection and which have also been found to be upregulated in blood of ME/CFS patients, paralleled that of EBI2. EGR gene upregulation was found to be closely associated with that of EBI2 in ME/CFS, providing further evidence in support of ongoing EBV reactivation in a subset of ME/CFS patients. EGR1, EGR2, and EGR3 are part of the cellular immediate early gene response and are important in EBV transcription, reactivation, and B lymphocyte transformation. EGR1 is a regulator of immune function, and is important in vascular homeostasis, psychological stress, connective tissue disease, mitochondrial function, all of which are relevant to ME/CFS. EGR2 and EGR3 are negative regulators of T lymphocytes and are important in systemic autoimmunity.
Collapse
Affiliation(s)
- Jonathan Kerr
- Department of Microbiology, Norfolk & Norwich University Hospital (NNUH), Colney Lane, Norwich, Norfolk NR4 7UY, UK
| |
Collapse
|
12
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
13
|
Martínez-Méndez D, Villarreal C, Mendoza L, Huerta L. An Integrative Network Modeling Approach to T CD4 Cell Activation. Front Physiol 2020; 11:380. [PMID: 32425809 PMCID: PMC7212416 DOI: 10.3389/fphys.2020.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The adaptive immune response is initiated by the interaction of the T cell antigen receptor/CD3 complex (TCR) with a cognate peptide bound to a MHC molecule. This interaction, along with the activity of co-stimulatory molecules and cytokines in the microenvironment, enables cells to proliferate and produce soluble factors that stimulate other branches of the immune response for inactivation of infectious agents. The intracellular activation signals are reinforced, amplified and diversified by a complex network of biochemical interactions, and includes the activity of molecules that modulate the activation process and stimulate the metabolic changes necessary for fulfilling the cell energy demands. We present an approach to the analysis of the main early signaling events of T cell activation by proposing a concise 46-node hybrid Boolean model of the main steps of TCR and CD28 downstream signaling, encompassing the activity of the anergy factor Ndrg1, modulation of activation by CTLA-4, and the activity of the nutrient sensor AMPK as intrinsic players of the activation process. The model generates stable states that reflect the overcoming of activation signals and induction of anergy by the expression of Ndrg1 in the absence of co-stimulation. The model also includes the induction of CTLA-4 upon activation and its competition with CD28 for binding to the co-stimulatory CD80/86 molecules, leading to stable states that reflect the activation arrest. Furthermore, the model integrates the activity of AMPK to the general pathways driving differentiation to functional cell subsets (Th1, Th2, Th17, and Treg). Thus, the network topology incorporates basic mechanism associated to activation, regulation and induction of effector cell phenotypes. The model puts forth a conceptual framework for the integration of functionally relevant processes in the analysis of the T CD4 cell function.
Collapse
Affiliation(s)
- David Martínez-Méndez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
14
|
Bradley T, Kuraoka M, Yeh CH, Tian M, Chen H, Cain DW, Chen X, Cheng C, Ellebedy AH, Parks R, Barr M, Sutherland LL, Scearce RM, Bowman CM, Bouton-Verville H, Santra S, Wiehe K, Lewis MG, Ogbe A, Borrow P, Montefiori D, Bonsignori M, Anthony Moody M, Verkoczy L, Saunders KO, Ahmed R, Mascola JR, Kelsoe G, Alt FW, Haynes BF. Immune checkpoint modulation enhances HIV-1 antibody induction. Nat Commun 2020; 11:948. [PMID: 32075963 PMCID: PMC7031230 DOI: 10.1038/s41467-020-14670-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Eliciting protective titers of HIV-1 broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development, but current vaccine strategies have yet to induce bnAbs in humans. Many bnAbs isolated from HIV-1-infected individuals are encoded by immunoglobulin gene rearrangments with infrequent naive B cell precursors and with unusual genetic features that may be subject to host regulatory control. Here, we administer antibodies targeting immune cell regulatory receptors CTLA-4, PD-1 or OX40 along with HIV envelope (Env) vaccines to rhesus macaques and bnAb immunoglobulin knock-in (KI) mice expressing diverse precursors of CD4 binding site HIV-1 bnAbs. CTLA-4 blockade augments HIV-1 Env antibody responses in macaques, and in a bnAb-precursor mouse model, CTLA-4 blocking or OX40 agonist antibodies increase germinal center B and T follicular helper cells and plasma neutralizing antibodies. Thus, modulation of CTLA-4 or OX40 immune checkpoints during vaccination can promote germinal center activity and enhance HIV-1 Env antibody responses. Elucidation of broadly neutralizing antibodies (bnAb) is a goal in HIV vaccine development. Here, Bradley et al. show that administration of CTLA-4 blocking antibody with vaccine antigens increases HIV-1 envelope antibody responses in macaques and a bnAb precursor mouse model.
