1
|
Valentine A, Bosart K, Bush W, Bouley RA, Petreaca RC. Identification and characterization of ADAR1 mutations and changes in gene expression in human cancers. Cancer Genet 2024; 288-289:82-91. [PMID: 39488870 DOI: 10.1016/j.cancergen.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
ADAR1 (Adenosine deaminase action on RNA1) is involved in post-transcriptional RNA editing. ADAR1 mutations have been identified in many cancers but its role in tumor formation is still not well understood. Here we used available cancer genomes deposited on CSOMIC and cBioPortal to identify and characterize mutations and changes in ADAR1 expression in cancer cells. We identify several high frequency substitutions including one at R767 which is located in one of the dsRNA interacting domains. In silico protein structure analysis suggest the R767 mutations affect the protein stability and are likely to destabilize interaction with dsRNA. Gene expression analysis shows that in samples with under-expressed ADAR1, there is a statistically significant increase in expression of BLCAP (Bladder Cancer Associated Protein). Although BLCAP was initially identified in bladder cancers, more recent evidence shows that it is a tumor suppressor and BLCAP mutations have been detected in many cancer cells. Epistatic analysis using the cBioPortal mutual exclusivity calculator for the TCGA pan-cancer data shows that co-mutations between ADAR1 and other genes regulated by it are likely in cancer cells except for PTEN, AKT1 and BLCAP. This suggests that when ADAR1 function is impaired, PTEN, AKT1 and BLCAP become essential for survival of cancer cells. We also identified several samples with high mutation burden between ADAR1 and other genes regulated primarily in endometrial cancers. Finally, we show that the deaminase domain is highly conserved in metazoans and mutations within conserved residues do occur in human cancers suggesting that destabilization of the enzyme function is contributing to cancer development.
Collapse
Affiliation(s)
- Anna Valentine
- Biology Program, The Ohio State University, Marion, United States
| | - Korey Bosart
- Cancer Biology, The James Comprehensive Cancer Center, OSU, United States
| | - Wesley Bush
- Biology Program, The Ohio State University, Marion, United States; Cancer Biology, The James Comprehensive Cancer Center, OSU, United States
| | - Renee A Bouley
- Department of Chemistry and Biochemistry, The Ohio State University, United States
| | - Ruben C Petreaca
- Cancer Biology, The James Comprehensive Cancer Center, OSU, United States; Department of Molecular Genetics, The Ohio State University, United States.
| |
Collapse
|
2
|
Kodali N, Bhattaru A, Blanchard I, Sharma Y, Lipner SR. Assessing melanoma prognosis: the interplay between patient profiles, survival, and BRAF, NRAS, KIT, and TWT mutations in a retrospective multi-study analysis. Melanoma Res 2024; 34:419-428. [PMID: 38564430 DOI: 10.1097/cmr.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The incidence and prevalence of melanoma are increasing globally, presenting a significant public health concern. The main genetic drivers of melanoma include BRAF, NRAS, KIT and triple wild-type (TWT) mutations. Little is known about the effects of these mutations on outcomes in terms of demographics and patient characteristics. We examined differences in melanoma mortality risk and mutation count across mutation type and patient disease profile. We extrapolated primary melanoma patient data from 14 studies via the cBioportal database. Patients were divided into demographic groups and classified according to BRAF, NRAS, KIT and TWT mutation status. Analyses included two-sample Student t -test and two-way analysis of variance tests analysis with Tukey's post hoc test. Survival outcomes were compared via Kaplan-Meier curve and Cox regression. NRAS-mutated patients exhibited decreased overall survival compared to BRAF-mutated patients. Male patients had higher mutation counts across all gene groups than females, with the fewest TWT mutations in comparison to BRAF, NRAS and KIT mutations. Males also exhibited increased mortality risk for NRAS, KIT and TWT mutations compared to BRAF mutations. An unknown primary melanoma was associated with increased mortality risk across all gene groups. NRAS-mutated acral melanoma patients had an increased mortality risk compared to NRAS-mutated cutaneous melanoma patients. Older patients had a higher mortality risk than younger patients. Patients with heavier versus lower weights had lower mortality risk, which was more pronounced for BRAF-mutated patients. These relationships highlight the importance of demographic and pathologic relationships to aid in risk assessment and personalize treatment plans.
Collapse
Affiliation(s)
- Nilesh Kodali
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Abhijit Bhattaru
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Isabella Blanchard
- Department of Education, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Yash Sharma
- Derpartment of Education, UT Southwestern Medical School, Dallas, Texas
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
4
|
Choi ME, Choi EJ, Jung JM, Lee WJ, Jo YS, Won CH. A Narrative Review of the Evolution of Diagnostic Techniques and Treatment Strategies for Acral Lentiginous Melanoma. Int J Mol Sci 2024; 25:10414. [PMID: 39408752 PMCID: PMC11477219 DOI: 10.3390/ijms251910414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Acral melanoma (AM) is a subtype of cutaneous melanoma located on the palms, soles, and nails. The pathogenesis of AM involves mechanical stimulation and characteristic tumor-promoting mutations, such as those in the KIT proto-oncogene. Dermoscopy is useful for diagnosing AM, which is characterized by parallel ridge patterns and irregular diffuse pigmentation. Although histopathological confirmation is the gold standard for diagnosing AM, lesions showing minimal histopathological changes should be considered early-stage AM if they clinically resemble it. Recently, immunohistochemical staining of preferentially expressed antigen in melanoma has been recognized as a useful method to distinguish benign from malignant melanocytic tumors. Research reveals that AM is associated with an immunosuppressive microenvironment characterized by increased numbers of M2 macrophages and regulatory T cells, alongside a decreased number of tumor-infiltrating lymphocytes. Mohs micrographic surgery or digit-sparing wide local excision has been explored to improve quality of life and replace wide local excision or proximal amputation. AM has a worse prognosis than other subtypes, even in the early stages, indicating its inherent aggressiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (M.E.C.); (E.J.C.); (J.M.J.); (W.J.L.); (Y.-S.J.)
| |
Collapse
|
5
|
Fischer GM, Mahadevan NR, Hornick JL, Fletcher CDM, Russell-Goldman E. A Comparative Genomic Study of Conventional and Undifferentiated Melanoma. Mod Pathol 2024; 37:100626. [PMID: 39332711 DOI: 10.1016/j.modpat.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Undifferentiated melanoma, defined as melanoma that has lost all usual phenotypic and immunohistochemical characteristics of conventional melanoma, can pose significant diagnostic challenges. Molecular studies have advanced our understanding of undifferentiated melanoma by demonstrating that a subset of these tumors harbors known melanoma driver alterations in genes such as BRAF, NRAS, and NF1. However, there is a paucity of data describing genetic alterations that may distinguish undifferentiated melanoma from conventional melanoma. In this study, we directly compared the genomic profiles of undifferentiated melanoma to a cohort of conventional melanomas, including 14 undifferentiated melanoma cases (comprised of 2 primary cases, 2 cutaneous recurrences, and 10 metastases) and a cohort of 127 conventional melanomas including primary, recurrent, and metastatic cases. Targeted sequencing of 447 cancer-associated genes was performed, including identification of mutations and copy number alterations. NRAS was the most frequent melanoma driver in undifferentiated melanoma (8/14 cases, 57%), although notably, only 1 undifferentiated melanoma harbored an NRAS Q61R mutation. Compared with the conventional melanoma cohort, undifferentiated melanoma demonstrated statistically significant enrichment of pathogenic activating RAC1 mutations (6/14 total cases, 43%), including P29S (4/6 cases), P29L (1/6 cases), and D11E (1/6 cases). In addition to providing insight into the molecular pathogenesis of undifferentiated melanoma, these findings also suggest that RAS Q61R immunohistochemistry may have limited utility for its diagnosis. The presence of recurrent RAC1 mutations in undifferentiated melanoma is also notable as these alterations may contribute to mitogen-activated protein kinase pathway-targeted therapy resistance. Furthermore, the RAC1 alterations identified in this cohort have been shown to drive a melanocytic to mesenchymal switch in melanocytes, offering a possible explanation for the undifferentiated phenotype of these melanomas.
Collapse
Affiliation(s)
- Grant M Fischer
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Navin R Mahadevan
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eleanor Russell-Goldman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Menon V, García-Ruiz A, Neveu S, Cartmel B, Ferrucci LM, Palmatier M, Ko C, Tsai KY, Nakamura M, Kim SR, Girardi M, Kornacker K, Brash DE. Pervasive Induction of Regulatory Mutation Microclones in Sun-exposed Skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612526. [PMID: 39345638 PMCID: PMC11429607 DOI: 10.1101/2024.09.12.612526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Carcinogen-induced mutations are thought near-random, with rare cancer-driver mutations underlying clonal expansion. Using high-fidelity Duplex Sequencing to reach a mutation frequency sensitivity of 4×10 -9 per nt, we report that sun exposure creates pervasive mutations at sites with ∼100-fold UV-sensitivity in RNA-processing gene promoters - cyclobutane pyrimidine dimer (CPD) hyperhotspots - and these mutations have a mini-driver clonal expansion phenotype. Numerically, human skin harbored 10-fold more genuine mutations than previously reported, with neonatal skin containing 90,000 per cell; UV signature mutations increased 8,000-fold in sun-exposed skin, averaging 3×10 -5 per nt. Clonal expansion by neutral drift or passenger formation was nil. Tumor suppressor gene hotspots reached variant allele frequency 0.1-10% via 30-3,000 fold clonal expansion, in occasional biopsies. CPD hyperhotspots reached those frequencies in every biopsy, with modest clonal expansion. In vitro, tumor hotspot mutations arose occasionally over weeks of chronic low-dose exposure, whereas CPD hyperhotspot mutations arose in days at 1000-fold higher frequencies, growing exponentially. UV targeted mini-drivers in every skin cell.
