1
|
Bertolini F, Schiavo G, Bovo S, Ribani A, Dall'Olio S, Zambonelli P, Gallo M, Fontanesi L. Signatures of selection analyses reveal genomic differences among three heavy pig breeds that constitute the genetic backbone of a dry-cured ham production system. Animal 2024; 18:101335. [PMID: 39405958 DOI: 10.1016/j.animal.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 11/18/2024] Open
Abstract
The Italian pig farming industry is unique in its focus on raising heavy pigs primarily for the production of high-quality dry-cured hams. These products require pigs to be slaughtered at a live weight of around 170 kg at 9 months of age. The primary breeds used in this system are Italian Duroc, Italian Landrace, and Italian Large White which are crossed to produce lines that meet standard requirements. Over the past four decades, selection and breeding programmes for these breeds have been subjected to distinct selective pressures to highlight the characteristics of each breed. In this study, we investigated the genome of these breeds by analysing high-density single nucleotide polymorphism data from over 9 000 pigs to scan for signatures of selection using four different methods, two within breeds and two across breeds. This allowed to identify the genomic regions that differentiate these breeds as well as any relevant genes and biological terms. On a global scale, we found that the Italian Duroc breed exhibited a higher genetic differentiation from the Italian Landrace and Italian Large White breeds, with a pairwise FST value of 0.20 compared with the 0.13 between Italian Landrace and Italian Large White. This may reflect either their different origins or the different breeding goals, which are more similar for the Italian Landrace and Italian Large White breeds. Despite these genetic differences at a global level, few signatures of selection regions reached complete fixation, possibly due to challenges in detecting selection linked to quantitative polygenic traits. The differences among the three breeds are confirmed by the low level of overlap in the regions detected. Genetic enrichment analyses of the three breeds revealed pathways and genes related to various productive traits associated with growth and fat deposition. This may indicate a common selection direction aimed at enhancing specific production traits, though different biological mechanisms are likely targeted by the same directional selection in these three breeds. Therefore, these genes may play a critical role in determining the distinctive characteristics of Italian Duroc, Italian Landrace, and Italian Large White, and potentially influence the traits in crossbred pigs derived from them. Overall, the insights gained from this study will contribute to understanding how directional selection has shaped the genome of these heavy pig breeds and to better address selection strategies aimed at enhancing the meat processing industry linked with dry-cured ham production chains.
Collapse
Affiliation(s)
- F Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| | - G Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - A Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Dall'Olio
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - P Zambonelli
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Roma, Italy
| | - L Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
George L, Alex R, Gowane G, Vohra V, Joshi P, Kumar R, Verma A. Weighted single step GWAS reveals genomic regions associated with economic traits in Murrah buffaloes. Anim Biotechnol 2024; 35:2319622. [PMID: 38437001 DOI: 10.1080/10495398.2024.2319622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The objective of the present study was to identify genomic regions influencing economic traits in Murrah buffaloes using weighted single step Genome Wide Association Analysis (WssGWAS). Data on 2000 animals, out of which 120 were genotyped using a double digest Restriction site Associated DNA (ddRAD) sequencing approach. The phenotypic data were collected from NDRI, India, on growth traits, viz., body weight at 6M (month), 12M, 18M and 24M, production traits like 305D (day) milk yield, lactation length (LL) and dry period (DP) and reproduction traits like age at first calving (AFC), calving interval (CI) and first service period (FSP). The biallelic genotypic data consisted of 49353 markers post-quality check. The heritability estimates were moderate to high, low to moderate, low for growth, production, reproduction traits, respectively. Important genomic regions explaining more than 0.5% of the total additive genetic variance explained by 30 adjacent SNPs were selected for further analysis of candidate genes. In this study, 105 genomic regions were associated with growth, 35 genomic regions with production and 42 window regions with reproduction traits. Different candidate genes were identified in these genomic regions, of which important are OSBPL8, NAP1L1 for growth, CNTNAP2 for production and ILDR2, TADA1 and POGK for reproduction traits.
Collapse
Affiliation(s)
- Linda George
- National Dairy Research Institute, Karnal, India
| | - Rani Alex
- National Dairy Research Institute, Karnal, India
| | - Gopal Gowane
- National Dairy Research Institute, Karnal, India
| | - Vikas Vohra
- National Dairy Research Institute, Karnal, India
| | - Pooja Joshi
- National Dairy Research Institute, Karnal, India
| | - Ravi Kumar
- National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
3
|
Verschuuren MUMY, Schlotter YM, Leegwater PAJ. Investigation of the association of the MLPH gene with seasonal canine flank alopecia in Rhodesian Ridgeback dogs. Canine Med Genet 2024; 11:5. [PMID: 39449035 PMCID: PMC11515330 DOI: 10.1186/s40575-024-00139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Canine flank alopecia (CFA) is a skin condition in dogs characterized by non-inflammatory, seasonally recurring episodes of localized hair loss and often hyperpigmentation of the affected skin. A genetic basis is suspected because of the predisposition in certain breeds, such as the Rhodesian Ridgeback (RR). This study investigated the possible role of the canine melanophylin (MLPH) gene in CFA among RRs through pedigree analysis and MLPH genotyping. RESULTS We included 24 CFA-affected and 12 non-CFA-affected control RRs. Pedigree analysis revealed inbreeding loops and close family relationships among the CFA-affected dogs, indicating the potential heritability of CFA. MLPH genotyping revealed 3/24 (12.5%) affected dogs and 1/12 (8.3%) control dogs to be heterozygous (Dd) for the dilute (d) allele, indicating no difference between these groups. None of the dogs were found to be homozygous (dd). Statistical analysis did not reveal an association between the MLPH-d allele and CFA. CONCLUSIONS The familial patterns among affected RRs observed through pedigree analysis suggest a potential genetic component in CFA. However, our findings from the MLPH genotyping did not reveal that the MLPH gene is involved in this skin condition in RRs. However, further genetic studies are needed to clarify the etiology of CFA in RR dogs.
Collapse
Affiliation(s)
| | | | - Peter A J Leegwater
- Expertise Centre of Genetics, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Rubin CJ, Hodge M, Naboulsi R, Beckman M, Bellone RR, Kallenberg A, J'Usrey S, Ohmura H, Seki K, Furukawa R, Ohnuma A, Davis BW, Tozaki T, Lindgren G, Andersson L. An intronic copy number variation in Syntaxin 17 determines speed of greying and melanoma incidence in Grey horses. Nat Commun 2024; 15:7510. [PMID: 39209879 PMCID: PMC11362437 DOI: 10.1038/s41467-024-51898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The Greying with age phenotype in horses involves loss of hair pigmentation whereas skin pigmentation is not reduced, and a predisposition to melanoma. The causal mutation was initially reported as a duplication of a 4.6 kb intronic sequence in Syntaxin 17. The speed of greying varies considerably among Grey horses. Here we demonstrate the presence of two different Grey alleles, G2 carrying two tandem copies of the duplicated sequence and G3 carrying three. The latter is by far the most common allele, probably due to strong selection for the striking white phenotype. Our results reveal a remarkable dosage effect where the G3 allele is associated with fast greying and high incidence of melanoma whereas G2 is associated with slow greying and low incidence of melanoma. The copy number expansion transforms a weak enhancer to a strong melanocyte-specific enhancer that underlies hair greying (G2 and G3) and a drastically elevated risk of melanoma (G3 only). Our direct pedigree-based observation of the origin of a G2 allele from a G3 allele by copy number contraction demonstrates the dynamic evolution of this locus and provides the ultimate evidence for causality of the copy number variation of the 4.6 kb intronic sequence.
Collapse
Affiliation(s)
- Carl-Johan Rubin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Institute of Marine Research, Bergen, Norway
| | - McKaela Hodge
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Rakan Naboulsi
- Department of Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, 17177, Stockholm, Sweden
| | | | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Angelica Kallenberg
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Stephanie J'Usrey
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | - Hajime Ohmura
- Racehorse hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan
| | - Kazuhiro Seki
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Risako Furukawa
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Gabriella Lindgren
- Department of Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
5
|
Buckley RM, Ostrander EA. Large-scale genomic analysis of the domestic dog informs biological discovery. Genome Res 2024; 34:811-821. [PMID: 38955465 PMCID: PMC11293549 DOI: 10.1101/gr.278569.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features. Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with almost 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior, morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition, we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geographic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.
Collapse
Affiliation(s)
- Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Abitbol M, Dufaure de Citres C, Rudd Garces G, Lühken G, Lyons LA, Gache V. Different Founding Effects Underlie Dominant Blue Eyes (DBE) in the Domestic Cat. Animals (Basel) 2024; 14:1845. [PMID: 38997957 PMCID: PMC11240321 DOI: 10.3390/ani14131845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
During the last twenty years, minimal white spotting associated with blue eyes was selected by feline breeders to create the Altai, Topaz, and Celestial breeds. Additionally, certain breeders introduced this trait in their lineages of purebred cats. The trait has been called "dominant blue eyes (DBE)" and was confirmed to be autosomal dominant in all lineages. DBE was initially described in outbred cats from Kazakhstan and Russia and in two purebred lineages of British cats from Russia, as well as in Dutch Maine Coon cats, suggesting different founding effects. We have previously identified two variants in the Paired Box 3 (PAX3) gene associated with DBE in Maine Coon and Celestial cats; however, the presence of an underlying variant remains undetermined in other DBE breeding lines. Using a genome-wide association study, we identified a single region on chromosome C1 that was associated with DBE in British cats. Within that region, we identified PAX3 as the strongest candidate gene. Whole-genome sequencing of a DBE cat revealed an RD-114 retrovirus LTR (long terminal repeat) insertion within PAX3 intron 4 (namely NC_018730.3:g.206975776_206975777insN[433]) known to contain regulatory sequences. Using a panel of 117 DBE cats, we showed that this variant was fully associated with DBE in two British lineages, in Altai cats, and in some other DBE lineages. We propose that this NC_018730.3:g.206975776_206975777insN[433] variant represents the DBEALT (Altai Dominant Blue Eye) allele in the domestic cat. Finally, we genotyped DBE cats from 14 lineages for the three PAX3 variants and showed that they were not present in four lineages, confirming genetic heterogeneity of the DBE trait in the domestic cat.