Collapse
Affiliation(s)
- Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, UMKC School of Medicine, Kansas City, MO, 64108, USA.
| | - Masayuki Kuraoka
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chen-Hao Yeh
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ming Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Huan Chen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Ali H Ellebedy
- Emory Vaccine Center, Emory University, Atlanta, GA, 30317, USA.,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cindy M Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hilary Bouton-Verville
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Ane Ogbe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Surgery, Duke University, Durham, NC, 27710, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University, Atlanta, GA, 30317, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Frederick W Alt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetic, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
16
|
Sirolimus as a new drug to treat RIF patients with elevated Th17/Treg ratio: A double-blind, phase II randomized clinical trial. Int Immunopharmacol 2019; 74:105730. [PMID: 31299610 DOI: 10.1016/j.intimp.2019.105730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND RIF is clinically defined as the failure of good quality embryos to implant into the uterus following at least three cycles of In Vitro Fertilization/Embryo Transfer (IVF/ET). During human pregnancy, a genetically different fetus is allowed to survive within the uterus despite the maternal recognition of fetal alloantigens. Compared with normal pregnant women, early loss of embryo is associated with systemic lower levels of Treg cells in IVF. Moreover, several lines of evidence have indicated that differentiation of naive T cells into Th17 is deleterious for normal pregnancy and may cause implantation failure. Sirolimus as the most common mTOR (mammalian target of Rapamycin) inhibitor is able to effectively prevent allograft rejection. Here we aimed to evaluate Sirolimus effects on Th17/Treg axis and subsequently on pregnancy outcome. METHODS AND MATERIALS 121 patients with a history of at least 3 implatation failures were selected and enrolled in this clinical trial. Blood was drawn between days 5 and 10 of the cycle prior to the index IVF/ET cycle to assess baseline value of Th17 cells and regulatory T cells ratios using flowcytometry. A Th17/Treg cell ratio equal or >0.74 was considered to be the elevated Th17/Treg cell ratio. In 76 patients with elevated Th17/Treg ratios, 43 individuals were treated with Sirolimus and 33 remained untreated. RESULTS Our results demonstrated that Sirolimus treatment led to an increase in Treg cells number and function in treated group and reduced the frequency and function of Th17 cells. Moreover Th17/Treg cell ratio, significantly reduced from 1.18 ± 0.46% to 0.9 ± 0.45% following Sirolimus intervention (P = 0.024). In contrast, no significant difference in Th17 and Treg cell frequencies and Th17/Treg cell ratio was observed in untreated control subjects before and after ET. Finally our data showed a significantly higher clinical pregnancy rate (55.81%) in Sirolimus-treated patients compared with control group (24.24%) (P < 0.0005). We also found a significantly increased live birth rate (48.83%) in RIF women who received Sirolimus compared with control group (21.21%) (P < 0.0001). CONCLUSION The findings of the current study revealed the fact that Sirolimus exhibit potent immunosuppressive effects by blocking intracellular immune responses downstream of co-stimulatory signals, also is able to improve reproductive outcome in RIF women with imbalanced Th17/Treg ratio by modulate of Th17 /Treg axis, thus representing a new approach for the potential treatment of patients with embryo implantation failure.
