1
|
Vithani N, Todd TD, Singh S, Trent T, Blumer KJ, Bowman GR. G Protein Activation Occurs via a Largely Universal Mechanism. J Phys Chem B 2024; 128:3554-3562. [PMID: 38580321 PMCID: PMC11034501 DOI: 10.1021/acs.jpcb.3c07028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 04/07/2024]
Abstract
Understanding how signaling proteins like G proteins are allosterically activated is a long-standing challenge with significant biological and medical implications. Because it is difficult to directly observe such dynamic processes, much of our understanding is based on inferences from a limited number of static snapshots of relevant protein structures, mutagenesis data, and patterns of sequence conservation. Here, we use computer simulations to directly interrogate allosteric coupling in six G protein α-subunit isoforms covering all four G protein families. To analyze this data, we introduce automated methods for inferring allosteric networks from simulation data and assessing how allostery is conserved or diverged among related protein isoforms. We find that the allosteric networks in these six G protein α subunits are largely conserved and consist of two pathways, which we call pathway-I and pathway-II. This analysis predicts that pathway-I is generally dominant over pathway-II, which we experimentally corroborate by showing that mutations to pathway-I perturb nucleotide exchange more than mutations to pathway-II. In the future, insights into unique elements of each G protein family could inform the design of isoform-specific drugs. More broadly, our tools should also be useful for studying allostery in other proteins and assessing the extent to which this allostery is conserved in related proteins.
Collapse
Affiliation(s)
- Neha Vithani
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tyson D. Todd
- Department
of Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sukrit Singh
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tony Trent
- Departments
of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kendall J. Blumer
- Department
of Cell Biology and Physiology, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center
for the Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Departments
of Biochemistry & Biophysics and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Ding J, Tong A, Hacker M, Feng M, Huo L, Li X. Usefulness of 68 Ga-Pentixafor PET/CT on Diagnosis and Management of Cushing Syndrome. Clin Nucl Med 2022; 47:669-676. [PMID: 35452014 DOI: 10.1097/rlu.0000000000004244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This pilot study investigated the performance of C-X-C motif chemokine receptor 4 (CXCR4) molecular imaging ( 68 Ga-pentixafor PET/CT) in Cushing syndrome (CS) and the correlation between CXCR4 signaling interactions and glucose metabolism in adrenocorticotropin-cortisol pathway. METHODS We retrospectively evaluated 31 patients (16 patients with CS and 15 patients with nonfunctioning pituitary or adrenal adenomas). All patients underwent 68 Ga-pentixafor PET/CT, and 11 with pituitary adenoma also underwent 18 F-FDG PET/CT. The diagnosis accuracy of 68 Ga-pentixafor PET/CT was calculated. The correlation between radiouptake along the pituitary-adrenal axis and hormone levels was calculated. RESULTS Patients with Cushing disease characterized a focal uptake in adrenocorticotropic hormone-producing pituitary adenoma (ACTH-PA). In ACTH-independent CS, there was increased uptake of 68 Ga-pentixafor in adrenal lesions but not in the pituitary fossa. The nonfunctioning pituitary or adrenal adenomas showed negative 68 Ga-pentixafor signal. The one patient with metastatic ectopic ACTH syndrome had multiple 68 Ga-pentixafor-avid lesions. Using the threshold of SUV max >8.5 in the adrenal lesions, the sensitivity and specificity of 68 Ga-pentixafor PET/CT to diagnose cortisol-producing adenoma were 100% and 84.9%. A cutoff SUV max value of 3.0 on 68 Ga-pentixafor PET/CT had 100% sensitivity and specificity for differentiating ACTH-PA. The corresponding hormone level was significantly correlated with uptake of 68 Ga-pentixafor in pituitary adenoma and adrenal tissue but not with glucose metabolism. CONCLUSION We have characterized the performance of 68 Ga-pentixafor in different subtypes of CS. 68 Ga-pentixafor PET/CT is promising in the differential diagnosis of both ACTH-independent and ACTH-dependent CS. Activated CXCR4 molecular signaling along the pituitary-adrenal axis was found in patients with Cushing disease.
Collapse
Affiliation(s)
- Jie Ding
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine
| | - Anli Tong
- Department of Endocrinology and Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ming Feng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Huo
- From the Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Liu T, Ji RL, Tao YX. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharmacol Ther 2021; 234:108044. [PMID: 34822948 DOI: 10.1016/j.pharmthera.2021.108044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors involved in the regulation of almost all known physiological processes. Dysfunctions of GPCR-mediated signaling have been shown to cause various diseases. The prevalence of obesity and type 2 diabetes mellitus (T2DM), two strongly associated disorders, is increasing worldwide, with tremendous economical and health burden. New safer and more efficacious drugs are required for successful weight reduction and T2DM treatment. Multiple GPCRs are involved in the regulation of energy and glucose homeostasis. Mutations in these GPCRs contribute to the development and progression of obesity and T2DM. Therefore, these receptors can be therapeutic targets for obesity and T2DM. Indeed some of these receptors, such as melanocortin-4 receptor and glucagon-like peptide 1 receptor, have provided important new drugs for treating obesity and T2DM. This review will focus on the naturally occurring mutations of several GPCRs associated with obesity and T2DM, especially incorporating recent large genomic data and insights from structure-function studies, providing leads for future investigations.
Collapse
Affiliation(s)
- Ting Liu
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL 36849, United States.
| |
Collapse
|
4
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
5
|
Abstract
Parathyroid hormone (PTH), which is primarily regulated by extracellular calcium changes, controls calcium and phosphate homeostasis. Different diseases are derived from PTH deficiency (hypoparathyroidism), excess (hyperparathyroidism) and resistance (pseudohypoparathyroidism, PHP). Pseudohypoparathyroidism was historically classified into subtypes according to the presence or not of inherited PTH resistance associated or not with features of Albright's hereditary osteodystrophy and deep and progressive ectopic ossifications. The growing knowledge on the PTH/PTHrP signaling pathway showed that molecular defects affecting different members of this pathway determined distinct, yet clinically related disorders, leading to the proposal of a new nomenclature and classification encompassing all disorders, collectively termed inactivating PTH/PTHrP signaling disorders (iPPSD).
Collapse
Affiliation(s)
- Giovanna Mantovani
- University of Milan, Dept. Clinical Sciences and Commmunity Health, Via Lamarmora 5, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| | - Francesca Marta Elli
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| |
Collapse
|
6
|
Elli FM, Mantovani G. Pseudohypoparathyroidism, acrodysostosis, progressive osseous heteroplasia: different names for the same spectrum of diseases? Endocrine 2021; 72:611-618. [PMID: 33179219 PMCID: PMC8159830 DOI: 10.1007/s12020-020-02533-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022]
Abstract
Pseudohypoparathyroidism (PHP), the first known post-receptorial hormone resistance, derives from a partial deficiency of the α subunit of the stimulatory G protein (Gsα), a key component of the PTH/PTHrP signaling pathway. Since its first description, different studies unveiled, beside the molecular basis for PHP, the existence of different subtypes and of diseases in differential diagnosis associated with genetic alterations in other genes of the PTH/PTHrP pathway. The clinical and molecular overlap among PHP subtypes and with different but related disorders make both differential diagnosis and genetic counseling challenging. Recently, a proposal to group all these conditions under the novel term "inactivating PTH/PTHrP signaling disorders (iPPSD)" was promoted and, soon afterwards, the first international consensus statement on the diagnosis and management of these disorders has been published. This review will focus on the major and minor features characterizing PHP/iPPSDs as a group and on the specificities as well as the overlap associated with the most frequent subtypes.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
8
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
9
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
10
|
G proteins: binary switches in health and disease. Cent Eur J Immunol 2020; 45:364-367. [PMID: 33437192 PMCID: PMC7789995 DOI: 10.5114/ceji.2020.101271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cell signaling plays critical role in health and disease. The normal functioning of body depends on the homeostasis of immunity players. One of the very important cell signaling participants is G protein-coupled receptor (GPCR). GPCRs transduce extracellular signals into target cell by binding to and activating different G proteins (G αβγ, families Gi, Gs, Gq/11, G12/13) leading to range of different functions. Abnormal GPCRs signaling leads to various abnormalities, including but not limited to, cancer, pain, cardiac problems, and asthma. Mutations, which lead to activation or inactivation of GPCR pathways, permanently alter the pathways controlled by these receptors. A large number of human cancer incidence is a consequence of genetic abnormalities in signaling pathways, which influence cell division. Some bacteria and pathogens may interfere with the GPCR signaling pathways for their survival and immune evasion. Inhibition of GPCR signaling by small inhibitors is a novel way to treat various pathological conditions. There are several types of GPCRs in human genome, which due to their central role in health and disease, are the target of many commercially available drugs. Importantly, GPCRs have huge impact on drug discovery and approximately 30% of current drug targets are GPCRs. There is a need of further studies to explore more the role of G protein and the GPCRs in human health and how certain mutations can lead to disease state. Such studies may be important to adjust the signaling pathways for health improvement.
