1
|
Wu X, Cao Z, Zhao T, Wu Y, Li Z, Doukas S, Lidorikis E, Xue Y, Liu L, Ghaebi O, Soavi G, Lu J, Ni Z, Wang J. High efficiency graphene-silicon hybrid-integrated thermal and electro-optical modulators. NANOSCALE HORIZONS 2024; 9:1372-1378. [PMID: 38895819 DOI: 10.1039/d4nh00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Graphene modulators are considered a potential solution for achieving high-efficiency light modulation, and graphene-silicon hybrid-integrated modulators are particularly favorable due to their CMOS compatibility and low cost. The exploitation of graphene modulator latent capabilities remains an ongoing endeavour to improve the modulation and energy efficiency. Here, high-efficiency graphene-silicon hybrid-integrated thermal and electro-optical modulators are realized using gold-assisted transfer. We fabricate and demonstrate a microscale thermo-optical modulator with a tuning efficiency of 0.037 nm mW-1 and a high heating performance of 67.4 K μm3 mW-1 on a small active area of 7.54 μm2 and a graphene electro-absorption modulator featuring a high speed data rate reaching 56 Gb s-1 and a low power consumption of 200 fJ per bit. These devices show superior performance compared to the state of the art devices in terms of high efficiency, low process complexity, and compact device footage, which can support the realization of high-performance graphene-silicon hybrid-integrated photonic circuits with CMOS compatibility.
Collapse
Affiliation(s)
- Xiaoxuan Wu
- National Research Center for Optical Sensors/Communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Zhengyi Cao
- CETC Key Laboratory of Carbon-based Electronics, Nanjing Electronic Devices Institute, Nanjing 210016, China
| | - Tianxiang Zhao
- National Research Center for Optical Sensors/Communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Yun Wu
- CETC Key Laboratory of Carbon-based Electronics, Nanjing Electronic Devices Institute, Nanjing 210016, China
| | - Zhonghui Li
- CETC Key Laboratory of Carbon-based Electronics, Nanjing Electronic Devices Institute, Nanjing 210016, China
| | - Spyros Doukas
- Department of Material Science and Engineering, University of Ioannina, GR 45110 Ioannina, Greece
| | - Elefterios Lidorikis
- Department of Material Science and Engineering, University of Ioannina, GR 45110 Ioannina, Greece
| | - Yu Xue
- State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Liu Liu
- State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
- Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Omid Ghaebi
- Institute of Solid State Physics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Giancarlo Soavi
- Institute of Solid State Physics, Friedrich Schiller University Jena, 07743 Jena, Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Junpeng Lu
- National Research Center for Optical Sensors/Communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Zhenhua Ni
- National Research Center for Optical Sensors/Communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| | - Junjia Wang
- National Research Center for Optical Sensors/Communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Lee SW, Lee JS, Choi WH, Choi D, Gong SH. Ultra-compact exciton polariton modulator based on van der Waals semiconductors. Nat Commun 2024; 15:2331. [PMID: 38485956 PMCID: PMC10940672 DOI: 10.1038/s41467-024-46701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the rapid emergence of artificial intelligence (AI) technology and the exponential growth in data generation, there is an increasing demand for high-performance and highly integratable optical modulators. In this work, we present an ultra-compact exciton-polariton Mach-Zehnder (MZ) modulator based on WS2 multilayers. The guided exciton-polariton modes arise in an ultrathin WS2 waveguide due to the strong excitonic resonance. By locally exciting excitons using a modulation laser in one arm of the MZ modulator, we induce changes in the effective refractive index of the polariton mode, resulting in modulation of transmitted intensity. Remarkably, we achieve a maximum modulation of -6.20 dB with an ultra-short modulation length of 2 μm. Our MZ modulator boasts an ultra-compact footprint area of ~30 μm² and a thin thickness of 18 nm. Our findings present new opportunities for the advancement of highly integrated and efficient photonic devices utilizing van der Waals materials.
Collapse
Affiliation(s)
- Seong Won Lee
- Department of Physics, Korea University, Seoul, 02841, South Korea
- KU Photonics Center, Korea University, Seoul, 02841, South Korea
| | - Jong Seok Lee
- Department of Physics, Korea University, Seoul, 02841, South Korea
- KU Photonics Center, Korea University, Seoul, 02841, South Korea
| | - Woo Hun Choi
- Department of Physics, Korea University, Seoul, 02841, South Korea
- KU Photonics Center, Korea University, Seoul, 02841, South Korea
| | - Daegwang Choi
- Department of Physics, Korea University, Seoul, 02841, South Korea
- KU Photonics Center, Korea University, Seoul, 02841, South Korea
| | - Su-Hyun Gong
- Department of Physics, Korea University, Seoul, 02841, South Korea.
- KU Photonics Center, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
3
|
Wu C, Ku C, Yu M, Yang J, Wu P, Huang C, Lu T, Huang J, Ishii S, Chen K. Near-Field Photodetection in Direction Tunable Surface Plasmon Polaritons Waveguides Embedded with Graphene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302707. [PMID: 37661570 PMCID: PMC10602515 DOI: 10.1002/advs.202302707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/06/2023] [Indexed: 09/05/2023]
Abstract
2D materials have manifested themselves as key components toward compact integrated circuits. Because of their capability to circumvent the diffraction limit, light manipulation using surface plasmon polaritons (SPPs) is highly-valued. In this study, plasmonic photodetection using graphene as a 2D material is investigated. Non-scattering near-field detection of SPPs is implemented via monolayer graphene stacked under an SPP waveguide with a symmetric antenna. Energy conversion between radiation power and electrical signals is utilized for the photovoltaic and photoconductive processes of the gold-graphene interface and biased electrodes, measuring a maximum photoresponsivity of 29.2 mA W-1 . The generated photocurrent is altered under the polarization state of the input light, producing a 400% contrast between the maximum and minimum signals. This result is universally applicable to all on-chip optoelectronic circuits.
Collapse
Affiliation(s)
- Chia‐Hung Wu
- College of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Chih‐Jen Ku
- Institute of Imaging and Biomedical PhotonicsCollege of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Min‐Wen Yu
- College of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Jhen‐Hong Yang
- College of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
| | - Pei‐Yuan Wu
- Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchu300Taiwan
| | - Chen‐Bin Huang
- Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchu300Taiwan
| | - Tien‐Chang Lu
- Department of PhotonicsCollege of Electrical and Computer EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Jer‐Shing Huang
- Leibniz Institute of Photonic TechnologyAlbert‐Einstein Straße 907745JenaGermany
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich‐Schiller‐Universität JenaHelmholtzweg 4D‐07743JenaGermany
- Research Center for Applied SciencesAcademia Sinica128 Academia Road, Sec. 2, Nankang DistrictTaipei11529Taiwan
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityNo. 1001 Daxue Rd, East DistrictHsinchu30010Taiwan
| | - Satoshi Ishii
- Research Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Kuo‐Ping Chen
- Institute of Imaging and Biomedical PhotonicsCollege of PhotonicsNational Yang Ming Chiao Tung University301 Gaofa 3rd RoadTainan71150Taiwan
- Institute of Photonics TechnologiesNational Tsing Hua UniversityHsinchu300Taiwan
| |
Collapse
|
4
|
Meng Y, Zhong H, Xu Z, He T, Kim JS, Han S, Kim S, Park S, Shen Y, Gong M, Xiao Q, Bae SH. Functionalizing nanophotonic structures with 2D van der Waals materials. NANOSCALE HORIZONS 2023; 8:1345-1365. [PMID: 37608742 DOI: 10.1039/d3nh00246b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Hongkun Zhong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Zhihao Xu
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tiantian He
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Justin S Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Sunok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Seoungwoong Park
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yijie Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Optoelectronics Research Centre, University of Southampton, Southampton, UK
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Sahu TK, Motlag M, Bandyopadhyay A, Kumar N, Cheng GJ, Kumar P. 2+δ-Dimensional Materials via Atomistic Z-Welding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202695. [PMID: 36089664 PMCID: PMC9661819 DOI: 10.1002/advs.202202695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Pivotal to functional van der Waals stacked flexible electronic/excitonic/spintronic/thermoelectric chips is the synergy amongst constituent layers. However; the current techniques viz. sequential chemical vapor deposition, micromechanical/wet-chemical transfer are mostly limited due to diffused interfaces, and metallic remnants/bubbles at the interface. Inter-layer-coupled 2+δ-dimensional materials, as a new class of materials can be significantly suitable for out-of-plane carrier transport and hence prompt response in prospective devices. Here, the discovery of the use of exotic electric field ≈106 V cm- 1 (at microwave hot-spot) and 2 thermomechanical conditions i.e. pressure ≈1 MPa, T ≈ 200 °C (during solvothermal reaction) to realize 2+δ-dimensional materials is reported. It is found that Pz Pz chemical bonds form between the component layers, e.g., CB and CN in G-BN, MoN and MoB in MoS2 -BN hybrid systems as revealed by X-ray photoelectron spectroscopy. New vibrational peaks in Raman spectra (BC ≈1320 cm-1 for the G-BN system and MoB ≈365 cm-1 for the MoS2 -BN system) are recorded. Tunable mid-gap formation, along with diodic behavior (knee voltage ≈0.7 V, breakdown voltage ≈1.8 V) in the reduced graphene oxide-reduced BN oxide (RGO-RBNO) hybrid system is also observed. Band-gap tuning in MoS2 -BN system is observed. Simulations reveal stacking-dependent interfacial charge/potential drops, hinting at the feasibility of next-generation functional devices/sensors.
