1
|
Brandner S. Rodent models of tumours of the central nervous system. Mol Oncol 2024. [PMID: 39324445 DOI: 10.1002/1878-0261.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
de Almeida FN, Vasciaveo A, Antao AM, Zou M, Di Bernardo M, de Brot S, Rodriguez-Calero A, Chui A, Wang ALE, Floc'h N, Kim JY, Afari SN, Mukhammadov T, Arriaga JM, Lu J, Shen MM, Rubin MA, Califano A, Abate-Shen C. A forward genetic screen identifies Sirtuin1 as a driver of neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609538. [PMID: 39253480 PMCID: PMC11383054 DOI: 10.1101/2024.08.24.609538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although localized prostate cancer is relatively indolent, advanced prostate cancer manifests with aggressive and often lethal variants, including neuroendocrine prostate cancer (NEPC). To identify drivers of aggressive prostate cancer, we leveraged Sleeping Beauty (SB) transposon mutagenesis in a mouse model based on prostate-specific loss-of-function of Pten and Tp53 . Compared with control mice, SB mice developed more aggressive prostate tumors, with increased incidence of metastasis. Notably, a significant percentage of the SB prostate tumors display NEPC phenotypes, and the transcriptomic features of these SB mouse tumors recapitulated those of human NEPC. We identified common SB transposon insertion sites (CIS) and prioritized associated CIS-genes differentially expressed in NEPC versus non-NEPC SB tumors. Integrated analysis of CIS-genes encoding for proteins representing upstream, post-translational modulators of master regulators controlling the transcriptional state of SB -mouse and human NEPC tumors identified sirtuin 1 ( Sirt1 ) as a candidate mechanistic determinant of NEPC. Gain-of-function studies in human prostate cancer cell lines confirmed that SIRT1 promotes NEPC, while its loss-of-function or pharmacological inhibition abrogates NEPC. This integrative analysis is generalizable and can be used to identify novel cancer drivers for other malignancies. Summary Using an unbiased forward mutagenesis screen in an autochthonous mouse model, we have investigated mechanistic determinants of aggressive prostate cancer. SIRT1 emerged as a key regulator of neuroendocrine prostate cancer differentiation and a potential target for therapeutic intervention.
Collapse
|
3
|
Chatzianastasis M, Vazirgiannis M, Zhang Z. Explainable Multilayer Graph Neural Network for cancer gene prediction. Bioinformatics 2023; 39:btad643. [PMID: 37862225 PMCID: PMC10636280 DOI: 10.1093/bioinformatics/btad643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/22/2023] Open
Abstract
MOTIVATION The identification of cancer genes is a critical yet challenging problem in cancer genomics research. Existing computational methods, including deep graph neural networks, fail to exploit the multilayered gene-gene interactions or provide limited explanations for their predictions. These methods are restricted to a single biological network, which cannot capture the full complexity of tumorigenesis. Models trained on different biological networks often yield different and even opposite cancer gene predictions, hindering their trustworthy adaptation. Here, we introduce an Explainable Multilayer Graph Neural Network (EMGNN) approach to identify cancer genes by leveraging multiple gene-gene interaction networks and pan-cancer multi-omics data. Unlike conventional graph learning on a single biological network, EMGNN uses a multilayered graph neural network to learn from multiple biological networks for accurate cancer gene prediction. RESULTS Our method consistently outperforms all existing methods, with an average 7.15% improvement in area under the precision-recall curve over the current state-of-the-art method. Importantly, EMGNN integrated multiple graphs to prioritize newly predicted cancer genes with conflicting predictions from single biological networks. For each prediction, EMGNN provided valuable biological insights via both model-level feature importance explanations and molecular-level gene set enrichment analysis. Overall, EMGNN offers a powerful new paradigm of graph learning through modeling the multilayered topological gene relationships and provides a valuable tool for cancer genomics research. AVAILABILITY AND IMPLEMENTATION Our code is publicly available at https://github.com/zhanglab-aim/EMGNN.
Collapse
Affiliation(s)
| | | | - Zijun Zhang
- Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, 116 N. Robertson Boulevard, Los Angeles, CA 90048, United States
| |
Collapse
|
4
|
Shinzawa K, Matsumoto S, Sada R, Harada A, Saitoh K, Kato K, Ikeda S, Hirayama A, Yokoi K, Tanemura A, Nimura K, Ikawa M, Soga T, Kikuchi A. GREB1 isoform 4 is specifically transcribed by MITF and required for melanoma proliferation. Oncogene 2023; 42:3142-3156. [PMID: 37658191 PMCID: PMC10575781 DOI: 10.1038/s41388-023-02803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Growth regulation by estrogen in breast cancer 1 (GREB1) is involved in hormone-dependent and -independent tumor development (e.g., hepatoblastoma). In this study, we found that a GREB1 splicing variant, isoform 4 (Is4), which encodes C-terminal half of full-length GREB1, is specifically expressed via microphthalmia-associated transcription factor (MITF) in melanocytic melanoma, and that two MITF-binding E-box CANNTG motifs at the 5'-upstream region of GREB1 exon 19 are necessary for GREB1 Is4 transcription. MITF and GREB1 Is4 were strongly co-expressed in approximately 20% of the melanoma specimens evaluated (17/89 cases) and their expression was associated with tumor thickness. GREB1 Is4 silencing reduced melanoma cell proliferation in association with altered expression of cell proliferation-related genes in vitro. In addition, GREB1 Is4 targeting by antisense oligonucleotide (ASO) decreased melanoma xenograft tumor formation and GREB1 Is4 expression in a BRAFV600E; PTENflox melanoma mouse model promoted melanoma formation, demonstrating the crucial role of GREB1 Is4 for melanoma proliferation in vivo. GREB1 Is4 bound to CAD, the rate-limiting enzyme of pyrimidine metabolism, and metabolic flux analysis revealed that GREBI Is4 is necessary for pyrimidine synthesis. These results suggest that MITF-dependent GREB1 Is4 expression leads to melanoma proliferation and GREB1 Is4 represents a new molecular target in melanoma.
Collapse
Affiliation(s)
- Koei Shinzawa
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Akikazu Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kazunori Yokoi
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Keisuke Nimura
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
5
|
Tang YJ, Shuldiner EG, Karmakar S, Winslow MM. High-Throughput Identification, Modeling, and Analysis of Cancer Driver Genes In Vivo. Cold Spring Harb Perspect Med 2023; 13:a041382. [PMID: 37277208 PMCID: PMC10317066 DOI: 10.1101/cshperspect.a041382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The vast number of genomic and molecular alterations in cancer pose a substantial challenge to uncovering the mechanisms of tumorigenesis and identifying therapeutic targets. High-throughput functional genomic methods in genetically engineered mouse models allow for rapid and systematic investigation of cancer driver genes. In this review, we discuss the basic concepts and tools for multiplexed investigation of functionally important cancer genes in vivo using autochthonous cancer models. Furthermore, we highlight emerging technical advances in the field, potential opportunities for future investigation, and outline a vision for integrating multiplexed genetic perturbations with detailed molecular analyses to advance our understanding of the genetic and molecular basis of cancer.
Collapse
Affiliation(s)
- Yuning J Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Emily G Shuldiner
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Saswati Karmakar
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
6
|
Fitzgerald S, Blenkiron C, Stephens R, Mathy JA, Somers-Edgar T, Rolfe G, Martin R, Jackson C, Eccles M, Robb T, Rodger E, Lawrence B, Guilford P, Lasham A, Print CG. Dynamic ctDNA Mutational Complexity in Patients with Melanoma Receiving Immunotherapy. Mol Diagn Ther 2023; 27:537-550. [PMID: 37099071 PMCID: PMC10131510 DOI: 10.1007/s40291-023-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Circulating tumour DNA (ctDNA) analysis promises to improve the clinical care of people with cancer, address health inequities and guide translational research. This observational cohort study used ctDNA to follow 29 patients with advanced-stage cutaneous melanoma through multiple cycles of immunotherapy. METHOD A melanoma-specific ctDNA next-generation sequencing (NGS) panel, droplet digital polymerase chain reaction (ddPCR) and mass spectrometry analysis were used to identify ctDNA mutations in longitudinal blood plasma samples from Aotearoa New Zealand (NZ) patients receiving immunotherapy for melanoma. These technologies were used in conjunction to identify the breadth and complexity of tumour genomic information that ctDNA analysis can reliably report. RESULTS During the course of immunotherapy treatment, a high level of dynamic mutational complexity was identified in blood plasma, including multiple BRAF mutations in the same patient, clinically relevant BRAF mutations emerging through therapy and co-occurring sub-clonal BRAF and NRAS mutations. The technical validity of this ctDNA analysis was supported by high sample analysis-reanalysis concordance, as well as concordance between different ctDNA measurement technologies. In addition, we observed > 90% concordance in the detection of ctDNA when using cell-stabilising collection tubes followed by 7-day delayed processing, compared with standard EDTA blood collection protocols with rapid processing. We also found that the undetectability of ctDNA at a proportion of treatment cycles was associated with durable clinical benefit (DCB). CONCLUSION We found that multiple ctDNA processing and analysis methods consistently identified complex longitudinal patterns of clinically relevant mutations, adding support for expanded clinical trials of this technology in a variety of oncology settings.