Collapse
|
11
|
Fischer CG, Wood LD. From somatic mutation to early detection: insights from molecular characterization of pancreatic cancer precursor lesions. J Pathol 2019; 246:395-404. [PMID: 30105857 DOI: 10.1002/path.5154] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer arises from noninvasive precursor lesions, including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), which are curable if detected early enough. Recently, these types of precursor lesions have been extensively characterized at the molecular level, defining the timing of critical genetic alterations in tumorigenesis pathways. The results of these studies deepen our understanding of tumorigenesis in the pancreas, providing novel insights into tumor initiation and progression. Perhaps more importantly, they also provide a rational foundation for early detection approaches that could allow clinical intervention prior to malignant transformation. In this review, we summarize the results of comprehensive molecular characterization of PanINs, IPMNs, and MCNs and discuss the implications for cancer biology as well as early detection. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Catherine G Fischer
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Corsi A, Cherman N, Donaldson DL, Robey PG, Collins MT, Riminucci M. Neonatal McCune-Albright Syndrome: A Unique Syndromic Profile With an Unfavorable Outcome. JBMR Plus 2019; 3:e10134. [PMID: 31485549 PMCID: PMC6715781 DOI: 10.1002/jbm4.10134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/17/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Somatic gain‐of‐function mutations of GNAS cause a spectrum of clinical phenotypes, ranging from McCune‐Albright syndrome (MAS) to isolated disease of bone, endocrine glands, and more rarely, other organs. In MAS, a syndrome classically characterized by polyostotic fibrous dysplasia (FD), café‐au‐lait (CAL) skin spots, and precocious puberty, the heterogenity of organ involvement, age of onset, and clinical severity of the disease are thought to reflect the variable size and the random distribution of the mutated cell clone arising from the postzygotic mutation. We report a case of neonatal MAS with hypercortisolism and cholestatic hepatobiliary dysfunction in which bone changes indirectly emanating from the disease genotype, and distinct from FD, led to a fatal outcome. Pulmonary embolism of marrow and bone fragments secondary to rib fractures was the immediate cause of death. Ribs, and all other skeletal segments, were free of changes of typical FD and fractures appeared to be the result of a mild‐to‐moderate degree of osteopenia. The mutated allele was abundant in the adrenal glands and liver, but not in skin, muscle, and fractured ribs, where it could only be demonstrated using a much more sensitive PNA hybridization probe‐based FRET (Förster resonance energy transfer) technique. Histologically, bilateral adrenal hyperplasia and cholestatic disease matched the abundant disease genotype in the adrenals and liver. Based on this case and other sporadic reports, it appears that gain‐of‐function mutations of GNAS underlie a unique syndromic profile in neonates characterized by CAL skin spots, hypercortisolism, hyperthyroidism, hepatic and cardiac dysfunction, and an absence (or latency) of FD, often with a lethal outcome. Taken together, our and previous cases highlight the phenotypic severity and the diagnostic and therapeutic challenges of MAS in neonates. Furthermore, our case specifically points out how secondary bone changes, unrelated to the direct impact of the mutation, may contribute to the unfavorable outcome of very early‐onset MAS. © 2018 The Authors JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Natasha Cherman
- Skeletal Biology SectionNational Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMDUSA
| | - David L Donaldson
- Department of PediatricsUniversity of Utah, School of MedicineSalt Lake CityUTUSA
| | - Pamela G Robey
- Skeletal Biology SectionNational Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMDUSA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis SectionNational Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMDUSA
| | - Mara Riminucci
- Department of Molecular MedicineSapienza UniversityRomeItaly
| |
Collapse
|
13
|
Elli FM, Pereda A, Linglart A, Perez de Nanclares G, Mantovani G. Parathyroid hormone resistance syndromes - Inactivating PTH/PTHrP signaling disorders (iPPSDs). Best Pract Res Clin Endocrinol Metab 2018; 32:941-954. [PMID: 30665554 DOI: 10.1016/j.beem.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic disorders caused by impairments of the Gsα/cAMP/PKA pathway affecting the signaling of PTH/PTHrP lead to features caused by non-responsiveness of target organs, in turn leading to manifestations similar to the deficiency of the hormone itself. Pseudohypoparathyroidism (PHP) and related disorders derive from a defect of the α subunit of the stimulatory G protein (Gsα) or of downstream effectors of the same pathway, such as the PKA regulatory subunit 1A and the phosphodiesterase type 4D. The increasing knowledge on these diseases made the actual classification of PHP outdated as it does not include related conditions such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), so that a new nomenclature and classification has been recently proposed grouping these disorders under the term "inactivating PTH/PTHrP signaling disorder" (iPPSD). This review will focus on the pathophysiology, clinical and molecular aspects of these rare, heterogeneous but closely related diseases.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain.
| | - Agnès Linglart
- APHP, Department of Paediatric Endocrinology and Diabetes for Children, Bicêtre Paris-Sud Hospital, Le Kremlin-Bicêtre, France; APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Bicêtre Paris-Sud Hospital, Le Kremlin Bicêtre, France.
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain.
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Candida Barisson Villares Fragoso M, Pontes Cavalcante I, Meneses Ferreira A, Marinho de Paula Mariani B, Ferini Pacicco Lotfi C. Genetics of primary macronodular adrenal hyperplasia. Presse Med 2018; 47:e139-e149. [PMID: 30075949 DOI: 10.1016/j.lpm.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in molecular genetics investigations of primary macronodular adrenal hyperplasia (PMAH) have been providing new insights for the research on this issue. The cAMP-dependent pathway is physiologically triggered by ACTH and its receptor, MC2-R, in adrenocortical cells. Different mechanisms of this cascade may be altered in some functioning adrenal cortical disorders. Activating somatic mutations of the GNAS gene (known as gsp oncogene) which encodes the stimulatory G protein alpha-subunit (Gsα) have been found in a small number of adrenocortical secreting adenomas and rarely in PMAH. Lately, ARMC5 was linked to the cyclic AMP signaling pathway, which could be implicated in all of mechanisms of cortisol-secreting by macronodules adrenal hyperplasia and the molecular defects in: G protein aberrant receptors; MC2R; GNAS; PRKAR1A; PDE11A; PDE8B. Around 50 % of patient's relatives with PMAH and 30 % of apparently sporadic hypercortisolism carried ARMC5 mutations. Therefore, PMAH is genetically determined more frequently than previously believed. This review summarizes the most important molecular mechanisms involved in PMAH.
Collapse
Affiliation(s)
| | - Isadora Pontes Cavalcante
- University of Sao Paulo, Adrenal Unit, Service of Endocrinology and Metabolism, 03178-200 Sao Paulo, Brazil; University of Sao Paulo, Institute of Biomedical Sciences, Department of Anatomy, 03178-200 Sao Paulo, Brazil
| | - Amanda Meneses Ferreira
- University of Sao Paulo, Adrenal Unit, Service of Endocrinology and Metabolism, 03178-200 Sao Paulo, Brazil
| | | | | |
Collapse
|
15
|
Calebiro D, Godbole A. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases. Best Pract Res Clin Endocrinol Metab 2018; 32:83-91. [PMID: 29678288 DOI: 10.1016/j.beem.2018.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and mediate the effects of numerous hormones and neurotransmitters. The nearly 1000 GPCRs encoded by the human genome regulate virtually all physiological functions and are implicated in the pathogenesis of prevalent human diseases such as thyroid disorders, hypertension or Parkinson's disease. As a result, 30-50% of all currently prescribed drugs are targeting these receptors. Once activated, GPCRs induce signals at the cell surface. This is often followed by internalization, a process that results in the transfer of receptors from the plasma membrane to membranes of the endosomal compartment. Internalization was initially thought to be mainly implicated in signal desensitization, a mechanism of adaptation to prolonged receptor stimulation. However, several unexpected functions have subsequently emerged. Most notably, accumulating evidence indicates that internalization can induce prolonged receptor signaling on intracellular membranes, which is apparently required for at least some biological effects of hormones like TSH, LH and adrenaline. These findings reveal an even stronger connection between receptor internalization and signaling than previously thought. Whereas new studies are just beginning to reveal an important physiological role for GPCR signaling after internalization and ways to exploit it for therapeutic purposes, future investigations will be required to explore its involvement in human disease.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK; Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany.