Collapse
Affiliation(s)
- Tumesh Kumar Sahu
- Department of PhysicsIndian Institute of Technology PatnaBihta CampusBihtaPatnaBihar801106India
- Department of PhysicsShri Ramdeo Baba College of Engineering and ManagementNagpurMaharashtra440013India
| | - Maithilee Motlag
- School of Industrial EngineeringPurdue UniversityWest LafayetteIN47907USA
| | | | - Nishant Kumar
- Department of PhysicsIndian Institute of Technology PatnaBihta CampusBihtaPatnaBihar801106India
| | - Gary J. Cheng
- School of Industrial EngineeringPurdue UniversityWest LafayetteIN47907USA
- Institute of Technological SciencesWuhan UniversityWuhan, Hubei430074China
- Birck Nanotechnology CentrePurdue UniversityWest LafayetteIN47907USA
| | - Prashant Kumar
- Department of PhysicsIndian Institute of Technology PatnaBihta CampusBihtaPatnaBihar801106India
- Birck Nanotechnology CentrePurdue UniversityWest LafayetteIN47907USA
- Global Innovation Centre for Advanced NanomaterialsThe University of NewcastleNewcastle2308Australia
| |
Collapse
|
6
|
Nong J, Zhao B, Xiao X, Min C, Yuan X, Somekh M, Feng F. Bloch surface waves assisted active modulation of graphene electro-absorption in a wide near-infrared region. OPTICS EXPRESS 2022; 30:35085-35095. [PMID: 36258468 DOI: 10.1364/oe.461847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Light modulation has been recognized as one of the most fundamental operations in photonics. In this paper, we theoretically designed a Bloch surface wave assisted modulator for the active modulation of graphene electro-absorption. Simulations show that the strong localized electrical field generated by Bloch surface waves can significantly enhance the graphene electro-absorption up to 99.64%. Then by gate-tuning the graphene Fermi energy to transform graphene between a lossy and a lossless material, electrically switched absorption of graphene with maximum modulation depth of 97.91% can be achieved. Meanwhile, by further adjusting the incident angle to tune the resonant wavelength of Bloch surface waves, the center wavelength of the modulator can be actively controlled. This allows us to realize the active modulation of graphene electro-absorption within a wide near-infrared region, including the commercially important telecommunication wavelength of 1550 nm, indicating the excellent performance of the designed modulator via such mechanism. Such Bloch surface waves assisted wavelength-tunable graphene electro-absorption modulation strategy opens up a new avenue to design graphene-based selective multichannel modulators, which is unavailable in previous reported strategies that can be only realized by passively changing the structural parameters.
Collapse
|
7
|
Ma T, Yao B, Zheng Z, Liu Z, Ma W, Chen M, Chen H, Deng S, Xu N, Bao Q, Sun DM, Cheng HM, Ren W. Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots. ACS NANO 2022; 16:9041-9048. [PMID: 35696451 DOI: 10.1021/acsnano.2c00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface plasmons, merging photonics and electronics in nanoscale dimensions, have been the cornerstones in integrated informatics, precision detection, high-resolution imaging, and energy conversion. Arising from the exceptional Fermi-Dirac tunability, ultrafast carrier mobility, and high-field confinement, graphene offers excellent advantages for plasmon technologies and enables a variety of state-of-the-art optoelectronic applications ranging from tight-field-enhanced light sources, modulators, and photodetectors to biochemical sensors. However, it is challenging to co-excite multiple graphene plasmons on one single graphene sheet with high density, a key step toward plasmonic wavelength-division multiplexing and next-generation dynamical optoelectronics. Here, we report the heteroepitaxial growth of a polycrystalline graphene monolayer with patterned gradient grain boundary density, which is synthesized by creating diverse nanosized local growth environments on a centimeter-scale substrate with a polycrystalline graphene ring seed in chemical vapor deposition. Such geometry enables plasmonic co-excitation with varied wavelength diversification in the nanoscale. Via using high-resolution scanning near-field optical microscopy, we demonstrate rich plasmon standing waves, even bright plasmonic hotspots with a size up to 3 μm. Moreover, by changing the grain boundary density and annealing, we find the local plasmonic wavelengths are widely tunable, from 70 to 300 nm. Theoretical modeling supports that such plasmonic versatility is due to the grain boundary-induced plasmon-phonon interactions through random phase approximation. The seed-induced heteroepitaxial growth provides a promising way for the grain boundary engineering of two-dimensional materials, and the controllable grain boundary-based plasmon co-generation and manipulation in one single graphene monolayer will facilitate the applications of graphene for plasmonics and nanophotonics.
Collapse
Affiliation(s)
- Teng Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Baicheng Yao
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Zebo Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhibo Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Wei Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Maolin Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Qiaoliang Bao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic of China
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Dong-Ming Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| |
Collapse
|
8
|
Abstract
With the increasing demand for capacity in communications networks, the use of integrated photonics to transmit, process and manipulate digital and analog signals has been extensively explored. Silicon photonics, exploiting the complementary-metal-oxide-semiconductor (CMOS)-compatible fabrication technology to realize low-cost, robust, compact, and power-efficient integrated photonic circuits, is regarded as one of the most promising candidates for next-generation chip-scale information and communication technology (ICT). However, the electro-optic modulators, a key component of Silicon photonics, face challenges in addressing the complex requirements and limitations of various applications under state-of-the-art technologies. In recent years, the graphene EO modulators, promising small footprints, high temperature stability, cost-effective, scalable integration and a high speed, have attracted enormous interest regarding their hybrid integration with SiPh on silicon-on-insulator (SOI) chips. In this paper, we summarize the developments in the study of silicon-based graphene EO modulators, which covers the basic principle of a graphene EO modulator, the performance of graphene electro-absorption (EA) and electro-refractive (ER) modulators, as well as the recent advances in optical communications and microwave photonics (MWP). Finally, we discuss the emerging challenges and potential applications for the future practical use of silicon-based graphene EO modulators.
Collapse
|
9
|
Kim M, Kim S, Kim S. Graphene optical modulators using bound states in the continuum. Sci Rep 2022; 12:1445. [PMID: 35087121 PMCID: PMC8795461 DOI: 10.1038/s41598-022-05253-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Graphene-based optical modulators have been widely investigated due to the high mobility and tunable permittivity of graphene. However, achieving a high modulation depth with a low insertion loss is challenging owing to low graphene-light interaction. To date, only waveguide-type modulators have been extensively studied to improve light-graphene interaction, and few free-space type modulators have been demonstrated in the optical communication wavelength range. In this study, we propose two graphene-based optical free-space type modulators in a simple silicon photonic crystal structure that supports bound states in the continuum. The designed modulator with an ultra-high quality factor from the bound states in the continuum achieves a high modulation depth (MD = 0.9972) and low insertion loss (IL = 0.0034) with a small Fermi level change at the optical communication wavelength. In addition, the proposed modulators support outstanding modulation performance in the normal chemical vapor deposition (CVD) graphene (mobility = 0.5 m2/Vs). We believe the scheme may pave the way for graphene-based optical active devices.