Collapse
Affiliation(s)
- Sandra Fitzgerald
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Cherie Blenkiron
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Rosalie Stephens
- Cancer and Blood Service, Te Whatu Ora Te Toka Tumai (previously Auckland City Hospital), Auckland, New Zealand
| | - Jon A Mathy
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Te Whatu Ora Counties Manukau Health, Auckland, New Zealand
| | - Tiffany Somers-Edgar
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Te Whatu Ora Counties Manukau Health, Auckland, New Zealand
| | | | - Richard Martin
- Te Whatu Ora Wāitemata (previously Waitemata District Health Board, New Zealand), Auckland, New Zealand
| | - Christopher Jackson
- Te Whatu Ora Southern (previously Southern District Health Board, New Zealand), Dunedin, New Zealand
| | - Michael Eccles
- Maurice Wilkins Centre, Auckland, New Zealand
- University of Otago, Dunedin, New Zealand
| | - Tamsin Robb
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Euan Rodger
- Maurice Wilkins Centre, Auckland, New Zealand
- University of Otago, Dunedin, New Zealand
| | - Ben Lawrence
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
- Cancer and Blood Service, Te Whatu Ora Te Toka Tumai (previously Auckland City Hospital), Auckland, New Zealand
| | | | - Annette Lasham
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Cristin G Print
- Waipapa Taumata Rau, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre, Auckland, New Zealand.
| |
Collapse
|
7
|
Zhang A, Wang L, Lei JH, Miao Z, Valecha MV, Hu P, Miao K, Deng CX. SB Digestor: a tailored driver gene identification tool for dissecting heterogeneous Sleeping Beauty transposon-induced tumors. Int J Biol Sci 2023; 19:1764-1777. [PMID: 37063417 PMCID: PMC10092771 DOI: 10.7150/ijbs.81317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/04/2023] [Indexed: 04/18/2023] Open
Abstract
Sleeping Beauty (SB) insertional mutagenesis has been widely used for genome-wide functional screening in mouse models of human cancers, however, intertumor heterogeneity can be a major obstacle in identifying common insertion sites (CISs). Although previous algorithms have been successful in defining some CISs, they also miss CISs in certain situations. A major common characteristic of these previous methods is that they do not take tumor heterogeneity into account. However, intertumoral heterogeneity directly influences the sequence read number for different tumor samples and then affects CIS identification. To precisely detect and define cancer driver genes, we developed SB Digestor, a computational algorithm that overcomes biological heterogeneity to identify more potential driver genes. Specifically, we define the relationship between the sequenced read number and putative gene number to deduce the depth cutoff for each tumor, which can reduce tumor complexity and precisely reflect intertumoral heterogeneity. Using this new tool, we re-analyzed our previously published SB-based screening dataset and identified many additional potent drivers involved in Brca1-related tumorigenesis, including Arhgap42, Tcf12, and Fgfr2. SB Digestor not only greatly enhances our ability to identify and prioritize cancer drivers from SB tumors but also substantially deepens our understanding of the intrinsic genetic basis of cancer.
Collapse
Affiliation(s)
- Aiping Zhang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijian Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhengqiang Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Genomics & Bioinformatics Core, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Monica Vishnu Valecha
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Peng Hu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
- ✉ Corresponding authors: Kai Miao; ; Faculty of Health Sciences, University of Macau, Macau SAR, China. Tel: (853) 8822-2903; Fax: (853) 8822 2314. Chu-Xia Deng; ; Faculty of Health Sciences, University of Macau, Macau SAR, China. Tel: (853) 8822-4997; Fax: (853) 8822 2314
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
- ✉ Corresponding authors: Kai Miao; ; Faculty of Health Sciences, University of Macau, Macau SAR, China. Tel: (853) 8822-2903; Fax: (853) 8822 2314. Chu-Xia Deng; ; Faculty of Health Sciences, University of Macau, Macau SAR, China. Tel: (853) 8822-4997; Fax: (853) 8822 2314
| |
Collapse
|
8
|
Vaishnavi A, Juan J, Jacob M, Stehn C, Gardner EE, Scherzer MT, Schuman S, Van Veen JE, Murphy B, Hackett CS, Dupuy AJ, Chmura SA, van der Weyden L, Newberg JY, Liu A, Mann K, Rust AG, Weiss WA, Kinsey CG, Adams DJ, Grossmann A, Mann MB, McMahon M. Transposon Mutagenesis Reveals RBMS3 Silencing as a Promoter of Malignant Progression of BRAFV600E-Driven Lung Tumorigenesis. Cancer Res 2022; 82:4261-4273. [PMID: 36112789 PMCID: PMC9664136 DOI: 10.1158/0008-5472.can-21-3214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/29/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023]
Abstract
Mutationally activated BRAF is detected in approximately 7% of human lung adenocarcinomas, with BRAFT1799A serving as a predictive biomarker for treatment of patients with FDA-approved inhibitors of BRAFV600E oncoprotein signaling. In genetically engineered mouse (GEM) models, expression of BRAFV600E in the lung epithelium initiates growth of benign lung tumors that, without additional genetic alterations, rarely progress to malignant lung adenocarcinoma. To identify genes that cooperate with BRAFV600E for malignant progression, we used Sleeping Beauty-mediated transposon mutagenesis, which dramatically accelerated the emergence of lethal lung cancers. Among the genes identified was Rbms3, which encodes an RNA-binding protein previously implicated as a putative tumor suppressor. Silencing of RBMS3 via CRISPR/Cas9 gene editing promoted growth of BRAFV600E lung organoids and promoted development of malignant lung cancers with a distinct micropapillary architecture in BRAFV600E and EGFRL858R GEM models. BRAFV600E/RBMS3Null lung tumors displayed elevated expression of Ctnnb1, Ccnd1, Axin2, Lgr5, and c-Myc mRNAs, suggesting that RBMS3 silencing elevates signaling through the WNT/β-catenin signaling axis. Although RBMS3 silencing rendered BRAFV600E-driven lung tumors resistant to the effects of dabrafenib plus trametinib, the tumors were sensitive to inhibition of porcupine, an acyltransferase of WNT ligands necessary for their secretion. Analysis of The Cancer Genome Atlas patient samples revealed that chromosome 3p24, which encompasses RBMS3, is frequently lost in non-small cell lung cancer and correlates with poor prognosis. Collectively, these data reveal the role of RBMS3 as a lung cancer suppressor and suggest that RBMS3 silencing may contribute to malignant NSCLC progression. SIGNIFICANCE Loss of RBMS3 cooperates with BRAFV600E to induce lung tumorigenesis, providing a deeper understanding of the molecular mechanisms underlying mutant BRAF-driven lung cancer and potential strategies to more effectively target this disease.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Joseph Juan
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Maebh Jacob
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Eric E. Gardner
- Meyer Cancer Center, Weill Cornell Medicine, New York City, New York
- Palo Alto Wellness, Menlo Park, California
| | - Michael T. Scherzer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Sophia Schuman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - J. Edward Van Veen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Brandon Murphy
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Christopher S. Hackett
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Steven A. Chmura
- Meyer Cancer Center, Weill Cornell Medicine, New York City, New York
- Palo Alto Wellness, Menlo Park, California
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Annie Liu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Karen Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Alistair G. Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - William A. Weiss
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Neurology, University of California, San Francisco, California
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Conan G. Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - David J. Adams
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
| | - Allie Grossmann
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
- Department of Dermatology, University of Utah, Salt Lake City, Utah
- Department of Pediatrics, University of California, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| |
Collapse
|
9
|
Kodama T, Kodama M, Jenkins NA, Copeland NG, Chen HJ, Wei Z. Ring Finger Protein 125 Is an Anti-Proliferative Tumor Suppressor in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14112589. [PMID: 35681566 PMCID: PMC9179258 DOI: 10.3390/cancers14112589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and the only cancer with an increasing incidence in the United States. Recent advances in sequencing technology have enabled detailed profiling of liver cancer genomes and revealed extensive inter- and intra-tumor heterogeneity, making it difficult to identify driver genes for HCC. To identify HCC driver genes, we performed transposon mutagenesis screens in a mouse HBV model of HCC and discovered many candidate cancer genes (SB/HBV-CCGs). Here, we show that one of these genes, RNF125 is a potent anti-proliferative tumor suppressor gene in HCC. RNF125 is one of nine CCGs whose expression was >3-fold downregulated in human HCC. Depletion of RNF125 in immortalized mouse liver cells led to tumor formation in transplanted mice and accelerated growth of human liver cancer cell lines, while its overexpression inhibited their growth, demonstrating the tumor-suppressive function of RNF125 in mouse and human liver. Whole-transcriptome analysis revealed that RNF125 transcriptionally suppresses multiple genes involved in cell proliferation and/or liver regeneration, including Egfr, Met, and Il6r. Blocking Egfr or Met pathway expression inhibited the increased cell proliferation observed in RNF125 knockdown cells. In HCC patients, low expression levels of RNF125 were correlated with poor prognosis demonstrating an important role for RNF125 in HCC. Collectively, our results identify RNF125 as a novel anti-proliferative tumor suppressor in HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
- Correspondence: (T.K.); (Z.W.)
| | - Michiko Kodama
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | - Nancy A. Jenkins
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neal G. Copeland
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanhuan Joyce Chen
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA;
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Zhubo Wei
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA; (M.K.); (N.A.J.); (N.G.C.)