Collapse
Affiliation(s)
- Marie Abitbol
- Univ Lyon, VetAgro Sup, 69280 Marcy-l'Etoile, France
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Rockefeller, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | | | | | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Vincent Gache
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Rockefeller, Université Claude Bernard Lyon 1, 69008 Lyon, France
| |
Collapse
|
7
|
Lee SH, Wang CY, Li IJ, Abe G, Ota KG. Exploring the origin of a unique mutant allele in twin-tail goldfish using CRISPR/Cas9 mutants. Sci Rep 2024; 14:8716. [PMID: 38622170 PMCID: PMC11018756 DOI: 10.1038/s41598-024-58448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Artificial selection has been widely applied to genetically fix rare phenotypic features in ornamental domesticated animals. For many of these animals, the mutated loci and alleles underlying rare phenotypes are known. However, few studies have explored whether these rare genetic mutations might have been fixed due to competition among related mutated alleles or if the fixation occurred due to contingent stochastic events. Here, we performed genetic crossing with twin-tail ornamental goldfish and CRISPR/Cas9-mutated goldfish to investigate why only a single mutated allele-chdS with a E127X stop codon (also called chdAE127X)-gives rise to the twin-tail phenotype in the modern domesticated goldfish population. Two closely related chdS mutants were generated with CRISPR/Cas9 and compared with the E127X allele in F2 and F3 generations. Both of the CRISPR/Cas9-generated alleles were equivalent to the E127X allele in terms of penetrance/expressivity of the twin-tail phenotype and viability of carriers. These findings indicate that multiple truncating mutations could have produced viable twin-tail goldfish. Therefore, the absence of polymorphic alleles for the twin-tail phenotype in modern goldfish likely stems from stochastic elimination or a lack of competing alleles in the common ancestor. Our study is the first experimental comparison of a singular domestication-derived allele with CRISPR/Cas9-generated alleles to understand how genetic fixation of a unique genotype and phenotype may have occurred. Thus, our work may provide a conceptual framework for future investigations of rare evolutionary events in domesticated animals.
Collapse
Affiliation(s)
- Shu-Hua Lee
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Chen-Yi Wang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Nishi-cho 86, Yonago, 683-8503, Japan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan.
| |
Collapse
|
8
|
Morel E, Malineau L, Venet C, Gaillard V, Péron F. Prioritization of Appearance over Health and Temperament Is Detrimental to the Welfare of Purebred Dogs and Cats. Animals (Basel) 2024; 14:1003. [PMID: 38612242 PMCID: PMC11011023 DOI: 10.3390/ani14071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Fashions in the appearance of purebred dogs and cats are encouraged by celebrity culture, social media, and online impulse buying. The popularity of characteristics perceived as cute, quirky, and anthropomorphic has driven increasingly exaggerated breed features appealing to aesthetics rather than health. 'Hypertypes' of some breeds have emerged that take a breed's distinctive appearance to extremes beyond the intended interpretation of breed standards. This has severe, direct and indirect health and welfare consequences. Extreme conformations are associated with chronic health conditions including brachycephalic obstructive airway disorder, ocular, dental, skin, and musculoskeletal disorders. Puppy and kitten farms and illegal traders that meet the demand for hypertypes are associated with poor husbandry that neglects the physical, behavioral, and mental health of parents and offspring. A multidimensional approach involving collaboration between breeders, geneticists, owners, veterinarians, kennel clubs, cat fanciers' associations, animal charities, the academic and research communities, commercial enterprises, and governments is needed to safeguard breeds and tackle these challenges. There are many ongoing initiatives by national kennel clubs and global partnerships to educate pet owners and support responsible pet ownership and sustainable breeding. The resounding message is that health, temperament, and well-being must be prioritized over appearance.
Collapse
Affiliation(s)
| | | | | | - Virginie Gaillard
- Royal Canin, 30470 Aimargues, France; (E.M.); (L.M.); (C.V.); (F.P.)
| | | |
Collapse
|
9
|
Kieler IN, Persson SM, Hagman R, Marinescu VD, Hedhammar Å, Strandberg E, Lindblad-Toh K, Arendt ML. Genome wide association study in Swedish Labrador retrievers identifies genetic loci associated with hip dysplasia and body weight. Sci Rep 2024; 14:6090. [PMID: 38480780 PMCID: PMC10937653 DOI: 10.1038/s41598-024-56060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been utilized to identify genetic risk loci associated with both simple and complex inherited disorders. Here, we performed a GWAS in Labrador retrievers to identify genetic loci associated with hip dysplasia and body weight. Hip dysplasia scores were available for 209 genotyped dogs. We identified a significantly associated locus for hip dysplasia on chromosome 24, with three equally associated SNPs (p = 4.3 × 10-7) in complete linkage disequilibrium located within NDRG3, a gene which in humans has been shown to be differentially expressed in osteoarthritic joint cartilage. Body weight, available for 85 female dogs, was used as phenotype for a second analysis. We identified two significantly associated loci on chromosome 10 (p = 4.5 × 10-7) and chromosome 31 (p = 2.5 × 10-6). The most associated SNPs within these loci were located within the introns of the PRKCE and CADM2 genes, respectively. PRKCE has been shown to play a role in regulation of adipogenesis whilst CADM2 has been associated with body weight in multiple human GWAS. In summary, we identified credible candidate loci explaining part of the genetic inheritance for hip dysplasia and body weight in Labrador retrievers with strong candidate genes in each locus previously implicated in the phenotypes investigated.
Collapse
Affiliation(s)
- Ida Nordang Kieler
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofia Malm Persson
- Department for Breeding and Health, Swedish Kennel Club, Stockholm, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Voichita D Marinescu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erling Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maja Louise Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
10
|
Contreras-Méndez LA, Medrano JF, Thomas MG, Enns RM, Speidel SE, Luna-Nevárez G, López-Castro PA, Rivera-Acuña F, Luna-Nevárez P. The Anti-Müllerian Hormone as Endocrine and Molecular Marker Associated with Reproductive Performance in Holstein Dairy Cows Exposed to Heat Stress. Animals (Basel) 2024; 14:213. [PMID: 38254382 PMCID: PMC10812537 DOI: 10.3390/ani14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is proposed as a biomarker for fertility in cattle, yet this associative relationship appears to be influenced by heat stress (HS). The objective was to test serum AMH and AMH-related single nucleotide polymorphisms (SNPs) as markers potentially predictive of reproductive traits in dairy cows experiencing HS. The study included 300 Holstein cows that were genotyped using BovineSNP50 (54,000 SNP). A genome-wide association study was then executed. Nine intragenic SNPs within the pathways that influence the AMH gene were found important with multiple comparisons adjustment tests (p < 1.09 × 10-6). A further validation study was performed in an independent Holstein cattle population, which was divided into moderate (MH; n = 152) and severe heat-stressed (SH; n = 128) groups and then subjected to a summer reproductive management program. Serum AMH was confirmed as a predictor of fertility measures (p < 0.05) in MH but not in the SH group. Cows were genotyped, which revealed four SNPs as predictive markers for serum AMH (p < 0.01), reproductive traits (p < 0.01), and additional physiological variables (p < 0.05). These SNPs were in the genes AMH, IGFBP1, LGR5, and TLR4. In conclusion, serum AMH concentrations and AMH polymorphisms are proposed as predictive markers that can be used in conjunction with genomic breeding value approaches to improve reproductive performance in Holstein cows exposed to summer HS conditions.
Collapse
Affiliation(s)
- Luis A. Contreras-Méndez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Juan F. Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R. Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pedro A. López-Castro
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Fernando Rivera-Acuña
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
11
|
Kurland S, Saha A, Keehnen N, de la Paz Celorio-Mancera M, Díez-Del-Molino D, Ryman N, Laikre L. New indicators for monitoring genetic diversity applied to alpine brown trout populations using whole genome sequence data. Mol Ecol 2024; 33:e17213. [PMID: 38014725 DOI: 10.1111/mec.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
International policy recently adopted commitments to maintain genetic diversity in wild populations to secure their adaptive potential, including metrics to monitor temporal trends in genetic diversity - so-called indicators. A national programme for assessing trends in genetic diversity was recently initiated in Sweden. Relating to this effort, we systematically assess contemporary genome-wide temporal trends (40 years) in wild populations using the newly adopted indicators and whole genome sequencing (WGS). We use pooled and individual WGS data from brown trout (Salmo trutta) in eight alpine lakes in protected areas. Observed temporal trends in diversity metrics (nucleotide diversity, Watterson's ϴ and heterozygosity) lie within proposed acceptable threshold values for six of the lakes, but with consistently low values in lakes above the tree line and declines observed in these northern-most lakes. Local effective population size is low in all lakes, highlighting the importance of continued protection of interconnected systems to allow genetic connectivity for long-term viability of these populations. Inbreeding (FROH ) spans 10%-30% and is mostly represented by ancient (<1 Mb) runs of homozygosity, with observations of little change in mutational load. We also investigate adaptive dynamics over evolutionarily short time frames (a few generations); identifying putative parallel selection across all lakes within a gene pertaining to skin pigmentation as well as candidates of selection unique to specific lakes and lake systems involved in reproduction and immunity. We demonstrate the utility of WGS for systematic monitoring of natural populations, a priority concern if genetic diversity is to be protected.