| | - Amod Godbole
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany; Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
Mantovani G, Elli FM. Multiple hormone resistance and alterations of G-protein-coupled receptors signaling. Best Pract Res Clin Endocrinol Metab 2018; 32:141-154. [PMID: 29678282 DOI: 10.1016/j.beem.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic disorders deriving from the non-responsiveness of target organs to hormones, which manifest clinically similar to the deficiency of a given hormone itself, derive from molecular alterations affecting specific hormone receptors. Pseudohypoparathyroidism (PHP) and related disorders exemplify an unusual form of hormone resistance as the underlying molecular defect is a partial deficiency of the α subunit of the stimulatory G protein (Gsα), a key regulator of cAMP signaling pathway, or, as more recently described, of downstream effector proteins of the same pathway, such as PKA regulatory subunit 1A (R1A) and phosphodyestarase type 4D (PDE4D). In this group of diseases, resistance to hormones such as PTH, TSH, gonadotropins and GHRH may be variably present, so that the clinical and molecular overlap among these different but related disorders represents a challenge for endocrinologists as to differential diagnosis and genetic counseling. This review will describe the presenting features of multiple resistance in PHP and related disorders, focusing on both our current understanding and future challenges.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Fukami M, Suzuki E, Igarashi M, Miyado M, Ogata T. Gain-of-function mutations in G-protein-coupled receptor genes associated with human endocrine disorders. Clin Endocrinol (Oxf) 2018; 88:351-359. [PMID: 29029377 DOI: 10.1111/cen.13496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022]
Abstract
The human genome encodes more than 700 G-protein-coupled receptors (GPCRs), many of which are involved in hormone secretion. To date, more than 100 gain-of-function (activating) mutations in at least ten genes for GPCRs, in addition to several loss-of-function mutations, have been implicated in human endocrine disorders. Previously reported gain-of-function GPCR mutations comprise various missense substitutions, frameshift mutations, intragenic inframe deletions and copy-number gains. Such mutations appear in both germline and somatic tumour cells, and lead to various hormonal abnormalities reflecting excessive receptor activity. Phenotypic consequences of these mutations include distinctive endocrine syndromes, as well as relatively common hormonal abnormalities. Such mutations encode hyperfunctioning receptors with increased constitutive activity, broadened ligand specificity, increased ligand sensitivity and/or delayed receptor desensitization. Furthermore, recent studies proposed a paradoxical gain-of-function mechanism caused by inactive GPCR mutants. Molecular diagnosis of GPCR activating mutations serves to improve the clinical management of mutation-positive patients. This review aims to introduce new aspects regarding gain-of-function mutations in GPCR genes associated with endocrine disorders.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Igarashi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
18
|
Abstract
Somatic mutations in PRKACA, coding for the catalytic α subunit of protein kinase A (PKA), have been recently identified as the most frequent genetic alteration in cortisol-secreting adrenocortical adenomas, which are responsible for adrenal Cushing's syndrome. The mutations identified so far lie at the interface between the catalytic (C) and regulatory (R) subunit of PKA. Detailed functional studies of the most frequent of these mutations (L206R) as well as of another one in the same region of the C subunit (199_200insW) have revealed that these mutations cause constitutive activation of PKA and lack of regulation by cAMP. This is due to interference with the binding of the R subunit, which keeps the C subunit inactive in the absence of cyclic AMP. Here, we review these recent findings, with a particular focus on the mechanisms of action of PRKACA mutations.
Collapse
Affiliation(s)
- D Calebiro
- Institute of Pharmacology and Toxicology, University Hospital, University of Würzburg, Würzburg, Germany
| | - K Bathon
- Institute of Pharmacology and Toxicology, University Hospital, University of Würzburg, Würzburg, Germany
| | - I Weigand
- Department of Medicine I, Endocrine and Diabetes Unit, University Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Abstract
In the classical two-state model, G protein-coupled receptors (GPCRs) are considered to exist in equilibrium between an active and an inactive conformation. Thus, even at the resting state, some subpopulation of GPCRs is in the active state, which underlies the basal activity of the GPCRs. In this review, we discuss inverse agonists, which are defined as GPCR ligands that shift the equilibrium toward the inactive state and thereby suppress the basal activity. Theoretically, if constitutive activation plays an essential role in the pathogenesis of a disease, only inverse agonists, and not neutral antagonists, can reverse this pathophysiological activation. Although many pharmacological examples of inverse agonism have been identified, its clinical importance is still unclear and debated. Thus, even though inverse agonism of angiotensin receptor blockers (ARBs) has been discussed for more than 10 years, its clinical relevance remains to be completely clarified.
Collapse
Affiliation(s)
- Junichiro Sato
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
20
|
Mantovani G, Spada A, Elli FM. Pseudohypoparathyroidism and Gsα-cAMP-linked disorders: current view and open issues. Nat Rev Endocrinol 2016; 12:347-56. [PMID: 27109785 DOI: 10.1038/nrendo.2016.52] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pseudohypoparathyroidism exemplifies an unusual form of hormone resistance as the underlying molecular defect is a partial deficiency of the α subunit of the stimulatory G protein (Gsα), a key regulator of the cAMP signalling pathway, rather than of the parathyroid hormone (PTH) receptor itself. Despite the first description of this disorder dating back to 1942, later findings have unveiled complex epigenetic alterations in addition to classic mutations in GNAS underpining the molecular basis of the main subtypes of pseudohypoparathyroidism. Moreover, mutations in PRKAR1A and PDE4D, which encode proteins crucial for Gsα-cAMP-mediated signalling, have been found in patients with acrodysostosis. As acrodysostosis, a disease characterized by skeletal malformations and endocrine disturbances, shares clinical and molecular characteristics with pseudohypoparathyroidism, making a differential diagnosis and providing genetic counselling to patients and families is a challenge for endocrinologists. Accumulating data on the genetic and clinical aspects of this group of diseases highlight the limitation of the current classification system and prompt the need for a new definition as well as for new diagnostic and/or therapeutic algorithms. This Review discusses both the current understanding and future challenges for the clinical and molecular diagnosis, classification and treatment of pseudohypoparathyroidism.
Collapse
MESH Headings
- Bone Diseases, Metabolic/diagnosis
- Bone Diseases, Metabolic/genetics
- Chromogranins/genetics
- Chromosome Deletion
- Chromosomes, Human, Pair 2/genetics
- Cyclic AMP
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 4/genetics
- Diagnosis, Differential
- Dysostoses/diagnosis
- Dysostoses/genetics
- Epigenesis, Genetic/genetics
- GTP-Binding Protein alpha Subunits, Gs/genetics
- Humans
- Intellectual Disability/diagnosis
- Intellectual Disability/genetics
- Ossification, Heterotopic/diagnosis
- Ossification, Heterotopic/genetics
- Osteochondrodysplasias/diagnosis
- Osteochondrodysplasias/genetics
- Pseudohypoparathyroidism/classification
- Pseudohypoparathyroidism/diagnosis
- Pseudohypoparathyroidism/genetics
- Signal Transduction
- Skin Diseases, Genetic/diagnosis
- Skin Diseases, Genetic/genetics
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza 35, Milan 20122, Italy
| | - Anna Spada
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza 35, Milan 20122, Italy
| | - Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Via Francesco Sforza 35, Milan 20122, Italy
| |
Collapse
|
21
|
Elli FM, Bordogna P, de Sanctis L, Giachero F, Verrua E, Segni M, Mazzanti L, Boldrin V, Toromanovic A, Spada A, Mantovani G. Screening of PRKAR1A and PDE4D in a Large Italian Series of Patients Clinically Diagnosed With Albright Hereditary Osteodystrophy and/or Pseudohypoparathyroidism. J Bone Miner Res 2016; 31:1215-24. [PMID: 26763073 DOI: 10.1002/jbmr.2785] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/20/2015] [Accepted: 01/11/2016] [Indexed: 01/10/2023]
Abstract
The cyclic adenosine monophosphate (cAMP) intracellular signaling pathway mediates the physiological effects of several hormones and neurotransmitters, acting by the activation of G-protein coupled receptors (GPCRs) and several downstream intracellular effectors, including the heterotrimeric stimulatory G-protein (Gs), the cAMP-dependent protein kinase A (PKA), and cAMP-specific phosphodiesterases (PDEs). Defective G-protein-mediated signaling has been associated with an increasing number of disorders, including Albright hereditary osteodistrophy (AHO) and pseudohypoparathyroidism (PHP), a heterogeneous group of rare genetic metabolic disorders resulting from molecular defects at the GNAS locus. Moreover, mutations in PRKAR1A and PDE4D genes have been recently detected in patients with acrodysostosis (ACRDYS), showing a skeletal and endocrinological phenotype partially overlapping with AHO/PHP. Despite the high detection rate of molecular defects by currently available molecular approaches, about 30% of AHO/PHP patients still lack a molecular diagnosis, hence the need to screen patients negative for GNAS epi/genetic defects also for chromosomal regions and genes associated with diseases that undergo differential diagnosis with PHP. According to the growing knowledge on Gsα-cAMP signaling-linked disorders, we investigated our series of patients (n = 81) with a clinical diagnosis of PHP/AHO but negative for GNAS anomalies for the presence of novel genetic variants at PRKAR1A and PDE4D genes. Our work allowed the detection of 8 novel missense variants affecting genes so far associated with ACRDYS in 9 patients. Our data further confirm the molecular and clinical overlap among these disorders. We present the data collected from a large series of patients and a brief review of the literature in order to compare our findings with already published data; to look for PRKAR1A/PDE4D mutation spectrum, recurrent mutations, and mutation hot spots; and to identify specific clinical features associated with ACRDYS that deserve surveillance during follow-up. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Bordogna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luisa de Sanctis
- Department of Public Health and Pediatrics, University of Turin and Regina Margherita Children's Hospital, Turin, Italy
| | - Federica Giachero
- Department of Public Health and Pediatrics, University of Turin and Regina Margherita Children's Hospital, Turin, Italy
| | - Elisa Verrua
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maria Segni
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University, Rome, Italy
| | - Laura Mazzanti
- Pediatrics Endocrinology and Rare Diseases, Pediatrics Unit, AOU S. Orsola-Malpighi, University of Bologna, Bologna, Italy
| | - Valentina Boldrin
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alma Toromanovic
- Department of Pediatrics, University Clinical Center Tuzla, Tuzla, Bosnia and Herzegovina
| | - Anna Spada
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Shaik FA, Singh N, Arakawa M, Duan K, Bhullar RP, Chelikani P. Bitter taste receptors: Extraoral roles in pathophysiology. Int J Biochem Cell Biol 2016; 77:197-204. [PMID: 27032752 DOI: 10.1016/j.biocel.2016.03.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/17/2022]
Abstract
Over the past decade tremendous progress has been made in understanding the functional role of bitter taste receptors (T2Rs) and bitter taste perception. This review will cover the recent advances made in identifying the role of T2Rs in pathophysiological states. T2Rs are widely expressed in various parts of human anatomy and have been shown to be involved in physiology of respiratory system, gastrointestinal tract and endocrine system. Empirical evidence has shown T2Rs to be an integral component of antimicrobial immune responses in upper respiratory tract infections. The studies on human airway smooth muscle cells have shown that a potent bitter tastant induced bronchodilatory effects mediated by bitter taste receptors. Clinical data suggests a role for T2R38 polymorphism in predisposition of individuals to chronic rhinosinusitis. The role of genetic variation in T2Rs and its impact on disease susceptibility have been investigated in various other disease risk factors such as alcohol dependence, head and neck cancers. Preliminary reports have demonstrated differential expression of functional T2Rs in breast cancer cell lines. Studies on the role of T2Rs in pathophysiology of diseases including chronic rhinosinusitis, asthma, cystic fibrosis, and cancer have been promising. However, research in this field is in its nascent stages, and more confirmatory studies on animal models and in clinical settings are required.