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Correspondence: (T.K.); (Z.W.)
| |
Collapse
|
10
|
Jara E, Peñagaricano F, Armstrong E, Ciappesoni G, Iriarte A, Navajas EA. Revealing the genetic basis of eyelid pigmentation in Hereford cattle. J Anim Sci 2022; 100:6564820. [PMID: 35390123 PMCID: PMC9155157 DOI: 10.1093/jas/skac110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Ocular squamous cell carcinoma and infectious keratoconjunctivitis are common ocular pathologies in Hereford cattle with considerable economic impact. Both pathologies have been associated with low eyelid pigmentation, and thus, genetic selection for higher eyelid pigmentation could reduce their incidence. The objective of the present study was to reveal the genetic basis of eyelid pigmentation in Hereford cattle. The analysis included a single-step genome-wide association study (ssGWAS) and a subsequent gene-set analysis in order to identify individual genes, genetic mechanisms and biological pathways implicated in this trait. Data consisted of eyelid pigmentation records in 1,165 Hereford bulls and steers, visually assessed in five categories between 0% and 100%. Genotypic data for 774,660 single nucleotide polymorphism markers were available for 886 animals with pigmentation records. Pedigree information of three generations of ancestors of animals with phenotype was considered in this study, with a total of 4,929 animals. Our analyses revealed that eyelid pigmentation is a moderately heritable trait, with heritability estimates around 0.41. The ssGWAS identified at least eight regions, located on BTA1, BTA3, BTA5, BTA14, BTA16, BTA18, BTA19 and BTA24, associated with eyelid pigmentation. These regions harbor genes that are directly implicated in melanocyte biology and skin pigmentation, such as ADCY8, PLD1, KITLG, and PRKCA. The gene-set analysis revealed several functional terms closely related to melanogenesis, such as positive regulation of melanocyte differentiation and regulation of ERK1 and ERK2 cascade. Overall, our findings provide evidence that eyelid pigmentation is a heritable trait influenced by many loci. Indeed, the ssGWAS detected several candidate genes that are directly implicated in melanocyte biology, including melanogenesis. This study contributes to a better understanding of the genetic and biological basis of eyelid pigmentation and presents novel information that could aid to design breeding strategies for reducing the incidence of ocular pathologies in cattle. Additional research on the genetic link between eyelid pigmentation and ocular pathologies is needed.
Collapse
Affiliation(s)
- Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eileen Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, 11600, Uruguay
| | - Gabriel Ciappesoni
- Programa Nacional de Carne y Lana, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, 11600, Uruguay
| | - Elly Ana Navajas
- Programa Nacional de Carne y Lana, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Uruguay.,Unidad de Biotecnología. Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Uruguay
| |
Collapse
|
11
|
Bowman RL, Hennessey RC, Weiss TJ, Tallman DA, Crawford ER, Murphy BM, Webb A, Zhang S, La Perle KM, Burd CJ, Levine RL, Shain AH, Burd CE. UVB mutagenesis differs in Nras- and Braf-mutant mouse models of melanoma. Life Sci Alliance 2021; 4:e202101135. [PMID: 34210801 PMCID: PMC8321651 DOI: 10.26508/lsa.202101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
BRAF-mutant melanomas are more likely than NRAS-mutant melanomas to arise in anatomical locations protected from chronic sun damage. We hypothesized that this discrepancy in tumor location is a consequence of the differential sensitivity of BRAF and NRAS-mutant melanocytes to ultraviolet light (UV)-mediated carcinogenesis. We tested this hypothesis by comparing the mutagenic consequences of a single neonatal, ultraviolet-AI (UVA; 340-400 nm) or ultraviolet-B (UVB; 280-390 nm) exposure in mouse models heterozygous for mutant Braf or homozygous for mutant Nras Tumor onset was accelerated by UVB, but not UVA, and the resulting melanomas contained recurrent mutations affecting the RING domain of MAP3K1 and Actin-binding domain of Filamin A. Melanomas from UVB-irradiated, Braf-mutant mice averaged twice as many single-nucleotide variants and five times as many dipyrimidine variants than tumors from similarly irradiated Nras-mutant mice. A mutational signature discovered in UVB-accelerated tumors mirrored COSMIC signatures associated with human skin cancer and was more prominent in Braf- than Nras-mutant murine melanomas. These data show that a single UVB exposure yields a greater burden of mutations in murine tumors driven by oncogenic Braf.
Collapse
Affiliation(s)
- Robert L Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca C Hennessey
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Tirzah J Weiss
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - David A Tallman
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Emma R Crawford
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Brandon M Murphy
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Souhui Zhang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Krista Md La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Craig J Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Hunter Shain
- Department of Dermatology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christin E Burd
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Aiderus A, Newberg JY, Guzman-Rojas L, Contreras-Sandoval AM, Meshey AL, Jones DJ, Amaya-Manzanares F, Rangel R, Ward JM, Lee SC, Ban KHK, Rogers K, Rogers SM, Selvanesan L, McNoe LA, Copeland NG, Jenkins NA, Tsai KY, Black MA, Mann KM, Mann MB. Transposon mutagenesis identifies cooperating genetic drivers during keratinocyte transformation and cutaneous squamous cell carcinoma progression. PLoS Genet 2021; 17:e1009094. [PMID: 34398873 PMCID: PMC8389471 DOI: 10.1371/journal.pgen.1009094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates. Non-melanoma skin cancers, the most common cancers in the US, are caused by UV skin exposure. Nearly 1 million cases of cutaneous squamous cell carcinoma (cuSCC) are diagnosed in the US each year. While most cuSCCs are highly treatable, more than twice as many individuals die from this disease as from melanoma. The high burden of UV-induced DNA damage in human skin poses a challenge for identifying initiating and cooperating mutations that promote cuSCC development and for defining potential therapeutic targets. Here, we describe a genetic screen in mice using a DNA transposon system to mutagenize the genome of keratinocytes and drive squamous cell carcinoma in the absence of UV. By sequencing where the transposons selectively integrated in the genomes of normal skin, skin with pre-cancerous lesions and skin with fully developed cuSCCs from our mouse model, we were able to identify frequently mutated genes likely important for this disease. Our analysis also defined cooperation between sets of genes not previously appreciated in cuSCC. Our mouse model and ensuing data provide a framework for understanding the genetics of cuSCC and for defining the molecular changes that may lead to the future therapies for patients.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Devin J. Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Felipe Amaya-Manzanares
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Song-Choon Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Hon-Kim Ban
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Keith Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Susan M. Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Luxmanan Selvanesan
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Leslie A. McNoe
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Michael A. Black
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
13
|
Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, Bosenberg M, Ceol CJ, Burd CE, Chi P, Herlyn M, Holmen SL, Karreth FA, Kaufman CK, Khan S, Kobold S, Leucci E, Levy C, Lombard DB, Lund AW, Marie KL, Marine JC, Marais R, McMahon M, Robles-Espinoza CD, Ronai ZA, Samuels Y, Soengas MS, Villanueva J, Weeraratna AT, White RM, Yeh I, Zhu J, Zon LI, Hurlbert MS, Merlino G. Melanoma models for the next generation of therapies. Cancer Cell 2021; 39:610-631. [PMID: 33545064 PMCID: PMC8378471 DOI: 10.1016/j.ccell.2021.01.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Kristen L Mueller
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Niroshana Anandasabapathy
- Department of Dermatology, Meyer Cancer Center, Program in Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY 10026, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France; INSERM, Biology and Pathologies of Melanocytes, Team 1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University, New Haven, CT, USA
| | - Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology, and Genetics, The Ohio State University, Biomedical Research Tower, Room 918, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Charles K Kaufman
- Washington University School of Medicine, Department of Medicine, Division of Oncology, Department of Developmental Biology, McDonnell Science Building, 4518 McKinley Avenue, St. Louis, MO 63110, USA
| | - Shaheen Khan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany; Member of the German Center for Lung Research (DZL), German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium; Trace, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David B Lombard
- Department of Pathology, Institute of Gerontology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Richard Marais
- CRUK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Martin McMahon
- Department of Dermatology & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria S Soengas
- Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Jessie Villanueva
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, and Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Richard M White
- Department of Cancer Biology & Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Glenn Merlino
- Center for Cancer Research, NCI, NIH, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Takeda H, Jenkins NA, Copeland NG. Identification of cancer driver genes using Sleeping Beauty transposon mutagenesis. Cancer Sci 2021; 112:2089-2096. [PMID: 33783919 PMCID: PMC8177796 DOI: 10.1111/cas.14901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer genome sequencing studies have identified driver genes for a variety of different cancers and helped to understand the genetic landscape of human cancer. It is still challenging, however, to identify cancer driver genes with confidence simply from genetic data alone. In vivo forward genetic screens using Sleeping Beauty (SB) transposon mutagenesis provides another powerful genetic tool for identifying candidate cancer driver genes in wild-type and sensitized mouse tumors. By comparing cancer driver genes identified in human and mouse tumors, cancer driver genes can be identified with additional confidence based upon comparative oncogenomics. This review describes how SB mutagenesis works in mice and focuses on studies that have identified cancer driver genes in the mouse gastrointestinal tract.