Collapse
Affiliation(s)
- Sara Kurland
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Earth Sciences, Natural Resources and Sustainable Development, Uppsala University, Uppsala, Sweden
| | - Atal Saha
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Naomi Keehnen
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Ecology, SLU, Uppsala, Sweden
| | | | - David Díez-Del-Molino
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Nils Ryman
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Linda Laikre
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Feng X, Diao S, Liu Y, Xu Z, Li G, Ma Y, Su Z, Liu X, Li J, Zhang Z. Exploring the mechanism of artificial selection signature in Chinese indigenous pigs by leveraging multiple bioinformatics database tools. BMC Genomics 2023; 24:743. [PMID: 38053015 PMCID: PMC10699062 DOI: 10.1186/s12864-023-09848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs in Yunnan exhibit considerable phenotypic diversity, but their population structure and the biological interpretation of signatures of artificial selection require further investigation. To uncover population genetic diversity, migration events, and artificial selection signatures in Chinese domestic pigs, we sampled 111 Yunnan pigs from four breeds in Yunnan which is considered to be one of the centres of livestock domestication in China, and genotyped them using Illumina Porcine SNP60K BeadChip. We then leveraged multiple bioinformatics database tools to further investigate the signatures and associated complex traits. RESULTS Population structure and migration analyses showed that Diannanxiaoer pigs had different genetic backgrounds from other Yunnan pigs, and Gaoligongshan may undergone the migration events from Baoshan and Saba pigs. Intriguingly, we identified a possible common target of sharing artificial selection on a 265.09 kb region on chromosome 5 in Yunnan indigenous pigs, and the genes on this region were associated with cardiovascular and immune systems. We also detected several candidate genes correlated with dietary adaptation, body size (e.g., PASCIN1, GRM4, ITPR2), and reproductive performance. In addition, the breed-sharing gene MMP16 was identified to be a human-mediated gene. Multiple lines of evidence at the mammalian genome, transcriptome, and phenome levels further supported the evidence for the causality between MMP16 variants and the metabolic diseases, brain development, and cartilage tissues in Chinese pigs. Our results suggested that the suppression of MMP16 would directly lead to inactivity and insensitivity of neuronal activity and skeletal development in Chinese indigenous pigs. CONCLUSION In this study, the population genetic analyses and identification of artificial selection signatures of Yunnan indigenous pigs help to build an understanding of the effect of human-mediated selection mechanisms on phenotypic traits in Chinese indigenous pigs. Further studies are needed to fully characterize the process of human-mediated genes and biological mechanisms.
Collapse
Affiliation(s)
- Xueyan Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqiang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangzhen Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Su
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Mujica PC, Martinez V. A purebred South American breed showing high effective population size and independent breed ancestry: The Chilean Terrier. Anim Genet 2023; 54:772-785. [PMID: 37778752 DOI: 10.1111/age.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
The Chilean Terrier is a known breed in Chile that has not been genetically assessed despite its distinctive color patterns, agility, and hardiness across the diversity of climates encountered within the Chilean landscape. The population structure and its relatedness with other breeds, as well as the actual origin of the breed, remain unknown. We estimated several population parameters using samples from individuals representing the distribution of the Chilean Terrier across the country. By utilizing the Illumina HD canine genotyping array, we computed the effective population size (Ne ), individual inbreeding, and relatedness to evaluate the genetic diversity of the breed. The results show that linkage disequilibrium was relatively low and decayed rapidly; in fact, Ne was very high when compared to other breeds, and similar to other American indigenous breeds (such as the Chihuahua with values of Ne near 500). These results are in line with the low estimates of genomic inbreeding and relatedness and the relatively large number of effective chromosome segments (Me = 2467) obtained using the properties of the genomic relationship matrix. Between population analysis (cross-population extended haplotype homozygosity, di ) with other breeds such as the Jack Russell Terrier, the Peruvian-Inca Orchid, and the Chihuahua suggested that candidate regions harboring FGF5, PAX3, and ASIP, probably explained some morphological traits, such as the distinctive color pattern characteristic of the breed. When considering Admixture estimates and phylogenetic analysis, together with other breeds of American and European origin, the Chilean Terrier does not have a recent European ancestry. Overall, the results suggest that the breed has evolved independently in Chile from other terrier breeds, from an unknown European terrier ancestor.
Collapse
Affiliation(s)
- Paola C Mujica
- FAVET-INBIOGEN Laboratory, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | - Víctor Martinez
- FAVET-INBIOGEN Laboratory, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Silva FA, Picorelli ACR, Veiga GS, Nery MF. Patterns of enrichment and acceleration in evolutionary rates of promoters suggest a role of regulatory regions in cetacean gigantism. BMC Ecol Evol 2023; 23:62. [PMID: 37872505 PMCID: PMC10594719 DOI: 10.1186/s12862-023-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Cetaceans (whales, porpoises, and dolphins) are a lineage of aquatic mammals from which some species became giants. Only recently, gigantism has been investigated from the molecular point of view. Studies focused mainly on coding regions, and no data on the influence of regulatory regions on gigantism in this group was available. Accordingly, we investigated the molecular evolution of non-coding regulatory regions of genes already described in the literature for association with size in mammals, focusing mainly on the promoter regions. For this, we used Ciiider and phyloP tools. Ciiider identifies significantly enriched transcription factor binding sites, and phyloP estimates the molecular evolution rate of the promoter. RESULTS We found evidence of enrichment of transcription binding factors related to large body size, with distinct patterns between giant and non-giant cetaceans in the IGFBP7 and NCAPG promoters, in which repressive agents are present in small cetaceans and those that stimulate transcription, in giant cetaceans. In addition, we found evidence of acceleration in the IGF2, IGFBP2, IGFBP7, and ZFAT promoters. CONCLUSION Our results indicate that regulatory regions may also influence cetaceans' body size, providing candidate genes for future research to understand the molecular basis of the largest living animals.
Collapse
Affiliation(s)
- Felipe A Silva
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Agnello C R Picorelli
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Giovanna S Veiga
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mariana F Nery
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
15
|
Kim K, Song JE, Joo JB, Park HA, Choi CH, Je CY, Kim OK, Park SW, Do YJ, Hur TY, Park SI, Lee CM. Genome-wide association study of mammary gland tumors in Maltese dogs. Front Vet Sci 2023; 10:1255981. [PMID: 37859946 PMCID: PMC10583716 DOI: 10.3389/fvets.2023.1255981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Background A genome-wide association study (GWAS) is a valuable tool for investigating genetic and phenotypic variation in many diseases. Objective The objective of this study was to identify variations in the genomes of Maltese dogs that are associated with the mammary gland tumor (MGT) phenotype and to assess the association between each biological condition and MGT phenotype in Maltese dogs. Methods DNA was extracted from 22 tumor samples and 11 whole blood samples from dogs with MGTs. Genome-wide single-nucleotide polymorphism (SNP) genotyping was performed, and the top 20 SNPs associated with various conditions and genetic variations were mapped to their corresponding gene locations. Results The genotyping process successfully identified 173,662 loci, with an overall genotype completion rate of 99.92%. Through the quality control analysis, 46,912 of these SNPs were excluded. Allelic tests were conducted to generate Manhattan plots, which showed several significant SNPs associated with MGT phenotype in intergenic region. The most prominent SNP, located within a region associated with transcription and linked to the malignancy grade of MGT, was identified on chromosome 5 (p = 0.00001) though there may be lack of statistical significance. Other SNPs were also found in several genes associated with oncogenesis, including TNFSF18, WDR3, ASIC5, STAR, and IL1RAP. Conclusion To our knowledge, this is the first GWAS to analyze the genetic predisposition to MGT in Maltese dogs. Despite the limited number of cases, these analyzed data could provide the basis for further research on the genetic predisposition to MGTs in Maltese dogs.
Collapse
Affiliation(s)
- Keon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jung Eun Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
- Gwangju Animal Medical Center, Gwangju, Republic of Korea
| | - Jae Beom Joo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon A Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Hyeon Choi
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang Yun Je
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Ock Kyu Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Sin Wook Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
16
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. PLoS Genet 2023; 19:e1010880. [PMID: 37862332 PMCID: PMC10588866 DOI: 10.1371/journal.pgen.1010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
17
|
Meadows JRS, Kidd JM, Wang GD, Parker HG, Schall PZ, Bianchi M, Christmas MJ, Bougiouri K, Buckley RM, Hitte C, Nguyen AK, Wang C, Jagannathan V, Niskanen JE, Frantz LAF, Arumilli M, Hundi S, Lindblad-Toh K, Ginja C, Agustina KK, André C, Boyko AR, Davis BW, Drögemüller M, Feng XY, Gkagkavouzis K, Iliopoulos G, Harris AC, Hytönen MK, Kalthoff DC, Liu YH, Lymberakis P, Poulakakis N, Pires AE, Racimo F, Ramos-Almodovar F, Savolainen P, Venetsani S, Tammen I, Triantafyllidis A, vonHoldt B, Wayne RK, Larson G, Nicholas FW, Lohi H, Leeb T, Zhang YP, Ostrander EA. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol 2023; 24:187. [PMID: 37582787 PMCID: PMC10426128 DOI: 10.1186/s13059-023-03023-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Collapse
Affiliation(s)
- Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden.