Collapse
|
17
|
Sahni S, Park KC, Kovacevic Z, Richardson DR. Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1361-1378. [PMID: 30763642 DOI: 10.1016/j.bbadis.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
N-myc downstream regulated gene 1 (NDRG1) is an intriguing metastasis suppressor protein, which plays an important role in suppressing multiple oncogenic signaling pathways. Interestingly, multiple isoforms of NDRG1 have been identified, although the molecular mechanisms involved in their generation remains elusive. Herein, we demonstrate the role of two mechanisms involving autophagic and proteasomal machinery as part of an intricate system to generate different NDRG1 isoforms. Examining multiple pancreatic cancer cell-types using immunoblotting demonstrated three major isoforms of NDRG1 at approximately 41-, 46- and 47-kDa. The top NDRG1 band at 47-kDa was shown to be processed by the proteasome, followed by autophagic metabolism of the middle NDRG1 band at 46-kDa. The role of the proteasomal and autophagic pathways in NDRG1 processing was further confirmed by co-localization analysis of confocal images using PSMD9 and LC3 as classical markers of these respective pathways. All NDRG1 isoforms were demonstrated to be, at least in part, phosphorylated forms of the protein. Inhibition of two well-characterized upstream kinases of NDRG1, namely GSK3β and SGK1, resulted in decreased levels of the top NDRG1 band. Studies demonstrated that inhibition of GSK3β decreased levels of the top 47-kDa NDRG1 band, independent of its kinase activity, and this effect was not mediated via the proteasomal pathway. In contrast, the decrease in the top NDRG1 band at 47-kDa after SGK1 inhibition, was due to suppression of its kinase activity. Overall, these studies elucidated the complex and intricate regulatory pathways involving both proteasomal and autophagic processing of the metastasis suppressor protein, NDRG1.
Collapse
Affiliation(s)
- Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
18
|
Silva-Vilches C, Ring S, Schrader J, Clausen BE, Probst HC, Melchior F, Schild H, Enk A, Mahnke K. Production of Extracellular Adenosine by CD73 + Dendritic Cells Is Crucial for Induction of Tolerance in Contact Hypersensitivity Reactions. J Invest Dermatol 2018; 139:541-551. [PMID: 30393085 DOI: 10.1016/j.jid.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) express the ecto-5'-nucleotidase CD73 that generates immunosuppressive adenosine (Ado) by dephosphorylation of extracellular Ado monophosphate and diphosphate. To investigate whether CD73-derived Ado has immune-suppressive activity, 2,4-dinitrothiocyanobenzene (DNTB) was applied to skin of wild-type (WT) or CD73-deficient (CD73-/-) mice, followed by sensitization and challenge with 2,4-dinitrofluorobenzene. In this model, we show the induction of tolerance by DNTB against 2,4-dinitrofluorobenzene only in WT but not in CD73-/- mice. Analysis of skin DCs showed increased expression of CD73 after application of DNTB in WT mice. That was accompanied by elevated concentrations of extracellular Ado in the lymph node. Moreover, T cells expressed markers for anergy, namely EGR2 and NDRG1 in DNTB-treated WT mice and they exhibited impaired proliferation upon ex vivo re-stimulation. Similarly, in vitro we observed that Ado-producing WT DCs, but not CD73-/- DCs, rendered transgenic T cells from OTII mice (OTII T cells) hyporeactive, decreased their T-cell costimulatory signaling, and induced up-regulation of EGR2 and NDRG1. Thus, these data show that expression of CD73 by DCs, which triggers elevated levels of extracellular Ado, is a crucial mechanism for the induction of anergic T cells and tolerance.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Jürgen Schrader
- Institute for Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans-Christian Probst
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Felix Melchior
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Enk
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| |
Collapse
|
19
|
Park KC, Menezes SV, Kalinowski DS, Sahni S, Jansson PJ, Kovacevic Z, Richardson DR. Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2644-2663. [DOI: 10.1016/j.bbadis.2018.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
|
20
|
N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2. Oncotarget 2018; 8:47709-47724. [PMID: 28537875 PMCID: PMC5564599 DOI: 10.18632/oncotarget.17711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022] Open
Abstract
N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion, NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.