Collapse
Affiliation(s)
- Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nancy A Jenkins
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Neal G Copeland
- Genetics Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Teneurins: Role in Cancer and Potential Role as Diagnostic Biomarkers and Targets for Therapy. Int J Mol Sci 2021; 22:ijms22052321. [PMID: 33652578 PMCID: PMC7956758 DOI: 10.3390/ijms22052321] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Teneurins have been identified in vertebrates as four different genes (TENM1-4), coding for membrane proteins that are mainly involved in embryonic and neuronal development. Genetic studies have correlated them with various diseases, including developmental problems, neurological disorders and congenital general anosmia. There is some evidence to suggest their possible involvement in cancer initiation and progression, and drug resistance. Indeed, mutations, chromosomal alterations and the deregulation of teneurins expression have been associated with several tumor types and patient survival. However, the role of teneurins in cancer-related regulatory networks is not fully understood, as both a tumor-suppressor role and pro-tumoral functions have been proposed, depending on tumor histotype. Here, we summarize and discuss the literature data on teneurins expression and their potential role in different tumor types, while highlighting the possibility of using teneurins as novel molecular diagnostic and prognostic biomarkers and as targets for cancer treatments, such as immunotherapy, in some tumors.
Collapse
|
16
|
Aiderus A, Contreras-Sandoval AM, Meshey AL, Newberg JY, Ward JM, Swing DA, Copeland NG, Jenkins NA, Mann KM, Mann MB. Promoterless Transposon Mutagenesis Drives Solid Cancers via Tumor Suppressor Inactivation. Cancers (Basel) 2021; 13:E225. [PMID: 33435458 PMCID: PMC7827284 DOI: 10.3390/cancers13020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
A central challenge in cancer genomics is the systematic identification of single and cooperating tumor suppressor gene mutations driving cellular transformation and tumor progression in the absence of oncogenic driver mutation(s). Multiple in vitro and in vivo gene inactivation screens have enhanced our understanding of the tumor suppressor gene landscape in various cancers. However, these studies are limited to single or combination gene effects, specific organs, or require sensitizing mutations. In this study, we developed and utilized a Sleeping Beauty transposon mutagenesis system that functions only as a gene trap to exclusively inactivate tumor suppressor genes. Using whole body transposon mobilization in wild type mice, we observed that cumulative gene inactivation can drive tumorigenesis of solid cancers. We provide a quantitative landscape of the tumor suppressor genes inactivated in these cancers and show that, despite the absence of oncogenic drivers, these genes converge on key biological pathways and processes associated with cancer hallmarks.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
19
|
Noorani I, de la Rosa J, Choi YH, Strong A, Ponstingl H, Vijayabaskar MS, Lee J, Lee E, Richard-Londt A, Friedrich M, Furlanetto F, Fuente R, Banerjee R, Yang F, Law F, Watts C, Rad R, Vassiliou G, Kim JK, Santarius T, Brandner S, Bradley A. PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biol 2020; 21:181. [PMID: 32727536 PMCID: PMC7392733 DOI: 10.1186/s13059-020-02092-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Background Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. Results We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients’ gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. Conclusion Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.
Collapse
Affiliation(s)
- Imran Noorani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. .,Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Yoon Ha Choi
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - M S Vijayabaskar
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jusung Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Eunmin Lee
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Angela Richard-Londt
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Mathias Friedrich
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Federica Furlanetto
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Rocio Fuente
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Frances Law
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Colin Watts
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.,Birmingham Brain Cancer Program, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Rad
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany
| | - George Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, 333, Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, South Korea
| | - Thomas Santarius
- Department of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, Mailbox 126, London, WC1N 3BG, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
20
|
NOTCH1 activation compensates BRCA1 deficiency and promotes triple-negative breast cancer formation. Nat Commun 2020; 11:3256. [PMID: 32591500 PMCID: PMC7320176 DOI: 10.1038/s41467-020-16936-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
BRCA1 mutation carriers have a higher risk of developing triple-negative breast cancer (TNBC), which is a refractory disease due to its non-responsiveness to current clinical targeted therapies. Using the Sleeping Beauty transposon system in Brca1-deficient mice, we identified 169 putative cancer drivers, among which Notch1 is a top candidate for accelerating TNBC by promoting the epithelial-mesenchymal transition (EMT) and regulating the cell cycle. Activation of NOTCH1 suppresses mitotic catastrophe caused by BRCA1 deficiency by restoring S/G2 and G2/M cell cycle checkpoints, which may through activation of ATR-CHK1 signalling pathway. Consistently, analysis of human breast cancer tissue demonstrates NOTCH1 is highly expressed in TNBCs, and the activated form of NOTCH1 correlates positively with increased phosphorylation of ATR. Additionally, we demonstrate that inhibition of the NOTCH1-ATR-CHK1 cascade together with cisplatin synergistically kills TNBC by targeting the cell cycle checkpoint, DNA damage and EMT, providing a potent clinical option for this fatal disease.
Collapse
|
21
|
Noninvasive Assessment of Epidermal Genomic Markers of UV Exposure in Skin. J Invest Dermatol 2020; 141:124-131.e2. [PMID: 32553564 DOI: 10.1016/j.jid.2020.05.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/04/2023]
Abstract
The measurement of UV-induced DNA damage as a dosimeter of exposure and predictor of skin cancer risk has been proposed by multiple groups. Although UV-induced mutations and adducts are present in normal-appearing UV-exposed epidermis, sampling normal nonlesional skin requires noninvasive methods to extract epidermal DNA for analysis. Here, we demonstrate the feasibility of such an approach, termed surfactant-based tissue acquisition for molecular profiling. Sampling in patients was performed using a felt-tip pen soaked in a mixture of surfactants (Brij-30/N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate). In mice, we show that the epidermis can be selectively removed without scarring, with complete healing within 2 weeks. We exposed hairless mice to low-dose UV radiation over a period of 3 months and serially sampled them through up to 2 months following the cessation of UV exposure, observing a progressive increase in a UV signature mutational burden. To test whether surfactant-based tissue acquisition for molecular profiling could be applied to human patients, samples were collected from sun-exposed and sun-protected areas, which were then subjected to high-depth targeted exome sequencing. Extensive UV-driven mosaicism and substantially increased mutational loads in sun-exposed versus sun-protected areas were observed, suggesting that genomic measures, as an integrated readout of DNA damage, repair, and clonal expansion, may be informative markers of UV exposure.
Collapse
|
22
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
23
|
Bok I, Vera O, Xu X, Jasani N, Nakamura K, Reff J, Nenci A, Gonzalez JG, Karreth FA. A Versatile ES Cell-Based Melanoma Mouse Modeling Platform. Cancer Res 2019; 80:912-921. [PMID: 31744817 DOI: 10.1158/0008-5472.can-19-2924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023]
Abstract
The cumbersome and time-consuming process of generating new mouse strains and multiallelic experimental animals often hinders the use of genetically engineered mouse models (GEMM) in cancer research. Here, we describe the development and validation of an embryonic stem cell (ESC)-GEMM platform for rapid modeling of melanoma in mice. The platform incorporates 12 clinically relevant genotypes composed of combinations of four driver alleles (LSL-BrafV600E, LSL-NrasQ61R, PtenFlox, and Cdkn2aFlox) and regulatory alleles to spatiotemporally control the perturbation of genes of interest. The ESCs produce high-contribution chimeras, which recapitulate the melanoma phenotypes of conventionally bred mice. Using the ESC-GEMM platform to modulate Pten expression in melanocytes in vivo, we highlighted the utility and advantages of gene depletion by CRISPR-Cas9, RNAi, or conditional knockout for melanoma modeling. Moreover, complementary genetic methods demonstrated the impact of Pten restoration on the prevention and maintenance of Pten-deficient melanomas. Finally, we showed that chimera-derived melanoma cell lines retain regulatory allele competency and are a powerful resource to complement ESC-GEMM chimera experiments in vitro and in syngeneic grafts in vivo Thus, when combined with sophisticated genetic tools, the ESC-GEMM platform enables rapid, high-throughput, and versatile studies aimed at addressing outstanding questions in melanoma biology.Significance: This study presents a high-throughput and versatile ES cell-based mouse modeling platform that can be combined with state-of-the-art genetic tools to address unanswered questions in melanoma in vivo See related commentary by Thorkelsson et al., p. 655.