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Christophe Hitte
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E14NS, UK and Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, D-80539, Munich, Germany
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catarina Ginja
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | | | - Catherine André
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Xin-Yao Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Konstantinos Gkagkavouzis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Giorgos Iliopoulos
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Daniela C Kalthoff
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Petros Lymberakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | | | - Peter Savolainen
- Department of Gene Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, 17121, Solna, Sweden
| | - Semina Venetsani
- Department of Genetics, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Alexandros Triantafyllidis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-7246, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| | - Frank W Nicholas
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
19
|
Maclary ET, Wauer R, Phillips B, Brown A, Boer EF, Samani AM, Shapiro MD. An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550625. [PMID: 37546953 PMCID: PMC10402103 DOI: 10.1101/2023.07.26.550625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Variation in pigment patterns within and among vertebrate species reflects underlying changes in cell migration and function that can impact health, reproductive success, and survival. The domestic pigeon (Columba livia) is an exceptional model for understanding the genetic changes that give rise to diverse pigment patterns, as selective breeding has given rise to hundreds of breeds with extensive variation in plumage color and pattern. Here, we map the genetic architecture of a suite of pigmentation phenotypes known as piebalding. Piebalding is characterized by patches of pigmented and non-pigmented feathers, and these plumage patterns are often breed-specific and stable across generations. Using a combination of quantitative trait locus mapping in F2 laboratory crosses and genome-wide association analysis, we identify a locus associated with piebalding across many pigeon breeds. This shared locus harbors a candidate gene, EDNRB2, that is a known regulator of pigment cell migration, proliferation, and survival. We discover multiple distinct haplotypes at the EDNRB2 locus in piebald pigeons, which include a mix of protein-coding, noncoding, and structural variants that are associated with depigmentation in specific plumage regions. These results identify a role for EDNRB2 in pigment patterning in the domestic pigeon, and highlight how repeated selection at a single locus can generate a diverse array of stable and heritable pigment patterns.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Wauer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Bridget Phillips
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Audrey Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena F. Boer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Atoosa M. Samani
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Li Z, Wang Z, Chen Z, Voegeli H, Lichtman JH, Smith P, Liu J, DeWan AT, Hoh J. Systematically identifying genetic signatures including novel SNP-clusters, nonsense variants, frame-shift INDELs, and long STR expansions that potentially link to unknown phenotypes existing in dog breeds. BMC Genomics 2023; 24:302. [PMID: 37277710 DOI: 10.1186/s12864-023-09390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND In light of previous studies that profiled breed-specific traits or used genome-wide association studies to refine loci associated with characteristic morphological features in dogs, the field has gained tremendous genetic insights for known dog traits observed among breeds. Here we aim to address the question from a reserve perspective: whether there are breed-specific genotypes that may underlie currently unknown phenotypes. This study provides a complete set of breed-specific genetic signatures (BSGS). Several novel BSGS with significant protein-altering effects were highlighted and validated. RESULTS Using the next generation whole-genome sequencing technology coupled with unsupervised machine learning for pattern recognitions, we constructed and analyzed a high-resolution sequence map for 76 breeds of 412 dogs. Genomic structures including novel single nucleotide polymorphisms (SNPs), SNP clusters, insertions, deletions (INDELs) and short tandem repeats (STRs) were uncovered mutually exclusively among breeds. We also partially validated some novel nonsense variants by Sanger sequencing with additional dogs. Four novel nonsense BSGS were found in the Bernese Mountain Dog, Samoyed, Bull Terrier, and Basset Hound, respectively. Four INDELs resulting in either frame-shift or codon disruptions were found in the Norwich Terrier, Airedale Terrier, Chow Chow and Bernese Mountain Dog, respectively. A total of 15 genomic regions containing three types of BSGS (SNP-clusters, INDELs and STRs) were identified in the Akita, Alaskan Malamute, Chow Chow, Field Spaniel, Keeshond, Shetland Sheepdog and Sussex Spaniel, in which Keeshond and Sussex Spaniel each carried one amino-acid changing BSGS in such regions. CONCLUSION Given the strong relationship between human and dog breed-specific traits, this study might be of considerable interest to researchers and all. Novel genetic signatures that can differentiate dog breeds were uncovered. Several functional genetic signatures might indicate potentially breed-specific unknown phenotypic traits or disease predispositions. These results open the door for further investigations. Importantly, the computational tools we developed can be applied to any dog breeds as well as other species. This study will stimulate new thinking, as the results of breed-specific genetic signatures may offer an overarching relevance of the animal models to human health and disease.
Collapse
Affiliation(s)
- Zicheng Li
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
| | - Zuoheng Wang
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Zhiyuan Chen
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Heidi Voegeli
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Judith H Lichtman
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Peter Smith
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Ju Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
- Center for Perinatal Pediatric and Environmental Epidemiology, Yale University, New Haven, CT, 06510, USA
| | - Josephine Hoh
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
- Department of Ophthalmology and Visual Science, School of Medicine, Yale University, New Haven, CT, 06510, USA.
- Department of Applied Mathematics, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
21
|
O'Neill DG, Skipper AM, Barrett K, Church DB, Packer RMA, Brodbelt DC. Demography, common disorders and mortality of Boxer dogs under primary veterinary care in the UK. Canine Med Genet 2023; 10:6. [PMID: 37259166 DOI: 10.1186/s40575-023-00129-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The Boxer is a popular dog breed with a distinctive appearance. However, the breed has been linked with several health conditions, some of which have been associated with its moderately brachycephalic conformation and its white colouration. Anonymised primary-care veterinary clinical records were explored to extract data on the demography, common disorders and mortality of Boxers in the UK in 2016. RESULTS The study population of 336,865 dogs included 3,219 (0.96%) Boxers, of which 10.71% were recorded as white. The mean adult bodyweight was 30.43 kg (SD 5.73 kg). Annual disorder counts did not differ statistically between the sexes or between white and non-white Boxers. The most prevalent fine-level precision disorders were otitis externa (n = 230, 7.15%), epulis (188, 5.84%), corneal ulceration (161, 5.00%) and periodontal disease (149, 4.63%). Of the 34 most common fine-level disorders, none differed in prevalence between white and non-white dogs. The most prevalent disorder groups were skin disorder (n = 571, 17.74%), neoplasia (457, 14.20%) and ear disorder (335, 10.41%). White Boxers had higher prevalence than non-white Boxers for two disorder groups: dental disorder and brain disorder. The median longevity of 346 Boxers that died during the study was 10.46 years (IQR 9.00-11.98, range 2.76-18.00). Median longevity did not differ statistically between the sexes or between white and non-white Boxers. The most common grouped causes of death were death - unrecorded cause (n = 73, 21.10%), neoplasia (43, 12.43%) and brain disorder (33, 9.54%). CONCLUSIONS There was minimal evidence of substantial health differences between white and non-white Boxers. Among the four most common disorders recorded in Boxers, two were typically common across all types of dogs (otitis externa and periodontal disease) while two suggested strong predispositions for the Boxer breed (epulis and corneal ulceration), showing the value of eliciting breed-specific disorder patterns for insights for potential health reforms. The overall longevity of Boxer dogs was consistent with other breeds of similar body size.
Collapse
Affiliation(s)
- Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Alison M Skipper
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Kate Barrett
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Rowena M A Packer
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
22
|
Zamorano-Algandar R, Medrano JF, Thomas MG, Enns RM, Speidel SE, Sánchez-Castro MA, Luna-Nevárez G, Leyva-Corona JC, Luna-Nevárez P. Genetic Markers Associated with Milk Production and Thermotolerance in Holstein Dairy Cows Managed in a Heat-Stressed Environment. BIOLOGY 2023; 12:biology12050679. [PMID: 37237493 DOI: 10.3390/biology12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Dairy production in Holstein cows in a semiarid environment is challenging due to heat stress. Under such conditions, genetic selection for heat tolerance appears to be a useful strategy. The objective was to validate molecular markers associated with milk production and thermotolerance traits in Holstein cows managed in a hot and humid environment. Lactating cows (n = 300) exposed to a heat stress environment were genotyped using a medium-density array including 53,218 SNPs. A genome-wide association study (GWAS) detected six SNPs associated with total milk yield (MY305) that surpassed multiple testing (p < 1.14 × 10-6). These SNPs were further validated in 216 Holstein cows from two independent populations that were genotyped using the TaqMan bi-allelic discrimination method and qPCR. In these cows, only the SNPs rs8193046, rs43410971, and rs382039214, within the genes TLR4, GRM8, and SMAD3, respectively, were associated (p < 0.05) with MY305, rectal temperature (RT), and respiratory rate. Interestingly, these variables improved as the number of favorable genotypes of the SNPs increased from 0 to 3. In addition, a regression analysis detected RT as a significant predictor (R2 = 0.362) for MY305 in cows with >1 favorable genotype, suggesting this close relationship was influenced by genetic markers. In conclusion, SNPs in the genes TLR4, GRM8, and SMAD3 appear to be involved in the molecular mechanism that regulates milk production in cows under heat-stressed conditions. These SNPs are proposed as thermotolerance genetic markers for a selection program to improve the milk performance of lactating Holstein cows managed in a semiarid environment.
Collapse
Affiliation(s)
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - José C Leyva-Corona
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
23
|
Moon KL, Huson HJ, Morrill K, Wang MS, Li X, Srikanth K, Lindblad-Toh K, Svenson GJ, Karlsson EK, Shapiro B. Comparative genomics of Balto, a famous historic dog, captures lost diversity of 1920s sled dogs. Science 2023; 380:eabn5887. [PMID: 37104591 PMCID: PMC10184777 DOI: 10.1126/science.abn5887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/23/2022] [Indexed: 04/29/2023]
Abstract
We reconstruct the phenotype of Balto, the heroic sled dog renowned for transporting diphtheria antitoxin to Nome, Alaska, in 1925, using evolutionary constraint estimates from the Zoonomia alignment of 240 mammals and 682 genomes from dogs and wolves of the 21st century. Balto shares just part of his diverse ancestry with the eponymous Siberian husky breed. Balto's genotype predicts a combination of coat features atypical for modern sled dog breeds, and a slightly smaller stature. He had enhanced starch digestion compared with Greenland sled dogs and a compendium of derived homozygous coding variants at constrained positions in genes connected to bone and skin development. We propose that Balto's population of origin, which was less inbred and genetically healthier than that of modern breeds, was adapted to the extreme environment of 1920s Alaska.