Collapse
Affiliation(s)
- Myunghwan Kim
- Integrated Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Sangin Kim
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| | - Soeun Kim
- Integrated Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
10
|
Accurate Time-Domain Modeling of Arbitrarily Shaped Graphene Layers Utilizing Unstructured Triangular Grids. AXIOMS 2022. [DOI: 10.3390/axioms11020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The accurate modeling of curved graphene layers for time-domain electromagnetic simulations is discussed in the present work. Initially, the advanced properties of graphene are presented, focusing on the propagation of strongly confined surface plasmon polariton waves at the far-infrared regime. Then, the implementation of an unstructured triangular grid was examined, based on the Delaunay triangulation method. The electric-field components were placed at the edges of the triangles, while two different techniques were proposed for the sampling of the magnetic ones. Specifically, the first one suggests that the magnetic component is placed at the triangle’s circumcenter providing more accurate results, although instability may occur for nonacute triangles. On the other hand, the magnetic field was sampled at the triangle’s centroid, considering the second technique, ensuring the algorithm’s stability, but further approximations were required, leading to a slight accuracy reduction. Moreover, the updating equations in the time-domain were extracted via an appropriate approximation of Maxwell equations in their integral form. Finally, graphene was introduced in the computational domain as an equivalent surface current density, whose location matches the corresponding electric components. The validity of our methodology was successfully performed via the comparison of graphene surface wave propagation properties to their theoretical values, whereas the global error determination indicates the minimal triangle dimensions. Additionally, an instructive setup comprising a circular graphene scatterer was analyzed thoroughly, to reveal our technique’s advantages compared to the conventional staircase discretization.
Collapse
|
11
|
Tu PY, Huang CC. Analysis of hybrid plasmon-phonon-polariton modes in hBN/graphene/hBN stacks for mid-infrared waveguiding. OPTICS EXPRESS 2022; 30:2863-2876. [PMID: 35209418 DOI: 10.1364/oe.449287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Guiding mid-infrared (mid-IR) signals provide wide-ranging applications including chemical sensing, thermal imaging, and optical waveguiding. To manipulate mid-IR signals on photonic chips, it is critical to build a waveguide that provides both sub-diffraction field confinement and low loss. We present a mid-IR waveguide made up of a multilayer graphene/hexagonal boron nitride (hBN) stacking (MLGhS) and a high-refractive index nanowire. The guided mode of the proposed waveguide structure is formed by coupling the fundamental volume plasmon polariton with the fundamental hyperbolic phonon polariton in hBN, and is then modulated by a high-index nanowire. Interestingly, we found that the effective index, propagation length, and mode area of the guided mode vary as the dependences of N-1, N, and N3/2, where N is the number of graphene layers. In addition, an anomalous result, which reveals Lp and Am monotonously decrease as Fermi energy increases that is not observed in conventional graphene plasmon waveguides, occurs in the present structure. The modal properties are analyzed by altering geometry effects and material parameters, and by crossing the upper Reststrahlen band of hBN from the wavevector k = 1,300 to 1,500 cm-1. Furthermore, crosstalk between adjacent waveguides are investigated to assess the degree of integration. The proposed idea not only provides a potential approach for designing tunable and large-area photonic integrated circuits, but it also has the potential to be extended to other 2D materials such as silicone, germanene, and stanene.
Collapse
|
12
|
Chou Chau YF, Chou Chao CT, Huang HJ, Chen SH, Kao TS, Chiang HP. A multichannel color filter with the functions of optical sensor and switch. Sci Rep 2021; 11:22910. [PMID: 34824366 PMCID: PMC8617143 DOI: 10.1038/s41598-021-02453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
This paper reports a multichannel color filter with the functions of optical sensor and switch. The proposed structure comprises a metal-insulator-metal (MIM) bus waveguide side-couples to six circular cavities with different sizes for filtering ultra-violet and visible lights into individual colors in the wavelength range of 350-700 nm. We used the finite element method to analyze the electromagnetic field distributions and transmittance properties by varying the structural parameters in detail. The designed plasmonic filter takes advantage of filtering out different colors since the light-matter resonance and interference between the surface plasmon polaritons (SPPs) modes within the six cavities. Results show that the designed structure can preferentially select the desired colors and confine the SPPS modes in one of the cavities. This designed structure can filter eleven color channels with a small full width at half maximum (FWHM) ~ 2 nm. Furthermore, the maximum values of sensitivity, figure of merit, quality factor, dipping strength, and extinction ratio can achieve of 700 nm/RIU, 350 1/RIU, 349.0, 65.04%, and 174.50 dB, respectively, revealing the excellent functions of sensor performance and optical switch, and offering a chance for designing a beneficial nanophotonic device.
Collapse
Affiliation(s)
- Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, BE1410, Brunei Darussalam.
| | - Chung-Ting Chou Chao
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC
| | - Hung Ji Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300, Taiwan, ROC
| | - Sy-Hann Chen
- Department of Electrophysics, National Chiayi University, 600, Chiayi, Taiwan, ROC
| | - Tsung Sheng Kao
- Department of Photonics & Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan, ROC.
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
13
|
Huang CC, Chang RJ, Cheng CW. Ultra-Low-Loss Mid-Infrared Plasmonic Waveguides Based on Multilayer Graphene Metamaterials. NANOMATERIALS 2021; 11:nano11112981. [PMID: 34835745 PMCID: PMC8626059 DOI: 10.3390/nano11112981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022]
Abstract
Manipulating optical signals in the mid-infrared (mid-IR) range is a highly desired task for applications in chemical sensing, thermal imaging, and subwavelength optical waveguiding. To guide highly confined mid-IR light in photonic chips, graphene-based plasmonics capable of breaking the optical diffraction limit offer a promising solution. However, the propagation lengths of these materials are, to date, limited to approximately 10 µm at the working frequency f = 20 THz. In this study, we proposed a waveguide structure consisting of multilayer graphene metamaterials (MLGMTs). The MLGMTs support the fundamental volume plasmon polariton mode by coupling plasmon polaritons at individual graphene sheets over a silicon nano-rib structure. Benefiting from the high conductivity of the MLGMTs, the guided mode shows ultralow loss compared with that of conventional graphene-based plasmonic waveguides at comparable mode sizes. The proposed design demonstrated propagation lengths of approximately 20 µm (four times the current limitations) at an extremely tight mode area of 10−6A0, where A0 is the diffraction-limited mode area. The dependence of modal characteristics on geometry and material parameters are investigated in detail to identify optimal device performance. Moreover, fabrication imperfections are also addressed to evaluate the robustness of the proposed structure. Moreover, the crosstalk between two adjacent present waveguides is also investigated to demonstrate the high mode confinement to realize high-density on-chip devices. The present design offers a potential waveguiding approach for building tunable and large-area photonic integrated circuits.
Collapse
Affiliation(s)
- Chia-Chien Huang
- Institute of Nanoscience, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan; (R.-J.C.); (C.-W.C.)
- Correspondence:
| | - Ruei-Jan Chang
- Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan; (R.-J.C.); (C.-W.C.)
| | - Ching-Wen Cheng
- Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan; (R.-J.C.); (C.-W.C.)
| |
Collapse
|
14
|
Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci Rep 2021; 11:18515. [PMID: 34531463 PMCID: PMC8445917 DOI: 10.1038/s41598-021-98001-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we design a high sensitivity with a multi-mode plasmonic sensor based on the square ring-shaped resonators containing silver nanorods together with a metal–insulator-metal bus waveguide. The finite element method can analyze the structure's transmittance properties and electromagnetic field distributions in detail. Results show that the coupling effect between the bus waveguide and the side-coupled resonator can enhance by generating gap plasmon resonance among the silver nanorods, increasing the cavity plasmon mode in the resonator. The suggested structure obtained a relatively high sensitivity and acceptable figure of merit and quality factor of about 2473 nm/RIU (refractive index unit), 34.18 1/RIU, and 56.35, respectively. Thus, the plasmonic sensor is ideal for lab-on-chip in gas and biochemical analysis and can significantly enhance the sensitivity by 177% compared to the regular one. Furthermore, the designed structure can apply in nanophotonic devices, and the range of the detected refractive index is suitable for gases and fluids (e.g., gas, isopropanol, optical oil, and glucose solution).