Collapse
Affiliation(s)
- Ilah Bok
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Koji Nakamura
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jordan Reff
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arianna Nenci
- Gene Targeting Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jose G Gonzalez
- Gene Targeting Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
24
|
Genetically Engineered Mouse Models of Gliomas: Technological Developments for Translational Discoveries. Cancers (Basel) 2019; 11:cancers11091335. [PMID: 31505839 PMCID: PMC6770673 DOI: 10.3390/cancers11091335] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 01/25/2023] Open
Abstract
The most common brain tumours, gliomas, have significant morbidity. Detailed biological and genetic understanding of these tumours is needed in order to devise effective, rational therapies. In an era generating unprecedented quantities of genomic sequencing data from human cancers, complementary methods of deciphering the underlying functional cancer genes and mechanisms are becoming even more important. Genetically engineered mouse models of gliomas have provided a platform for investigating the molecular underpinning of this complex disease, and new tools for such models are emerging that are enabling us to answer the most important questions in the field. Here, I discuss improvements to genome engineering technologies that have led to more faithful mouse models resembling human gliomas, including new cre/LoxP transgenic lines that allow more accurate cell targeting of genetic recombination, Sleeping Beauty and piggyBac transposons for the integration of transgenes and genetic screens, and CRISPR-cas9 for generating genetic knockout and functional screens. Applications of these technologies are providing novel insights into the functional genetic drivers of gliomagenesis, how these genes cooperate with one another, and the potential cells-of-origin of gliomas, knowledge of which is critical to the development of targeted treatments for patients in the clinic.
Collapse
|
25
|
Newberg JY, Black MA, Jenkins NA, Copeland NG, Mann KM, Mann MB. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors. Nucleic Acids Res 2019; 46:e94. [PMID: 29846651 PMCID: PMC6144815 DOI: 10.1093/nar/gky450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer driver prioritization for functional analysis of potential actionable therapeutic targets is a significant challenge. Meta-analyses of mutated genes across different human cancer types for driver prioritization has reaffirmed the role of major players in cancer, including KRAS, TP53 and EGFR, but has had limited success in prioritizing genes with non-recurrent mutations in specific cancer types. Sleeping Beauty (SB) insertional mutagenesis is a powerful experimental gene discovery framework to define driver genes in mouse models of human cancers. Meta-analyses of SB datasets across multiple tumor types is a potentially informative approach to prioritize drivers, and complements efforts in human cancers. Here, we report the development of SB Driver Analysis, an in-silico method for defining cancer driver genes that positively contribute to tumor initiation and progression from population-level SB insertion data sets. We demonstrate that SB Driver Analysis computationally prioritizes drivers and defines distinct driver classes from end-stage tumors that predict their putative functions during tumorigenesis. SB Driver Analysis greatly enhances our ability to analyze, interpret and prioritize drivers from SB cancer datasets and will continue to substantially increase our understanding of the genetic basis of cancer.
Collapse
Affiliation(s)
- Justin Y Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nancy A Jenkins
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Departments of Gastrointestinal Oncology and Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael B Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Cutaneous Oncology and Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
26
|
Newberg JY, Mann KM, Mann MB, Jenkins NA, Copeland NG. SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers. Nucleic Acids Res 2019; 46:D1011-D1017. [PMID: 29059366 PMCID: PMC5753260 DOI: 10.1093/nar/gkx956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Large-scale oncogenomic studies have identified few frequently mutated cancer drivers and hundreds of infrequently mutated drivers. Defining the biological context for rare driving events is fundamentally important to increasing our understanding of the druggable pathways in cancer. Sleeping Beauty (SB) insertional mutagenesis is a powerful gene discovery tool used to model human cancers in mice. Our lab and others have published a number of studies that identify cancer drivers from these models using various statistical and computational approaches. Here, we have integrated SB data from primary tumor models into an analysis and reporting framework, the Sleeping Beauty Cancer Driver DataBase (SBCDDB, http://sbcddb.moffitt.org), which identifies drivers in individual tumors or tumor populations. Unique to this effort, the SBCDDB utilizes a single, scalable, statistical analysis method that enables data to be grouped by different biological properties. This allows for SB drivers to be evaluated (and re-evaluated) under different contexts. The SBCDDB provides visual representations highlighting the spatial attributes of transposon mutagenesis and couples this functionality with analysis of gene sets, enabling users to interrogate relationships between drivers. The SBCDDB is a powerful resource for comparative oncogenomic analyses with human cancer genomics datasets for driver prioritization.
Collapse
Affiliation(s)
- Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Michael B Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Assadieskandar A, Yu C, Maisonneuve P, Kurinov I, Sicheri F, Zhang C. Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. ACS Med Chem Lett 2019; 10:1074-1080. [PMID: 31312411 DOI: 10.1021/acsmedchemlett.9b00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
One effective means to achieve inhibitor specificity for RAF kinases, an important family of cancer drug targets, has been to target the monomeric inactive state conformation of the kinase domain, which, unlike most other kinases, can accommodate sulfonamide-containing drugs such as vemurafenib and dabrafenib because of the presence of a unique pocket specific to inactive RAF kinases. We previously reported an alternate strategy whereby rigidification of a nonselective pyrazolo[3,4-d]pyrimidine-based inhibitor through ring closure afforded moderate but appreciable increases in selectivity for RAF kinases. Here, we show that a further application of the rigidification strategy to a different pyrazolopyrimidine-based scaffold dramatically improved selectivity for RAF kinases. Crystal structure analysis confirmed our inhibitor design hypothesis revealing that 2l engages an active-like state conformation of BRAF normally associated with poorly discriminating inhibitors. When screened against a panel of distinct cancer cell lines, the optimized inhibitor 2l primarily inhibited the proliferation of the expected BRAFV600E-harboring cell lines consistent with its kinome selectivity profile. These results suggest that rigidification could be a general and powerful strategy for enhancing inhibitor selectivity against protein kinases, which may open up therapeutic opportunities not afforded by other approaches.
Collapse
Affiliation(s)
- Amir Assadieskandar
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Caiqun Yu
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Pierre Maisonneuve
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5 Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439, United States
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5 Canada
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Chao Zhang
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Feddersen CR, Wadsworth LS, Zhu EY, Vaughn HR, Voigt AP, Riordan JD, Dupuy AJ. A simplified transposon mutagenesis method to perform phenotypic forward genetic screens in cultured cells. BMC Genomics 2019; 20:497. [PMID: 31208320 PMCID: PMC6580595 DOI: 10.1186/s12864-019-5888-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The introduction of genome-wide shRNA and CRISPR libraries has facilitated cell-based screens to identify loss-of-function mutations associated with a phenotype of interest. Approaches to perform analogous gain-of-function screens are less common, although some reports have utilized arrayed viral expression libraries or the CRISPR activation system. However, a variety of technical and logistical challenges make these approaches difficult for many labs to execute. In addition, genome-wide shRNA or CRISPR libraries typically contain of hundreds of thousands of individual engineered elements, and the associated complexity creates issues with replication and reproducibility for these methods. RESULTS Here we describe a simple, reproducible approach using the SB transposon system to perform phenotypic cell-based genetic screens. This approach employs only three plasmids to perform unbiased, whole-genome transposon mutagenesis. We also describe a ligation-mediated PCR method that can be used in conjunction with the included software tools to map raw sequence data, identify candidate genes associated with phenotypes of interest, and predict the impact of recurrent transposon insertions on candidate gene function. Finally, we demonstrate the high reproducibility of our approach by having three individuals perform independent replicates of a mutagenesis screen to identify drivers of vemurafenib resistance in cultured melanoma cells. CONCLUSIONS Collectively, our work establishes a facile, adaptable method that can be performed by labs of any size to perform robust, genome-wide screens to identify genes that influence phenotypes of interest.