Collapse
|
7
|
Colombino M, Casula M, Paliogiannis P, Manca A, Sini MC, Pisano M, Santeufemia DA, Cossu A, Palmieri G. Heterogeneous pathogenesis of melanoma: BRAF mutations and beyond. Crit Rev Oncol Hematol 2024; 201:104435. [PMID: 38977143 DOI: 10.1016/j.critrevonc.2024.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024] Open
Abstract
Melanoma pathogenesis, conventionally perceived as a linear accumulation of molecular changes, discloses substantial heterogeneity driven by non-linear biological processes, including the direct transformation of melanocyte stem cells. This heterogeneity manifests in diverse biological phenotypes and developmental states, influencing variable responses to treatments. Unveiling the aberrant mechanisms steering melanoma initiation, progression, and metastasis is imperative. Beyond mutations in oncogenic and tumor suppressor genes, the involvement of distinct molecular pathways assumes a pivotal role in melanoma pathogenesis. Ultraviolet (UV) radiations, a principal factor in melanoma etiology, categorizes melanomas based on cumulative sun damage (CSD). The genomic landscape of lesions correlates with UV exposure, impacting mutational load and spectrum of mutations. The World Health Organization's 2018 classification underscores the interplay between sun exposure and genomic characteristics, distinguishing melanomas associated with CSD from those unrelated to CSD. The classification elucidates molecular features such as tumor mutational burden and copy number alterations associated with different melanoma subtypes. The significance of the mutated BRAF gene and its pathway, notably BRAFV600 variants, in melanoma is paramount. BRAF mutations, prevalent across diverse cancer types, present therapeutic avenues, with clinical trials validating the efficacy of targeted therapies and immunotherapy. Additional driver mutations in oncogenes further characterize specific melanoma pathways, impacting tumor behavior. While histopathological examination remains pivotal, challenges persist in molecularly classifying melanocytic tumors. In this review, we went through all molecular characterization that aid in discriminating common and ambiguous lesions. Integration of highly sensitive molecular diagnostic tests into the diagnostic workflow becomes indispensable, particularly in instances where histology alone fails to achieve a conclusive diagnosis. A diagnostic algorithm based on different molecular features inferred by the various studies is here proposed.
Collapse
Affiliation(s)
- Maria Colombino
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy.
| | - Milena Casula
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | | | - Antonella Manca
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Marina Pisano
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | | | - Antonio Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy; Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, Sassari, Italy
| |
Collapse
|
8
|
Kodali N, Alomary S, Bhattaru A, Eldaboush A, Schwartz RA, Lipner SR. Gender and melanoma subtype-based prognostic implications of MUC16 and TTN co-occurrent mutations in melanoma: A retrospective multi-study analysis. Cancer Med 2024; 13:e70199. [PMID: 39240165 PMCID: PMC11378355 DOI: 10.1002/cam4.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Most primary cutaneous melanomas have pathogenesis driven by ultraviolet exposure and genetic mutations, whereas acral lentiginous melanoma (ALM) and metastatic melanoma are much less, if at all, linked with the former. Thus, we evaluated both ultraviolet related and non-ultraviolet related melanomas. Mutations in the MUC16 and TTN genes commonly occur concurrently in these melanoma patients, but their combined prognostic significance stratified by gender and cancer subtype remains unclear. METHODS The cBioPortal database was queried for melanoma studies and returned 16 independent studies. Data from 2447 melanoma patients were utilized including those with ALM, cutaneous melanoma (CM), and melanoma of unknown primary (MUP). Patients were grouped based on the presence or absence of MUC16 and TTN mutations. Univariate Cox regression and Student's t-tests were used to analyze hazard ratios and total mutation count comparisons, respectively. RESULTS TTN mutations, either alone or concurrently with MUC16 mutations, significantly correlated with worse prognosis overall, in both genders, and in CM patients. ALM patients with both mutations had better prognoses than CM patients, while ALM patients with neither mutation had worse prognosis than CM patients. For MUP patients, only MUC16 mutations correlated with worse prognosis. ALM patients with neither MUC16 nor TTN mutations had significantly more total mutations than MUP patients, followed by CM patients. CONCLUSION TTN mutations are a potential marker of poor prognosis in melanoma, which is amplified in the presence of concurrent MUC16 mutations. ALM patients with neither gene mutations had worse prognosis, suggesting a protective effect of having both MUC16 and TTN mutations. Only MUC16 mutations conferred a worse prognosis for MUP patients. Comprehensive genetic profiling in melanoma patients may facilitate personalized treatment strategies to optimize patient outcomes.
Collapse
Affiliation(s)
- Nilesh Kodali
- Rutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | | | | | - Ahmed Eldaboush
- Department of DermatologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Shari R. Lipner
- Department of DermatologyWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
9
|
Jansen P, Galetzka W, Lodde GC, Standl F, Zaremba A, Herbst R, Terheyden P, Utikal J, Pföhler C, Ulrich J, Kreuter A, Mohr P, Gutzmer R, Meier F, Dippel E, Weichenthal M, Placke JM, Landsberg J, Möller I, Sucker A, Paschen A, Hadaschik E, Zimmer L, Livingstone E, Schadendorf D, Ugurel S, Stang A, Griewank KG. Shortened progression free and overall survival to immune-checkpoint inhibitors in BRAF-, RAS- and NF1- ("Triple") wild type melanomas. Eur J Cancer 2024; 208:114208. [PMID: 39018633 DOI: 10.1016/j.ejca.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Melanomas lacking mutations in BRAF, NRAS and NF1 are frequently referred to as "triple wild-type" (tWT) melanomas. They constitute 5-10 % of all melanomas and remain poorly characterized regarding clinical characteristics and response to therapy. This study investigates the largest multicenter collection of tWT-melanomas to date. METHODS Targeted next-generation sequencing of the TERT promoter and 29 melanoma-associated genes were performed on 3109 melanoma tissue samples of the prospective multicenter study ADOREG/TRIM of the DeCOG revealing 292 patients suffering from tWT-melanomas. Clinical characteristics and mutational patterns were analyzed. As subgroup analysis, we analyzed 141 tWT-melanoma patients receiving either anti-CTLA4 plus anti-PD1 or anti PD1 monotherapy as first line therapy in AJCC stage IV. RESULTS 184 patients with cutaneous melanomas, 56 patients with mucosal melanomas, 34 patients with acral melanomas and 18 patients with melanomas of unknown origin (MUP) were included. A TERT promoter mutation could be identified in 33.2 % of all melanomas and 70.5 % of all tWT-melanomas harbored less than three mutations per sample. For the 141 patients with stage IV disease, mPFS independent of melanoma type was 6.2 months (95 % CI: 4-9) and mOS was 24.8 months (95 % CI: 14.2-53.4) after first line anti-CTLA4 plus anti-PD1 therapy. After first-line anti-PD1 monotherapy, mPFS was 4 months (95 %CI: 2.9-8.5) and mOS was 29.18 months (95 % CI: 17.5-46.2). CONCLUSIONS While known prognostic factors such as TERT promoter mutations and TMB were equally distributed among patients who received either anti-CTLA4 plus anti-PD1 combination therapy or anti-PD1 monotherapy as first line therapy, we did not find a prolonged mPFS or mOS in either of those. For both therapy concepts, mPFS and mOS were considerably shorter than reported for melanomas with known oncogene mutations.
Collapse
Affiliation(s)
- Philipp Jansen
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany; Department of Dermatology, University Hospital Bonn, Bonn.
| | - Wolfgang Galetzka
- Institute for medical informatics, biometry and epidemiology, University Hospital Essen, Essen, Germany
| | - Georg C Lodde
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Fabian Standl
- Institute for medical informatics, biometry and epidemiology, University Hospital Essen, Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Rudolf Herbst
- Hauttumorzentrum, Helios Klinikum Erfurt, Erfurt, Germany
| | | | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical School, Homburg, Saar, Germany
| | - Jens Ulrich
- Department of Dermatology and Venereology, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Klinik Oberhausen, University Witten/Herdecke, Oberhausen, Germany
| | - Peter Mohr
- Dermatological Center Buxtehude, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Ralf Gutzmer
- Skin Cancer Unit, Hannover Medical School, Hannover, Germany & Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Friedegund Meier
- Department of Dermatology, Dermatooncology, University Hospital Carl Gustav Carus, TU Dresden, Dresden Germany
| | - Edgar Dippel
- Department of Dermatology Ludwigshafen, Klinikum der Stadt Ludwigshafen am Rhein gGmbH, Ludwigshafen, Germany
| | | | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | | | - Inga Möller
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| | - Andreas Stang
- Institute for medical informatics, biometry and epidemiology, University Hospital Essen, Essen, Germany
| | - Klaus G Griewank
- Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| |
Collapse
|
10
|
Lin Y, Ramelot TA, Senyuz S, Gursoy A, Jang H, Nussinov R, Keskin O, Zheng Y. Tumor-derived RHOA mutants interact with effectors in the GDP-bound state. Nat Commun 2024; 15:7176. [PMID: 39169042 PMCID: PMC11339415 DOI: 10.1038/s41467-024-51445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
RHOA mutations are found at diverse residues in various cancer types, implying mutation- and cell-specific mechanisms of tumorigenesis. Here, we focus on the underlying mechanisms of two gain-of-function RHOA mutations, A161P and A161V, identified in adult T-cell leukemia/lymphoma. We find that RHOAA161P and RHOAA161V are both fast-cycling mutants with increased guanine nucleotide dissociation/association rates compared with RHOAWT and show reduced GTP-hydrolysis activity. Crystal structures reveal an altered nucleotide association in RHOAA161P and an open nucleotide pocket in RHOAA161V. Both mutations perturb the dynamic properties of RHOA switch regions and shift the conformational landscape important for RHOA activity, as shown by 31P NMR and molecular dynamics simulations. Interestingly, RHOAA161P and RHOAA161V can interact with effectors in the GDP-bound state. 1H-15N HSQC NMR spectra support the existence of an active population in RHOAA161V-GDP. The distinct interaction mechanisms resulting from the mutations likely favor an RHOAWT-like "ON" conformation, endowing GDP-bound state effector binding activity.
Collapse
Affiliation(s)
- Yuan Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Theresa A Ramelot
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Simge Senyuz
- Computational Sciences and Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc Univeristy, Rumelifeneri Yolu, Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc Univeristy, Rumelifeneri Yolu, Istanbul, Turkey
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Taylor MM, Nelson KC, Dimitriou F. Skin Cancer Precursors: From Cancer Genomics to Early Diagnosis. Hematol Oncol Clin North Am 2024; 38:851-868. [PMID: 38782646 DOI: 10.1016/j.hoc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Skin cancers, including melanoma and keratinocyte carcinomas, are responsible for increasing health care burden internationally. Risk stratification and early detection are paramount for prevention and less risky treatment to overall improve patient outcomes and disease morbidity. Here, the authors discuss the key concepts leading to skin cancer initiation and progression. The authors also outline precursor and progression models for melanoma and keratinocyte carcinomas, including discussion of genetic alterations associated with the various stages of progression. Finally, the authors discuss the significance of immunoediting and the drivers behind increased risk of cutaneous malignancy in the state of immune dysregulation.