Collapse
|
15
|
Li Z, Huang J, Zhao Z, Wang Y, Huang C, Zhang Y. Single-layer graphene optical modulator based on arrayed hybrid plasmonic nanowires. OPTICS EXPRESS 2021; 29:30104-30113. [PMID: 34614740 DOI: 10.1364/oe.434916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Surface plasmon-polaritons (SPPs)-based waveguides, especially hybrid plasmonic nanowires, which have attracted extensive interests due to easy fabrication, high transmittance, subwavelength mode confinement and long propagation distance, are appropriate platforms for enhancing the interaction with graphene. Considering that graphene is a two-dimensional (2D) material with surface conductivity, it is important to enhance the in-plane electrical components parallel to graphene. Here, we propose a tunable graphene optical modulator based on arrayed hybrid plasmonic nanowires, utilizing strong subwavelength confinement of gap-surface plasmonic modes (GSPMs) and near-field coupling in the periodic metasurface structure to enhance effective light-matter interactions. The modulator has a typical modulation depth (MD) of 4.7 dB/μm, insertion loss (IL) of 0.045 dB/μm, and a broadband response. The modulation performance can be further optimized, achieving MD of 16.7 dB/μm and IL of 0.17 dB/μm. Moreover, with the optimized modulator, the 3 dB bandwidth can reach 200 GHz. The energy consumption of modulator is about 0.86 fJ/bit. Our design exhibits fascinating modulation performance, fabrication compatibility and integration potential. It may inspire the schematic designs of graphene-based plasmonic modulator and pave a way to the application of 2D materials-involved optoelectronic devices.
Collapse
|
16
|
Interface nano-optics with van der Waals polaritons. Nature 2021; 597:187-195. [PMID: 34497390 DOI: 10.1038/s41586-021-03581-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/23/2021] [Indexed: 01/27/2023]
Abstract
Polaritons are hybrid excitations of matter and photons. In recent years, polaritons in van der Waals nanomaterials-known as van der Waals polaritons-have shown great promise to guide the flow of light at the nanoscale over spectral regions ranging from the visible to the terahertz. A vibrant research field based on manipulating strong light-matter interactions in the form of polaritons, supported by these atomically thin van der Waals nanomaterials, is emerging for advanced nanophotonic and opto-electronic applications. Here we provide an overview of the state of the art of exploiting interface optics-such as refractive optics, meta-optics and moiré engineering-for the control of van der Waals polaritons. This enhanced control over van der Waals polaritons at the nanoscale has not only unveiled many new phenomena, but has also inspired valuable applications-including new avenues for nano-imaging, sensing, on-chip optical circuitry, and potentially many others in the years to come.
Collapse
|
17
|
Ben J, Liu X, Wang C, Zhang Y, Shi Z, Jia Y, Zhang S, Zhang H, Yu W, Li D, Sun X. 2D III-Nitride Materials: Properties, Growth, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006761. [PMID: 34050555 DOI: 10.1002/adma.202006761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
2D III-nitride materials have been receiving considerable attention recently due to their excellent physicochemical properties, such as high stability, wide and tunable bandgap, and magnetism. Therefore, 2D III-nitride materials can be applied in various fields, such as electronic and photoelectric devices, spin-based devices, and gas detectors. Although the developments of 2D h-BN materials have been successful, the fabrication of other 2D III-nitride materials, such as 2D h-AlN, h-GaN, and h-InN, are still far from satisfactory, which limits the practical applications of these materials. In this review, recent advances in the properties, growth methods, and potential applications of 2D III-nitride materials are summarized. The properties of the 2D III-nitride materials are mainly obtained by first-principles calculations because of the difficulties in the growth and characterizations of these materials. The discussion on the growth of 2D III-nitride materials is focused on 2D h-BN and h-AlN, as the developments of 2D h-GaN and h-InN are yet to be realized. Therefore, applications have been realized mostly based on the 2D h-BN materials; however, many potential applications are cited for the entire range of 2D III-nitride materials. Finally, future research directions and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Jianwei Ben
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cong Wang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yupeng Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiming Shi
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Yuping Jia
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Shanli Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Dabing Li
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Xiaojuan Sun
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| |
Collapse
|
18
|
Wang B, Kim S, Zhai T, Seok J, Yang H, Salas-Montiel R. Near-field probing of dielectric screening by hexagonal boron nitride in graphene integrated on silicon photonics. NANOTECHNOLOGY 2021; 32:315207. [PMID: 33892483 DOI: 10.1088/1361-6528/abfb31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Hexagonal boron nitride (hBN) is one of the most suitable 2D materials for supporting graphene in electronic devices, and it plays a fundamental role in screening out the effect of charge impurities in graphene in contrast to inhomogeneous supports such as silicon dioxide (SiO2). Although many interesting surface science techniques such as scanning tunneling microscopy (STM) revealed dielectric screening by hBN and emergent physical phenomena were observed, STM is only appropriate for graphene electronics. In this paper, we demonstrate the dielectric screening by hBN in graphene integrated on a silicon photonic waveguide from the perspective of a near-field scanning optical microscopy (NSOM) and Raman spectroscopy. We found shifts in the Raman spectra and about three times lower slope decrease in the measured electric near-field amplitude for graphene on hBN relative to that for graphene on SiO2. Based on finite-difference time-domain simulations, we confirm lower electric field slope and scattering rate in graphene on hBN, which implies dielectric screening, in agreement with the NSOM signal. Graphene on hBN integrated on silicon photonics can pave the way for high-performance hybrid graphene photonics.
Collapse
Affiliation(s)
- Binbin Wang
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS ERL 7004, University of Technology of Troyes,10004 Troyes, France
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Sera Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Tingting Zhai
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS ERL 7004, University of Technology of Troyes,10004 Troyes, France
| | - Jinbong Seok
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Rafael Salas-Montiel
- Light, Nanomaterials, Nanotechnologies (L2n) Laboratory, CNRS ERL 7004, University of Technology of Troyes,10004 Troyes, France
| |
Collapse
|
19
|
Wu J, Ma H, Yin P, Ge Y, Zhang Y, Li L, Zhang H, Lin H. Two‐Dimensional Materials for Integrated Photonics: Recent Advances and Future Challenges. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000053] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jianghong Wu
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Hui Ma
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| | - Peng Yin
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yanqi Ge
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Yupeng Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Lan Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province School of Engineering Westlake University Hangzhou 310024 China
- Institute of Advanced Technology Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024 China
| | - Han Zhang
- Institute of Microscale Optoelectronics Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology Guangdong Laboratory of Artificial
| | - Hongtao Lin
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang College of Information Science & Electronic Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
20
|
Alam MZ, Yang Z, Sheik-Bahae M, Aitchison JS, Mojahedi M. Directional excitation of surface plasmon using multi-mode interference in an aperture. Sci Rep 2021; 11:3170. [PMID: 33542355 PMCID: PMC7862445 DOI: 10.1038/s41598-020-78594-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Plasmonics is a promising technology that can find many applications in nanophotonics and biosensing. Local excitation of surface plasmons with high directionality is required for many of these applications. We demonstrate that by controlling the interference of light in a metal slot with the adjustment of the angle of incidence, it is possible to achieve highly directional surface plasmon excitation. Our numerical analysis of the structure showing a strong directionality of excited surface plasmon is confirmed by near field scanning measurements. The proposed structure can be useful for many applications including excitation of plasmonic waveguides, nanolithography, and optical sensing. To illustrate its usefulness, we experimentally demonstrate that it can be used for highly directional excitation of a dielectric loaded plasmonic waveguide. We also propose a simple structure for surface plasmon interference lithography capable of providing high image contrast using this scheme.
Collapse
Affiliation(s)
- M Z Alam
- Department of Electrical and Computer Engineering, Queen's University, Kingston, K7L 3N9, Canada.
| | - Z Yang
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - M Sheik-Bahae
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - J S Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
| | - M Mojahedi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, M5S 3G4, Canada
| |
Collapse
|
21
|
Sun H, Qi Z, Kim Y, Luo M, Yang B, Nam D. Frequency-tunable terahertz graphene laser enabled by pseudomagnetic fields in strain-engineered graphene. OPTICS EXPRESS 2021; 29:1892-1902. [PMID: 33726394 DOI: 10.1364/oe.405922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 05/22/2023]
Abstract
Graphene-based optoelectronic devices have recently attracted much attention for the next-generation electronic-photonic integrated circuits. However, it remains elusive whether it is feasible to create graphene-based lasers at the chip scale, hindering the realization of such a disruptive technology. In this work, we theoretically propose that Landau-quantized graphene enabled by strain-induced pseudomagnetic field can become an excellent gain medium that supports lasing action without requiring an external magnetic field. Tight-binding theory is employed for calculating electronic states in highly strained graphene while analytical and numerical analyses based on many-particle Hamiltonian allow studying detailed microscopic mechanisms of zero-field graphene Landau level laser dynamics. Our proposed laser presents unique features including a convenient, wide-range tuning of output laser frequency enabled by changing the level of strain in graphene gain media. The chip-scale graphene laser may open new possibilities for graphene-based electronic-photonic integrated circuits.