Collapse
Affiliation(s)
- Feroz Ahmed Shaik
- Manitoba Chemosensory Biology (MCSB) Research Group and Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology (MCSB) Research Group and Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Makoto Arakawa
- Manitoba Chemosensory Biology (MCSB) Research Group and Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology (MCSB) Research Group and Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Rajinder P Bhullar
- Manitoba Chemosensory Biology (MCSB) Research Group and Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology (MCSB) Research Group and Department of Oral Biology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0W2, Canada.
| |
Collapse
|
23
|
Villares Fragoso MCB, Wanichi IQ, Cavalcante IP, Mariani BMDP. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia. Front Endocrinol (Lausanne) 2016; 7:104. [PMID: 27512387 PMCID: PMC4962502 DOI: 10.3389/fendo.2016.00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023] Open
Abstract
Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune-Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1-3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia.
Collapse
Affiliation(s)
- Maria Candida Barisson Villares Fragoso
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Maria Candida Barisson Villares Fragoso,
| | - Ingrid Quevedo Wanichi
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Isadora Pontes Cavalcante
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Marinho de Paula Mariani
- Unidade de Suprarrenal, Disciplina de Endocrinologia e Metabologia, Laboratorio de Hormonios e Genetica Molecular LIM/42, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Calebiro D, Di Dalmazi G, Bathon K, Ronchi CL, Beuschlein F. cAMP signaling in cortisol-producing adrenal adenoma. Eur J Endocrinol 2015; 173:M99-106. [PMID: 26139209 DOI: 10.1530/eje-15-0353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023]
Abstract
The cAMP signaling pathway is one of the major players in the regulation of growth and hormonal secretion in adrenocortical cells. Although its role in the pathogenesis of adrenocortical hyperplasia associated with Cushing's syndrome has been clarified, a clear involvement of the cAMP signaling pathway and of one of its major downstream effectors, the protein kinase A (PKA), in sporadic adrenocortical adenomas remained elusive until recently. During the last year, a report by our group and three additional independent groups showed that somatic mutations of PRKACA, the gene coding for the catalytic subunit α of PKA, are a common genetic alteration in patients with Cushing's syndrome due to adrenal adenomas, occurring in 35-65% of the patients. In vitro studies revealed that those mutations are able to disrupt the association between catalytic and regulatory subunits of PKA, leading to a cAMP-independent activity of the enzyme. Despite somatic PRKACA mutations being a common finding in patients with clinically manifest Cushing's syndrome, the pathogenesis of adrenocortical adenomas associated with subclinical hypercortisolism seems to rely on a different molecular background. In this review, the role of cAMP/PKA signaling in the regulation of adrenocortical cell function and its alterations in cortisol-producing adrenocortical adenomas will be summarized, with particular focus on recent developments.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Guido Di Dalmazi
- Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Kerstin Bathon
- Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Cristina L Ronchi
- Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| | - Felix Beuschlein
- Institute of Pharmacology and ToxicologyUniversity of Würzburg, Versbacher Str. 9, 97078 Würzburg, GermanyRudolf Virchow CenterJosef-Schneider-Str. 2, 97080 Würzburg, GermanyMedizinische Klinik und Poliklinik IVLudwig-Maximilians-Universität München, Ziemssenstraβe 1, 80336 München, GermanyDepartment of Medicine IEndocrine and Diabetes Unit, University Hospital, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, GermanyComprehensive Cancer Center MainfrankenUniversity of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany
| |
Collapse
|
25
|
Drougat L, Espiard S, Bertherat J. Genetics of primary bilateral macronodular adrenal hyperplasia: a model for early diagnosis of Cushing's syndrome? Eur J Endocrinol 2015; 173:M121-31. [PMID: 26264719 DOI: 10.1530/eje-15-0532] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Long-term consequences of cortisol excess are frequent despite appropriate treatment after cure of Cushing's syndrome. This might be due to diagnostic delay, often difficult to reduce in rare diseases. The identification of a genetic predisposing factor might help to improve early diagnosis by familial screening. Primary bilateral macronodular adrenal hyperplasia (PBMAH) is a rare cause of Cushing's syndrome. Hypercortisolism in PBMAH is most often diagnosed between the fifth and sixth decades of life. The bilateral nature of the adrenocortical tumors and the occurrence of rare clear familial forms suggest a genetic origin. Indeed, a limited subset of PBMAH can be observed as part of multiple tumors syndromes due to alterations of the APC, Menin or Fumarate Hydratase genes. Rare variants of the phosphodiesterases PDE11A have been associated with PBMAH. The recent identification of ARMC5 germline alterations in 25-50% of PBMAH patients without obvious familial history or associated tumors opens new perspectives. ARMC5 alterations follow the model of a tumor suppressor gene: a first germline inactivating mutation of this 16p located gene is followed by a somatic secondary hit on the other allele (inactivating mutation or allelic loss). Functional studies demonstrate that ARMC5 controls apoptosis and steroid synthesis. The phenotype of index cases patients with the mutation seems more severe than the one of WT index cases. However, phenotype variability within a family is often observed. This review summarizes the genetics of PBMAH, focusing on ARMC5, which offer new perspectives for early diagnosis of Cushing's syndrome.
Collapse
Affiliation(s)
- Ludivine Drougat
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016 Centre National de la Recherche Scientifique (CNRS) UMR 8104, Institut Cochin, Université Paris-Descartes, 75014 Paris, France Department of Endocrinology Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg St Jacques, 75014 Paris, France
| | - Stéphanie Espiard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016 Centre National de la Recherche Scientifique (CNRS) UMR 8104, Institut Cochin, Université Paris-Descartes, 75014 Paris, France Department of Endocrinology Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg St Jacques, 75014 Paris, France
| | - Jerôme Bertherat
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016 Centre National de la Recherche Scientifique (CNRS) UMR 8104, Institut Cochin, Université Paris-Descartes, 75014 Paris, France Department of Endocrinology Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg St Jacques, 75014 Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016 Centre National de la Recherche Scientifique (CNRS) UMR 8104, Institut Cochin, Université Paris-Descartes, 75014 Paris, France Department of Endocrinology Referral Center for Rare Adrenal Diseases, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, 27 rue du Faubourg St Jacques, 75014 Paris, France
| |
Collapse
|
26
|
Dewhurst HM, Choudhury S, Torres MP. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families. Mol Cell Proteomics 2015; 14:2285-97. [PMID: 26070665 PMCID: PMC4528253 DOI: 10.1074/mcp.m115.051177] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/08/2022] Open
Abstract
Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data.