Collapse
Affiliation(s)
- Madison M Taylor
- John P. and Kathrine G. McGovern Medical School, The University of Texas Health Science Center, 6431 Fannin Street, Houston, TX 77030, USA; Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1452, Houston, TX 77030, USA
| | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1452, Houston, TX 77030, USA.
| | - Florentia Dimitriou
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1484, Houston, TX 77030, USA; Department of Dermatology, University Hospital of Zurich, University of Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| |
Collapse
|
13
|
Vasilevska J, Cheng PF, Lehmann J, Ramelyte E, Gómez JM, Dimitriou F, Sella F, Ferretti D, Salas-Bastos A, Jordaan WS, Levesque MP, Dummer R, Sommer L. Monitoring melanoma patients on treatment reveals a distinct macrophage population driving targeted therapy resistance. Cell Rep Med 2024; 5:101611. [PMID: 38942020 PMCID: PMC11293307 DOI: 10.1016/j.xcrm.2024.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/30/2024]
Abstract
Resistance to targeted therapy remains a major clinical challenge in melanoma. To uncover resistance mechanisms, we perform single-cell RNA sequencing on fine-needle aspirates from resistant and responding tumors of patients undergoing BRAFi/MEKi treatment. Among the genes most prominently expressed in resistant tumors is POSTN, predicted to signal to a macrophage population associated with targeted therapy resistance (TTR). Accordingly, tumors from patients with fast disease progression after therapy exhibit high POSTN expression levels and high numbers of TTR macrophages. POSTN polarizes human macrophages toward a TTR phenotype and promotes resistance to targeted therapy in a melanoma mouse model, which is associated with a phenotype change in intratumoral macrophages. Finally, polarized TTR macrophages directly protect human melanoma cells from MEKi-induced killing via CD44 receptor expression on melanoma cells. Thus, interfering with the protective activity of TTR macrophages may offer a strategy to overcome resistance to targeted therapy in melanoma.
Collapse
Affiliation(s)
- Jelena Vasilevska
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Phil Fang Cheng
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Lehmann
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Egle Ramelyte
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Julia Martínez Gómez
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Daria Ferretti
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Mitchell Paul Levesque
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
14
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Traynor S, Jakobsen MK, Green TM, Komic H, Palarasah Y, Pedersen CB, Ditzel HJ, Thoren FB, Guldberg P, Gjerstorff MF. Single-cell sequencing unveils extensive intratumoral heterogeneity of cancer/testis antigen expression in melanoma and lung cancer. J Immunother Cancer 2024; 12:e008759. [PMID: 38886115 PMCID: PMC11184195 DOI: 10.1136/jitc-2023-008759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer/testis antigens (CTAs) are widely expressed in melanoma and lung cancer, emerging as promising targets for vaccination strategies and T-cell-based therapies in these malignancies. Despite recognizing the essential impact of intratumoral heterogeneity on clinical responses to immunotherapy, our understanding of intratumoral heterogeneity in CTA expression has remained limited. We employed single-cell mRNA sequencing to delineate the CTA expression profiles of cancer cells in clinically derived melanoma and lung cancer samples. Our findings reveal a high degree of intratumoral transcriptional heterogeneity in CTA expression. In melanoma, every cell expressed at least one CTA. However, most individual CTAs, including the widely used therapeutic targets NY-ESO-1 and MAGE, were confined to subpopulations of cells and were uncoordinated in their expression, resulting in mosaics of cancer cells with diverse CTA profiles. Coordinated expression was observed, however, mainly among highly structurally and evolutionarily related CTA genes. Importantly, a minor subset of CTAs, including PRAME and several members of the GAGE and MAGE-A families, were homogenously expressed in melanomas, highlighting their potential as therapeutic targets. Extensive heterogeneity in CTA expression was also observed in lung cancer. However, the frequency of CTA-positive cancer cells was notably lower and homogenously expressed CTAs were only identified in one of five tumors in this cancer type. Our findings underscore the need for careful CTA target selection in immunotherapy development and clinical testing and offer a rational framework for identifying the most promising candidates.
Collapse
Affiliation(s)
- Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Goteborg, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goteborg, Sweden
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Fredrik B Thoren
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Goteborg, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goteborg, Sweden
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Cancer Institute, Kobenhavn, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Boudreault J, Canaff L, Ghozlan M, Wang N, Guarnieri V, Salcuni AS, Scillitani A, Goltzman D, Ali S, Lebrun JJ. Multiple Endocrine Neoplasia Type 1 Regulates TGFβ-Mediated Suppression of Tumor Formation and Metastasis in Melanoma. Cells 2024; 13:973. [PMID: 38891107 PMCID: PMC11172218 DOI: 10.3390/cells13110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Over the past few decades, the worldwide incidence of cutaneous melanoma, a malignant neoplasm arising from melanocytes, has been increasing markedly, leading to the highest rate of skin cancer-related deaths. While localized tumors are easily removed by excision surgery, late-stage metastatic melanomas are refractory to treatment and exhibit a poor prognosis. Consequently, unraveling the molecular mechanisms underlying melanoma tumorigenesis and metastasis is crucial for developing novel targeted therapies. We found that the multiple endocrine neoplasia type 1 (MEN1) gene product Menin is required for the transforming growth factor beta (TGFβ) signaling pathway to induce cell growth arrest and apoptosis in vitro and prevent tumorigenesis in vivo in preclinical xenograft models of melanoma. We further identified point mutations in two MEN1 family members affected by melanoma that led to proteasomal degradation of the MEN1 gene product and to a loss of TGFβ signaling. Interestingly, blocking the proteasome degradation pathway using an FDA-approved drug and RNAi targeting could efficiently restore MEN1 expression and TGFβ transcriptional responses. Together, these results provide new potential therapeutic strategies and patient stratification for the treatment of cutaneous melanoma.
Collapse
Affiliation(s)
- Julien Boudreault
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada; (J.B.); (L.C.); (M.G.); (N.W.); (D.G.); (S.A.)
| | - Lucie Canaff
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada; (J.B.); (L.C.); (M.G.); (N.W.); (D.G.); (S.A.)
| | - Mostafa Ghozlan
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada; (J.B.); (L.C.); (M.G.); (N.W.); (D.G.); (S.A.)
| | - Ni Wang
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada; (J.B.); (L.C.); (M.G.); (N.W.); (D.G.); (S.A.)
| | - Vito Guarnieri
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Antonio Stefano Salcuni
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia, 33100 Udine, Italy;
| | - Alfredo Scillitani
- Endocrinology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - David Goltzman
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada; (J.B.); (L.C.); (M.G.); (N.W.); (D.G.); (S.A.)
| | - Suhad Ali
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada; (J.B.); (L.C.); (M.G.); (N.W.); (D.G.); (S.A.)
| | - Jean-Jacques Lebrun
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada; (J.B.); (L.C.); (M.G.); (N.W.); (D.G.); (S.A.)
| |
Collapse
|
17
|
Zhang H, Read A, Cataisson C, Yang HH, Lee WC, Turk BE, Yuspa SH, Luo J. Protein phosphatase 6 activates NF-κB to confer sensitivity to MAPK pathway inhibitors in KRAS- and BRAF-mutant cancer cells. Sci Signal 2024; 17:eadd5073. [PMID: 38743809 PMCID: PMC11238902 DOI: 10.1126/scisignal.add5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.
Collapse
Affiliation(s)
- Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Current affiliation: Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei-Chun Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Barth H, Worek F, Steinritz D, Papatheodorou P, Huber-Lang M. Trauma-toxicology: concepts, causes, complications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2935-2948. [PMID: 37999755 PMCID: PMC11074020 DOI: 10.1007/s00210-023-02845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Trauma and toxic substances are connected in several aspects. On the one hand, toxic substances can be the reason for traumatic injuries in the context of accidental or violent and criminal circumstances. Examples for the first scenario is the release of toxic gases, chemicals, and particles during house fires, and for the second scenario, the use of chemical or biological weapons in the context of terroristic activities. Toxic substances can cause or enhance severe, life-threatening trauma, as described in this review for various chemical warfare, by inducing a tissue trauma accompanied by break down of important barriers in the body, such as the blood-air or the blood-gut barriers. This in turn initiates a "vicious circle" as the contribution of inflammatory responses to the traumatic damage enhances the macro- and micro-barrier breakdown and often results in fatal outcome. The development of sophisticated methods for detection and identification of toxic substances as well as the special treatment of the intoxicated trauma patient is summarized in this review. Moreover, some highly toxic substances, such as the protein toxins from the pathogenic bacterium Clostridioides (C.) difficile, cause severe post-traumatic complications which significantly worsens the outcome of hospitalized patients, in particular in multiply injured trauma patients. Therefore, novel pharmacological options for the treatment of such patients are necessarily needed and one promising strategy might be the neutralization of the toxins that cause the disease. This review summarizes recent findings on the molecular and cellular mechanisms of toxic chemicals and bacterial toxins that contribute to barrier breakdown in the human body as wells pharmacological options for treatment, in particular in the context of intoxicated trauma patients. "trauma-toxicology" comprises concepts regrading basic research, development of novel pharmacological/therapeutic options and clinical aspects in the complex interplay and "vicious circle" of severe tissue trauma, barrier breakdown, pathogen and toxin exposure, tissue damage, and subsequent clinical complications.