Collapse
|
22
|
Kaydashev V, Khlebtsov B, Miakonkikh A, Zhukova E, Zhukov S, Mylnikov D, Domaratskiy I, Svintsov D. Excitation of localized graphene plasmons by aperiodic self-assembled arrays of metallic antennas. NANOTECHNOLOGY 2021; 32:035201. [PMID: 32688356 DOI: 10.1088/1361-6528/aba785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infrared (IR) and terahertz plasmons in two-dimensional (2D) materials are commonly excited by metallic or dielectric grating couplers with deep-submicron features fabricated by e-beam lithography. Mass reproduction of such gratings at macroscopic scales is a labor-consuming and expensive technology. Here, we show that localized plasmons in graphene can be generated on macroscopic scales with couplers based on randomly oriented particle-like nanorods (NRs) in close proximity to graphene layer. We monitor the excitation of graphene plasmons indirectly by tracking the changes in reflection/absorption spectra of methylene blue (MB) or polymethyl methacrylate(PMMA) molecules deposited on the structure. Hybridization of spectrally broad graphene plasmon and narrow molecular oscillators results in enhanced oscillator strengths and Fano scattering related lines asymmetry in reflection spectra.
Collapse
Affiliation(s)
- V Kaydashev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per.9, 141701, Dolgoprudny, Russia
| | - B Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, 13 Entuziastov Ave., 410049, Saratov, Russia
| | - A Miakonkikh
- Valiev Institute of Physics and Technology RAS, 36/1 Nahimovsky Ave., 117218, Moscow, Russia
| | - E Zhukova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per.9, 141701, Dolgoprudny, Russia
| | - S Zhukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per.9, 141701, Dolgoprudny, Russia
| | - D Mylnikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per.9, 141701, Dolgoprudny, Russia
| | - I Domaratskiy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per.9, 141701, Dolgoprudny, Russia
| | - D Svintsov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per.9, 141701, Dolgoprudny, Russia
| |
Collapse
|
23
|
Huang L, Su H, Hu G, Wu S, Wang Y, Chen B, Wang Q, Deng C, Yun B, Zhang R, Cui Y. Highly efficient and controllable photoluminescence emission on a suspended MoS 2-based plasmonic grating. NANOTECHNOLOGY 2020; 31:505201. [PMID: 32996469 DOI: 10.1088/1361-6528/abb1ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Being a new class of materials, transition metal dichalcogenides are paving the way for applications in atomically thin optoelectronics. However, the intrinsically weak light-matter interaction and the lack of manipulation ability has lead to poor light emission and tunable behavior. Here, we investigate the fluorescence characteristic of monolayer molybdenum disulfide on a metal narrow-slit grating, where a highly efficient, 471 times photoluminescence enhancement are realized, based on the hybrid surface plasmon polaritons resonances and the decreased influence of substrate. Moreover, the emitted intensity and polarization are controllable due to the polarization-dependent characteristic and anisotropy of grating. The manipulations of light-matter interactions in this special system provide a new insight into the fluorescent emission process and open a new avenue for high-performance low dimensional materials devices designs.
Collapse
Affiliation(s)
- Lei Huang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Huanhuan Su
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 People's Republic of China
| | - Guohua Hu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Shan Wu
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang 236037 People's Republic of China
| | - Yongkang Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 People's Republic of China
| | - Boyu Chen
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Qianjin Wang
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 People's Republic of China
| | - Chunyu Deng
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Binfeng Yun
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Ruohu Zhang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096 People's Republic of China
| |
Collapse
|
24
|
Lin CCC, Chang PH, Helmy AS. Supermode Hybridization: A Material-Independent Route toward Record Schottky Detection Sensitivity Using <0.05 μm 3 Amorphous Absorber Volume. NANO LETTERS 2020; 20:8500-8507. [PMID: 33231473 DOI: 10.1021/acs.nanolett.0c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Schottky photodetectors are attractive for CMOS-compatible photonic integrated circuits, but the inability to simultaneously optimize the metal emitter thickness for photon absorption and hot carrier emission limits the detection efficiency and sensitivity. Here, we propose and experimentally demonstrate a supermode hybridization waveguiding effect that can overcome the trade-off. By introducing structural asymmetry into coupled plasmonic nanostructures, hybridization-induced field enhancement can help ultrathin metal emitters to achieve greater optical absorption than bulk counterparts. Despite the use of amorphous materials with higher transport losses, our hybridized Schottky detectors demonstrate higher responsivity per device volume compared to crystalline-based and unhybridized Schottky designs with broadband (1.5-1.6 μm) and athermal (15-100 °C) behavior as well as record sensitivity of -55 dBm that approaches Ge counterparts that are 36 times larger. The hybridization effect can be utilized across diverse nanomaterial platforms to facilitate light-matter interaction, paving the way toward backend-compatible, chip-integrated photonics with greater manufacturing flexibility.
Collapse
Affiliation(s)
- Charles Chih-Chin Lin
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Po-Han Chang
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Amr S Helmy
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
25
|
Abnormal Fano Profile in Graphene-Wrapped Dielectric Particle Dimer. PHOTONICS 2020. [DOI: 10.3390/photonics7040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We give a theoretical study on the near field enhancement and far field spectrum of an adjacent graphene-wrapped sphere dimer with different radii. The Fano profile is found in the near field enhancement spectrum of such a symmetry-broken dimer system, which is, however, hidden in the far field spectrum. We demonstrate that this kind of Fano profile is rising from the coupling of dimer’s plasmon hybridization modes by analyzing the dipole moments of each sphere. Moreover, different orientation of incident wave polarization will lead to the different plasmon hybridization coupling, thus giving rise to a different Fano profile. By changing the Fermi energy level, we could achieve tunable Fano profile in near field enhancement.
Collapse
|
26
|
Liu Y, Zhang R. Study of doped mesoporous ceria with tailored oxygen vacancies for enhances activity for ethylbenzene oxidation application. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Lian C, Hu SQ, Zhang J, Cheng C, Yuan Z, Gao S, Meng S. Integrated Plasmonics: Broadband Dirac Plasmons in Borophene. PHYSICAL REVIEW LETTERS 2020; 125:116802. [PMID: 32976016 DOI: 10.1103/physrevlett.125.116802] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/30/2019] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
The past decade has witnessed numerous discoveries of two-dimensional (2D) semimetals and insulators, whereas 2D metals were rarely identified. Borophene, a monolayer boron sheet, has recently emerged as a perfect 2D metal with unique electronic properties. Here we study collective excitations in borophene, which exhibit two major plasmon modes with low damping rates extending from the infrared to ultraviolet regime. The anisotropic 1D plasmon originates from electronic transitions of tilted Dirac cones in borophene, analogous to that in extreme doped graphene. These features enable borophene as an integrated platform of 1D, 2D, and Dirac plasmons, promising for directional polariton transport and broadband optical communication in next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Chao Lian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shi-Qi Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhe Yuan
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Shiwu Gao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
28
|
Singhania A, Ghosh I, Sahoo P, Fujita D, Ghosh S, Bandyopadhyay A. Radio Waveguide-Double Ratchet Rotors Work in Unison on a Surface to Convert Heat into Power. NANO LETTERS 2020; 20:6891-6898. [PMID: 32787137 DOI: 10.1021/acs.nanolett.0c02898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synchronizing thousands of 100% efficient rotors in a macrodevice for harvesting noise is unapprehended. Thermodynamically, realizing a thermal gradient at the atomic scale is critical. Harvesting free thermal energy or noise by resonance has a hidden clause; either externally activating a directed self-powered motion or constructing a nanoscale power supply. To accomplish this, we combined two rotor concepts, Brownian rotor, BR, and power stroke, PS, rotors available in living systems in two planes of a single molecule. Quantum tunneling images reveal how a radio-wave guided synchronization of PS-BR combination tweaks rotational dynamics of a rotor to bypass the necessity of temperature gradient (ΔT). Live imaging of thermal noise movement as electron density between a pair of molecular planes helped in optimizing the rotor design. The rotor's monolayer harvests heat from the liquid's Brownian noise and electromagnetic noise, together delivering a finite, usable power. The chip supplies the power if we wet the surface or shine electric noise.