Collapse
Affiliation(s)
- Henry M Dewhurst
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| | - Shilpa Choudhury
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| | - Matthew P Torres
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| |
Collapse
|
27
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
28
|
Fragoso MCBV, Alencar GA, Lerario AM, Bourdeau I, Almeida MQ, Mendonca BB, Lacroix A. Genetics of primary macronodular adrenal hyperplasia. J Endocrinol 2015; 224:R31-43. [PMID: 25472909 DOI: 10.1530/joe-14-0568] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ACTH-independent macronodular adrenal hyperplasia is a rare cause of Cushing's syndrome (CS), accounting for <2% of all endogenous CS cases; however it is more frequently identified incidentally with sub-clinical cortisol secretion. Recently, cortisol secretion has been shown to be regulated by ectopic corticotropin, which is in turn produced by clusters of steroidogenic cells of the hyperplastic adrenal nodules. Hence, the term 'ACTH-independent' is not entirely appropriate for this disorder. Accordingly, the disease is designated primary macronodular adrenal hyperplasia (PMAH) in this review article. The means by which cortisol production is regulated in PMAH despite the suppressed levels of ACTH of pituitary origin is exceedingly complex. Several molecular events have been proposed to explain the enhanced cortisol secretion, increased cell proliferation, and nodule formation in PMAH. Nonetheless, the precise sequence of events and the molecular mechanisms underlying this condition remain unclear. The purpose of this review is therefore to present new insights on the molecular and genetic profile of PMAH pathophysiology, and to discuss the implications for disease progression.
Collapse
Affiliation(s)
- Maria Candida Barisson Villares Fragoso
- Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Guilherme Asmar Alencar
- Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Antonio Marcondes Lerario
- Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Isabelle Bourdeau
- Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Madson Queiroz Almeida
- Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Berenice Bilharinho Mendonca
- Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - André Lacroix
- Unidade de SuprarrenalDisciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, BrazilInstituto do Câncer de São Paulo ICESPSão Paulo, BrazilDépartement de MédecineCentre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Turcic K, Tobar-Rubin R, Janevska D, Carroll J, Din E, Alvarez R, Haick J, Pals-Rylaarsdam R. Three intragenic suppressors of a GTPase-deficient allele of GNAS associated with McCune-Albright syndrome. J Mol Endocrinol 2014; 52:321-31. [PMID: 24850831 DOI: 10.1530/jme-13-0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gain-of-function mutations in heterotrimeric G-protein α subunits are associated with a variety of human diseases. McCune-Albright syndrome (MAS) is caused by mutations in GNAS, the gene encoding Gs. Alterations at Arg201 significantly reduce the GTPase activity of the protein, rendering it constitutively active. In this study, we have constructed a library of random mutations in a constitutively active yeast GPA1 gene carrying a mutation homologous to the McCune-Albright allele (Arg297His). Intragenic suppressors found at sites with homology to the human Gs protein were tested for their ability to suppress the constitutive activity of an Arg201His mutation in Gs. Three intragenic suppressors, at Phe142, Arg231, and Leu266, were able to suppress elevated basal cAMP responses caused by Arg201His when expressed in HEK293 cells. A range of amino acid substitutions was introduced at each of these sites to investigate the chemical requirements for intragenic suppression. The ability of Gs proteins carrying the suppressor mutations alone to mediate receptor-induced cAMP production was measured. These results offer potential sites on Gs that could serve as drug targets for MAS therapies.
Collapse
Affiliation(s)
- Kyle Turcic
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Raquel Tobar-Rubin
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Daniela Janevska
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Julie Carroll
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Eraj Din
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Rebecca Alvarez
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Jennifer Haick
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| | - Robin Pals-Rylaarsdam
- Department of Biological ScienceBenedictine University, 5700 College Road, Lisle, Illinois 60532, USA
| |
Collapse
|
30
|
Goh G, Scholl UI, Healy JM, Choi M, Prasad ML, Nelson-Williams C, Kuntsman JW, Korah R, Suttorp AC, Dietrich D, Haase M, Willenberg HS, Stålberg P, Hellman P, Åkerström G, Björklund P, Carling T, Lifton RP. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet 2014; 46:613-7. [PMID: 24747643 PMCID: PMC4074779 DOI: 10.1038/ng.2956] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022]
Abstract
Adrenal tumors autonomously producing cortisol cause Cushing's syndrome. We performed exome sequencing of 25 tumor-normal pairs and identified 2 subgroups. Eight tumors (including three carcinomas) had many somatic copy number variants (CNVs) with frequent deletion of CDC42 and CDKN2A, amplification of 5q31.2 and protein-altering mutations in TP53 and RB1. Seventeen tumors (all adenomas) had no somatic CNVs or TP53 or RB1 mutations. Six of these had known gain-of-function mutations in CTNNB1 (β-catenin) or GNAS (Gαs). Six others had somatic mutations in PRKACA (protein kinase A (PKA) catalytic subunit) resulting in a p.Leu206Arg substitution. Further sequencing identified this mutation in 13 of 63 tumors (35% of adenomas with overt Cushing's syndrome). PRKACA, GNAS and CTNNB1 mutations were mutually exclusive. Leu206 directly interacts with the regulatory subunit of PKA, PRKAR1A. Leu206Arg PRKACA loses PRKAR1A binding, increasing the phosphorylation of downstream targets. PKA activity induces cortisol production and cell proliferation, providing a mechanism for tumor development. These findings define distinct mechanisms underlying adrenal cortisol-producing tumors.
Collapse
Affiliation(s)
- Gerald Goh
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ute I. Scholl
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Division of Nephrology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - James M. Healy
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Murim Choi
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Center for Mendelian Genomics, New Haven, CT 06510, USA
| | - Manju L. Prasad
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carol Nelson-Williams
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - John W. Kuntsman
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Reju Korah
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Dimo Dietrich
- Institute of Pathology, University of Bonn, Bonn, Germany
| | - Matthias Haase
- Division of Endocrinology and Diabetology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Holger S. Willenberg
- Division of Endocrinology and Diabetology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tobias Carling
- Department of Surgery, Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Center for Mendelian Genomics, New Haven, CT 06510, USA
| |
Collapse
|
31
|
GNAS is frequently mutated in both low-grade and high-grade disseminated appendiceal mucinous neoplasms but does not affect survival. Hum Pathol 2014; 45:1737-43. [PMID: 24925222 DOI: 10.1016/j.humpath.2014.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/31/2023]
Abstract
We analyzed a series of 55 disseminated appendiceal mucinous neoplasms treated at our institution for GNAS and KRAS mutations in an attempt to correlate mutation status with clinicopathological findings and patient survival. GNAS mutations (p.R201H, c.602G>A and p.R201C, and c.602C>T) were identified in 17 (31%) of 55 of disseminated mucinous neoplasms and were found in 8 (35%) of 23 low-grade mucinous neoplasms, 7 (37%) of 19 high-grade mucinous adenocarcinomas lacking a signet ring cell component, and 2 (15%) of 13 high-grade mucinous adenocarcinomas with a signet ring cell component. All 7 mucinous adenocarcinomas composed of pure (>95%) signet ring cells harbored wild-type GNAS. There was no significant association between GNAS mutations and sex and age (both with P > .05) or between GNAS mutations and individual adverse histologic features including cytologic grade, destructive invasion, tumor cellularity, angiolymphatic invasion, perineural invasion, and signet ring cells (all with P > .05). KRAS mutations were identified in 22 (40%) of 55 disseminated mucinous neoplasms. GNAS-mutated disseminated appendiceal mucinous neoplasms more frequently harbored concurrent KRAS mutations compared with GNAS wild-type tumors (65% versus 29%, P = .018). GNAS mutations were not significantly associated with overall survival (both with P > .05). Only overall tumor grade was an independent predictor of overall survival in the multivariate analysis (P = .01). Our results indicate that GNAS mutations are frequently identified in both low-grade and high-grade disseminated appendiceal mucinous neoplasms indicating that GNAS mutation status cannot be used to distinguish between low-grade from high-grade appendiceal mucinous neoplasms.
Collapse
|
32
|
Makita N, Iiri T. Biased agonism: a novel paradigm in G protein-coupled receptor signaling observed in acquired hypocalciuric hypercalcemia. Endocr J 2014; 61:303-9. [PMID: 24240576 DOI: 10.1507/endocrj.ej13-0453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The classical model of G protein-coupled receptor (GPCR) activation is the two-state model, in which the GPCR exists in equilibrium between an active and inactive state. Based on this model, GPCR ligands have been classified as agonists, inverse agonists, or antagonists depending on their actions in shifting this equilibrium. Recently, however, accumulating evidence has indicated that GPCRs may exist in multiple active and inactive conformational states. In this situation, each ligand recognizes and stabilizes a specific conformation of the GPCR, leading to a set of specific biological effects. Based on this new model, a unique agonist or a combination of the usual agonist and an allosteric modulator may enable activation of a specific signaling pathway via a GPCR that activates multiple signals (biased agonism, functional selectivity). The calcium-sensing receptor autoantibody that we have identified in the serum of a patient with acquired hypocalciuric hypercalcemia (AHH) is the first example of a biased allosteric modulator of a GPCR working in a pathophysiological context. Our findings may indicate the presence of physiological allosteric modulators and provide new directions for the future drug development.