Collapse
Affiliation(s)
- Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University of Ulm Medical Center, Ulm, Germany.
| |
Collapse
|
19
|
Lin ZC, Hung CF, Aljuffali IA, Lin MH, Fang JY. RNA-Based Antipsoriatic Gene Therapy: An Updated Review Focusing on Evidence from Animal Models. Drug Des Devel Ther 2024; 18:1277-1296. [PMID: 38681207 PMCID: PMC11055533 DOI: 10.2147/dddt.s447780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Psoriasis presents as a complex genetic skin disorder, characterized by the interaction between infiltrated immune cells and keratinocytes. Substantial progress has been made in understanding the molecular mechanisms of both coding and non-coding genes, which has positively impacted clinical treatment approaches. Despite extensive research into the genetic aspects of psoriasis pathogenesis, fully grasping its epigenetic component remains a challenging endeavor. In response to the pressing demand for innovative treatments to alleviate inflammatory skin disorders, various novel strategies are under consideration. These include gene therapy employing antisense nucleotides, silencing RNA complexes, stem cell therapy, and antibody-based therapy. There is a pressing requirement for a psoriasis-like animal model that replicates human psoriasis to facilitate early preclinical evaluations of these novel treatments. The authors conduct a comprehensive review of various gene therapy in different psoriasis-like animal models utilized in psoriasis research. The animals included in the list underwent skin treatments such as imiquimod application, as well as genetic and biologic injections, and the results of these interventions are detailed. Animal models play a crucial role in translating drug discoveries from the laboratory to clinical practice, and these models aid in improving the reproducibility and clinical applicability of preclinical data. Numerous animal models with characteristics similar to those of human psoriasis have proven to be useful in understanding the development of psoriasis. In this review, the article focuses on RNA-based gene therapy exploration in different types of psoriasis-like animal models to improve the treatment of psoriasis.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
20
|
Donkó Á, Sharapova SO, Kabat J, Ganesan S, Hauck FH, Bergerson JRE, Marois L, Abbott J, Moshous D, Williams KW, Campbell N, Martin PL, Lagresle-Peyrou C, Trojan T, Kuzmenko NB, Deordieva EA, Raykina EV, Abers MS, Abolhassani H, Barlogis V, Milla C, Hall G, Mousallem T, Church J, Kapoor N, Cros G, Chapdelaine H, Franco-Jarava C, Lopez-Lerma I, Miano M, Leiding JW, Klein C, Stasia MJ, Fischer A, Hsiao KC, Martelius T, Sepännen MRJ, Barmettler S, Walter J, Masmas TN, Mukhina AA, Falcone EL, Kracker S, Shcherbina A, Holland SM, Leto TL, Hsu AP. Clinical and functional spectrum of RAC2-related immunodeficiency. Blood 2024; 143:1476-1487. [PMID: 38194689 PMCID: PMC11033590 DOI: 10.1182/blood.2023022098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.
Collapse
Affiliation(s)
- Ágnes Donkó
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Fabian H. Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jenna R. E. Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Louis Marois
- Department of Medicine, Centre Hospitalier Universitaire de Montréal and Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, QC, Canada
- Department of Medecine, Centre Hospitalier Universitaire de Québec, Université de Laval, Québec, QC, Canada
| | - Jordan Abbott
- University of Colorado School of Medicine, Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital of Colorado, Aurora, CO
| | - Despina Moshous
- Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique – Hôpitaux de Paris Centre Université de Paris, Paris, France
- Université de Paris, Imagine Institute, Laboratory of Genome Dynamics in the Immune System, INSERM UMR 1163, Paris, France
| | - Kelli W. Williams
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Paul L. Martin
- Division of Transplant and Cellular Therapy, Duke University Medical School, Durham, NC
| | - Chantal Lagresle-Peyrou
- Université Paris Cité, Imagine Institute, INSERM UMR 1163, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique–Hôpitaux de Paris, INSERM, Paris, France
| | | | - Natalia B. Kuzmenko
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina A. Deordieva
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena V. Raykina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Michael S. Abers
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vincent Barlogis
- Pediatric Hematology Unit, La Timone University Hospital, Marseille, France
| | - Carlos Milla
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey Hall
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Talal Mousallem
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Joseph Church
- Pediatric Allergy/Immunology, Children’s Hospital Los Angeles, Los Angeles, CA
- Clinical Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Guilhem Cros
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Université de Montreal, Montreal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Clara Franco-Jarava
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Ingrid Lopez-Lerma
- Department of Immunology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Maurizio Miano
- Haematology Unit, Scientific Institute for Research, Hospitalization and Healthcare Istituto Giannina Gaslini, Genoa, Italy
| | - Jennifer W. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD
- Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Centre Diagnostic et Recherche sur la Granulomatose Septique Chronique, Grenoble, France
- Université Grenoble Alpes, Centre National de le Recherche Scientifique, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Alain Fischer
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Kuang-Chih Hsiao
- Department of Immunology, Starship Child Health, Te Whatu Ora, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Timi Martelius
- Inflammation Center/Infectious Diseases, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Mikko R. J. Sepännen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- ERN-RITA Core Center Member, RITAFIN, Helsinki, Finland
- Rare Disease Center and Pediatric Research Center, Children and Adolescents, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA
| | - Jolan Walter
- University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Tania N. Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Department, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna A. Mukhina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Emilia Liana Falcone
- Center for Inflammation, Immunity and Infectious Diseases, Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Sven Kracker
- Université Paris Cité, Imagine Institute, Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Anna Shcherbina
- D. Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Thomas L. Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Khan C, Rusan NM. Using Drosophila to uncover the role of organismal physiology and the tumor microenvironment in cancer. Trends Cancer 2024; 10:289-311. [PMID: 38350736 PMCID: PMC11008779 DOI: 10.1016/j.trecan.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Cancer metastasis causes over 90% of cancer patient fatalities. Poor prognosis is determined by tumor type, the tumor microenvironment (TME), organ-specific biology, and animal physiology. While model organisms do not fully mimic the complexity of humans, many processes can be studied efficiently owing to the ease of genetic, developmental, and cell biology studies. For decades, Drosophila has been instrumental in identifying basic mechanisms controlling tumor growth and metastasis. The ability to generate clonal populations of distinct genotypes in otherwise wild-type animals makes Drosophila a powerful system to study tumor-host interactions at the local and global scales. This review discusses advancements in tumor biology, highlighting the strength of Drosophila for modeling TMEs and systemic responses in driving tumor progression and metastasis.
Collapse
Affiliation(s)
- Chaitali Khan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Parise A, Magistrato A. Assessing the mechanism of fast-cycling cancer-associated mutations of Rac1 small Rho GTPase. Protein Sci 2024; 33:e4939. [PMID: 38501467 PMCID: PMC10949326 DOI: 10.1002/pro.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
Rho-GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer-associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all-atom molecular dynamics simulations on wild-type (wt) and oncogenic isoforms of this protein in GDP- and GTP-bound states. Our results unprecedentedly elucidate that P29Q/S-induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer-associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle ricerche (CNR)‐IOM c/o International School for Advanced Studies (SISSA/ISAS)TriesteItaly
| | - Alessandra Magistrato
- Consiglio Nazionale delle ricerche (CNR)‐IOM c/o International School for Advanced Studies (SISSA/ISAS)TriesteItaly
| |
Collapse
|
23
|
Chen X, Keller SJ, Hafner P, Alrawashdeh AY, Avery TY, Norona J, Zhou J, Ruess DA. Tyrosine phosphatase PTPN11/SHP2 in solid tumors - bull's eye for targeted therapy? Front Immunol 2024; 15:1340726. [PMID: 38504984 PMCID: PMC10948527 DOI: 10.3389/fimmu.2024.1340726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Encoded by PTPN11, the Src-homology 2 domain-containing phosphatase 2 (SHP2) integrates signals from various membrane-bound receptors such as receptor tyrosine kinases (RTKs), cytokine and integrin receptors and thereby promotes cell survival and proliferation. Activating mutations in the PTPN11 gene may trigger signaling pathways leading to the development of hematological malignancies, but are rarely found in solid tumors. Yet, aberrant SHP2 expression or activation has implications in the development, progression and metastasis of many solid tumor entities. SHP2 is involved in multiple signaling cascades, including the RAS-RAF-MEK-ERK-, PI3K-AKT-, JAK-STAT- and PD-L1/PD-1- pathways. Although not mutated, activation or functional requirement of SHP2 appears to play a relevant and context-dependent dichotomous role. This mostly tumor-promoting and infrequently tumor-suppressive role exists in many cancers such as gastrointestinal tumors, pancreatic, liver and lung cancer, gynecological entities, head and neck cancers, prostate cancer, glioblastoma and melanoma. Recent studies have identified SHP2 as a potential biomarker for the prognosis of some solid tumors. Based on promising preclinical work and the advent of orally available allosteric SHP2-inhibitors early clinical trials are currently investigating SHP2-directed approaches in various solid tumors, either as a single agent or in combination regimes. We here provide a brief overview of the molecular functions of SHP2 and collate current knowledge with regard to the significance of SHP2 expression and function in different solid tumor entities, including cells in their microenvironment, immune escape and therapy resistance. In the context of the present landscape of clinical trials with allosteric SHP2-inhibitors we discuss the multitude of opportunities but also limitations of a strategy targeting this non-receptor protein tyrosine phosphatase for treatment of solid tumors.
Collapse
Affiliation(s)
- Xun Chen
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Steffen Johannes Keller
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Philipp Hafner
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Asma Y. Alrawashdeh
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Thomas Yul Avery
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Johana Norona
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - Dietrich Alexander Ruess
- Department of General and Visceral Surgery, Center for Surgery, Medical Center University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Cannon AC, Budagyan K, Uribe-Alvarez C, Kurimchak AM, Araiza-Olivera D, Cai KQ, Peri S, Zhou Y, Duncan JS, Chernoff J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. Oncogene 2024; 43:729-743. [PMID: 38243078 PMCID: PMC11157427 DOI: 10.1038/s41388-024-02947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alexa C Cannon
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Konstantin Budagyan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Suraj Peri
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Merck, Bioinformatics Oncology Discovery, Boston, MA, USA
| | - Yan Zhou
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Vincenzi M, Mercurio FA, Autiero I, Leone M. Cancer-Related Mutations in the Sam Domains of EphA2 Receptor and Ship2 Lipid Phosphatase: A Computational Study. Molecules 2024; 29:1024. [PMID: 38474536 DOI: 10.3390/molecules29051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
26
|
Cerdido S, Abrisqueta M, Sánchez-Beltrán J, Lambertos A, Castejón-Griñán M, Muñoz C, Olivares C, García-Borrón JC, Jiménez-Cervantes C, Herraiz C. MGRN1 depletion promotes intercellular adhesion in melanoma by upregulation of E-cadherin and inhibition of CDC42. Cancer Lett 2024; 581:216484. [PMID: 38008393 DOI: 10.1016/j.canlet.2023.216484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023]
Abstract
Mahogunin Ring Finger 1 is an E3-ubiquitin ligase encoded by the color gene MGRN1. Our previous in vitro and in vivo studies demonstrated that Mgrn1 deletion in mouse melanoma cells induced cell differentiation and adhesion, and decreased cell motility and invasion on collagen I, and lung colonization in an in vivo model. Here, we investigated the role of MGRN1 on human melanoma cell morphology, adhesion and expression of genes/proteins involved in an EMT-like transition. We demonstrated that wild-type BRAF human melanoma cells adopted a clustering-like morphology on collagen I, with permanent MGRN1 abrogation resulting in bigger cell clusters. Enhanced intercellular adhesion was mostly mediated by induction of E-cadherin and higher co-localization with β-catenin. Transcriptional upregulation of E-cadherin likely occurred through downregulation of the ZEB1 repressor. Finally, pulldown assays showed reduced activation of CDC42 in the absence of MGRN1, which was reverted after E-cadherin silencing. Overall, these findings highlight a new MGRN1-dependent pathway regulating melanoma cell shape, motility, and invasion potential.