Collapse
Affiliation(s)
- Anup Singhania
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Indrani Ghosh
- International Center for Materials and Nanoarchitectronics (MANA) and ▽Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Pathik Sahoo
- International Center for Materials and Nanoarchitectronics (MANA) and ▽Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | | | - Subrata Ghosh
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Anirban Bandyopadhyay
- International Center for Materials and Nanoarchitectronics (MANA) and ▽Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| |
Collapse
|
29
|
Xu H, He Z, Chen Z, Nie G, Li H. Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system. OPTICS EXPRESS 2020; 28:25767-25777. [PMID: 32906861 DOI: 10.1364/oe.401694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
A novel graphene-based grating-coupled metamaterial structure is proposed, and the optical response of this structure can be obviously controlled by the Fermi level, which is theoretically regulated by the electric field of an applied voltage. The upper graphene monolayer can be intensely excited with the aid of periodic grating and thus it can be considered a bright mode. Meanwhile, the lower graphene monolayer cannot be directly excited, but it could be indirectly activated by the help of bright mode. The plasmonic polaritons resulting from the light-graphene interaction resonance can lead to a destructive interference effect, leading to a plasmonic induced transparency. This structure has a simple construction and retains the integrity of graphene. In the meantime, it can achieve a good tuning effect by adjusting the voltage regulation of microstructure array and it can obtain an outstanding reflection efficiency. Thus, this graphene-based metamaterial structure with these properties is very suitable for the plasmonic optical reflector. In contacting with the characteristics of material, the group delay of this device can reach to 0.3ps, which can well match the slow light performance. Therefore, the device is expected to make some contribution in optical reflection and slow light devices.
Collapse
|
30
|
Cao Y, Yi Y, Yang Y, Lin B, Lv J, Zhao H, Wang F, Zhang D. Low Power Consumption 3D-Inverted Ridge Thermal Optical Switch of Graphene-Coated Polymer/Silica Hybrid Waveguide. MICROMACHINES 2020; 11:mi11080783. [PMID: 32824652 PMCID: PMC7464878 DOI: 10.3390/mi11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
An inverted ridge 3D thermal optical (TO) switch of a graphene-coated polymer/silica hybrid waveguide is proposed. The side electrode structure is designed to reduce the mode loss induced by the graphene film and by heating the electrode. The graphene layer is designed to be located on the waveguide to assist in the conduction of heat produced by the electrode. The inverted ridge core is fabricated by etching and spin-coating processes, which can realize the flat surface waveguide. This core improves the transfer of the graphene layer and the compatibility of the fabrication processes. Because of the opposite thermal optical coefficient of polymer and silica and the high thermal conductivity of the graphene layer, the 3D hybrid TO switch with low power consumption and fast response time is obtained. Compared with the traditional TO switch without graphene film, the power consumption of the proposed TO switch is reduced by 41.43% at the wavelength of 1550 nm, width of the core layer (a) of 3 μm, and electrode distance (d) of 4 μm. The rise and fall times of the proposed TO switch are simulated to be 64.5 μs and 175 μs with a d of 4 μm, and a of 2 μm, respectively.
Collapse
|
31
|
Gosciniak J, Khurgin JB. On-Chip Ultrafast Plasmonic Graphene Hot Electron Bolometric Photodetector. ACS OMEGA 2020; 5:14711-14719. [PMID: 32596608 PMCID: PMC7315610 DOI: 10.1021/acsomega.0c01308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
We investigate a waveguide-integrated plasmonic graphene photodetector operating based on the hot carrier photo-bolometric effect, which is characterized simultaneously by high responsivity on the scale of hundreds of A/W and high speed on the scale of 100's of GHz that is limited only by the product of the electronic heat capacitance and thermal resistance. We develop a theory of the bolometric effect originating from the band nonparabolicity of graphene and estimate responsivity due to the bolometric effect, which is shown to significantly surpass the responsivity of the coexisting photoconductive effect, thus convincingly demonstrating the dominance of the bolometric effect. Based on the theory, we propose a novel detector configuration based on a hybrid waveguide that allows for efficient absorption in graphene over a short distance and subsequently a large change of conductivity. The results demonstrate the potential of graphene for high-speed communication systems.
Collapse
Affiliation(s)
- Jacek Gosciniak
- New York University
Abu Dhabi, Saadiyat Island, P.O. Box 129188, Abu Dhabi 307501, UAE
| | - Jacob B. Khurgin
- John Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
32
|
Dai Z, Hu G, Ou Q, Zhang L, Xia F, Garcia-Vidal FJ, Qiu CW, Bao Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem Rev 2020; 120:6197-6246. [DOI: 10.1021/acs.chemrev.9b00592] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Francisco J. Garcia-Vidal
- Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
- Donostia International Physics Center (DIPC), Donostia−San Sebastian E-20018, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
33
|
Yao Y, Cheng Z, Dong J, Zhang X. Performance of integrated optical switches based on 2D materials and beyond. FRONTIERS OF OPTOELECTRONICS 2020; 13:129-138. [PMID: 36641553 PMCID: PMC9743869 DOI: 10.1007/s12200-020-1058-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 05/22/2023]
Abstract
Applications of optical switches, such as signal routing and data-intensive computing, are critical in optical interconnects and optical computing. Integrated optical switches enabled by two-dimensional (2D) materials and beyond, such as graphene and black phosphorus, have demonstrated many advantages in terms of speed and energy consumption compared to their conventional silicon-based counterparts. Here we review the state-of-the-art of optical switches enabled by 2D materials and beyond and organize them into several tables. The performance tables and future projections show the frontiers of optical switches fabricated from 2D materials and beyond, providing researchers with an overview of this field and enabling them to identify existing challenges and predict promising research directions.
Collapse
Affiliation(s)
- Yuhan Yao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhao Cheng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianji Dong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
34
|
Zhu Y, Li CG, Zhu Y, Xiong B, Peng R, Wang M. Tuning Anderson localization of edge-mode graphene plasmons in randomly gated nanoribbons. OPTICS EXPRESS 2020; 28:16879-16892. [PMID: 32549501 DOI: 10.1364/oe.395098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Edge-mode graphene plasmons (EGPs) supported by graphene nanoribbons are highly confined, and they can show versatile tunability under electrostatic bias. In order to efficiently enhance and actively control the near-field intensity in integrated plasmonic devices, we theoretically study Anderson localization of EGPs in a graphene nanoribbon with an underlying electrode array in this work. By randomly arranging the electrodes in the array, positional disorder is introduced in the graphene nanoribbon system. Consequently, the Anderson localization of EGPs occurs with an exponentially decreased electric field, reduced propagation length, and rapid disappearance of the cross-correlation coefficient. Physically, inhomogeneous gating effectively creates a disordered distribution of Fermi levels in the graphene nanoribbon, which provides adequate fluctuation of the effective refractive index and results in strong localization of the EGPs at mid-infrared regime. By changing electrode array arrangements, the EGPs can be trapped at distinct locations in the nanoribbon. Further considering that the Fermi-level disorder can be introduced by randomly modulating the electrostatic bias, we apply different gate voltages at different electrodes in the array. Electrically tunable Anderson localization of EGPs are eventually realized in those randomly gated nanoribbons. Moreover, by combining both the positional and Fermi-level disorders in the system, the Anderson localization becomes more actively controlled in this electrically gated graphene nanoribbons. It is shown that the local field can be selectively trapped at single distinct location, or even several locations along the graphene nanoribbon. This investigation extends the Anderson localization to the EGPs in the mid-infrared range and enriches the graphene-based active plasmonic devices.
Collapse
|
35
|
Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band. SENSORS 2020; 20:s20102864. [PMID: 32443569 PMCID: PMC7287663 DOI: 10.3390/s20102864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/16/2020] [Indexed: 11/24/2022]
Abstract
A modulator is the core of many optoelectronic applications such as communication and sensing. However, a traditional modulator can hardly reach high modulation depth. In order to achieve the higher modulation depth, a graphene electro-optical switch modulator is proposed by adjusting propagation length in the near infrared band. The switch modulator is designed based on a hybrid plasmonic waveguide structure, which is comprised of an SiO2 substrate, graphene–Si–graphene heterostructure, Ag nanowire and SiO2 cladding. The propagation length of the hybrid plasmonic waveguide varies from 0.14 μm to 20.43 μm by the voltage tunability of graphene in 1550 nm incident light. A modulator with a length of 3 μm is designed based on the hybrid waveguide and it achieves about 100% modulation depth. The lower energy loss (~1.71 fJ/bit) and larger 3 dB bandwidth (~83.91 GHz) are attractive for its application in a photoelectric integration field. In addition, the excellent robustness (error of modulation effects lower than 8.84%) is practical in the fabrication process. Most importantly, by using the method of adjusting propagation length, other types of graphene modulators can also achieve about 100% modulation depth.