Collapse
Affiliation(s)
- Noriko Makita
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo 113-8655 Japan
| | | |
Collapse
|
33
|
Matthaei H, Wu J, Dal Molin M, Debeljak M, Lingohr P, Katabi N, Klimstra DS, Adsay NV, Eshleman JR, Schulick RD, Kinzler KW, Vogelstein B, Hruban RH, Maitra A. GNAS codon 201 mutations are uncommon in intraductal papillary neoplasms of the bile duct. HPB (Oxford) 2012; 14:677-83. [PMID: 22954004 PMCID: PMC3461374 DOI: 10.1111/j.1477-2574.2012.00504.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Activating point mutations of GNAS at codon 201 have been detected in approximately two thirds of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. Intraductal papillary neoplasms of the bile ducts (IPNBs) morphologically resemble pancreatic IPMNs. This study sought to assess the mutational status of GNAS at codon 201 in IPNBs. METHODS Thirty-four patients were included. DNA from microdissected IPNBs was subjected to a polymerase chain reaction and ligation method for the detection of GNAS mutations at codon 201 and of KRAS mutations at codon 12. Mutational status was compared with clinical and pathologic data. RESULTS The IPNBs had a median diameter of 3.5 cm and were located intrahepatically (n= 6), extrahepatically (n= 13), both intra- and extrahepatically (n= 4) or in the gallbladder (intracystic papillary neoplasms, n= 11). Most exhibited pancreatobiliary differentiation (n= 20), high-grade dysplasia (n= 26) and an associated adenocarcinoma (n= 20). Analysis of GNAS codon 201 identified only one mutant sample in a multifocal intestinal subtype intrahepatic IPNB with high-grade dysplasia. Six lesions harboured a KRAS codon 12 mutation. CONCLUSIONS GNAS codon 201 mutations are uncommon in IPNBs, by contrast with pancreatic IPMNs. More comprehensive molecular profiling is needed to uncover the pathways involved in IPNB development.
Collapse
Affiliation(s)
- Hanno Matthaei
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Surgery, University of BonnBonn, Germany
| | - Jian Wu
- Ludwig Center for Cancer Genetics, Johns Hopkins University School of MedicineBaltimore, MD, USA,State Key Laboratory of Cancer Biology, Cell Engineering Research Center & Department of Cell Biology, The Fourth Military Medical UniversityXi'an, China
| | - Marco Dal Molin
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Marija Debeljak
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | | - Nora Katabi
- Department of Pathology, Memorial Sloan–Kettering Cancer CenterNew York, NY, USA
| | - David S Klimstra
- Department of Pathology, Memorial Sloan–Kettering Cancer CenterNew York, NY, USA
| | - N Volkan Adsay
- Department of Pathology, Emory University School of MedicineAtlanta, GA, USA
| | - James R Eshleman
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Richard D Schulick
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Oncology, Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Anirban Maitra
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
34
|
Targeting Raf/MEK/ERK pathway in pituitary adenomas. Eur J Cancer 2012; 48:389-95. [DOI: 10.1016/j.ejca.2011.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/01/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
|
35
|
Wu J, Matthaei H, Maitra A, Molin MD, Wood LD, Eshleman JR, Goggins M, Canto MI, Schulick RD, Edil BH, Wolfgang CL, Klein AP, Diaz LA, Allen PJ, Schmidt CM, Kinzler KW, Papadopoulos N, Hruban RH, Vogelstein B. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med 2011; 3:92ra66. [PMID: 21775669 PMCID: PMC3160649 DOI: 10.1126/scitranslmed.3002543] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2% of the adult U.S. population harbors a pancreatic cyst. These often pose a difficult management problem because conventional criteria cannot always distinguish cysts with malignant potential from those that are innocuous. One of the most common cystic neoplasms of the pancreas, and a bona fide precursor to invasive adenocarcinoma, is called intraductal papillary mucinous neoplasm (IPMN). To help reveal the pathogenesis of these lesions, we purified the DNA from IPMN cyst fluids from 19 patients and searched for mutations in 169 genes commonly altered in human cancers. In addition to the expected KRAS mutations, we identified recurrent mutations at codon 201 of GNAS. A larger number (113) of additional IPMNs were then analyzed to determine the prevalence of KRAS and GNAS mutations. In total, we found that GNAS mutations were present in 66% of IPMNs and that either KRAS or GNAS mutations could be identified in 96%. In eight cases, we could investigate invasive adenocarcinomas that developed in association with IPMNs containing GNAS mutations. In seven of these eight cases, the GNAS mutations present in the IPMNs were also found in the invasive lesion. GNAS mutations were not found in other types of cystic neoplasms of the pancreas or in invasive adenocarcinomas not associated with IPMNs. In addition to defining a new pathway for pancreatic neoplasia, these data suggest that GNAS mutations can inform the diagnosis and management of patients with cystic pancreatic lesions.
Collapse
Affiliation(s)
- Jian Wu
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Hanno Matthaei
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Anirban Maitra
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Marco Dal Molin
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Laura D. Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - James R. Eshleman
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Marcia I. Canto
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Richard D. Schulick
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Barish H. Edil
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Christopher L. Wolfgang
- Department of Surgery, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Alison P. Klein
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Luis A. Diaz
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Peter J. Allen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - C. Max Schmidt
- Departments of Surgery, Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, USA
| | - Kenneth W. Kinzler
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| | - Ralph H. Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Howard Hughes Medical Institutions, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA
| |
Collapse
|
36
|
Abstract
Over the past 20 years, naturally occurring mutations that affect G protein-coupled receptors (GPCRs) have been identified, mainly in patients with endocrine diseases. The study of loss-of-function or gain-of-function mutations has contributed to our understanding of the pathophysiology of several diseases with classic hypophenotypes or hyperphenotypes of the target endocrine organs, respectively. Simultaneously, study of the mutant receptors ex vivo was instrumental in delineating the relationships between the structure and function of these important physiological and pharmacological molecules. Now that access to the crystallographic structure of a few GPCRs is available, the mechanics of these receptors can be studied at the atomic level. Progress in the fields of cell biology, molecular pharmacology and proteomics has also widened our view of GPCR functions. Initially considered simply as guanine nucleotide exchange factors capable of activating G protein-dependent regulatory cascades, GPCRs are now known to display several additional characteristics, each susceptible to alterations by disease-causing mutations. These characteristics include functionally important basal activity of the receptor; differential activation of various G proteins; differential activation of G protein-dependent and independent effects (biased agonism); interaction with proteins that modify receptor function; dimerization-dependent effects; and interaction with allosteric modulators. This Review attempts to illustrate how natural mutations of GPCR could contribute to our understanding of these novel facets of GPCR biology.
Collapse
Affiliation(s)
- Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | |
Collapse
|
37
|
Wilkins JF, Úbeda F. Diseases associated with genomic imprinting. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:401-45. [PMID: 21507360 DOI: 10.1016/b978-0-12-387685-0.00013-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genomic imprinting is the phenomenon where the expression of a locus differs between the maternally and paternally inherited alleles. Typically, this manifests as transcriptional silencing of one of the alleles, although many genes are imprinted in a tissue- or isoform-specific manner. Diseases associated with imprinted genes include various cancers, disorders of growth and metabolism, and disorders in neurodevelopment, cognition, and behavior, including certain major psychiatric disorders. In many cases, the disease phenotypes associated with dysfunction at particular imprinted loci can be understood in terms of the evolutionary processes responsible for the origin of imprinting. Imprinted gene expression represents the outcome of an intragenomic evolutionary conflict, where natural selection favors different expression strategies for maternally and paternally inherited alleles. This conflict is reasonably well understood in the context of the early growth effects of imprinted genes, where paternally inherited alleles are selected to place a greater demand on maternal resources than are maternally inherited alleles. Less well understood are the origins of imprinted gene expression in the brain, and their effects on cognition and behavior. This chapter reviews the genetic diseases that are associated with imprinted genes, framed in terms of the evolutionary pressures acting on gene expression at those loci. We begin by reviewing the phenomenon and evolutionary origins of genomic imprinting. We then discuss diseases that are associated with genetic or epigenetic defects at particular imprinted loci, many of which are associated with abnormalities in growth and/or feeding behaviors that can be understood in terms of the asymmetric pressures of natural selection on maternally and paternally inherited alleles. We next described the evidence for imprinted gene effects on adult cognition and behavior, and the possible role of imprinted genes in the etiology of certain major psychiatric disorders. Finally, we conclude with a discussion of how imprinting, and the evolutionary-genetic conflicts that underlie it, may enhance both the frequency and morbidity of certain types of diseases.
Collapse
|
38
|
Ngai YF, Chijiwa C, Mercimek-Mahmutoglu S, Stewart L, Yong SL, Robinson WP, Gibson WT. Pseudohypoparathyroidism type 1a and the GNAS p.R231H mutation: Somatic mosaicism in a mother with two affected sons. Am J Med Genet A 2010; 152A:2784-90. [DOI: 10.1002/ajmg.a.33172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Chesnokova V, Melmed S. Pituitary senescence: the evolving role of Pttg. Mol Cell Endocrinol 2010; 326:55-9. [PMID: 20153804 PMCID: PMC2906651 DOI: 10.1016/j.mce.2010.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 02/08/2010] [Indexed: 01/06/2023]
Abstract
Despite the high prevalence of pituitary adenomas they are invariably benign, indicative of unique intrinsic mechanisms controlling pituitary cell proliferation. Cellular senescence is characterized by a largely irreversible cell cycle arrest and constitutes a strong anti-proliferative response, which can be triggered by DNA damage, chromosomal instability and aneuploidy, loss of tumor suppressive signaling or oncogene activation. In vivo senescence is an important protective mechanism against cancer. Here we discuss prospective mechanisms underlying senescence-associated molecular pathways activated in benign pituitary adenomas. Both deletion and over-expression of pituitary tumor transforming gene (Pttg) promote chromosomal instability and aneuploidy. Pttg deletion abrogates tumor development by activating p53/p21-dependent senescence pathways. Abundant PTTG in GH-secreting pituitary adenomas also triggers p21-dependent senescence. Pituitary p21 may therefore safeguard against further chromosomal instability by constraining pituitary tumor growth. These observations point to senescence as a target for effective therapy for both tumor silencing and growth restraint towards development of pituitary malignancy.