Collapse
|
21
|
Tian S, Wang X, Proud CG. Oncogenic MNK signalling regulates the metastasis suppressor NDRG1. Oncotarget 2018; 8:46121-46135. [PMID: 28545025 PMCID: PMC5542254 DOI: 10.18632/oncotarget.17555] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
The protein N-myc down-regulated gene 1 (NDRG1) represses tumour metastasis. It is phosphorylated at several sites by serum and glucocorticoid-regulated kinase 1 (SGK1). Here we show that NDRG1 is also regulated by the oncogenic MAP kinase-interacting kinase (MNK) pathway, a target for cancer therapy.Inhibiting MNKs increases the expression of NDRG1 protein and mRNA in breast cancer cells. MNK inhibition also decreases the phosphorylation of NDRG1. Phosphorylation of NDRG1 is reduced in cells lacking MNK1, but not MNK2-knockout cells, indicating that NDRG1 phosphorylation is a specific target for MNK1. However, MNK1 cannot directly phosphorylate NDRG1 in vitro, indicating that additional signalling connections are involved. Taken together, our data indicate that MNK signaling regulates NDRG1 at transcriptional and post-translational levels.We show that SGK1 phosphorylates MNK1 at a conserved site, which represses its activity. NDRG1, SGK1 and the MNKs are implicated in cell migration and metastasis. As expected, knocking-down NDRG1 promoted cell migration. However, whereas MNK inhibition impairs these processes irrespective of NDRG1 levels, SGK inhibition only did so in NDRG1-depleted cells. Thus, MNKs and SGK affect migration/invasion through distinct mechanisms.Our data reveal several novel connections between signalling pathways important for tumour biology.
Collapse
Affiliation(s)
- Shuye Tian
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| | - Xuemin Wang
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| | - Christopher G Proud
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA5005, Australia
| |
Collapse
|
22
|
Delpoux A, Michelini RH, Verma S, Lai CY, Omilusik KD, Utzschneider DT, Redwood AJ, Goldrath AW, Benedict CA, Hedrick SM. Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8 + T cells. J Exp Med 2017; 215:575-594. [PMID: 29282254 PMCID: PMC5789410 DOI: 10.1084/jem.20170697] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/18/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Delpoux et al. show, in a model of latent infection, how FOXO1 is required to prevent apoptosis, the acquisition of an anergy phenotype, and to be constantly expressed for maintaining the differentiation state of CD8+ T cells. Upon infection with an intracellular pathogen, cytotoxic CD8+ T cells develop diverse differentiation states characterized by function, localization, longevity, and the capacity for self-renewal. The program of differentiation is determined, in part, by FOXO1, a transcription factor known to integrate extrinsic input in order to specify survival, DNA repair, self-renewal, and proliferation. At issue is whether the state of T cell differentiation is specified by initial conditions of activation or is actively maintained. To study the spectrum of T cell differentiation, we have analyzed an infection with mouse cytomegalovirus, a persistent-latent virus that elicits different cytotoxic T cell responses characterized as acute resolving or inflationary. Our results show that FOXO1 is continuously required for all the phenotypic characteristics of memory-effector T cells such that with acute inactivation of the gene encoding FOXO1, T cells revert to a short-lived effector phenotype, exhibit reduced viability, and manifest characteristics of anergy.
Collapse
Affiliation(s)
- Arnaud Delpoux
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Rodrigo Hess Michelini
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Shilpi Verma
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Chen-Yen Lai
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Kyla D Omilusik
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA
| | - Daniel T Utzschneider
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ananda W Goldrath
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Stephen M Hedrick
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA .,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
23
|
Early growth response 2 and Egr3 are unique regulators in immune system. Cent Eur J Immunol 2017; 42:205-209. [PMID: 28860938 PMCID: PMC5573894 DOI: 10.5114/ceji.2017.69363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.