Collapse
Affiliation(s)
- Charlotte R. Feddersen
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Lexy S. Wadsworth
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Eliot Y. Zhu
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Hayley R. Vaughn
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Andrew P. Voigt
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Jesse D. Riordan
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
| | - Adam J. Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246 USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52246 USA
- Department of Anatomy & Cell Biology, Cancer Biology Graduate Program, University of Iowa, MERF, 375 Newton Road, Iowa City, IA 3202 USA
| |
Collapse
|
29
|
Guimaraes-Young A, Feddersen CR, Dupuy AJ. Sleeping Beauty Mouse Models of Cancer: Microenvironmental Influences on Cancer Genetics. Front Oncol 2019; 9:611. [PMID: 31338332 PMCID: PMC6629774 DOI: 10.3389/fonc.2019.00611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon insertional mutagenesis system offers a streamlined approach to identify genetic drivers of cancer. With a relatively random insertion profile, SB is uniquely positioned for conducting unbiased forward genetic screens. Indeed, SB mouse models of cancer have revealed insights into the genetics of tumorigenesis. In this review, we highlight experiments that have exploited the SB system to interrogate the genetics of cancer in distinct biological contexts. We also propose experimental designs that could further our understanding of the relationship between tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Amy Guimaraes-Young
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
de Ruiter JR, Wessels LFA, Jonkers J. Mouse models in the era of large human tumour sequencing studies. Open Biol 2018; 8:180080. [PMID: 30111589 PMCID: PMC6119864 DOI: 10.1098/rsob.180080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease in which cells progressively accumulate mutations disrupting their cellular processes. A fraction of these mutations drive tumourigenesis by affecting oncogenes or tumour suppressor genes, but many mutations are passengers with no clear contribution to tumour development. The advancement of DNA and RNA sequencing technologies has enabled in-depth analysis of thousands of human tumours from various tissues to perform systematic characterization of their (epi)genomes and transcriptomes in order to identify (epi)genetic changes associated with cancer. Combined with considerable progress in algorithmic development, this expansion in scale has resulted in the identification of many cancer-associated mutations, genes and pathways that are considered to be potential drivers of tumour development. However, it remains challenging to systematically identify drivers affected by complex genomic rearrangements and drivers residing in non-coding regions of the genome or in complex amplicons or deletions of copy-number driven tumours. Furthermore, functional characterization is challenging in the human context due to the lack of genetically tractable experimental model systems in which the effects of mutations can be studied in the context of their tumour microenvironment. In this respect, mouse models of human cancer provide unique opportunities for pinpointing novel driver genes and their detailed characterization. In this review, we provide an overview of approaches for complementing human studies with data from mouse models. We also discuss state-of-the-art technological developments for cancer gene discovery and validation in mice.
Collapse
Affiliation(s)
- J R de Ruiter
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of EEMCS, Delft University of Technology, Delft, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Lee H, Joung JG, Shin HT, Kim DH, Kim Y, Kim H, Kwon OJ, Shim YM, Lee HY, Lee KS, Choi YL, Park WY, Hayes DN, Um SW. Genomic alterations of ground-glass nodular lung adenocarcinoma. Sci Rep 2018; 8:7691. [PMID: 29769567 PMCID: PMC5955945 DOI: 10.1038/s41598-018-25800-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
In-depth molecular pathogenesis of ground-glass nodular lung adenocarcinoma has not been well understood. The objectives of this study were to identify genomic alterations in ground-glass nodular lung adenocarcinomas and to investigate whether viral transcripts were detected in these tumors. Nine patients with pure (n = 4) and part-solid (n = 5) ground-glass nodular adenocarcinomas were included. Six were females with a median age of 58 years. We performed targeted exon sequencing and RNA sequencing. EGFR (n = 10), IDH2 (n = 2), TP53 (n = 1), PTEN (n = 1), EPHB4 (n = 1), and BRAF (n = 1) were identified as driver mutations by targeted exon sequencing. Vasculogenesis-associated genes including NOTCH4 and TGFBR3 expression were significantly downregulated in adenocarcinoma tissue versus normal tissue (adjusted P values < 0.001 for both NOTCH4 and TGFBR3). In addition, five novel fusion gene loci were identified in four lung adenocarcinomas. However, no significant virus-associated transcripts were detected in tumors. In conclusions, EGFR, IDH2, TP53, PTEN, EPHB4, and BRAF were identified as putative driver mutations of ground-glass nodular adenocarcinomas. Five novel fusion genes were also identified in four tumors. Viruses do not appear to be involved in the tumorigenesis of ground-glass nodular lung adenocarcinoma.
Collapse
Affiliation(s)
- Hyun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyun-Tae Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - O Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Soo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
O'Donnell KA. Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology. Curr Opin Genet Dev 2018; 49:85-94. [PMID: 29587177 PMCID: PMC6312197 DOI: 10.1016/j.gde.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
Large-scale genome sequencing studies have identified a wealth of mutations in human tumors and have dramatically advanced the field of cancer genetics. However, the functional consequences of an altered gene in tumor progression cannot always be inferred from mutation status alone. This underscores the critical need for complementary methods to assign functional significance to mutated genes in cancer. Transposons are mobile genetic elements that serve as powerful tools for insertional mutagenesis. Over the last decade, investigators have employed mouse models with ondemand transposon-mediated mutagenesis to perform unbiased genetic screens to identify clinically relevant genes that participate in the pathogenesis of human cancer. Two distinct DNA transposon mutagenesis systems, Sleeping Beauty (SB) and PiggyBac (PB), have been applied extensively in vivo and more recently, in ex vivo settings. These studies have informed our understanding of the genes and pathways that drive cancer initiation, progression, and metastasis. This review highlights the latest progress on cancer gene identification for specific cancer subtypes, as well as new technological advances and incorporation of the CRISPR/Cas9 toolbox into transposon-mediated functional genetic studies.
Collapse
Affiliation(s)
- Kathryn A O'Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States.
| |
Collapse
|
33
|
Yu Y, Schleich K, Yue B, Ji S, Lohneis P, Kemper K, Silvis MR, Qutob N, van Rooijen E, Werner-Klein M, Li L, Dhawan D, Meierjohann S, Reimann M, Elkahloun A, Treitschke S, Dörken B, Speck C, Mallette FA, Zon LI, Holmen SL, Peeper DS, Samuels Y, Schmitt CA, Lee S. Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell 2018; 33:322-336.e8. [PMID: 29438700 PMCID: PMC5977991 DOI: 10.1016/j.ccell.2018.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
Oncogene-induced senescence, e.g., in melanocytic nevi, terminates the expansion of pre-malignant cells via transcriptional silencing of proliferation-related genes due to decoration of their promoters with repressive trimethylated histone H3 lysine 9 (H3K9) marks. We show here that structurally distinct H3K9-active demethylases-the lysine-specific demethylase-1 (LSD1) and several Jumonji C domain-containing moieties (such as JMJD2C)-disable senescence and permit Ras/Braf-evoked transformation. In mouse and zebrafish models, enforced LSD1 or JMJD2C expression promoted Braf-V600E-driven melanomagenesis. A large subset of established melanoma cell lines and primary human melanoma samples presented with a collective upregulation of related and unrelated H3K9 demethylase activities, whose targeted inhibition restored senescence, even in Braf inhibitor-resistant melanomas, evoked secondary immune effects and controlled tumor growth in vivo.
Collapse
Affiliation(s)
- Yong Yu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Kolja Schleich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany
| | - Bin Yue
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany
| | - Sujuan Ji
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany
| | - Philipp Lohneis
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Kristel Kemper
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Mark R Silvis
- Department of Surgery, University of Utah Health Sciences Center & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nouar Qutob
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 7610001, Israel
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Melanie Werner-Klein
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, 93053 Regensburg, Germany; Experimental Medicine and Therapy Research, University of Regensburg, 93053 Regensburg, Germany
| | - Lianjie Li
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany
| | - Dhriti Dhawan
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany
| | - Svenja Meierjohann
- University of Würzburg, Physiological Chemistry, Biocenter, 97074 Würzburg, Germany
| | - Maurice Reimann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany
| | - Abdel Elkahloun
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Steffi Treitschke
- Fraunhofer-Institute for Toxicology and Experimental Medicine, 93053 Regensburg, Germany
| | - Bernd Dörken
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site Berlin, Germany
| | - Christian Speck
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, and MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
| | - Frédérick A Mallette
- Department of Medicine, Université de Montréal, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Yardena Samuels
- Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot 7610001, Israel
| | - Clemens A Schmitt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site Berlin, Germany.