Collapse
|
36
|
F. Carvalho WO, Mejía-Salazar JR. Plasmonics for Telecommunications Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20092488. [PMID: 32354016 PMCID: PMC7250033 DOI: 10.3390/s20092488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 05/08/2023]
Abstract
Plasmonic materials, when properly illuminated with visible or near-infrared wavelengths, exhibit unique and interesting features that can be exploited for tailoring and tuning the light radiation and propagation properties at nanoscale dimensions. A variety of plasmonic heterostructures have been demonstrated for optical-signal filtering, transmission, detection, transportation, and modulation. In this review, state-of-the-art plasmonic structures used for telecommunications applications are summarized. In doing so, we discuss their distinctive roles on multiple approaches including beam steering, guiding, filtering, modulation, switching, and detection, which are all of prime importance for the development of the sixth generation (6G) cellular networks.
Collapse
|
37
|
Thomaschewski M, Zenin VA, Wolff C, Bozhevolnyi SI. Plasmonic monolithic lithium niobate directional coupler switches. Nat Commun 2020; 11:748. [PMID: 32029717 PMCID: PMC7005156 DOI: 10.1038/s41467-020-14539-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Lithium niobate (LN) has been the material of choice for electro-optic modulators owing to its excellent physical properties. While conventional LN electro-optic modulators continue to be the workhorse of the modern optoelectronics, they are becoming progressively too bulky, expensive, and power-hungry to fully serve the needs of this industry. Here, we demonstrate plasmonic electro-optic directional coupler switches consisting of two closely spaced nm-thin gold nanostripes on LN substrates that guide both coupled electromagnetic modes and electrical signals that control their coupling, thereby enabling ultra-compact switching and modulation functionalities. Extreme confinement and good spatial overlap of both slow-plasmon modes and electrostatic fields created by the nanostripes allow us to achieve a 90% modulation depth with 20-μm-long switches characterized by a broadband electro-optic modulation efficiency of 0.3 V cm. Our monolithic LN plasmonic platform enables a wide range of cost-effective optical communication applications that demand μm-scale footprints, ultrafast operation and high environmental stability. Lithium niobate is essential for electro-optic modulation, however, combining it with the attractive features of plasmonics is largely unexplored. Here, the authors demonstrate ultra-compact electrooptic switching with low voltage-length product, fast nonlinear response and low capacitance.
Collapse
Affiliation(s)
- Martin Thomaschewski
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Vladimir A Zenin
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Christian Wolff
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Sergey I Bozhevolnyi
- Centre for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
38
|
Graphene-Coated Nanowire Waveguides and Their Applications. NANOMATERIALS 2020; 10:nano10020229. [PMID: 32013043 PMCID: PMC7075138 DOI: 10.3390/nano10020229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 01/27/2023]
Abstract
In recent years, graphene-coated nanowires (GCNWs) have attracted considerable research interest due to the unprecedented optical properties of graphene in terahertz (THz) and mid-infrared bands. Graphene plasmons in GCNWs have become an attractive platform for nanoscale applications in subwavelength waveguides, polarizers, modulators, nonlinear devices, etc. Here, we provide a comprehensive overview of the surface conductivity of graphene, GCNW-based plasmon waveguides, and applications of GCNWs in optical devices, nonlinear optics, and other intriguing fields. In terms of nonlinear optical properties, the focus is on saturable absorption. We also discuss some limitations of the GCNWs. It is believed that the research of GCNWs in the field of nanophotonics will continue to deepen, thus laying a solid foundation for its practical application.
Collapse
|
39
|
Zhernovnykova OA, Popova OV, Deynychenko GV, Deynichenko TI, Bludov YV. Surface plasmon-polaritons in graphene, embedded into medium with gain and losses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:465301. [PMID: 31374561 DOI: 10.1088/1361-648x/ab3821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The paper deals with the theoretical consideration of surface plasmon-polaritons in the graphene monolayer, embedded into dielectric with spatially separated gain and losses. It is demonstrated, that presence of gain and losses in the system leads to the formation of additional mode of graphene surface plasmon-polaritons, which does not have its counterpart in the conservative system. When the gain and losses are mutually balanced, the position of exceptional point-transition point between unbroken and broken [Formula: see text]-symmetry-can be effectively tuned by graphene's doping. In the case of unbalanced gain and losses the spectrum of surface plasmon-polaritons contains spectral singularity, whose frequency is also adjustable through the electrostatic gating of graphene.
Collapse
Affiliation(s)
- O A Zhernovnykova
- Department of Mathematics, H.S. Skovoroda Kharkiv National Pedagogical University, Alchevskyh Str., 29, Kharkiv, 61002, Ukraine
| | | | | | | | | |
Collapse
|
40
|
Ren T, Chen L. Slow light enabled high-modulation-depth graphene modulator with plasmonic metasurfaces. OPTICS LETTERS 2019; 44:5446-5449. [PMID: 31730079 DOI: 10.1364/ol.44.005446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Graphene has attracted the interest of researchers seeking to develop compact optical modulators with the flexible tunability of graphene conductivity by tuning the Fermi level. Plasmonic structures have provided a robust way to enhance the modulation depth (MD) of graphene optical modulators, but the available schemes suffer from low MD, fabrication complexities, or both. Here, an ultra-thin plasmonic metasurface structure capable of guiding slow surface plasmons (SPs) is proposed to construct graphene-based optical modulators. The designs take advantage of the strong field enhancement of slow SP modes as well as the orientation match between the electric field and the graphene plane. A typical 0.96-μm-long metasurface-based graphene modulator presents a significantly improved MD of 4.66 dB/μm and an acceptable insertion loss of 1.4 dB/μm, while still having ease of fabrication.
Collapse
|
41
|
Wan T, Guo Y, Tang B. Photothermal modeling and characterization of graphene plasmonic waveguides for optical interconnect. OPTICS EXPRESS 2019; 27:33268-33281. [PMID: 31878399 DOI: 10.1364/oe.27.033268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The photothermal properties of graphene plasmonic waveguides (GPWs) are numerically investigated, while most of existing studies focus on their optical properties. A three-dimensional (3D) coupled optical-thermal model based on finite element method (FEM) is presented. The graphene sheet is treated as an graphene equivalent impedance surface. Transient thermal responses and peak temperature of the GPWs are captured using time-domain FEM (TDFEM). The effectiveness of the proposed method is validated by two examples of hybrid GPWs. Numerical results present the main factors that influence the photothermal properties of the GPWs, including the conductivity of graphene, and the wavelength and power density of incident light. The findings unveil that the temperature increase is an underlying factor influencing the maximum integration density of GPWs in optical interconnect.
Collapse
|
42
|
High-Performance Transmission of Surface Plasmons in Graphene-Covered Nanowire Pairs with Substrate. NANOMATERIALS 2019; 9:nano9111594. [PMID: 31717659 PMCID: PMC6915492 DOI: 10.3390/nano9111594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 01/29/2023]
Abstract
Graphene was recently proposed as a promising alternative to support surface plasmons with superior performances in the mid-infrared range. Here, we theoretically show that high-performance and low-loss transmission of graphene plasmons can be achieved by adding a silica substrate to the graphene-covered nanowire pairs. The effect of the substrate layer on mode properties has been intensively investigated by using the finite element method. Furthermore, the results show that inserting a low index material layer between the nanowire and substrate could compensate for the loss accompanied by the substrate, thus the mode properties could be adjusted to fulfill better performance. A reasonable propagation length of 15 μm and an ultra-small normalized mode area about ~10−4 could be obtained at 30 THz. The introduction of the substrate layer is crucial for practical fabrication, which provides additional freedom to tune the mode properties. The graphene-covered nanowire pairs with an extra substrate may inspire potential applications in tunable integrated nanophotonic devices.