Collapse
Affiliation(s)
- Katherine L. Moon
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Heather J. Huson
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Kathleen Morrill
- Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01655, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01655, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ming-Shan Wang
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01655, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01655, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | | | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | | | - Elinor K. Karlsson
- Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01655, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
24
|
Bertolini F, Ribani A, Capoccioni F, Buttazzoni L, Bovo S, Schiavo G, Caggiano M, Rothschild MF, Fontanesi L. Whole Genome Sequencing Provides Information on the Genomic Architecture and Diversity of Cultivated Gilthead Seabream ( Sparus aurata) Broodstock Nuclei. Genes (Basel) 2023; 14:839. [PMID: 37107597 PMCID: PMC10137967 DOI: 10.3390/genes14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The gilthead seabream (Sparus aurata) is a species of relevance for the Mediterranean aquaculture industry. Despite the advancement of genetic tools for the species, breeding programs still do not often include genomics. In this study, we designed a genomic strategy to identify signatures of selection and genomic regions of high differentiation among populations of farmed fish stocks. A comparative DNA pooling sequencing approach was applied to identify signatures of selection in gilthead seabream from the same hatchery and from different nuclei that had not been subjected to genetic selection. Identified genomic regions were further investigated to detect SNPs with predicted high impact. The analyses underlined major genomic differences in the proportion of fixed alleles among the investigated nuclei. Some of these differences highlighted genomic regions, including genes involved in general metabolism and development already detected in QTL for growth, size, skeletal deformity, and adaptation to variation of oxygen levels in other teleosts. The obtained results pointed out the need to control the genetic effect of breeding programs in this species to avoid the reduction of genetic variability within populations and the increase in inbreeding level that, in turn, might lead to an increased frequency of alleles with deleterious effects.
Collapse
Affiliation(s)
- Francesca Bertolini
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Fabrizio Capoccioni
- Centro di Ricerca “Zootecnia e Acquacoltura”, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00198 Roma, Italy
| | - Luca Buttazzoni
- Centro di Ricerca “Zootecnia e Acquacoltura”, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), 00198 Roma, Italy
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Massimo Caggiano
- Panittica Italia Società Agricola Srl, Torre Canne di Fasano, 72016 Brindisi, Italy
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
25
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
26
|
Andrews KR, Seaborn T, Egan JP, Fagnan MW, New DD, Chen Z, Hohenlohe PA, Waits LP, Caudill CC, Narum SR. Whole genome resequencing identifies local adaptation associated with environmental variation for redband trout. Mol Ecol 2023; 32:800-818. [PMID: 36478624 PMCID: PMC9905331 DOI: 10.1111/mec.16810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Aquatic ectotherms are predicted to harbour genomic signals of local adaptation resulting from selective pressures driven by the strong influence of climate conditions on body temperature. We investigated local adaptation in redband trout (Oncorhynchus mykiss gairdneri) using genome scans for 547 samples from 11 populations across a wide range of habitats and thermal gradients in the interior Columbia River. We estimated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) across populations using low-coverage whole genome resequencing, and used population structure outlier analyses to identify genomic regions under divergent selection between populations. Twelve genomic regions showed signatures of local adaptation, including two regions associated with genes known to influence migration and developmental timing in salmonids (GREB1L, ROCK1, SIX6). Genotype-environment association analyses indicated that diurnal temperature variation was a strong driver of local adaptation, with signatures of selection driven primarily by divergence of two populations in the northern extreme of the subspecies range. We also found evidence for adaptive differences between high-elevation desert vs. montane habitats at a smaller geographical scale. Finally, we estimated vulnerability of redband trout to future climate change using ecological niche modelling and genetic offset analyses under two climate change scenarios. These analyses predicted substantial habitat loss and strong genetic shifts necessary for adaptation to future habitats, with the greatest vulnerability predicted for high-elevation desert populations. Our results provide new insight into the complexity of local adaptation in salmonids, and important predictions regarding future responses of redband trout to climate change.
Collapse
Affiliation(s)
- Kimberly R Andrews
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, Idaho, USA
| | - Travis Seaborn
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Joshua P Egan
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, Minnesota, USA
| | - Matthew W Fagnan
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, Idaho, USA
| | - Daniel D New
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, Idaho, USA
| | - Zhongqi Chen
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Christopher C Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Shawn R Narum
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, USA.,Columbia River Inter-Tribal Fish Commission, Hagerman, Idaho, USA
| |
Collapse
|
27
|
Dutrow EV, Serpell JA, Ostrander EA. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022; 185:4737-4755.e18. [PMID: 36493753 PMCID: PMC10478034 DOI: 10.1016/j.cell.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.
Collapse
Affiliation(s)
- Emily V Dutrow
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Serpell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Haase B, Willet CE, Chew T, Samaha G, Child G, Wade CM. De-novo and genome-wide meta-analyses identify a risk haplotype for congenital sensorineural deafness in Dalmatian dogs. Sci Rep 2022; 12:15439. [PMID: 36104420 PMCID: PMC9474838 DOI: 10.1038/s41598-022-19535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Congenital sensorineural deafness (CSD) has been reported to affect up to 30% of Dalmatian dogs world-wide and while unilaterally deaf dogs can live a close to normal life, dogs suffering bilateral deafness are frequently euthanized. Extreme-white coat patterning as encoded by the gene Melanocyte Inducing Transcription Factor (MITF) has long been postulated as the major risk factor for CSD in the Dalmatian breed. While attempts to identify causative risk variants associated with CSD have been numerous, no genome-wide association study has positively identified MITF as a risk locus for either bilateral or unilateral deafness in the Dalmatian breed to date. In this study, we identified an association with CSD on CFA20 in the vicinity of MITF within Australian Dalmatian dogs. Although not genome-wide significant, the association signal was validated by reanalysing publicly available data and merging the wider data resource with the local data to improve statistical power. The merged data, representing three major global populations of Dalmatian dogs, enabled us to identify a single, well-defined genome-wide significant risk haplotype for CSD. The haplotype was formed by three genome-wide significant associated markers (BICF2G630233852T>C, BICF2G630233861T>C, BICF2G630233888G>A) on CFA20 with 62% of bilaterally deaf dogs homozygous for the risk haplotype (CCA), while 30% of bilaterally deaf and 45% of hearing dogs carried one copy of the risk haplotype. Animals homozygous or heterozygous for the low-risk haplotype were less likely to be unilaterally deaf. While the association between the risk haplotype and deafness is incomplete, animals homozygous for the risk haplotype were 10-times more likely to be bilaterally deaf. Although the underlying causative variants are yet to be discovered, results from this study can now assist with reducing deafness in Dalmatian dogs.
Collapse
|
29
|
Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci U S A 2022; 119:e2122150119. [PMID: 35858409 PMCID: PMC9335317 DOI: 10.1073/pnas.2122150119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Domesticated plants and animals played crucial roles as models for evolutionary change by means of natural selection and for establishing the rules of inheritance, originally proposed by Charles Darwin and Gregor Mendel, respectively. Here, we review progress that has been made during the last 35 y in unraveling the molecular genetic variation underlying the stunning phenotypic diversity in crops and domesticated animals that inspired Mendel and Darwin. We notice that numerous domestication genes, crucial for the domestication process, have been identified in plants, whereas animal domestication appears to have a polygenic background with no obvious "domestication genes" involved. Although model organisms, such as Drosophila and Arabidopsis, have replaced domesticated species as models for basic research, the latter are still outstanding models for evolutionary research because phenotypic change in these species represents an evolutionary process over thousands of years. A consequence of this is that some alleles contributing to phenotypic diversity have evolved by accumulating multiple changes in the same gene. The continued molecular characterization of crops and farm animals with ever sharper tools is essential for future food security.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
30
|
Guo Q, Jiang Y, Wang Z, Bi Y, Chen G, Bai H, Chang G. Genome-Wide Analysis Identifies Candidate Genes Encoding Feather Color in Ducks. Genes (Basel) 2022; 13:genes13071249. [PMID: 35886032 PMCID: PMC9317390 DOI: 10.3390/genes13071249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022] Open
Abstract
Comparative population genomics and genome-wide association studies (GWAS) offer opportunities to discover human-driven detectable signatures within the genome. From the point of view of evolutionary biology, the identification of genes associated with the domestication of traits is of interest for the elucidation of the selection of these traits. To this end, an F2 population of ducks, consisting of 275 ducks, was genotyped using a whole genome re-sequence containing 12.6 Mb single nucleotide polymorphisms (SNPs) and four plumage colors. GWAS was used to identify the candidate and potential SNPs of four plumage colors in ducks (white, spot, grey, and black plumage). In addition, FST and genetic diversity (π ratio) were used to screen signals of the selective sweep, which relate to the four plumage colors. Major genomic regions associated with white, spotted, and black feathers overlapped with their candidate selection regions, whereas no such overlap was observed with grey plumage. In addition, MITF and EDNRB2 are functional candidate genes that contribute to white and black plumage due to their indirect involvement in the melanogenesis pathway. This study provides new insights into the genetic factors that may influence the diversity of plumage color.
Collapse
Affiliation(s)
- Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-187-9660-8824 (H.B.); +86-178-5197-5060 (G.C.)
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (Z.W.); (Y.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-187-9660-8824 (H.B.); +86-178-5197-5060 (G.C.)
| |
Collapse
|
31
|
Kurland S, Rafati N, Ryman N, Laikre L. Genomic dynamics of brown trout populations released to a novel environment. Ecol Evol 2022; 12:e9050. [PMID: 35813906 PMCID: PMC9251865 DOI: 10.1002/ece3.9050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/15/2022] Open
Abstract
Population translocations occur for a variety of reasons, from displacement due to climate change to human-induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole-genome sequencing of pooled DNA (Pool-seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool-seq can be used as an initial tool to monitor genome-wide effects.