| | - Soyoung Lee
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, Virchow Campus, and Molekulares Krebsforschungszentrum, 13353 Berlin, Germany; Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site Berlin, Germany
| |
Collapse
|
34
|
Yu Y, Dai M, Lu A, Yu E, Merlino G. PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 2018; 37:2225-2236. [PMID: 29391600 DOI: 10.1038/s41388-017-0061-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
PI3K/AKT pathway activation is thought to be a driving force in metastatic melanomas. Members of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr specific phosphatase family (PHLPP1 and PHLPP2) can regulate AKT activation. By dephosphorylating specific serine residues in the hydrophobic motif, PHLPP1 and PHLPP2 restrain AKT signalings, thereby regulating cell proliferation and survival. We here show that PHLPP1 expression was significantly downregulated or lost and correlated with metastatic potential in melanoma. Forcing expression of either PHLPP1 or PHLPP2 in melanoma cells inhibited cell proliferation, migration, and colony formation in soft agar; but PHLPP1 had the most profound inhibitory effect on metastasis. Moreover, expression of PH mutant forms of PHLPP1 continued to inhibit metastasis, whereas a phosphatase-dead C-terminal mutant did not. The introduction of activated PHLPP1-specific targets AKT2 or AKT3 also promoted melanoma metastasis, while the non-PHLPP1 target AKT1 did not. AKT2 and AKT3 could even rescue the PHLPP1-mediated inhibition of metastasis. An AKT inhibitor blocked the activity of AKT2 and inhibited AKT2-mediated tumor growth and metastasis in a preclinical mouse model. Our data demonstrate that PHLPP1 functions as a metastasis suppressor through its phosphatase activity, and suggest that PHLPP1 represents a novel diagnostic and therapeutic marker for metastatic melanoma.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Meng Dai
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Andrew Lu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ellen Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Das M, Renganathan A, Dighe SN, Bhaduri U, Shettar A, Mukherjee G, Kondaiah P, Satyanarayana Rao MR. DDX5/p68 associated lncRNA LOC284454 is differentially expressed in human cancers and modulates gene expression. RNA Biol 2018; 15:214-230. [PMID: 29227193 PMCID: PMC5798960 DOI: 10.1080/15476286.2017.1397261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/04/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important players in regulation of gene expression in higher eukaryotes. DDX5/p68 RNA helicase protein which is involved in splicing of precursor mRNAs also interacts with lncRNAs like, SRA and mrhl, to modulate gene expression. We performed RIP-seq analysis in HEK293T cells to identify the complete repertoire of DDX5/p68 interacting transcripts including 73 single exonic (SE) lncRNAs. The LOC284454 lncRNA is the second top hit of the list of SE lncRNAs which we have characterized in detail for its molecular features and cellular functions. The RNA is located in the same primary transcript harboring miR-23a∼27a∼24-2 cluster. LOC284454 is a stable, nuclear restricted and chromatin associated lncRNA. The sequence is conserved only in primates among 26 different species and is expressed in multiple human tissues. Expression of LOC284454 is significantly reduced in breast, prostate, uterus and kidney cancer and also in breast cancer cell lines (MCF7 and T47D). Global gene expression studies upon loss and gain of function of LOC284454 revealed perturbation of genes related to cancer-related pathways. Focal adhesion and cell migration pathway genes are downregulated under overexpression condition, and these genes are significantly upregulated in breast cancer cell lines as well as breast cancer tissue samples suggesting a functional role of LOC284454 lncRNA in breast cancer pathobiology.
Collapse
Affiliation(s)
- Monalisa Das
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, India
| | - Arun Renganathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, India
| | - Shrinivas Nivrutti Dighe
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, India
| | - Utsa Bhaduri
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advance Scientific Research, Bangalore, Karnataka, India
| | - Abhijith Shettar
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Paturu Kondaiah
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
36
|
Kundu S, Ali MA, Handin N, Padhan N, Larsson J, Karoutsou M, Ban K, Wiśniewski JR, Artursson P, He L, Hellström M, Sjöblom T. Linking FOXO3, NCOA3, and TCF7L2 to Ras pathway phenotypes through a genome-wide forward genetic screen in human colorectal cancer cells. Genome Med 2018; 10:2. [PMID: 29301589 PMCID: PMC5755028 DOI: 10.1186/s13073-017-0511-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Background The Ras pathway genes KRAS, BRAF, or ERBBs have somatic mutations in ~ 60% of human colorectal carcinomas. At present, it is unknown whether the remaining cases lack mutations activating the Ras pathway or whether they have acquired mutations in genes hitherto unknown to belong to the pathway. Methods To address the second possibility and extend the compendium of Ras pathway genes, we used genome-wide transposon mutagenesis of two human colorectal cancer cell systems deprived of their activating KRAS or BRAF allele to identify genes enabling growth in low glucose, a Ras pathway phenotype, when targeted. Results Of the 163 recurrently targeted genes in the two different genetic backgrounds, one-third were known cancer genes and one-fifth had links to the EGFR/Ras/MAPK pathway. When compared to cancer genome sequencing datasets, nine genes also mutated in human colorectal cancers were identified. Among these, stable knockdown of FOXO3, NCOA3, and TCF7L2 restored growth in low glucose but reduced MEK/MAPK phosphorylation, reduced anchorage-independent growth, and modulated expressions of GLUT1 and Ras pathway related proteins. Knockdown of NCOA3 and FOXO3 significantly decreased the sensitivity to cetuximab of KRAS mutant but not wild-type cells. Conclusions This work establishes a proof-of-concept that human cell-based genome-wide forward genetic screens can assign genes to pathways with clinical importance in human colorectal cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0511-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Snehangshu Kundu
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden
| | - Muhammad Akhtar Ali
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, 751 23, Sweden
| | - Narendra Padhan
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden
| | - Jimmy Larsson
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden
| | - Maria Karoutsou
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden
| | - Kenneth Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, #02-06, Singapore, 117597, Republic of Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Republic of Singapore
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Biochemical Proteomics Group, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, 751 23, Sweden
| | - Liqun He
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Mats Hellström
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Science For Life Laboratory, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 21, Uppsala, 751 85, Sweden.
| |
Collapse
|
37
|
Bourneuf E. The MeLiM Minipig: An Original Spontaneous Model to Explore Cutaneous Melanoma Genetic Basis. Front Genet 2017; 8:146. [PMID: 29081790 PMCID: PMC5645500 DOI: 10.3389/fgene.2017.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest skin cancer and is a major public health concern with a growing incidence worldwide. As for other complex diseases, animal models are needed in order to better understand the mechanisms leading to pathology, identify potential biomarkers to be used in the clinics, and eventually molecular targets for therapeutic solutions. Cutaneous melanoma, arising from skin melanocytes, is mainly caused by environmental factors such as UV radiation; however a significant genetic component participates in the etiology of the disease. The pig is a recognized model for spontaneous development of melanoma with features similar to the human ones, followed by a complete regression and a vitiligo-like depigmentation. Three different pig models (MeLiM, Sinclair, and MMS-Troll) have been maintained through the last decades, and different genetic studies have evidenced a complex inheritance of the disease. As in humans, pigmentation seems to play a prominent role, notably through MC1R and MITF signaling. Conversely, cell cycle genes as CDKN2A and CDK4 have been excluded as predisposing for melanoma in MeLiM. So far, only sparse studies have focused on somatic changes occurring during oncogenesis, and have revealed major cytological changes and a potential dysfunction of the telomere maintenance system. Finally, the spontaneous tumor progression and regression occurring in these models could shed light on the interplay between endogenous retroviruses, melanomagenesis, and adaptive immune response.
Collapse
Affiliation(s)
- Emmanuelle Bourneuf
- LREG, CEA, Université Paris-Saclay, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
38
|
Pérez-Guijarro E, Day CP, Merlino G, Zaidi MR. Genetically engineered mouse models of melanoma. Cancer 2017; 123:2089-2103. [PMID: 28543694 DOI: 10.1002/cncr.30684] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Rangel R, Guzman-Rojas L, Kodama T, Kodama M, Newberg JY, Copeland NG, Jenkins NA. Identification of New Tumor Suppressor Genes in Triple-Negative Breast Cancer. Cancer Res 2017; 77:4089-4101. [DOI: 10.1158/0008-5472.can-17-0785] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/28/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
|
40
|
Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene. Proc Natl Acad Sci U S A 2017; 114:E4951-E4960. [PMID: 28584132 DOI: 10.1073/pnas.1702723114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.
Collapse
|
41
|
de la Rosa J, Weber J, Friedrich MJ, Li Y, Rad L, Ponstingl H, Liang Q, de Quirós SB, Noorani I, Metzakopian E, Strong A, Li MA, Astudillo A, Fernández-García MT, Fernández-García MS, Hoffman GJ, Fuente R, Vassiliou GS, Rad R, López-Otín C, Bradley A, Cadiñanos J. A single-copy Sleeping Beauty transposon mutagenesis screen identifies new PTEN-cooperating tumor suppressor genes. Nat Genet 2017; 49:730-741. [PMID: 28319090 PMCID: PMC5409503 DOI: 10.1038/ng.3817] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
The overwhelming number of genetic alterations identified through cancer genome sequencing requires complementary approaches to interpret their significance and interactions. Here we developed a novel whole-body insertional mutagenesis screen in mice, which was designed for the discovery of Pten-cooperating tumor suppressors. Toward this aim, we coupled mobilization of a single-copy inactivating Sleeping Beauty transposon to Pten disruption within the same genome. The analysis of 278 transposition-induced prostate, breast and skin tumors detected tissue-specific and shared data sets of known and candidate genes involved in cancer. We validated ZBTB20, CELF2, PARD3, AKAP13 and WAC, which were identified by our screens in multiple cancer types, as new tumor suppressor genes in prostate cancer. We demonstrated their synergy with PTEN in preventing invasion in vitro and confirmed their clinical relevance. Further characterization of Wac in vivo showed obligate haploinsufficiency for this gene (which encodes an autophagy-regulating factor) in a Pten-deficient context. Our study identified complex PTEN-cooperating tumor suppressor networks in different cancer types, with potential clinical implications.
Collapse
Affiliation(s)
- Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Julia Weber
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yilong Li
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Qi Liang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Imran Noorani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Alexander Strong
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Meng Amy Li
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Rocío Fuente
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Roland Rad
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Juan Cadiñanos
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| |
Collapse
|
42
|
Rangel R, Lee SC, Hon-Kim Ban K, Guzman-Rojas L, Mann MB, Newberg JY, Kodama T, McNoe LA, Selvanesan L, Ward JM, Rust AG, Chin KY, Black MA, Jenkins NA, Copeland NG. Transposon mutagenesis identifies genes that cooperate with mutant Pten in breast cancer progression. Proc Natl Acad Sci U S A 2016; 113:E7749-E7758. [PMID: 27849608 PMCID: PMC5137755 DOI: 10.1073/pnas.1613859113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1 Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC.