Collapse
Affiliation(s)
- S Cerdido
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - M Abrisqueta
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - J Sánchez-Beltrán
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - A Lambertos
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - M Castejón-Griñán
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - C Muñoz
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - C Olivares
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - J C García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - C Jiménez-Cervantes
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain
| | - C Herraiz
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), 30120, Murcia, Spain.
| |
Collapse
|
27
|
Yasuta Y, Kaminaka R, Nagai S, Mouri S, Ishida K, Tanaka A, Zhou Y, Sakurai H, Yokoyama S. Cooperative function of oncogenic MAPK signaling and the loss of Pten for melanoma migration through the formation of lamellipodia. Sci Rep 2024; 14:1525. [PMID: 38233537 PMCID: PMC10794247 DOI: 10.1038/s41598-024-52020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
The combination of oncogenes and tumor suppressors is involved in cancer development; however, it is still unknown whether their combination plays a critical role in cancer metastasis. We herein investigated whether genetic combinations affected cell migration ability by establishing the immortalized melanocytes, melan-a cells, with an oncogene, either BRAFV600E or GNA11Q209L, and the loss of mouse Pten. The loss of mouse Pten or human PTEN increased the cell migration ability of our established cells and human melanoma cell lines with oncogenic MAPK signaling and the BRAFV600E or NRASQ61R background, but not with the GNA11Q209L background or no oncogenes. Although increased migration was not related to PI3K-AKT activation, those migration is regulated by the induction of some components in the WAVE regulatory complex, resulting in a higher rate of the formation of lamellipodia. On the other hand, BRAFV600E induced EphA2 phosphorylation at serine 897 through RSK and was also required for cell migration and the formation of lamellipodia. Therefore, the oncogenic MAPK pathway and loss of Pten in melanoma were important for cell migration through the formation of lamellipodia, suggesting the significance of an appropriate combination of genetic alterations not only in cancer development, but also cancer metastasis.
Collapse
Affiliation(s)
- Yutaka Yasuta
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryuya Kaminaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shutaro Nagai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shuto Mouri
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Katsuya Ishida
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akihiro Tanaka
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yue Zhou
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
28
|
Vadak N, Borkar MR, Bhatt LK. Deciphering neuroprotective mechanism of nitroxoline in cerebral ischemia: network pharmacology and molecular modeling-based investigations. Mol Divers 2024:10.1007/s11030-023-10791-8. [PMID: 38233690 DOI: 10.1007/s11030-023-10791-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Cerebral ischemia is one of the major causes of death and disability worldwide. Currently, existing approved therapies are based on reperfusion and there is an unmet need to search for drugs with neuroprotective effects. The present study aims to investigate the neuroprotective mechanisms of nitroxoline, a nitro derivative of 8-Hydroxyquinoline, against cerebral ischemia using integrated network pharmacology and molecular docking approaches. Critical analytical tools used were SwissTarget, PharmMapper, BindingDB, DisGeNet, Cytoscape, GeneMANIA, ShinyGo, Metascape, GeneCodis, and Schrodinger GLIDE. Thirty-six overlapping drug and disease targets were identified and used for further analysis. Gene Ontology results showed that nitroxoline enriched the genes involved in biological processes of oxidative stress and apoptotic cell death that are highly implicated in hypoxic injury. KEGG enrichment analysis showed nitroxoline influenced a total of 159 biological pathways, out of which, top pathways involved in cerebral ischemia included longevity regulating pathway, VEGF signaling, EGFR tyrosine kinase inhibitor resistance, IL-17 and HIF-1 pathways, FoxO signaling, and AGE-RAGE pathway. Protein-protein interaction analysis using string database showed PARP1, EGFR, PTEN, BRD4, RAC1, NOS2, MTOR, MAPK3, BCL2, MAPK1, APP, METAP2, MAPK14, SIRT1, PRKAA1, and MCL1 as highly interactive proteins involved in pathogenesis of ischemic stroke regulated by nitroxoline. The highly interactive protein targets were validated by molecular docking studies and molecular dynamic simulations. Amongst all these targets, nitroxoline showed the highest binding affinity towards BRD4 followed by PARP1 and PTEN. Nitroxoline, through network pharmacology analysis, showed a role in regulating proteins, biological processes, and pathways crucial in cerebral ischemia. The current study thus provides a preliminary insight that nitroxoline might be used as a neuroprotectant against cerebral ischemia via modulating the epigenetic reader BRD4 and transcription factors such as RELA, NF-κβ1, and SP1. However, further in-vitro and preclinical studies need to be performed for concrete evidence.
Collapse
Affiliation(s)
- Namrata Vadak
- Department of Pharmacology, SVKM's Dr Bhanuben, Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr, Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr Bhanuben, Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
29
|
Wang Y, Pan J, Wang M, Su J. Research hotspots and frontiers in acral melanoma: A bibliometric analysis from 1999 to 2023. Heliyon 2024; 10:e23720. [PMID: 38226247 PMCID: PMC10788444 DOI: 10.1016/j.heliyon.2023.e23720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Background Acral melanoma (AM), an aggressive subtype of melanoma with poor prognosis, has been increasingly studied. The present study aims to discuss the current status, hotspots and future directions of AM studies through visualized analysis with bibliometrics and knowledge graph. Method Publications related to acral melanoma from January 1999 to May 2023 were searched and retrieved from the Web of Science. Data extraction and visualization of the top 10 publications by year of publication, journal, country and core author were performed using R Studio (Version 4.3.0) and Scimago Graphica (Version 1.0.34). Co-reference graphs regarding country/region, organization, author, and keywords, as well as reference collaborative network, co-occurrence network, and references were plotted using VOSviewer (Version 1.6.19) and CiteSpace (Version 6.2.R3). Results A total of 1387 articles related to AM published in English from 1999 to 2023 were included in the present study. A total of 7499 authors were from 2092 organizations in 50 countries. The articles were published in 356 journals, involving 4131 keywords and 28,200 references. The 1387 articles related to AM had been cited a total of 10,014 times by the time of this study. The result showed that Journal of the American Academy of Dermatology had the largest number of citations and citation rate, with a total of 60 publications having been cited 2191 times. Having the top three productivity institutions in the world, the US is the most productive country in this field, with a total of 361 publications. The authors with the highest number of publications were Guo Jun (n = 43) and Si Lu (n = 38) from Peking University. The keyword burstiness test found that "ipilimumab", "open label", "efficacy" and "nivolumab" appeared most frequently in recent years. The co-cited reference timeline graph showed that the clustering of "advanced melanoma" and "melanocytic lesion" has been a hotspot since 2016. Conclusions The number of AM-related studies has been increasing. The clinical characteristics and immunotherapy of AM are still key research directions, with the US playing a leading role in this field. This bibliometric analysis found up to 1387 publications, which not only comprehensively and quantitatively reflected the research trends and hotspots, but also provided a theoretical basis for future studies of AM. Researchers can benefit from choosing the right journals and finding potential collaborators or partner institutions.
Collapse
Affiliation(s)
- Yi Wang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Fifth People's Hospital of Hainan Province / Affiliated Dermatology Hospital of Hainan Medical University, Haikou City, Hainan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Pan
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mi Wang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Mental Health Center, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Xiao H, Shiu J, Chen CF, Wu J, Zhou P, Telang SS, Ruiz-Vega R, Nie Q, Lander AD, Ganesan AK. Uncovering Minimal Pathways in Melanoma Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570336. [PMID: 38106189 PMCID: PMC10723457 DOI: 10.1101/2023.12.08.570336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cutaneous melanomas are clinically and histologically heterogeneous. Most display activating mutations in Braf or Nras and complete loss of function of one or more tumor suppressor genes. Mouse models that replicate such mutations produce fast-growing, pigmented tumors. However, mice that combine Braf activation with only heterozygous loss of Pten also produce tumors and, as we show here, in an Albino background this occurs even with Braf activation alone. Such tumors arise rarely, grow slowly, and express low levels of pigmentation genes. The timing of their appearance was consistent with a single step stochastic event, but no evidence could be found that it required de novo mutation, suggesting instead the involvement of an epigenetic transition. Single-cell transcriptomic analysis revealed such tumors to be heterogeneous, including a minor cell type we term LNM ( L ow-pigment, N eural- and extracellular M atrix-signature) that displays gene expression resembling "neural crest"-like cell subsets detected in the fast-growing tumors of more heavily-mutated mice, as well as in human biopsy and xenograft samples. We provide evidence that LNM cells pre-exist in normal skin, are expanded by Braf activation, can transition into malignant cells, and persist with malignant cells through multiple rounds of transplantation. We discuss the possibility that LNM cells not only serve as a pre-malignant state in the production of some melanomas, but also as an important intermediate in the development of drug resistance.
Collapse
|
31
|
Zakariya F, Salem FK, Alamrain AA, Sanker V, Abdelazeem ZG, Hosameldin M, Tan JK, Howard R, Huang H, Awuah WA. Refining mutanome-based individualised immunotherapy of melanoma using artificial intelligence. Eur J Med Res 2024; 29:25. [PMID: 38183141 PMCID: PMC10768232 DOI: 10.1186/s40001-023-01625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
Using the particular nature of melanoma mutanomes to develop medicines that activate the immune system against specific mutations is a game changer in immunotherapy individualisation. It offers a viable solution to the recent rise in resistance to accessible immunotherapy alternatives, with some patients demonstrating innate resistance to these drugs despite past sensitisation to these agents. However, various obstacles stand in the way of this method, most notably the practicality of sequencing each patient's mutanome, selecting immunotherapy targets, and manufacturing specific medications on a large scale. With the robustness and advancement in research techniques, artificial intelligence (AI) is a potential tool that can help refine the mutanome-based immunotherapy for melanoma. Mutanome-based techniques are being employed in the development of immune-stimulating vaccines, improving current options such as adoptive cell treatment, and simplifying immunotherapy responses. Although the use of AI in these approaches is limited by data paucity, cost implications, flaws in AI inference capabilities, and the incapacity of AI to apply data to a broad population, its potential for improving immunotherapy is limitless. Thus, in-depth research on how AI might help the individualisation of immunotherapy utilising knowledge of mutanomes is critical, and this should be at the forefront of melanoma management.