Collapse
Affiliation(s)
- Sara Kurland
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| | - Nima Rafati
- Department of Medical Biochemistry and MicrobiologyNational Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Nils Ryman
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| | - Linda Laikre
- Department of Zoology, Division of Population GeneticsStockholm UniversityStockholmSweden
| |
Collapse
|
32
|
Labadie J, Swafford B, DePena M, Tietje K, Page R, Patterson-Kane J. Cohort profile: The Golden Retriever Lifetime Study (GRLS). PLoS One 2022; 17:e0269425. [PMID: 35679242 PMCID: PMC9182714 DOI: 10.1371/journal.pone.0269425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this article is to provide a detailed description of the Golden Retriever Lifetime Study (GRLS), a prospective cohort study investigating nutritional, environmental, lifestyle, and genetic risk factors for cancer and other common diseases in dogs. Primary outcomes of interest include hemangiosarcoma, lymphoma, osteosarcoma, and high-grade mast cell tumors. Secondary outcomes of interest include other cancers, hypothyroidism, epilepsy, atopy, otitis externa, hip dysplasia, heart failure, and renal failure. A total of 3,044 United States Golden Retrievers aged 6 months to 2 years completed baseline enrollment from June 2012 to April 2015. As of May 31, 2021, 2,251 dogs remain engaged in the study, 352 have died, and 441 are lost to follow-up. Extensive annual questionnaires completed by owners and veterinarians gather information about lifestyle, environmental exposures, physical activity, reproductive history, behavior, diet, medications, and diagnoses. Dogs also have annual veterinary examinations and biospecimen collection (blood, serum, hair, nails, feces, urine) for biobanking. Additional reporting, including histology and tumor biobanking, is conducted for any malignancies or deaths. When an animal dies, full medical records are obtained, and necropsies are requested at owner discretion. Full or partial necropsies have been performed on 218 dogs. Questionnaire data are freely available to researchers with approved credentials who agree to a data use agreement. In addition, researchers can submit proposals to utilize biospecimens or obtain additional data.
Collapse
Affiliation(s)
- Julia Labadie
- Scientific Programs Department, Morris Animal Foundation, Denver, Colorado, United States of America
- * E-mail:
| | - Brenna Swafford
- Scientific Programs Department, Morris Animal Foundation, Denver, Colorado, United States of America
| | - Mara DePena
- Scientific Programs Department, Morris Animal Foundation, Denver, Colorado, United States of America
| | - Kathy Tietje
- Scientific Programs Department, Morris Animal Foundation, Denver, Colorado, United States of America
| | - Rodney Page
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Janet Patterson-Kane
- Scientific Programs Department, Morris Animal Foundation, Denver, Colorado, United States of America
| |
Collapse
|
33
|
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, Snyder-Mackler N, Alonso J, Noh HJ, Johnson J, Koltookian M, Lieu C, Megquier K, Swofford R, Turner-Maier J, White ME, Weng Z, Colubri A, Genereux DP, Lord KA, Karlsson EK. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022; 376:eabk0639. [PMID: 35482869 DOI: 10.1126/science.abk0639] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Hekman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse McClure
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Mingshi Gao
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yinan Dong
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marjie Alonso
- The International Association of Animal Behavior Consultants, Cranberry Township, PA 16066, USA.,IAABC Foundation, Cranberry Township, PA 16066, USA
| | - Elena Carmichael
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Rice University, Houston, TX 77005, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85251, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ 85251, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Jacob Alonso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Charlie Lieu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michelle E White
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Andrés Colubri
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
34
|
Genomic and Transcriptomic Characterization of Atypical Recurrent Flank Alopecia in the Cesky Fousek. Genes (Basel) 2022; 13:genes13040650. [PMID: 35456456 PMCID: PMC9033119 DOI: 10.3390/genes13040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022] Open
Abstract
Non-inflammatory alopecia is a frequent skin problem in dogs, causing damaged coat integrity and compromised appearance of affected individuals. In this study, we examined the Cesky Fousek breed, which displays atypical recurrent flank alopecia (aRFA) at a high frequency. This type of alopecia can be quite severe and is characterized by seasonal episodes of well demarcated alopecic areas without hyperpigmentation. The genetic component responsible for aRFA remains unknown. Thus, here we aimed to identify variants involved in aRFA using a combination of histological, genomic, and transcriptomic data. We showed that aRFA is histologically similar to recurrent flank alopecia, characterized by a lack of anagen hair follicles and the presence of severely shortened telogen or kenogen hair follicles. We performed a genome-wide association study (GWAS) using 216 dogs phenotyped for aRFA and identified associations on chromosomes 19, 8, 30, 36, and 21, highlighting 144 candidate genes, which suggests a polygenic basis for aRFA. By comparing the skin cell transcription pattern of six aRFA and five control dogs, we identified 236 strongly differentially expressed genes (DEGs). We showed that the GWAS genes associated with aRFA are often predicted to interact with DEGs, suggesting their joint contribution to the development of the disease. Together, these genes affect four major metabolic pathways connected to aRFA: collagen formation, muscle structure/contraction, lipid metabolism, and the immune system.
Collapse
|
35
|
Genetic characterization of Mangalarga Marchador horse. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Sándor S, Jónás D, Tátrai K, Czeibert K, Kubinyi E. Poly(A) RNA sequencing reveals age-related differences in the prefrontal cortex of dogs. GeroScience 2022; 44:1269-1293. [PMID: 35288843 PMCID: PMC9213612 DOI: 10.1007/s11357-022-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Dogs may possess a unique translational potential to investigate neural aging and dementia because they are prone to age-related cognitive decline, including an Alzheimer’s disease–like pathological condition. Yet very little is known about the molecular mechanisms underlying canine cognitive decline. The goal of the current study was to explore the transcriptomic differences between young and old dogs’ frontal cortex, which is a brain region often affected by various forms of age-related dementia in humans. RNA isolates from the frontal cortical brain area of 13 pet dogs, which represented 7 different breeds and crossbreds, were analyzed. The dogs were euthanized for medical reasons, and their bodies had been donated by their owners for scientific purposes. The poly(A) tail RNA subfraction of the total transcriptome was targeted in the sequencing analysis. Cluster analyses, differential gene expression analyses, and gene ontology analyses were carried out to assess which genes and genetic regulatory mechanisms were mostly affected by aging. Age was the most prominent factor in the clustering of the animals, indicating the presence of distinct gene expression patterns related to aging in a genetically variable population. A total of 3436 genes were found to be differentially expressed between the age groups, many of which were linked to neural function, immune system, and protein synthesis. These findings are in accordance with previous human brain aging RNA sequencing studies. Some genes were found to behave more similarly to humans than to rodents, further supporting the applicability of dogs in translational aging research.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.
| | - Dávid Jónás
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kitti Tátrai
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.,Department of Genetics, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kálmán Czeibert
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| |
Collapse
|
37
|
Myers AN, Lawhon SD, Diesel AB, Bradley CW, Rodrigues Hoffmann A, Murphy WJ. An ancient haplotype containing antimicrobial peptide gene variants is associated with severe fungal skin disease in Persian cats. PLoS Genet 2022; 18:e1010062. [PMID: 35157719 PMCID: PMC8880935 DOI: 10.1371/journal.pgen.1010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Dermatophytosis, also known as ringworm, is a contagious fungal skin disease affecting humans and animals worldwide. Persian cats exhibit severe forms of the disease more commonly than other breeds of cat, including other long-haired breeds. Certain types of severe dermatophytosis in humans are reportedly caused by monogenic inborn errors of immunity. The goal of this study was to identify genetic variants in Persian cats contributing to the phenotype of severe dermatophytosis. Whole-genome sequencing of case and control Persian cats followed by a genome-wide association study identified a highly divergent, disease-associated haplotype on chromosome F1 containing the S100 family of genes. S100 calcium binding protein A9 (S100A9), which encodes a subunit of the antimicrobial heterodimer known as calprotectin, contained 13 nonsynonymous variants between cases and controls. Evolutionary analysis of S100A9 haplotypes comparing cases, controls, and wild felids suggested the divergent disease-associated haplotype was likely introgressed into the domestic cat lineage and maintained via balancing selection. We demonstrated marked upregulation of calprotectin expression in the feline epidermis during dermatophytosis, suggesting involvement in disease pathogenesis. Given this divergent allele has been maintained in domestic cat and wildcat populations, this haplotype may have beneficial effects against other pathogens. The pathogen specificity of this altered protein should be investigated before attempting to reduce the allele frequency in the Persian cat breed. Further work is needed to clarify if severe Persian dermatophytosis is a monogenic disease or if hidden disease-susceptibility loci remain to be discovered. Consideration should be given to engineering antimicrobial peptides such as calprotectin for topical treatment of dermatophytosis in humans and animals. Fungal skin infections known as ringworm or dermatophytosis affect billions of humans and animals worldwide. Normally the disease is self-limiting in affected individuals. The Persian cat breed is a popular breed known for its long hair coat and short nose as well as its propensity to develop severe, chronic dermatophytosis. By examining the genomes of Persian cats, we discovered that a specific region of DNA is highly altered between cats with and without severe dermatophytosis. The DNA sequence in this region is particularly divergent within a cluster of genes involved in immune defense against pathogens. Notably, alterations to the DNA sequence cause several changes in the antimicrobial protein known as calprotectin, which defends against pathogens in the skin of cats. Persian cats with severe dermatophytosis have a version of calprotectin similar to a version maintained by certain desert-dwelling wild felids such as sand cats and Asiatic wildcats. Therefore, we think this version of the protein is beneficial in some environments or against certain pathogens but not against the fungus that causes ringworm in cats. Our findings suggest changes to calprotectin may affect pathogen specificity and engineered calprotectin could be considered as a novel therapy for dermatophytosis in humans and animals.