Collapse
Affiliation(s)
- Vera Chesnokova
- Department of Medicine, Division of Endocrinology and Metabolism, Cedars Sinai Medical Center-David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
40
|
Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis 2010; 5:17. [PMID: 20537182 PMCID: PMC2903524 DOI: 10.1186/1750-1172-5-17] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 06/10/2010] [Indexed: 01/15/2023] Open
Abstract
Congenital hypothyroidism (CH) occurs in approximately 1:2,000 to 1:4,000 newborns. The clinical manifestations are often subtle or not present at birth. This likely is due to trans-placental passage of some maternal thyroid hormone, while many infants have some thyroid production of their own. Common symptoms include decreased activity and increased sleep, feeding difficulty, constipation, and prolonged jaundice. On examination, common signs include myxedematous facies, large fontanels, macroglossia, a distended abdomen with umbilical hernia, and hypotonia. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Thyroid dysgenesis accounts for 85% of permanent, primary CH, while inborn errors of thyroid hormone biosynthesis (dyshormonogeneses) account for 10-15% of cases. Secondary or central CH may occur with isolated TSH deficiency, but more commonly it is associated with congenital hypopitiutarism. Transient CH most commonly occurs in preterm infants born in areas of endemic iodine deficiency. In countries with newborn screening programs in place, infants with CH are diagnosed after detection by screening tests. The diagnosis should be confirmed by finding an elevated serum TSH and low T4 or free T4 level. Other diagnostic tests, such as thyroid radionuclide uptake and scan, thyroid sonography, or serum thyroglobulin determination may help pinpoint the underlying etiology, although treatment may be started without these tests. Levothyroxine is the treatment of choice; the recommended starting dose is 10 to 15 mcg/kg/day. The immediate goals of treatment are to rapidly raise the serum T4 above 130 nmol/L (10 ug/dL) and normalize serum TSH levels. Frequent laboratory monitoring in infancy is essential to ensure optimal neurocognitive outcome. Serum TSH and free T4 should be measured every 1-2 months in the first 6 months of life and every 3-4 months thereafter. In general, the prognosis of infants detected by screening and started on treatment early is excellent, with IQs similar to sibling or classmate controls. Studies show that a lower neurocognitive outcome may occur in those infants started at a later age (> 30 days of age), on lower l-thyroxine doses than currently recommended, and in those infants with more severe hypothyroidism.
Collapse
Affiliation(s)
- Maynika V Rastogi
- Department of Pediatrics, Division of Endocrinology, Oregon Health & Science University, 707 SW Gaines Street, Portland, OR, USA
| | | |
Collapse
|
41
|
Feramisco JD, Tsao H, Siegel DH. Genetics for the Practicing Dermatologist. ACTA ACUST UNITED AC 2010; 29:127-36. [DOI: 10.1016/j.sder.2010.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Iiri T, Makita N. [Functionally selective activation in Ca-sensing receptor: a hint from a rare disease]. Nihon Yakurigaku Zasshi 2009; 134:244-247. [PMID: 19915282 DOI: 10.1254/fpj.134.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
43
|
Völzke H, Bornhorst A, Rimmbach C, Petersenn H, Geissler I, Nauck M, Wallaschofski H, Kroemer HK, Rosskopf D. Common variants in the G protein beta3 subunit gene and thyroid disorders in a formerly iodine-deficient population. Thyroid 2009; 19:1115-9. [PMID: 19772422 DOI: 10.1089/thy.2009.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Heterotrimeric G proteins are key mediators of signals from membrane receptors-including the thyroid-stimulating hormone (TSH) receptor-to cellular effectors. Gain-of-function mutations in the TSH receptor and the Galpha(S) subunit occur frequently in hyperfunctioning thyroid nodules and differentiated thyroid carcinomas, whereby the T allele of a common polymorphism (825C>T, rs5443) in the G protein beta3 subunit gene (GNB3) is associated with increased G protein-mediated signal transduction and a complex phenotype. The aim of this study was to investigate whether this common polymorphism affects key parameters of thyroid function and morphology and influences the pathogenesis of thyroid diseases in the general population. METHODS The population-based cross-sectional Study of Health in Pomerania is a general health survey with focus on thyroid diseases in northeast Germany, a formerly iodine-deficient area. Data from 3428 subjects (1800 men and 1628 women) were analyzed for an association of the GNB3 genotype with TSH, free triiodothyronine and thyroxine levels, urine iodine and thiocyanate excretion, and thyroid ultrasound morphology including thyroid volume, presence of goiter, and thyroid nodules. RESULTS There was no association between GNB3 genotype status and the functional or morphological thyroid parameters investigated, neither in crude analyses nor upon multivariable analyses including known confounders of thyroid disorders. CONCLUSIONS Based on the data from this large population-based survey, we conclude that the GNB3 825C>T polymorphism does not affect key parameters of thyroid function and morphology in the general population of a formerly iodine-deficient area.
Collapse
Affiliation(s)
- Henry Völzke
- Study of Health in Pomerania (SHIP)/Clinical-Epidemiological Research, Institute of Community Medicine, Ernst-Moritz-Arndt University, Greifswald D-17487, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Molecular biomarkers for autoimmune retinopathies: significance of anti-transducin-alpha autoantibodies. Exp Mol Pathol 2009; 87:195-203. [PMID: 19744478 DOI: 10.1016/j.yexmp.2009.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/19/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
Abstract
Autoimmune retinopathies (AR) are uncommon retinal degenerations with vision loss associated with unique clinical symptoms and findings and with serum anti-retinal autoantibodies. The experimental and clinical studies corroborate that autoantibodies in high titers can penetrate into the retina affecting function of the target antigens, which leads to retinal dysfunction and degeneration. Anti-recoverin and anti-enolase alpha-enolase autoantibodies were more frequently recognized in AR but autoantibodies with other specificities have also been documented, indicating immunological heterogeneity. Our goal was to examine the associations of anti-retinal autoantibodies with retinopathy in order to identify molecular biomarkers for better diagnosis and prognosis of retinopathies. In these studies we examined 39 patients (10 with cancers) of average age of approximately 57 years old with sudden onset of unexplained progressive vision loss and the presence of circulating serum autoantibodies against 40-kDa retinal protein. The patients presented the retinal phenotype characterized by defects in visual fields and reduced scotopic ERG responses. Anti-40-kDa autoantibodies had specificity to the amino terminus of transducin-alpha. None of the normal subjects' sera had anti-40-kDa autoantibodies. In conclusion, the clinical phenotype of patients with anti-transducin-alpha autoantibodies differed from other phenotypes of AR. These patients, often women at a ratio approximately 2:1, had defects in rod (scotopic) photoreceptor function and typically did not have cancers, whereas the anti-recoverin phenotype is associated with cancer and severe loss of rod and cones function, and anti-enolase retinopathy typically presents with cone dysfunction and is equal in cancer and non-cancer patients. Our studies suggest that anti-transducin autoantibodies can serve as molecular biomarkers for retinal phenotypes and could be used for progression of retinal dysfunction and degeneration.
Collapse
|
45
|
Ragazzon B, Cazabat L, Rizk-Rabin M, Assie G, Groussin L, Fierrard H, Perlemoine K, Martinez A, Bertherat J. Inactivation of the Carney complex gene 1 (protein kinase A regulatory subunit 1A) inhibits SMAD3 expression and TGF beta-stimulated apoptosis in adrenocortical cells. Cancer Res 2009; 69:7278-84. [PMID: 19738044 DOI: 10.1158/0008-5472.can-09-1601] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclic AMP signaling pathway can be altered at multiple levels in endocrine tumors. Its central component is the protein kinase A (PKA). Carney complex (CNC) is a hereditary multiple neoplasia syndrome resulting from inactivating mutations of the gene encoding the PKA type I alpha regulatory subunit (PRKAR1A). Primary pigmented nodular adrenocortical disease is the most frequent endocrine tumor of CNC. Transforming growth factor beta (TGFbeta) regulates adrenal cortex physiology and signals through SMAD2/3. We used an interference approach to test the effects of PRKAR1A inactivation on PKA and TGFbeta pathways and on apoptosis in adrenocortical cells. PRKAR1A silencing stimulates PKA activity and increases transcriptional activity of a PKA reporter construct and expression of the endogenous PKA target, NR4A2, under basal conditions or after forskolin stimulation. PRKAR1A inactivation also decreased SMAD3 mRNA and protein levels via PKA, altering the cellular response to TGFbeta. SMAD3 expression was also inhibited by adrenocorticorticotropic hormone in the mouse adrenal gland and by forskolin in H295R cells. TGFbeta stimulates apoptosis in H295R cells, and this effect was counteracted by PRKAR1A inactivation. PRKAR1A silencing decreased the percentage of apoptotic cells and the cleavage of apoptosis mediators [caspase-3, poly(ADP-ribose) polymerase, and lamin A/C]. Inactivating mutations of PRKAR1A observed in adrenocortical tumors alter SMAD3, leading to resistance to TGFbeta-induced apoptosis. This cross-talk between the PKA and the TGFbeta signaling pathways reveals a new mechanism of endocrine tumorigenesis.