Collapse
Affiliation(s)
- Farida Zakariya
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Fatma K Salem
- Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Vivek Sanker
- Research Assistant, Dept. Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | - Zainab G Abdelazeem
- Division of Molecular Biology, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | - Rachel Howard
- School of Clinical Medicine, University of Cambridge, Cambridge, England
| | - Helen Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Wireko Andrew Awuah
- Medical Institute, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine.
| |
Collapse
|
32
|
Vishwas S, Paul SD, Singh D. An Insight on Skin Cancer About Different Targets With Update on Clinical Trials and Investigational Drugs. Curr Drug Deliv 2024; 21:852-869. [PMID: 37496132 DOI: 10.2174/1567201820666230726150642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 07/28/2023]
Abstract
Cancer is a diverse disease caused by transcriptional changes involving genetic and epigenetic features that influence a huge variety of genes and proteins. Skin cancer is a potentially fatal disease that affects equally men and women globally and is characterized by many molecular changes. Despite the availability of various improved approaches for detecting and treating skin cancer, it continues to be the leading cause of death throughout society. This review highlights a general overview of skin cancer, with an emphasis on epidemiology, types, risk factors, pathological and targeted facets, biomarkers and molecular markers, immunotherapy, and clinical updates of investigational drugs associated with skin cancer. The skin cancer challenges are acknowledged throughout this study, and the potential application of novel biomarkers of skin cancer formation, progression, metastasis, and prognosis is explored. Although the mechanism of skin carcinogenesis is currently poorly understood, multiple articles have shown that genetic and molecular changes are involved. Furthermore, several skin cancer risk factors are now recognized, allowing for efficient skin cancer prevention. There have been considerable improvements in the field of targeted treatment, and future research into additional targets will expand patients' therapeutic choices. In comparison to earlier articles on the same issue, this review focused on molecular and genetic factors and examined various skin cancer-related factors in depth.
Collapse
Affiliation(s)
- Suraj Vishwas
- Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
- Sanskar City College of Pharmacy, Rajnandgaon, Bhilai (C.G.) India
| | - Swarnali Das Paul
- Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai (C.G.) India
| | - Deepika Singh
- Shri Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
| |
Collapse
|
33
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
34
|
Xu L, Zhang L, Zhang S, Yang J, Zhu A, Sun J, Kalvakolanu DV, Cong X, Zhang J, Tang J, Guo B. Taxifolin inhibits melanoma proliferation/migration impeding USP18/Rac1/JNK/β-catenin oncogenic signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155199. [PMID: 37995531 DOI: 10.1016/j.phymed.2023.155199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Metastatic melanoma is a fatal cancer. Despite the advances in targeted therapy and immunotherapy for patients with melanoma, drug resistance and low response rates pose a considerable challenge. Taxifolin is a multifunctional natural compound with emerging antitumor potentials. However, its utility in melanoma treatment remains unclear. PURPOSE The study aimed to investigate the effect of purified Taxifolin from Larix olgensis roots (Changbai Mountain, China) on melanoma and explore the underlying mechanism. METHODS Purified Taxifolin from Larix olgensis roots was evaluated for its antimelanoma effects in vitro and in vivo settings. RNA-seq analysis was performed to explore the underlying mechanism. RESULTS Purified Taxifolin (> 99 %) from Larix olgensis roots inhibited the proliferation and migration of B16F10 melanoma cells at 200 and 400 μM, and of A375 cells at 100 and 200 μM. Taxifolin administered at 60 mg/kg suppressed tumor growth and metastasis in mouse models without causing significant toxicity. Taxifolin modulated USP18/Rac1/JNK/β-catenin axis to exert its antitumor effect. CONCLUSION These findings indicate that Taxifolin derived from Larix olgensis roots may be a promising antimelanoma therapy.
Collapse
Affiliation(s)
- Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China; Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Ling Zhang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Shengnan Zhang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jiaying Yang
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Aonan Zhu
- Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xianling Cong
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Jinnan Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China
| | - Jun Tang
- Department of Polymer Science, Chemistry College, Jilin University, Changchun, PR China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China.
| |
Collapse
|
35
|
Mishra AK, Rodriguez M, Torres AY, Smith M, Rodriguez A, Bond A, Morrissey MA, Montell DJ. Hyperactive Rac stimulates cannibalism of living target cells and enhances CAR-M-mediated cancer cell killing. Proc Natl Acad Sci U S A 2023; 120:e2310221120. [PMID: 38109551 PMCID: PMC10756302 DOI: 10.1073/pnas.2310221120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
The 21kD GTPase Rac is an evolutionarily ancient regulator of cell shape and behavior. Rac2 is predominantly expressed in hematopoietic cells where it is essential for survival and motility. The hyperactivating mutation Rac2E62K also causes human immunodeficiency, although the mechanism remains unexplained. Here, we report that in Drosophila, hyperactivating Rac stimulates ovarian cells to cannibalize neighboring cells, destroying the tissue. We then show that hyperactive Rac2E62K stimulates human HL60-derived macrophage-like cells to engulf and kill living T cell leukemia cells. Primary mouse Rac2+/E62K bone-marrow-derived macrophages also cannibalize primary Rac2+/E62K T cells due to a combination of macrophage hyperactivity and T cell hypersensitivity to engulfment. Additionally, Rac2+/E62K macrophages non-autonomously stimulate wild-type macrophages to engulf T cells. Rac2E62K also enhances engulfment of target cancer cells by chimeric antigen receptor-expressing macrophages (CAR-M) in a CAR-dependent manner. We propose that Rac-mediated cell cannibalism may contribute to Rac2+/E62K human immunodeficiency and enhance CAR-M cancer immunotherapy.
Collapse
Affiliation(s)
- Abhinava K. Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Melanie Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Alba Yurani Torres
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Morgan Smith
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Anthony Rodriguez
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Denise J. Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
36
|
Weis E, Surgeoner B, Salopek TG, Cheng T, Hyrcza M, Kostaras X, Larocque M, McKinnon G, McWhae J, Menon G, Monzon J, Murtha AD, Walker J, Temple-Oberle C. Management of Uveal Melanoma: Updated Cancer Care Alberta Clinical Practice Guideline. Curr Oncol 2023; 31:24-41. [PMID: 38275828 PMCID: PMC10814960 DOI: 10.3390/curroncol31010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The purpose of this guideline update is to reassess and update recommendations in the prior guideline from 2016 on the appropriate management of patients with uveal melanoma. METHODS In 2021, a multidisciplinary working group from the Provincial Cutaneous Tumour Team, Cancer Care Alberta, Alberta Health Services was convened to update the guideline. A comprehensive review of new research evidence in PubMed as well as new clinical practice guidelines from prominent oncology groups informed the update. An enhancement in methodology included adding levels of evidence and strength of recommendations. The updated guideline was circulated to all members of the Provincial Cutaneous Tumour Team for review and endorsement. RESULTS New and modified recommendations address provider training requirements, diagnostic imaging for the detection of metastases, neo-adjuvant pre-enucleation radiotherapy, intravitreal anti-vascular endothelial growth factor agents for radiation retinopathy, genetic prognostic testing, surveillance following definitive local therapy, and systemic therapy for patients with metastatic uveal melanoma. DISCUSSION The recommendations represent evidence-based standards of care agreed to by a large multidisciplinary group of healthcare professionals.
Collapse
Affiliation(s)
- Ezekiel Weis
- Department of Ophthalmology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Surgery, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Brae Surgeoner
- Cancer Care Alberta, Calgary, AB T2S 3C3, Canada; (B.S.); (X.K.)
| | - Thomas G. Salopek
- Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Tina Cheng
- Tom Baker Cancer Center, Division of Medical Oncology, Department of Oncology, Calgary, AB T2N 4N2, Canada; (T.C.); (J.M.)
| | - Martin Hyrcza
- Laboratory Medicine, Department of Pathology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | | | - Matthew Larocque
- Division of Medical Physics, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (M.L.); (G.M.)
| | - Greg McKinnon
- Division of Surgical Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.M.); (C.T.-O.)
| | - John McWhae
- Departments of Surgery and Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Geetha Menon
- Division of Medical Physics, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (M.L.); (G.M.)
| | - Jose Monzon
- Tom Baker Cancer Center, Division of Medical Oncology, Department of Oncology, Calgary, AB T2N 4N2, Canada; (T.C.); (J.M.)
| | - Albert D. Murtha
- Division of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - John Walker
- Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Claire Temple-Oberle
- Division of Surgical Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.M.); (C.T.-O.)
| |
Collapse
|
37
|
Poku R, Amissah F, Alan JK. PI3K Functions Downstream of Cdc42 to Drive Cancer phenotypes in a Melanoma Cell Line. Small GTPases 2023; 14:1-13. [PMID: 37114375 PMCID: PMC10150613 DOI: 10.1080/21541248.2023.2202612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Rho proteins are part of the Ras superfamily, which function to modulate cytoskeletal dynamics including cell adhesion and motility. Recently, an activating mutation in Cdc42, a Rho family GTPase, was found in a patient sample of melanoma. Previously, our work had shown the PI3K was important downstream of mutationally active Cdc42. Our present study sought to determine whether PI3K was a crucial downstream partner for Cdc42 in a melanoma cells line with a BRAF mutation, which is the most common mutation in cutaneous melanoma. In this work we were able to show that Cdc42 contributes to proliferation, anchorage-independent growth, cell motility and invasion. Treatment with a pan-PI3K inhibitor was able to effectively ameliorate all these cancer phenotypes. These data suggest that PI3K may be an important target downstream of Cdc42 in melanoma.
Collapse
Affiliation(s)
- Rosemary Poku
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA
| | - Felix Amissah
- Department of Pharmaceutical Science, Ferris State University, Big Rapids, MI, USA
| | - Jamie K Alan
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
38
|
Carvalho LAD, Aguiar FC, Smalley KSM, Possik PA. Acral melanoma: new insights into the immune and genomic landscape. Neoplasia 2023; 46:100947. [PMID: 37913653 PMCID: PMC10637990 DOI: 10.1016/j.neo.2023.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Acral melanoma is a rare subtype of melanoma that arises on the non-hair bearing skin of the nail bed, palms of the hand and soles of the feet. It is unique among melanomas in not being linked to ultraviolet radiation (UVR) exposure from the sun, and, as such, its incidence is similar across populations who are of Asian, Hispanic, African and European origin. Although research into acral melanoma has lagged behind that of sun-exposed cutaneous melanoma, recent studies have begun to address the unique genetics and immune features of acral melanoma. In this review we will discuss the latest progress in understanding the biology of acral melanoma across different ethnic populations and will outline how these new discoveries can help to guide the therapeutic management of this rare tumor.