Collapse
Affiliation(s)
- Alexandra N. Myers
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
- * E-mail: (ANM); (WJM)
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - Alison B. Diesel
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, Unites States of America
| | - Aline Rodrigues Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
- * E-mail: (ANM); (WJM)
| | | |
Collapse
|
38
|
Li C, Liu K, Dai J, Li X, Liu X, Ni W, Li H, Wang D, Qiao J, Wang Y, Cui Y, Xia X, Hu S. Whole-genome resequencing to investigate the determinants of the multi-lumbar vertebrae trait in sheep. Gene 2022; 809:146020. [PMID: 34656743 DOI: 10.1016/j.gene.2021.146020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Multi-lumbar vertebrae trait is a beneficial mutation that can significantly improve livestock meat production. However, the genetic basis of the multi-lumbar vertebrae in sheep is still unclear. Here, we analysed the number of lumbar vertebrae of Duolang sheep and found three different traits of lumbar vertebrae number. Compared with the normal sheep, the length and weight of animal carcass from the multi-lumbar vertebrae sheep increased by 2.21 cm and 0.78 kg, respectively. We performed high-throughput genome resequencing on multi-lumbar vertebrae (n = 18) and normal (n = 11) Duolang sheep and obtained a total of more than 528.87 GB data. We found that the most significantly selective region were located in the 49.68-49.74 MB of chromosome 4 by selective-sweep analysis. We annotated this region and found that it contains SFRP4 which is known to regulate bone development. We further used the PCR-SSCP technology to detect the single nucleotide polymorphism (SNP) of the putative candidate SFRP4 and found that the two SNPs (rs600370085:C > T and rs415133338: A > G) of this gene were significantly associated with the multi-lumbar vertebrae of Duolang sheep. Our study indicates that the SFRP4 may be a potential major gene that affects the number of lumbar vertebrae in Duolang sheep, and has the potential to be utilized for sheep breeding in the future.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xia Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hui Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuying Cui
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
39
|
Ballan M, Bovo S, Schiavo G, Schiavitto M, Negrini R, Fontanesi L. Genomic diversity and signatures of selection in meat and fancy rabbit breeds based on high-density marker data. Genet Sel Evol 2022; 54:3. [PMID: 35062866 PMCID: PMC8780294 DOI: 10.1186/s12711-022-00696-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Domestication of the rabbit (Oryctolagus cuniculus) has led to a multi-purpose species that includes many breeds and lines with a broad phenotypic diversity, mainly for external traits (e.g. coat colours and patterns, fur structure, and morphometric traits) that are valued by fancy rabbit breeders. As a consequence of this human-driven selection, distinct signatures are expected to be present in the rabbit genome, defined as signatures of selection or selective sweeps. Here, we investigated the genome of three Italian commercial meat rabbit breeds (Italian Silver, Italian Spotted and Italian White) and 12 fancy rabbit breeds (Belgian Hare, Burgundy Fawn, Champagne d’Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex, Rhinelander and Thuringian) by using high-density single nucleotide polymorphism data. Signatures of selection were identified based on the fixation index (FST) statistic with different approaches, including single-breed and group-based methods, the latter comparing breeds that are grouped based on external traits (different coat colours and body sizes) and types (i.e. meat vs. fancy breeds). Results We identified 309 genomic regions that contained signatures of selection and that included genes that are known to affect coat colour (ASIP, MC1R and TYR), coat structure (LIPH), and body size (LCORL/NCAPG, COL11A1 and HOXD) in rabbits and that characterize the investigated breeds. Their identification proves the suitability of the applied methodologies for capturing recent selection events. Other regions included novel candidate genes that might contribute to the phenotypic variation among the analyzed breeds, including genes for pigmentation-related traits (EDNRA, EDNRB, MITF and OCA2) and body size, with a strong candidate for dwarfism in rabbit (COL2A1). Conclusions We report a genome-wide view of genetic loci that underlie the main phenotypic differences in the analyzed rabbit breeds, which can be useful to understand the shift from the domestication process to the development of breeds in O. cuniculus. These results enhance our knowledge about the major genetic loci involved in rabbit external traits and add novel information to understand the complexity of the genetic architecture underlying body size in mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00696-9.
Collapse
|
40
|
Alshwairikh YA, Kroeze SL, Olsson J, Stephens‐Cardenas SA, Swain WL, Waits LP, Horn RL, Narum SR, Seaborn T. Influence of environmental conditions at spawning sites and migration routes on adaptive variation and population connectivity in Chinook salmon. Ecol Evol 2021; 11:16890-16908. [PMID: 34938480 PMCID: PMC8668735 DOI: 10.1002/ece3.8324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome-environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)-a species of important economic, social, cultural, and ecological value-in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool-seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration-specific and spawning site-specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites.
Collapse
Affiliation(s)
| | | | - Jenny Olsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - William L. Swain
- Wildlife Genomics and Disease LaboratoryProgram in EcologyDepartment of Veterinary SciencesUniversity of WyomingLaramieWyomingUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | | | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | - Travis Seaborn
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
41
|
Brancalion L, Haase B, Wade CM. Canine coat pigmentation genetics: a review. Anim Genet 2021; 53:3-34. [PMID: 34751460 DOI: 10.1111/age.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Our understanding of canine coat colour genetics and the associated health implications is developing rapidly. To date, there are 15 genes with known roles in canine coat colour phenotypes. Many coat phenotypes result from complex and/or epistatic genetic interactions among variants within and between loci, some of which remain unidentified. Some genes involved in canine pigmentation have been linked to aural, visual and neurological impairments. Consequently, coat pigmentation in the domestic dog retains considerable ethical and economic interest. In this paper we discuss coat colour phenotypes in the domestic dog, the genes and variants responsible for these phenotypes and any proven coat colour-associated health effects.
Collapse
Affiliation(s)
- L Brancalion
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - B Haase
- Faculty of Science, School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - C M Wade
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
42
|
Saha A, Andersson A, Kurland S, Keehnen NLP, Kutschera VE, Hössjer O, Ekman D, Karlsson S, Kardos M, Ståhl G, Allendorf FW, Ryman N, Laikre L. Whole-genome resequencing confirms reproductive isolation between sympatric demes of brown trout (Salmo trutta) detected with allozymes. Mol Ecol 2021; 31:498-511. [PMID: 34699656 DOI: 10.1111/mec.16252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
The sympatric existence of genetically distinguishable populations of the same species remains a puzzle in ecology. Coexisting salmonid fish populations are known from over 100 freshwater lakes. Most studies of sympatric populations have used limited numbers of genetic markers making it unclear if genetic divergence involves certain parts of the genome. We returned to the first reported case of salmonid sympatry, initially detected through contrasting homozygosity at a single allozyme locus (coding for lactate dehydrogenase A) in brown trout in the small Lakes Bunnersjöarna, Sweden. First, we verified the existence of the two coexisting demes using a 96-SNP fluidigm array. We then applied whole-genome resequencing of pooled DNA to explore genome-wide diversity within and between these demes; nucleotide diversity was higher in deme I than in deme II. Strong genetic divergence is observed with genome-wide FST ≈ 0.2. Compared with data from populations of similar small lakes, this divergence is of similar magnitude as that between reproductively isolated populations. Individual whole-genome resequencing of two individuals per deme suggests higher inbreeding in deme II versus deme I, indicating different degree of isolation. We located two gene-copies for LDH-A and found divergence between demes in a regulatory section of one of these genes. However, we did not find a perfect fit between the sequence data and previous allozyme results, and this will require further research. Our data demonstrates genome-wide divergence governed mostly by genetic drift but also by diversifying selection in coexisting populations. This type of hidden biodiversity needs consideration in conservation management.
Collapse
Affiliation(s)
- Atal Saha
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anastasia Andersson
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sara Kurland
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Naomi L P Keehnen
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Verena E Kutschera
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Ola Hössjer
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Diana Ekman
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sten Karlsson
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Marty Kardos
- Flathead Lake Biological Station, University of Montana, Montana, USA.,National Marine Fisheries Service, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | | | - Fred W Allendorf
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Nils Ryman
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Linda Laikre
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
43
|
Best practices for analyzing imputed genotypes from low-pass sequencing in dogs. Mamm Genome 2021; 33:213-229. [PMID: 34498136 PMCID: PMC8913487 DOI: 10.1007/s00335-021-09914-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Although DNA array-based approaches for genome-wide association studies (GWAS) permit the collection of thousands of low-cost genotypes, it is often at the expense of resolution and completeness, as SNP chip technologies are ultimately limited by SNPs chosen during array development. An alternative low-cost approach is low-pass whole genome sequencing (WGS) followed by imputation. Rather than relying on high levels of genotype confidence at a set of select loci, low-pass WGS and imputation rely on the combined information from millions of randomly sampled low-confidence genotypes. To investigate low-pass WGS and imputation in the dog, we assessed accuracy and performance by downsampling 97 high-coverage (> 15×) WGS datasets from 51 different breeds to approximately 1× coverage, simulating low-pass WGS. Using a reference panel of 676 dogs from 91 breeds, genotypes were imputed from the downsampled data and compared to a truth set of genotypes generated from high-coverage WGS. Using our truth set, we optimized a variant quality filtering strategy that retained approximately 80% of 14 M imputed sites and lowered the imputation error rate from 3.0% to 1.5%. Seven million sites remained with a MAF > 5% and an average imputation quality score of 0.95. Finally, we simulated the impact of imputation errors on outcomes for case-control GWAS, where small effect sizes were most impacted and medium-to-large effect sizes were minorly impacted. These analyses provide best practice guidelines for study design and data post-processing of low-pass WGS-imputed genotypes in dogs.
Collapse
|
44
|
Ballif BC, Emerson LJ, Ramirez CJ, Carl CR, Sundin K, Flores-Smith H, Shaffer LG. The PMEL gene and merle (dapple) in the dachshund: cryptic, hidden, and mosaic variants demonstrate the need for genetic testing prior to breeding. Hum Genet 2021; 140:1581-1591. [PMID: 34370083 DOI: 10.1007/s00439-021-02330-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 11/26/2022]
Abstract
One of the most unique coat color patterns in the domestic dog is merle (also known as dapple in the dachshund breed), characterized by patches of normal pigmentation surrounded by diluted eumelanin pigment. In dogs, this striking variegated pattern is caused by an insertion of a SINE element into the PMEL gene. Differences in the length of the SINE insertion [due to a variable-length poly(A)-tail] has been associated with variation in the merle coat color and patterning. We previously performed a systematic evaluation of merle in 175 Australian shepherds and related breeds and correlated the length of the merle insertion variants with four broad phenotypic clusters designated as "cryptic", "atypical", "classic", and "harlequin" merle. In this study, we evaluated the SINE insertions in 140 dachshunds and identified the same major merle phenotypic clusters with only slight variation between breeds. Specifically, we identified numerous cases of true "hidden" merle in dachshunds with light/red (pheomelanin) coats with little to no black/brown pigment (eumelanin) and thus minimal or no observable merle phenotype. In addition, we identified somatic and gonadal mosaicism, with one dog having a large insertion in the harlequin size range of M281 that had no merle phenotype and unintentionally produced a double merle puppy with anophthalmia. The frequent identification of cryptic, hidden, and mosaic merle variants, which can be undetectable by phenotypic inspection, should be of particular concern to breeders and illustrates the critical need for genetic testing for merle prior to breeding to avoid producing dogs with serious health problems.