Collapse
Affiliation(s)
- Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Song-Choon Lee
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Kenneth Hon-Kim Ban
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
- Deparment of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138673
| | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Michael B Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
| | - Leslie A McNoe
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | | | - Jerrold M Ward
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom
| | - Kuan-Yew Chin
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030;
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673
| |
Collapse
|
43
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
44
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with a high mortality rate. Genetic and biochemical studies have shown that RAS signaling mediated by KRAS plays a pivotal role in disease initiation, progression and drug resistance. RAS signaling affects several cellular processes in PDAC, including cellular proliferation, migration, cellular metabolism and autophagy. 90% of pancreatic cancer patients harbor somatic oncogenic point mutations in KRAS, which lead to constitutive activation of the molecule. Pancreatic cancers lacking KRAS mutations show activation of RAS via upstream signaling through receptor mediated tyrosine kinases, like EGFR, and in a small fraction of patients, oncogenic activation of the downstream B-RAF molecule is detected. RAS-stimulated signaling of RAF/MEK/ERK, PI3K/AKT/mTOR and RalA/B is active in human pancreatic cancers, cancer cell lines and mouse models of PDAC, although activation levels of each signaling arm appear to be variable across different tumors and perhaps within different subclones of single tumors. Recently, several targeted therapies directed towards MEK, ERK, PI3K and mTOR have been assayed in pancreatic cancer cell lines and in mouse models of the disease with promising results for their ability to impede cellular growth or delay tumor formation, and several inhibitors are currently in clinical trials. However, therapy-induced cross activation of RAS effector molecules has elucidated the complexities of targeting RAS signaling. Combinatorial therapies are now being explored as an approach to overcome RAS-induced therapeutic resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Juan
- Molecular Oncology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
45
|
Mann KM, Newberg JY, Black MA, Jones DJ, Amaya-Manzanares F, Guzman-Rojas L, Kodama T, Ward JM, Rust AG, van der Weyden L, Yew CCK, Waters JL, Leung ML, Rogers K, Rogers SM, McNoe LA, Selvanesan L, Navin N, Jenkins NA, Copeland NG, Mann MB. Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq. Nat Biotechnol 2016; 34:962-72. [PMID: 27479497 PMCID: PMC6124494 DOI: 10.1038/nbt.3637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/20/2016] [Indexed: 02/03/2023]
Abstract
A central challenge in oncology is how to kill tumors containing heterogeneous cell populations defined by different combinations of mutated genes. Identifying these mutated genes and understanding how they cooperate requires single-cell analysis, but current single-cell analytic methods, such as PCR-based strategies or whole-exome sequencing, are biased, lack sequencing depth or are cost prohibitive. Transposon-based mutagenesis allows the identification of early cancer drivers, but current sequencing methods have limitations that prevent single-cell analysis. We report a liquid-phase, capture-based sequencing and bioinformatics pipeline, Sleeping Beauty (SB) capture hybridization sequencing (SBCapSeq), that facilitates sequencing of transposon insertion sites from single tumor cells in a SB mouse model of myeloid leukemia (ML). SBCapSeq analysis of just 26 cells from one tumor revealed the tumor's major clonal subpopulations, enabled detection of clonal insertion events not detected by other sequencing methods and led to the identification of dominant subclones, each containing a unique pair of interacting gene drivers along with three to six cooperating cancer genes with SB-driven expression changes.
Collapse
Affiliation(s)
- Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Devin J Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jerrold M Ward
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Jill L Waters
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marco L Leung
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keith Rogers
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Susan M Rogers
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Leslie A McNoe
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Nicholas Navin
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | - Michael B Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| |
Collapse
|
46
|
Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2016; 113:E3384-93. [PMID: 27247392 DOI: 10.1073/pnas.1606876113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets.
Collapse
|
47
|
Pandzic T, Larsson J, He L, Kundu S, Ban K, Akhtar-Ali M, Hellström AR, Schuh A, Clifford R, Blakemore SJ, Strefford JC, Baumann T, Lopez-Guillermo A, Campo E, Ljungström V, Mansouri L, Rosenquist R, Sjöblom T, Hellström M. Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia. Clin Cancer Res 2016; 22:6217-6227. [PMID: 26957556 DOI: 10.1158/1078-0432.ccr-15-2903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify resistance mechanisms for the chemotherapeutic drug fludarabine in chronic lymphocytic leukemia (CLL), as innate and acquired resistance to fludarabine-based chemotherapy represents a major challenge for long-term disease control. EXPERIMENTAL DESIGN We used piggyBac transposon-mediated mutagenesis, combined with next-generation sequencing, to identify genes that confer resistance to fludarabine in a human CLL cell line. RESULTS In total, this screen identified 782 genes with transposon integrations in fludarabine-resistant pools of cells. One of the identified genes is a known resistance mediator DCK (deoxycytidine kinase), which encodes an enzyme that is essential for the phosphorylation of the prodrug to the active metabolite. BMP2K, a gene not previously linked to CLL, was also identified as a modulator of response to fludarabine. In addition, 10 of 782 transposon-targeted genes had previously been implicated in treatment resistance based on somatic mutations seen in patients refractory to fludarabine-based therapy. Functional characterization of these genes supported a significant role for ARID5B and BRAF in fludarabine sensitivity. Finally, pathway analysis of transposon-targeted genes and RNA-seq profiling of fludarabine-resistant cells suggested deregulated MAPK signaling as involved in mediating drug resistance in CLL. CONCLUSIONS To our knowledge, this is the first forward genetic screen for chemotherapy resistance in CLL. The screen pinpointed novel genes and pathways involved in fludarabine resistance along with previously known resistance mechanisms. Transposon screens can therefore aid interpretation of cancer genome sequencing data in the identification of genes modifying sensitivity to chemotherapy. Clin Cancer Res; 22(24); 6217-27. ©2016 AACR.
Collapse
Affiliation(s)
- Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Jimmy Larsson
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Snehangshu Kundu
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Kenneth Ban
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.,Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Muhammad Akhtar-Ali
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anders R Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Schuh
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Ruth Clifford
- Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Stuart J Blakemore
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tycho Baumann
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Elias Campo
- Unitat de Hematología, Hospital Clíınic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Viktor Ljungström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
48
|
Chiu AP, Tschida BR, Lo LH, Moriarity BS, Rowlands DK, Largaespada DA, Keng VW. Transposon mouse models to elucidate the genetic mechanisms of hepatitis B viral induced hepatocellular carcinoma. World J Gastroenterol 2015; 21:12157-12170. [PMID: 26576100 PMCID: PMC4641133 DOI: 10.3748/wjg.v21.i42.12157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
The major type of human liver cancer is hepatocellular carcinoma (HCC), and there are currently many risk factors that contribute to this deadly disease. The majority of HCC occurrences are associated with chronic hepatitis viral infection, and hepatitis B viral (HBV) infection is currently a major health problem in Eastern Asia. Elucidating the genetic mechanisms associated with HBV-induced HCC has been difficult due to the heterogeneity and genetic complexity associated with this disease. A repertoire of animal models has been broadly used to study the pathophysiology and to develop potential treatment regimens for HBV-associated HCC. The use of these animal models has provided valuable genetic information and has been an important contributor to uncovering the factors involved in liver malignant transformation, invasion and metastasis. Recently, transposon-based mouse models are becoming more widely used in liver cancer research to interrogate the genome by forward genetics and also used to validate genes rapidly in a reverse genetic manner. Importantly, these transposon-based rapid reverse genetic mouse models could become crucial in testing potential therapeutic agents before proceeding to clinical trials in human. Therefore, this review will cover the use of transposon-based mouse models to address the problems of liver cancer, especially HBV-associated HCC occurrences in Asia.
Collapse
|
49
|
DeNicola GM, Karreth FA, Adams DJ, Wong CC. The utility of transposon mutagenesis for cancer studies in the era of genome editing. Genome Biol 2015; 16:229. [PMID: 26481584 PMCID: PMC4612416 DOI: 10.1186/s13059-015-0794-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of transposons as insertional mutagens to identify cancer genes in mice has generated a wealth of information over the past decade. Here, we discuss recent major advances in transposon-mediated insertional mutagenesis screens and compare this technology with other screening strategies.
Collapse
Affiliation(s)
- Gina M DeNicola
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Florian A Karreth
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10021, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, UK
| | - Chi C Wong
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH, UK. .,Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
50
|
Abstract
The genetic drivers of osteosarcoma have been difficult to identify because of the genomic complexity consistently encountered in cancer cells at diagnosis. A new study uses Sleeping Beauty transposon mutagenesis to drive osteosarcomagenesis in the mouse and identify likely drivers of the disease in humans.
Collapse
|