Collapse
Affiliation(s)
| | - Flavia C Aguiar
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612 USA.
| | - Patricia A Possik
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| |
Collapse
|
39
|
Meyer SN, Simmons E, Studer AC, Rauen KA, Kiuru M. Melanocytic neoplasms in neurofibromatosis type 1: a systematic review. Melanoma Res 2023; 33:437-446. [PMID: 37578532 PMCID: PMC10615867 DOI: 10.1097/cmr.0000000000000912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Neurofibromatosis type 1 ( NF1 ) is commonly mutated in melanoma, yet the risk of melanoma in individuals with NF1 is incompletely understood. We performed a systematic review to investigate the risk and characteristics of melanoma and melanocytic nevi in NF1 individuals. PubMed was searched for articles describing NF1 individuals with melanoma, or melanocytic nevi. Those with cutaneous and ocular melanomas were compared to the general population using Surveillance, Epidemiology, and End Results data. Fifty-three articles describing 188 NF1 patients were included (melanoma n = 82, melanocytic nevi n = 93, melanocytic nevi, and melanoma n = 13). Compared to the general population, NF1 patients with cutaneous melanomas had earlier melanoma diagnoses (49.1 vs. 58.6 years, P = 0.012), thicker tumors (3.7 vs. 1.2 mm, P = 0.006), and more frequent disease-specific deaths (27.3% vs. 8.6%, P = 0.005) with shorter survival (12.9 vs. 34.2 months, P = 0.011). Ocular melanomas made up 15.0% of all melanomas in NF1 patients versus 1.5% in the general population ( P < 0.001). In pooling all population-based studies describing melanoma in NF1 populations, NF1 individuals had 2.55 higher odds of having melanoma compared to the general population. A nevus spilus was commonly reported among NF1 individuals with nevi (44.8%, 39/87). Our findings suggest that NF1 individuals may have a higher risk for developing melanomas and tend to have thicker melanomas and worse survival compared to the general population, highlighting the importance of cutaneous and ophthalmologic surveillance in NF1 patients. Our review also supports the association between NF1 and nevus spilus.
Collapse
Affiliation(s)
- Summer N. Meyer
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Elanee Simmons
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Amy C. Studer
- Blaisdell Medical Library, University of California, Davis, Sacramento, CA, USA
| | - Katherine A. Rauen
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis School of Medicine, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
40
|
Gosman LM, Țăpoi DA, Costache M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int J Mol Sci 2023; 24:15881. [PMID: 37958863 PMCID: PMC10650804 DOI: 10.3390/ijms242115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cutaneous melanoma (CM) is an increasingly significant public health concern. Due to alarming mortality rates and escalating incidence, it is crucial to understand its etiology and identify emerging biomarkers for improved diagnosis and treatment strategies. This review aims to provide a comprehensive overview of the multifactorial etiology of CM, underscore the importance of early detection, discuss the molecular mechanisms behind melanoma development and progression, and shed light on the role of the potential biomarkers in diagnosis and treatment. The pathogenesis of CM involves a complex interplay of genetic predispositions and environmental exposures, ultraviolet radiation exposure being the predominant environmental risk factor. The emergence of new biomarkers, such as novel immunohistochemical markers, gene mutation analysis, microRNA, and exosome protein expressions, holds promise for improved early detection, and prognostic and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Laura Maria Gosman
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, Saint Pantelimon Clinical Emergency Hospital, 021659 Bucharest, Romania
| | - Dana-Antonia Țăpoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
41
|
Rani N, Boora N, Rani R, Kumar V, Ahalawat N. Molecular dynamics simulation of RAC1 protein and its de novo variants related to developmental disorders. J Biomol Struct Dyn 2023:1-10. [PMID: 37897175 DOI: 10.1080/07391102.2023.2275188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) are conceptualized as childhood disability, but it has increasingly been recognized as lifelong neurological conditions that could notably impact adult functioning and quality of life. About 1%-3% of the general population suffers from NDDs including ADHD, ASD, IDD, communication disorders, motor disorders, etc. Studies suggest that Rho GTPases are key in neuronal development, highlighting the importance of altered GTPase signaling in NDDs. RAC1, a member of the Rho GTPase family, plays a critical role in neurogenesis, migration, synapse formation, axon growth, and regulation of actin cytoskeleton dynamics. We performed 6µs all-atom molecular dynamics simulation of native RAC1 (PDB: 3TH5) and three-point mutations (C18Y, N39S, and Y64D) related to developmental disorders to understand the impact of mutations on protein stability and functional dynamics. Our analysis, which included root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA), revealed that the N39S and Y64D mutations induced significant structural changes in RAC1. These alterations primarily occurred in the functional region adjacent to switch II, a region crucial for complex conformational rearrangements during the GDP and GTP exchange cycle.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nigam Rani
- Department of Human Development and Family Studies, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Nisha Boora
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Reena Rani
- Department of Molecular Biology and Biotechnology, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Vinay Kumar
- Department of Mathematics and Statistics, CCS Haryana Agricultural University Hisar, Hisar, India
| | - Navjeet Ahalawat
- Department of Bioinformatics and Computational Biology, CCS Haryana Agricultural University Hisar, Hisar, India
| |
Collapse
|
42
|
Sun W, Liu K, Zhou H, Zhao F, Dong Y, Xu Y, Kong Y, Wang M, Cheng X, Chen Y. Whole-exome sequencing reveals mutational profiles of anorectal and gynecological melanoma. Med Oncol 2023; 40:330. [PMID: 37831226 PMCID: PMC10575813 DOI: 10.1007/s12032-023-02192-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Mucosal melanoma is a rare and highly malignant type of melanoma. Among the sites that mucosal melanoma arises, anorectal and gynecological melanoma has more aggressive behavior and worse prognosis. There was no effective therapy for mucosal melanoma at present. Only a small number of mucosal melanoma patients which harbor mutations in BRAF or KIT benefit from targeted therapy. So it's an urgent need to identify more actionable mutations in mucosal melanoma. To identify more potential therapeutic targets in mucosal melanoma, 48 samples were collected from 44 patients with anorectal or gynecological melanoma and subjected to whole-exome sequencing. The tumor mutation burden was low with a median of 1.75 mutations per Mb. In chromosomal level, 1q, 6p and 8q of mucosal melanoma were significantly amplified while 9p, 10p, 10q, 16p and 16q were significantly deleted. Muc16 was the most frequently mutated oncogene in our samples(25%). The mutation frequency of KIT(20%) was comparable to the "triple-wild" genes-NRAS(20%), NF1(20%), and BRAF(11%). KMT2D mutation was found in 18.18% patients, which is previously unidentified. MAPK signaling pathway and lysine degradation were the most frequently mutated pathways. Moreover, patients with TP53 mutations tend to have worse clinical outcome (median survival time 19 vs. 50 months, log-rank P = 0.006). 2000 ore mutated genes involved in MAPK signaling pathway were identified, which expand the patients potentially benefit from ample MAPK inhibitors. KMT2D could be a potential therapeutic target. Moreover, TP53 could be a potential prognosis marker for mucosal melanoma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kunyan Liu
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hongyu Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Gynecological Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Yan Dong
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunyi Kong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Minghe Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xi Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Gynecological Oncology, Minhang Branch of Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Yu A, Nguyen DH, Nguyen TJ, Wang Z. A novel phosphorylation site involved in dissociating RAF kinase from the scaffolding protein 14-3-3 and disrupting RAF dimerization. J Biol Chem 2023; 299:105188. [PMID: 37625591 PMCID: PMC10520314 DOI: 10.1016/j.jbc.2023.105188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rapidly accelerated fibrosarcoma (ARAF, BRAF, CRAF) kinase is central to the MAPK pathway (RAS-RAF-MEK-ERK). Inactive RAF kinase is believed to be monomeric, autoinhibited, and cytosolic, while activated RAF is recruited to the membrane via RAS-GTP, leading to the relief of autoinhibition, phosphorylation of key regulatory sites, and dimerization of RAF protomers. Although it is well known that active and inactive BRAF have differential phosphorylation sites that play a crucial role in regulating BRAF, key details are still missing. In this study, we report the characterization of a novel phosphorylation site, BRAFS732 (equivalent in CRAFS624), located in proximity to the C-terminus binding motif for the 14-3-3 scaffolding protein. At the C terminus, 14-3-3 binds to BRAFpS729 (CRAFpS621) and enhances RAF dimerization. We conducted mutational analysis of BRAFS732A/E and CRAFS624A/E and revealed that the phosphomimetic S→E mutant decreases 14-3-3 association and RAF dimerization. In normal cell signaling, dimerized RAF phosphorylates MEK1/2, which is observed in the phospho-deficient S→A mutant. Our results suggest that phosphorylation and dephosphorylation of this site fine-tune the association of 14-3-3 and RAF dimerization, ultimately impacting MEK phosphorylation. We further characterized the BRAF homodimer and BRAF:CRAF heterodimer and identified a correlation between phosphorylation of this site with drug sensitivity. Our work reveals a novel negative regulatory role for phosphorylation of BRAFS732 and CRAFS624 in decreasing 14-3-3 association, dimerization, and MEK phosphorylation. These findings provide insight into the regulation of the MAPK pathway and may have implications for cancers driven by mutations in the pathway.
Collapse
Affiliation(s)
- Alison Yu
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Duc Huy Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Thomas Joseph Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA.
| |
Collapse
|
44
|
Kichina JV, Maslov A, Kandel ES. PAK1 and Therapy Resistance in Melanoma. Cells 2023; 12:2373. [PMID: 37830586 PMCID: PMC10572217 DOI: 10.3390/cells12192373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.
Collapse
Affiliation(s)
- Julia V. Kichina
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| |
Collapse
|
45
|
Chen Y, Su H, Zhao J, Na Z, Jiang K, Bacchiocchi A, Loh KH, Halaban R, Wang Z, Cao X, Slavoff SA. Unannotated microprotein EMBOW regulates the interactome and chromatin and mitotic functions of WDR5. Cell Rep 2023; 42:113145. [PMID: 37725512 PMCID: PMC10629662 DOI: 10.1016/j.celrep.2023.113145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The conserved WD40-repeat protein WDR5 interacts with multiple proteins both inside and outside the nucleus. However, it is currently unclear whether and how the distribution of WDR5 between complexes is regulated. Here, we show that an unannotated microprotein EMBOW (endogenous microprotein binder of WDR5) dually encoded in the human SCRIB gene interacts with WDR5 and regulates its binding to multiple interaction partners, including KMT2A and KIF2A. EMBOW is cell cycle regulated, with two expression maxima at late G1 phase and G2/M phase. Loss of EMBOW decreases WDR5 interaction with KIF2A, aberrantly shortens mitotic spindle length, prolongs G2/M phase, and delays cell proliferation. In contrast, loss of EMBOW increases WDR5 interaction with KMT2A, leading to WDR5 binding to off-target genes, erroneously increasing H3K4me3 levels, and activating transcription of these genes. Together, these results implicate EMBOW as a regulator of WDR5 that regulates its interactions and prevents its off-target binding in multiple contexts.