Collapse
Affiliation(s)
- Blake C Ballif
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA.
| | | | - Christina J Ramirez
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Casey R Carl
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Kyle Sundin
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Helen Flores-Smith
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
| | - Lisa G Shaffer
- Paw Print Genetics, Genetic Veterinary Sciences, Inc., 220 E Rowan, Suite 220, Spokane, WA, 99207, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
45
|
Wang L, Sun F, Wan ZY, Ye B, Wen Y, Liu H, Yang Z, Pang H, Meng Z, Fan B, Alfiko Y, Shen Y, Bai B, Lee MSQ, Piferrer F, Schartl M, Meyer A, Yue GH. Genomic Basis of Striking Fin Shapes and Colors in the Fighting Fish. Mol Biol Evol 2021; 38:3383-3396. [PMID: 33871625 PMCID: PMC8321530 DOI: 10.1093/molbev/msab110] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long-fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole-genome sequencing, quantitative trait loci mapping, genome-wide association studies, and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino, and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double-tail mutant was suggested to be caused by a deletion in a zic1/zic4 coenhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Fei Sun
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zi Yi Wan
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Baoqing Ye
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Yanfei Wen
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Huiming Liu
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zituo Yang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Hongyan Pang
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zining Meng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Fan
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang, China
| | - Yuzer Alfiko
- Biotech Lab, Wilmar International, Jakarta, Indonesia
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Bin Bai
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - May Shu Qing Lee
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gen Hua Yue
- Molecular Population Genetics & Breeding Group, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
46
|
Seddon JM, Fortes M, Kelly-Smith M, Sommerlad SF, Hayward JJ, Burmeister L, De Risio L, Mellersh C, Freeman J, Strain GM. Deafness in Australian Cattle Dogs associated to QTL on chromosome 20 in genome-wide association study analyses. Anim Genet 2021; 52:694-702. [PMID: 34318504 DOI: 10.1111/age.13115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Pigment-associated deafness is a common hereditary condition in a range of dog breeds. The aim of this study was to perform a genome-wide association analysis to investigate the genetic architecture of deafness in Australian Cattle Dogs. Genotypes for 104 757 polymorphisms in 216 dogs were available for analyses after quality control. A genomic relationship matrix was used in the mixed model analyses to account for polygenic effects, as we tested each polymorphism for its association with deafness, in a case/control experimental design. Three approaches were used to code the genotypes and test for additive, recessive and dominant SNP effects. The genome-wide association study analyses identified a clear association peak on CFA20, with the most significant SNPs on this chromosome (1.29 × 10-4 ) in the vicinity of MITF. Variants in MITF have been associated with white pigmentation in dogs and with deafness in humans and other species, supporting the premise that canine deafness is associated with variants in or near this gene. A recessive inheritance for the peak in CFA20 is possible given the significant results in the recessive model; however, the estimated heritability was low (4.54 × 10-5 ). Further validation, identification of variants and testing in other dog breeds are needed.
Collapse
Affiliation(s)
- J M Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - M Fortes
- School of Chemistry and Molecular Biosciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Qld, 4072, Australia
| | - M Kelly-Smith
- Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| | - S F Sommerlad
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - J J Hayward
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - L Burmeister
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - L De Risio
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - C Mellersh
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - J Freeman
- Animal Health Trust, Newmarket, Suffolk, CB8 7UU, UK
| | - G M Strain
- Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, 70803, USA
| |
Collapse
|
47
|
Grassinger JM, Floren A, Müller T, Cerezo-Echevarria A, Beitzinger C, Conrad D, Törner K, Staudacher M, Aupperle-Lellbach H. Digital Lesions in Dogs: A Statistical Breed Analysis of 2912 Cases. Vet Sci 2021; 8:vetsci8070136. [PMID: 34357928 PMCID: PMC8310350 DOI: 10.3390/vetsci8070136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014–2019 to the Laboklin GmbH & Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43%), tumor-like lesions in 138 (5%), and neoplasms in 1528 cases (52%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = −2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = −2.17), Jack Russell Terriers (log OR = −1.88), and Rhodesian Ridgebacks (log OR = −1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or “resistance” to the development of specific acral tumors and/or other sites.
Collapse
Affiliation(s)
- Julia Maria Grassinger
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
- Correspondence:
| | - Andreas Floren
- Institut für Tierökologie und Tropenbiologie, Universität Würzburg, 97070 Würzburg, Germany;
| | - Tobias Müller
- Institut für Bioinformatik, Universität Würzburg, 97070 Würzburg, Germany;
| | - Argiñe Cerezo-Echevarria
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - Christoph Beitzinger
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - David Conrad
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - Katrin Törner
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | | | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| |
Collapse
|
48
|
Brancalion L, Haase B, Willet CE, Wade CM. Sequence variants of the canine melanocyte inducing transcription factor (MITF) locus reveal a common MITF-A processed pseudogene. Anim Genet 2021; 52:777-778. [PMID: 34165209 DOI: 10.1111/age.13106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Lillian Brancalion
- Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bianca Haase
- Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Cali E Willet
- Sydney Informatics Hub, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Claire M Wade
- Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
49
|
Berger C, Heinrich J, Berger B, Hecht W, Parson W. Towards Forensic DNA Phenotyping for Predicting Visible Traits in Dogs. Genes (Basel) 2021; 12:genes12060908. [PMID: 34208207 PMCID: PMC8230911 DOI: 10.3390/genes12060908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
The popularity of dogs as human companions explains why these pets regularly come into focus in forensic cases such as bite attacks or accidents. Canine evidence, e.g., dog hairs, can also act as a link between the victim and suspect in a crime case due to the close contact between dogs and their owners. In line with human DNA identification, dog individualization from crime scene evidence is mainly based on the analysis of short tandem repeat (STR) markers. However, when the DNA profile does not match a reference, additional information regarding the appearance of the dog may provide substantial intelligence value. Key features of the dog's appearance, such as the body size and coat colour are well-recognizable and easy to describe even to non-dog experts, including most investigating officers and eyewitnesses. Therefore, it is reasonable to complement eyewitnesses' testimonies with externally visible traits predicted from associated canine DNA samples. Here, the feasibility and suitability of canine DNA phenotyping is explored from scratch in the form of a proof of concept study. To predict the overall appearance of an unknown dog from its DNA as accurately as possible, the following six traits were chosen: (1) coat colour, (2) coat pattern, (3) coat structure, (4) body size, (5) ear shape, and (6) tail length. A total of 21 genetic markers known for high predicting values for these traits were selected from previously published datasets, comprising 15 SNPs and six INDELS. Three of them belonged to SINE insertions. The experiments were designed in three phases. In the first two stages, the performance of the markers was tested on DNA samples from dogs with well-documented physical characteristics from different breeds. The final blind test, including dogs with initially withheld appearance information, showed that the majority of the selected markers allowed to develop composite sketches, providing a realistic impression of the tested dogs. We regard this study as the first attempt to evaluate the possibilities and limitations of forensic canine DNA phenotyping.
Collapse
Affiliation(s)
- Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Correspondence: ; Tel.: +43-512-9003-70640
| | - Josephin Heinrich
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Burkhard Berger
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
| | - Werner Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35390 Giessen, Germany;
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.H.); (B.B.); (W.P.)
- Forensic Science Program, The Pennsylvania State University, University Park, PA 16801, USA
| | | |
Collapse
|
50
|
Slavney AJ, Kawakami T, Jensen MK, Nelson TC, Sams AJ, Boyko AR. Five genetic variants explain over 70% of hair coat pheomelanin intensity variation in purebred and mixed breed domestic dogs. PLoS One 2021; 16:e0250579. [PMID: 34043658 PMCID: PMC8158882 DOI: 10.1371/journal.pone.0250579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
In mammals, the pigment molecule pheomelanin confers red and yellow color to hair, and the intensity of this coloration is caused by variation in the amount of pheomelanin. Domestic dogs exhibit a wide range of pheomelanin intensity, ranging from the white coat of the Samoyed to the deep red coat of the Irish Setter. While several genetic variants have been associated with specific coat intensity phenotypes in certain dog breeds, they do not explain the majority of phenotypic variation across breeds. In order to gain further insight into the extent of multigenicity and epistatic interactions underlying coat pheomelanin intensity in dogs, we leveraged a large dataset obtained via a direct-to-consumer canine genetic testing service. This consisted of genome-wide single nucleotide polymorphism (SNP) genotype data and owner-provided photos for 3,057 pheomelanic mixed breed and purebred dogs from 63 breeds and varieties spanning the full range of canine coat pheomelanin intensity. We first performed a genome-wide association study (GWAS) on 2,149 of these dogs to search for additional genetic variants that underlie intensity variation. GWAS identified five loci significantly associated with intensity, of which two (CFA15 29.8 Mb and CFA20 55.8 Mb) replicate previous findings and three (CFA2 74.7 Mb, CFA18 12.9 Mb, CFA21 10.9 Mb) have not previously been reported. In order to assess the combined predictive power of these loci across dog breeds, we used our GWAS data set to fit a linear model, which explained over 70% of variation in coat pheomelanin intensity in an independent validation dataset of 908 dogs. These results introduce three novel pheomelanin intensity loci, and further demonstrate the multigenic nature of coat pheomelanin intensity determination in domestic dogs.
Collapse
Affiliation(s)
- Andrea J. Slavney
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Takeshi Kawakami
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Meghan K. Jensen
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Thomas C. Nelson
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Aaron J. Sams
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
| | - Adam R. Boyko
- Embark Veterinary, Inc., Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| |
Collapse
|