Collapse
|
43
|
Wang B, Blaize S, Kim S, Yang H, Salas-Montiel R. In-plane electric field confinement engineering in graphene-based hybrid plasmonic waveguides. APPLIED OPTICS 2019; 58:7503-7509. [PMID: 31674401 DOI: 10.1364/ao.58.007503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Surface plasmon polaritons (SPPs) are surface modes confined to metal-dielectric interfaces. This confinement enhances the electromagnetic field and therefore, SPPs are sensitive to surface conditions. The properties of two dimensional materials such as graphene thus can be enhanced and used to engineer nanoscale components for optical communications. However, SPPs are transverse magnetic modes with electric fields out-of-plane that limit flexibility. In this contribution, we numerically analyze the confinement and in-plane enhancement in graphene-based hybrid plasmonic waveguides. We find that plasmonic modes supported by metal nanoparticle chain waveguides provide higher in-plane enhancement compared to those supported by nano-strip and slot hybrid plasmonic waveguides. Our results contribute to the performance improvement of graphene light absorption devices, including electro-optic modulators and photodetectors.
Collapse
|
44
|
Hao R, Jiao J, Peng X, Zhen Z, Dagarbek R, Zou Y, Li E. Experimental demonstration of a graphene-based hybrid plasmonic modulator. OPTICS LETTERS 2019; 44:2586-2589. [PMID: 31090738 DOI: 10.1364/ol.44.002586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
In this Letter, we report a graphene-based hybrid plasmonic modulator (GHPM) realized by employing the electro-absorption effect of graphene. The simulation results show that the modulation efficiency of GHPM, i.e., extinction ratio per length, can be as large as 0.417 dB/μm, which is more than twice as much as that of recently presented graphene-on-silicon modulator. It was found that the improvement in modulation efficiency is mainly due to the enhancement of the overlap between graphene and the mode field in GHPM. A prototype of GHPM was fabricated. The measurement results showed that the GHPM can work in a broadband from 1530 to 1570 nm and an improved modulation efficiency of 1.08 dB (at 30 μm). Finally, we have discussed the factors that influence the modulation efficiency. Our proof-of-concept design may promote the development of on-chip graphene-based plasmonic devices.
Collapse
|
45
|
Zhou Q, Shen J, Liu X, Li Z, Jiang H, Feng S, Feng W, Wang Y, Wei D. Hybrid graphene heterojunction photodetector with high infrared responsivity through barrier tailoring. NANOTECHNOLOGY 2019; 30:195202. [PMID: 30523952 DOI: 10.1088/1361-6528/aaf266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The graphene/Si heterojunction is attractive for high gain and broadband photodetection through photogating effect. However, the photoresponsivity in these devices are still limited to under 1 A W-1 if no narrowband absorption-enhanced nanostructures were used. In this paper, the effects of barriers on photoresponse are systematically studied at 1550 nm wavelength. Different barrier heights are obtained through selection of substrates, graphene doping and electrical tuning. Lower barrier height for graphene side and higher barrier height for silicon side are found to be beneficial for better infrared photoresponse. Through Polyetherimide doping of graphene and back-gated electrical modulation, the responsivity finally reached 5.71 A W-1, which to our knowledge is among the best results for graphene-based infrared photodetectors with graphene adopted as a light-absorption material. It is found that the thermionic emission efficiency of indirect transition in graphene is related to the difference in emissioin barrier height, and the lifetime of photoinduced carriers in the channel can be enhanced by built-in potential. These results lay the foundation for the photodetection applicatioins of graphene/Si heterojunction in the longer-wavelength infrared region.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China. Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang 050003, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chelladurai D, Doderer M, Koch U, Fedoryshyn Y, Haffner C, Leuthold J. Low-loss hybrid plasmonic coupler. OPTICS EXPRESS 2019; 27:11862-11868. [PMID: 31053025 DOI: 10.1364/oe.27.011862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We demonstrate a low-loss coupling scheme between a silicon photonic waveguide and a hybrid-plasmonic waveguide. Measured coupling efficiencies reach up to 94% or -0.27 dB. The metal-insulator-semiconductor structure is fabrication-tolerant and adaptable to a wide range of materials including those used in CMOS processes. The coupler is a promising building block for low-loss active plasmonic devices.
Collapse
|
47
|
Karaballi RA, Humagain G, Fleischman BRA, Dasog M. Synthesis of Plasmonic Group‐4 Nitride Nanocrystals by Solid‐State Metathesis. Angew Chem Int Ed Engl 2019; 58:3147-3150. [DOI: 10.1002/anie.201813134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Reem A. Karaballi
- Chemistry DepartmentDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Govinda Humagain
- Chemistry DepartmentDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | | | - Mita Dasog
- Chemistry DepartmentDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| |
Collapse
|
48
|
Qasymeh M, Eleuch H. Quantum microwave-to-optical conversion in electrically driven multilayer graphene. OPTICS EXPRESS 2019; 27:5945-5960. [PMID: 30876187 DOI: 10.1364/oe.27.005945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
In this paper, we propose a novel quantum approach for microwave-to-optical conversion in a multilayer graphene structure. The graphene layers are electrically connected and pumped by an optical field. The physical concept is based on using a driving microwave signal to modulate the optical input pump by controlling graphene conductivity. Consequently, upper and lower optical sidebands are generated. To achieve low noise conversion, the lower sideband is suppressed by the multilayer graphene destruction resonance. A perturbation approach is implemented to model the effective permittivity of the electrically driven multilayer graphene. Subsequently, a quantum mechanical analysis is carried out to describe the evolution of the interacting fields. It is shown that a quantum microwave-to-optical conversion is achieved for miltilayer graphene of the proper length (i.e., number of layers). The conversion rate and the number of converted photons are evaluated according to several parameters. These include the microwave signal frequency, the microwave driving voltages, the graphene intrinsic electron density, and the number of graphene layers. Owing to multilayer dispersion and to the properties of graphene, it is shown that a significant number of photons (converted from microwave to optical frequency range) is achieved for microvolt microwave driving voltages. Furthermore, a frequency-tunable operation is achieved using this technique simply by modifying the optical pump frequency.
Collapse
|
49
|
Ye L, Sui K, Zhang Y, Liu QH. Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications. NANOSCALE 2019; 11:3229-3239. [PMID: 30706929 DOI: 10.1039/c8nr09157a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we numerically demonstrate a variety of broadband optical waveguide modulators based on the hybrid surface plasmon polariton (HSPP) concept for near-infrared applications. The modulator is composed of strongly coupled double-layer graphene and double rectangle cross-sectional metal nanoribbons separated by three Al2O3 spacers, which are interpolated in a SiO2 waveguide. Owing to the unique strong coupling of HSPPs between metal nanoribbons, the subwavelength confinement, the in-plane electric field component, the light-graphene interaction, and the modulation effect of the modulator are significantly enhanced. The results show the proposed modulator achieves an outstanding performance with a modulation depth (MD) over 2.3 dB μm-1 and a small normalized mode area of ∼10-5 in a wide range of wavelength from 1.3 to 1.8 μm. By optimizing the separation of the double rectangle metal nanoribbons at the telecommunication wavelength of 1.55 μm, the modulator exhibits a high MD of 3.12 dB μm-1, a small footprint of 1.8 μm2, an ultra-wide 3 dB modulation bandwidth of 380.23 GHz, and an ultra-low energy consumption of 29.39 fJ per bit. Furthermore, we also demonstrate a modulator based on two properly apart semicircular (rhombus) metal nanoribbons with a drastically enhanced MD of 11.3 (6.32) dB μm-1 at 1.55 μm. Benefitting from the strong subwavelength confinement and excellent broadband modulation performance, the proposed optical waveguide modulators offer a significant potential to realize various long-wave near-infrared integrated modulators, interconnects and optoelectronic devices.
Collapse
Affiliation(s)
- Longfang Ye
- Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen University, Xiamen 361005, China.
| | | | | | | |
Collapse
|
50
|
Karaballi RA, Humagain G, Fleischman BRA, Dasog M. Synthesis of Plasmonic Group‐4 Nitride Nanocrystals by Solid‐State Metathesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Reem A. Karaballi
- Chemistry DepartmentDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | - Govinda Humagain
- Chemistry DepartmentDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| | | | - Mita Dasog
- Chemistry DepartmentDalhousie University 6274 Coburg Road Halifax Nova Scotia Canada
| |
Collapse
|