Collapse
Affiliation(s)
- Yanran Chen
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Jianing Zhao
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Kevin Jiang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ken H Loh
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhentian Wang
- Frontier Innovation Center, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai 200433, China
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
46
|
Cerdido S, Sánchez-Beltrán J, Lambertos A, Abrisqueta M, Padilla L, Herraiz C, Olivares C, Jiménez-Cervantes C, García-Borrón JC. A Side-by-Side Comparison of Wildtype and Variant Melanocortin 1 Receptor Signaling with Emphasis on Protection against Oxidative Damage to DNA. Int J Mol Sci 2023; 24:14381. [PMID: 37762683 PMCID: PMC10532403 DOI: 10.3390/ijms241814381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Common variants of the MC1R gene coding the α-melanocyte stimulating hormone receptor are associated with light skin, poor tanning, blond or red hair, and increased melanoma risk, due to pigment-dependent and -independent effects. This complex phenotype is usually attributed to impaired activation of cAMP signaling. However, several MC1R variants show significant residual coupling to cAMP and efficiently activate mitogenic extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling. Yet, residual signaling and the key actions of wildtype and variant MC1R have never been assessed under strictly comparable conditions in melanocytic cells of identical genetic background. We devised a strategy based on CRISPR-Cas9 knockout of endogenous MC1R in a human melanoma cell line wildtype for BRAF, NRAS and NF1, followed by reconstitution with epitope-labeled MC1R constructs, and functional analysis of clones expressing comparable levels of wildtype, R151C or D294H MC1R. The proliferation rate, shape, adhesion, motility and sensitivity to oxidative DNA damage were compared. The R151C and D294H RHC variants displayed impaired cAMP signaling, intracellular stability similar to the wildtype, triggered ERK1/2 activation as effectively as the wildtype, and afforded partial protection against oxidative DNA damage, although less efficiently than the wildtype. Therefore, common melanoma-associated MC1R variants display biased signaling and significant genoprotective activity.
Collapse
Affiliation(s)
- Sonia Cerdido
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| | - José Sánchez-Beltrán
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| | - Ana Lambertos
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| | - Marta Abrisqueta
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| | - Lidia Padilla
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
| | - Cecilia Herraiz
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| | - Conchi Olivares
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| | - Celia Jiménez-Cervantes
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| | - José C. García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Murcia, 30120 Murcia, Spain; (S.C.); (J.S.-B.); (A.L.); (M.A.); (L.P.); (C.H.); (C.O.); (C.J.-C.)
- Instituto Murciano de Investigación Biosanitaria IMIB-LAIB, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
47
|
YAMAMOTO M, FUJIWARA N. Protein phosphatase 6 regulates trametinib sensitivity, a mitogen-activated protein kinase kinase (MEK) inhibitor, by regulating MEK1/2-ERK1/2 signaling in canine melanoma cells. J Vet Med Sci 2023; 85:977-984. [PMID: 37495516 PMCID: PMC10539826 DOI: 10.1292/jvms.23-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Melanoma is a highly aggressive and metastatic cancer occurring in both humans and dogs. Canine melanoma accounts for a significant proportion of neoplastic diseases in dogs, and despite standard treatments, overall survival rates remain low. Protein phosphatase 6 (PP6), an evolutionarily conserved serine/threonine protein phosphatase, regulates various biological processes. Additionally, the loss of PP6 function reportedly leads to the development of melanoma in humans. However, there are no reports regarding the role of PP6 in canine cancer cells. We, therefore, conducted a study investigating the role of PP6 in canine melanoma by using four canine melanoma cell lines: CMec1, CMM, KMeC and LMeC. PP6 knockdown increased phosphorylation levels of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) but not Akt. Furthermore, PP6 knockdown decreased sensitivity to trametinib, a MEK inhibitor, but did not alter sensitivity to Akt inhibitor. These findings suggest that PP6 may function as a tumor suppressor in canine melanoma and modulate the response to trametinib treatment. Understanding the role of PP6 in canine melanoma could lead to the development of more effective treatment strategies for this aggressive disease.
Collapse
Affiliation(s)
- Miu YAMAMOTO
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Nobuyuki FUJIWARA
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
48
|
Dall'Olmo L, Papa N, Surdo NC, Marigo I, Mocellin S. Alpha-melanocyte stimulating hormone (α-MSH): biology, clinical relevance and implication in melanoma. J Transl Med 2023; 21:562. [PMID: 37608347 PMCID: PMC10463388 DOI: 10.1186/s12967-023-04405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) and its receptor, melanocortin 1 receptor (MC1R), have been proposed as potential target for anti-cancer strategies in melanoma research, due to their tissue specific expression and involvement in melanocyte homeostasis. However, their role in prevention and treatment of melanoma is still debated and controversial. Although a large body of evidence supports α-MSH in preventing melanoma development, some preclinical findings suggest that the α-MSH downstream signalling may promote immune escape and cancer resistance to therapy. Additionally, in metastatic melanoma both MC1R and α-MSH have been reported to be overexpressed at levels much higher than normal cells. Furthermore, targeted therapy (e.g. BRAF inhibition in BRAFV600E mutant tumours) has been shown to enhance this phenomenon. Collectively, these data suggest that targeting MC1R could serve as an approach in the treatment of metastatic melanoma. In this review, we explore the molecular biology of α-MSH with particular emphasis into its tumor-related properties, whilst elaborating the experimental evidence currently available regarding the interplay between α-MSH/MC1R axis, melanoma and antitumor strategies.
Collapse
Affiliation(s)
- Luigi Dall'Olmo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy.
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy.
| | - Nicole Papa
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Nicoletta Concetta Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121, Padua, Italy
- Veneto Institute of Molecular Medicine VIMM, Foundation for Advanced Biomedical Research, 35129, Padua, Italy
| | - Ilaria Marigo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Simone Mocellin
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| |
Collapse
|
49
|
Poulsgaard GA, Sørensen SG, Juul RI, Nielsen MM, Pedersen JS. Sequence dependencies and mutation rates of localized mutational processes in cancer. Genome Med 2023; 15:63. [PMID: 37592287 PMCID: PMC10436389 DOI: 10.1186/s13073-023-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cancer mutations accumulate through replication errors and DNA damage coupled with incomplete repair. Individual mutational processes often show nucleotide sequence and functional region preferences. As a result, some sequence contexts mutate at much higher rates than others, with additional variation found between functional regions. Mutational hotspots, with recurrent mutations across cancer samples, represent genomic positions with elevated mutation rates, often caused by highly localized mutational processes. METHODS We count the 11-mer genomic sequences across the genome, and using the PCAWG set of 2583 pan-cancer whole genomes, we associate 11-mers with mutational signatures, hotspots of single nucleotide variants, and specific genomic regions. We evaluate the mutation rates of individual and combined sets of 11-mers and derive mutational sequence motifs. RESULTS We show that hotspots generally identify highly mutable sequence contexts. Using these, we show that some mutational signatures are enriched in hotspot sequence contexts, corresponding to well-defined sequence preferences for the underlying localized mutational processes. This includes signature 17b (of unknown etiology) and signatures 62 (POLE deficiency), 7a (UV), and 72 (linked to lymphomas). In some cases, the mutation rate and sequence preference increase further when focusing on certain genomic regions, such as signature 62 in transcribed regions, where the mutation rate is increased up to 9-folds over cancer type and mutational signature average. CONCLUSIONS We summarize our findings in a catalog of localized mutational processes, their sequence preferences, and their estimated mutation rates.
Collapse
Affiliation(s)
- Gustav Alexander Poulsgaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Simon Grund Sørensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Randi Istrup Juul
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Morten Muhlig Nielsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Skou Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Bioinformatics Research Centre (BiRC), Aarhus University, University City 81, Building 1872, 3Rd Floor, 8000, Aarhus C, Denmark.
| |
Collapse
|
50
|
Thomas JF, Valencia-Sánchez MI, Tamburri S, Gloor SL, Rustichelli S, Godínez-López V, De Ioannes P, Lee R, Abini-Agbomson S, Gretarsson K, Burg JM, Hickman AR, Sun L, Gopinath S, Taylor HF, Sun ZW, Ezell RJ, Vaidya A, Meiners MJ, Cheek MA, Rice WJ, Svetlov V, Nudler E, Lu C, Keogh MC, Pasini D, Armache KJ. Structural basis of histone H2A lysine 119 deubiquitination by Polycomb repressive deubiquitinase BAP1/ASXL1. SCIENCE ADVANCES 2023; 9:eadg9832. [PMID: 37556531 PMCID: PMC10411902 DOI: 10.1126/sciadv.adg9832] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023]
Abstract
Histone H2A lysine 119 (H2AK119Ub) is monoubiquitinated by Polycomb repressive complex 1 and deubiquitinated by Polycomb repressive deubiquitinase complex (PR-DUB). PR-DUB cleaves H2AK119Ub to restrict focal H2AK119Ub at Polycomb target sites and to protect active genes from aberrant silencing. The PR-DUB subunits (BAP1 and ASXL1) are among the most frequently mutated epigenetic factors in human cancers. How PR-DUB establishes specificity for H2AK119Ub over other nucleosomal ubiquitination sites and how disease-associated mutations of the enzyme affect activity are unclear. Here, we determine a cryo-EM structure of human BAP1 and the ASXL1 DEUBAD in complex with a H2AK119Ub nucleosome. Our structural, biochemical, and cellular data reveal the molecular interactions of BAP1 and ASXL1 with histones and DNA that are critical for restructuring the nucleosome and thus establishing specificity for H2AK119Ub. These results further provide a molecular explanation for how >50 mutations in BAP1 and ASXL1 found in cancer can dysregulate H2AK119Ub deubiquitination, providing insight into understanding cancer etiology.
Collapse
Affiliation(s)
- Jonathan F. Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Simone Tamburri
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | | | - Samantha Rustichelli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Victoria Godínez-López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kristjan Gretarsson
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | | | | | | | | | | | | | | | - William J. Rice
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Chao Lu
- Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|