Collapse
Affiliation(s)
- Bruno Ragazzon
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Human diseases associated with GPR54 mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009. [PMID: 20374724 DOI: 10.1016/s1877-1173(09)88002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
G protein-coupled receptor 54 (GPR54) was first described as an orphan receptor in the rat brain one decade ago. At that time, all we knew about this receptor was that it had a high homology with other G protein-coupled receptors, like galanin receptors. Later, its endogenous ligand, kisspeptin, was identified and the kisspeptin-GPR54 system became one of the most important excitatory neuroendocrine regulators of puberty initiation. Several loss-of-function mutations in GPR54 gene were described to be associated with sporadic and familial normosmic isolated hypogonadotropic hypogonadism phenotype in humans. Consistent with this fact, knockout mice for gpr54(-/-) recapitulated the human phenotype of the lack of reproductive maturation. On the other hand, a unique activating mutation (R386P) was recently described in this receptor in a girl with central precocious puberty. This missense mutation located at carboxy-terminal tail of the GPR54 leads to prolonged activation of intracellular signaling pathways in response to kisspeptin, suggesting an uncommon model of G protein-coupled receptor activation. This chapter will describe the kisspeptin-GPR54 complex physiology and its current role in human diseases.
Collapse
|
47
|
Abstract
As commonly encountered, pituitary adenomas are invariably benign. We therefore studied protective pituitary proliferative mechanisms. Pituitary tumor transforming gene (Pttg) deletion results in pituitary p21 induction and abrogates tumor development in Rb(+/-)Pttg(-/-) mice. p21 disruption restores attenuated Rb(+/-)Pttg(-/-) pituitary proliferation rates and enables high penetrance of pituitary, but not thyroid, tumor growth in triple mutant animals (88% of Rb(+/-) and 72% of Rb(+/-)Pttg(-/-)p21(-/-) vs. 30% of Rb(+/-)Pttg(-/-) mice developed pituitary tumors, P < 0.001). p21 deletion also accelerated S-phase entry and enhanced transformation rates in triple mutant MEFs. Intranuclear p21 accumulates in Pttg-null aneuploid GH-secreting cells, and GH(3) rat pituitary tumor cells overexpressing PTTG also exhibited increased levels of mRNA for both p21 (18-fold, P < 0.01) and ATM (9-fold, P < 0.01). PTTG is abundantly expressed in human pituitary tumors, and in 23 of 26 GH-producing pituitary adenomas with high PTTG levels, senescence was evidenced by increased p21 and SA-beta-galactosidase. Thus, either deletion or overexpression of Pttg promotes pituitary cell aneuploidy and p53/p21-dependent senescence, particularly in GH-secreting cells. Aneuploid pituitary cell p21 may constrain pituitary tumor growth, thus accounting for the very low incidence of pituitary carcinomas.
Collapse
|
48
|
Bondioni S, Angioni AR, Corbetta S, Locatelli M, Ferrero S, Ferrante E, Mantovani G, Olgiati L, Beck-Peccoz P, Spada A, Lania AG. Effect of 9-cis retinoic acid on dopamine D2 receptor expression in pituitary adenoma cells. Exp Biol Med (Maywood) 2008; 233:439-46. [PMID: 18367633 DOI: 10.3181/0704-rm-94] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The dopamine receptor subtype 2 (D2R) promoter contains a functional retinoic acid response element involved in the control of D2R expression. The aim of the study was to evaluate the effect of 9-cis retinoic acid (9-cis RA) on D2R protein expression in human pituitary adenomas and GH3 cell line. Treatment with 9-cis RA (100 nM for 48 hrs) caused a 109 +/- 32% increase of basal D2R levels in five of eight growth hormone (GH)-secreting adenomas (GH-omas), a 129 +/- 28% increase in 7 of 11 nonfunctioning adenomas, and no effect in two resistant prolactinomas by Western blotting. The lack of D2R induction in some tumors was not associated with a different pattern of retinoid x receptor (RXR) and retinoic acid receptor (RAR) isoform expression that was similar in all tumors by immunohistochemistry. While the induction of D2R did not affect the slight but significant inhibitory effect exerted by dopamine (10 nM) on in vitro GH release by GH-oma cultured cells, in pituitary GH3 cell lines cis-9 RA enhanced the dopamine-induced inhibition of in vitro GH release (% inhibition: 16 +/- 2 versus 26 +/- 5, P < 0.05), cell proliferation (25 +/- 2% versus 44 +/- 5%, P < 0.05) and cell viability (16 +/- 0.8% versus 29 +/- 1%, P < 0.05), likely by activating caspase-3 (28 +/- 3% versus basal, P < 0.05). In conclusion, this study provides novel evidence for a permissive role of retinoids on the expression of D2R in a good proportion of pituitary tumors and on the generation of pro-apoptotic signals in GH3 cell line.
Collapse
Affiliation(s)
- Sara Bondioni
- Endocrine Unit, Department of Medical Sciences, University of Milan, Fondazione Ospedale Maggiore IRCCS, 20122 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
De Souza CT, Pereira-da-Silva M, Araujo EP, Morari J, Alvarez-Rojas F, Bordin S, Moreira-Filho DC, Carvalheira JB, Saad MJ, Velloso LA. Distinct subsets of hypothalamic genes are modulated by two different thermogenesis-inducing stimuli. Obesity (Silver Spring) 2008; 16:1239-47. [PMID: 18356833 DOI: 10.1038/oby.2008.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity results from an imbalance between food intake and energy expenditure, two vital functions that are tightly controlled by specialized neurons of the hypothalamus. The complex mechanisms that integrate these two functions are only beginning to be deciphered. The objective of this study was to determine the effect of two thermogenesis-inducing conditions, i.e., ingestion of a high-fat (HF) diet and exposure to cold environment, on the expression of 1,176 genes in the hypothalamus of Wistar rats. Hypothalamic gene expression was evaluated using a cDNA macroarray approach. mRNA and protein expressions were determined by reverse-transcription PCR (RT-PCR) and immunoblot. Cold exposure led to an increased expression of 43 genes and to a reduced expression of four genes. HF diet promoted an increased expression of 90 genes and a reduced expression of 78 genes. Only two genes (N-methyl-D-aspartate (NMDA) receptor 2B and guanosine triphosphate (GTP)-binding protein G-alpha-i1) were similarly affected by both thermogenesis-inducing conditions, undergoing an increment of expression. RT-PCR and immunoblot evaluations confirmed the modulation of NMDA receptor 2B and GTP-binding protein G-alpha-i1, only. This corresponds to 0.93% of all the responsive genes and 0.17% of the analyzed genes. These results indicate that distinct environmental thermogenic stimuli can modulate predominantly distinct profiles of genes reinforcing the complexity and multiplicity of the hypothalamic mechanisms that regulate energy conservation and expenditure.
Collapse
Affiliation(s)
- Cláudio T De Souza
- Department of Internal Medicine, State University of Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang YC, Zhang YL, Wang WB, Gao G, Lu FY. Screening and identification of ATP/GTP binding protein 1 gene expressed highly in gastric cancer. Shijie Huaren Xiaohua Zazhi 2008; 16:780-783. [DOI: 10.11569/wcjd.v16.i7.780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the molecular mechanism of gastric carcinogenesis, screen and validate the genes expressed differently in gastric cancer.
METHODS: Messenger RNA differential display polymerase chain reaction (DD-PCR) was employed to search differently expressed fragments, some of which were cloned and sequenced. By homologous analysis in GenBank, the corresponding homologous genes of those fragments were found. The corresponding genes of those differently expressed fragments were validated by real-time semi-quantitative and quantitative PCR.
RESULTS: By DD-PCR, one expressed sequence tag (EST) was identified to be ATP/GTP binding protein 1 (A/GTPBP1) gene. The result of real-time semi-quantitative and quantitative PCR showed that the expression level of A/GTPBP1 gene in gastric cancer tissues was significantly higher than that in normal tissues. The open reading frame (ORF) of A/GTPBP1 gene, which encodes 1186 amino acids, was 3561-base pair long. The molecular weight was about 84.4 kDa. Protein sequence similarity analysis showed that A/GTPBP1 was a member of the G protein family.
CONCLUSION: The over-expression of AGTPBP1 gene in gastric cancer may play an important role in gastric carcinogenesis.
Collapse
|