Collapse
|
24
|
Ndrg1 promotes adipocyte differentiation and sustains their function. Sci Rep 2017; 7:7191. [PMID: 28775290 PMCID: PMC5543145 DOI: 10.1038/s41598-017-07497-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 11/08/2022] Open
Abstract
Adipocytes play a central role in maintaining metabolic homeostasis in the body. Differentiation of adipocyte precursor cells requires the transcriptional activity of peroxisome proliferator-activated receptor-γ (Pparγ) and CCAAT/enhancer binding proteins (C/Ebps). Transcriptional activity is regulated by signaling modules activated by a plethora of hormones and nutrients. Mechanistic target of rapamacin complexes (mTORC) 1 and 2 are central for the coordination of hormonal and nutritional inputs in cells and are essential for adipogenesis. Serum glucocorticoid kinase 1 (Sgk1)-dependent phosphorylation of N-Myc downstream-regulated gene 1 (Ndrg1) is a hallmark of mTORC2 activation in cells. Moreover, Pparγ activation promotes Ndrg1 expression. However, the impact of Ndrg1 on adipocyte differentiation and function has not yet been defined. Here, we show that Ndrg1 expression and its Sgk1-dependent phosphorylation are induced during adipogenesis. Consistently, we demonstrate that Ndrg1 promotes adipocyte differentiation and function by inducing Pparγ expression. Additionally, our results indicate that Ndrg1 is required for C/Ebpα phosphorylation. Moreover, we found that Ndrg1 phosphorylation by Sgk1 promotes adipocyte formation. Taken together, we show that induction of Ndrg1 expression by Pparγ and its phosphorylation by Sgk1 kinase are required for the acquisition of adipocyte characteristics by precursor cells.
Collapse
|
25
|
Ding L, Zhang L, Kim M, Byzova T, Podrez E. Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway. J Biol Chem 2017; 292:9283-9293. [PMID: 28389565 DOI: 10.1074/jbc.m116.773739] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/24/2017] [Indexed: 01/10/2023] Open
Abstract
Fluid-phase pinocytosis of LDL by macrophages is regarded as a novel promising target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. The mechanisms of regulation of fluid-phase pinocytosis in macrophages and, specifically, the role of Akt kinases are poorly understood. We have found previously that increased lipoprotein uptake via the receptor-independent process in Akt3 kinase-deficient macrophages contributes to increased atherosclerosis in Akt3-/- mice. The mechanism by which Akt3 deficiency promotes lipoprotein uptake in macrophages is unknown. We now report that Akt3 constitutively suppresses macropinocytosis in macrophages through a novel WNK1/SGK1/Cdc42 pathway. Mechanistic studies have demonstrated that the lack of Akt3 expression in murine and human macrophages results in increased expression of with-no-lysine kinase 1 (WNK1), which, in turn, leads to increased activity of serum and glucocorticoid-inducible kinase 1 (SGK1). SGK1 promotes expression of the Rho family GTPase Cdc42, a positive regulator of actin assembly, cell polarization, and pinocytosis. Individual suppression of WNK1 expression, SGK1, or Cdc42 activity in Akt3-deficient macrophages rescued the phenotype. These results demonstrate that Akt3 is a specific negative regulator of macropinocytosis in macrophages.
Collapse
Affiliation(s)
- Liang Ding
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Lifang Zhang
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Michael Kim
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tatiana Byzova
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Eugene Podrez
- From the Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
26
|
Bosisio FM, van den Oord JJ. Immunoplasticity in cutaneous melanoma: beyond pure morphology. Virchows Arch 2017; 470:357-369. [PMID: 28054151 DOI: 10.1007/s00428-016-2058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/03/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Francesca Maria Bosisio
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium.
- Università degli studi di Milano-Bicocca, Milan, Italy.
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium
| |
Collapse
|