1
|
Ham H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, Lenardo MJ, Su HC. Germline mutations in a G protein identify signaling cross-talk in T cells. Science 2024; 385:eadd8947. [PMID: 39298586 DOI: 10.1126/science.add8947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/15/2023] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Ian T Lamborn
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan M Kober
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland
| | - Yamina A Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Judith N Mandl
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes Université, Nantes, France
- L'Institut du Thorax, CHU Nantes, INSERM UMR 1087/CNRS UMR 6291, Nantes Université, Nantes, France
| | - Carlos R Ferreira
- Skeletal Genomics Unit, Metabolic Medicine Branch, DIR, National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter J Mustillo
- Nationwide Children's Hospital, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Juliana Teo
- Department of Haematology, The Children's Hospital Westmead, Sydney, New South Wales, Australia
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - François Lecoquierre
- Université de Rouen Normandie, INSERM U12045 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU-G4 Génomique, Rouen, France
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH, Bethesda, MD, USA
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
| | - Douglas B Kuhns
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH, Rockville, MD, USA
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Department of Pediatrics, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, School of Medicine and Health, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Munich, Germany
| | - Paulien A Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Mari Muurinen
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Vincent Barlogis
- APHM, La Timone Children's Hospital, Department of Pediatric Hematology, Immunology, and Oncology, Marseille, France
- Aix-Marseille University, EA 3279 Research Unit, Marseille, France
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH, Bethesda, MD, USA
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals, NHS Foundation Trust, Headington, Oxford, UK
| | - Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Keren
- Genetic Departement, Assistance Publique - Hôpitaux de Paris.Sorbonne University, Paris, France
- SeqOIA Laboratory, FMG2025, Paris, France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kol A Zarember
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Katharina Vill
- LMU University Hospital, Department of Pediatrics, Division of Pediatric Neurology, iSPZ Hauner MUC - Munich University Center for Children with Medical and Developmental Complexity, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Kenneth N Olivier
- Pulmonary Branch, Division of Intramural Research, DIR, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Institut NeuroMyoGène, Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurence Faivre
- Génétique des Anomalies du Développement (GAD), UMR 1231, INSERM, Université Bourgogne-Franche Comté, Dijon, France
- Centre de Génétique et Centre de Référence "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Melanie Wong
- Department of Allergy and Immunology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM U1163, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Maud Tusseau
- Genetics Department, Lyon University Hospital, Lyon, France
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, DIR, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Helen F Matthews
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
- Illumina, San Diego, CA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | - Etienne Masle-Farquhar
- Immunogenomics Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Robert Brink
- St. Vincent's Clinical School, UNSW, Sydney, NSW, Australia
- B Cell Biology Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Danielle L Fink
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Woo Sung Kim
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH, Rockville, MD, USA
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kazuyuki Meguro
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH, Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Maria Slack
- Division of Allergy and Immunology, Department of Pediatrics, University of Rochester Medical Center and Golisano Children's Hospital, Rochester, NY, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Benoît Mazel
- Centre de Génétique et Centre de Référence "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon Bourgogne, Dijon, France
| | - Maarja Soomann
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Samuel Li
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH, Bethesda, MD, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, USA
| | - Maria F Rodriguez-Quevedo
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ange-Line Bruel
- Génétique des Anomalies du Développement (GAD), UMR 1231, INSERM, Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marita Lipsanen-Nyman
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Paul Saultier
- APHM, La Timone Children's Hospital, Department of Pediatric Hematology, Immunology, and Oncology, Marseille, France
- Aix-Marseille University, INSERM, National Research Institute for Agriculture, Food and Environment (INRAe), Cardiovascular and Nutrition Research Center (C2VN), Marseille, France
| | - Rashmi Jain
- Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daphne Lehalle
- AP-HP Sorbonne Université, UF de Génétique Clinique, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Hôpital Trousseau, Paris, France
| | - Daniel Torres
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sébastien Barbarot
- Department of Dermatology, CHU Nantes, INRAE, UMR 1280, PhAN, Nantes Université, Nantes, France
| | - Axel Neu
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yannis Duffourd
- Génétique des Anomalies du Développement (GAD), UMR 1231, INSERM, Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Morgan Similuk
- Centralized Sequencing Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Stéphane Bézieau
- Service de Génétique Médicale, CHU Nantes, Nantes Université, Nantes, France
- L'Institut du Thorax, CHU Nantes, INSERM UMR 1087/CNRS UMR 6291, Nantes Université, Nantes, France
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH, Rockville, MD, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, INSERM U1163, Paris, France
- Imagine Institute, University of Paris Cité, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Outi M Makitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Specialty of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Christopher C Goodnow
- Immunogenomics Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, Sydney, NSW, Australia
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY, USA
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Stockholm, Sweden
| | - Daniel D Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, Nantes Université, Nantes, France
- L'Institut du Thorax, CHU Nantes, INSERM UMR 1087/CNRS UMR 6291, Nantes Université, Nantes, France
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Michael J Lenardo
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Chen C, Chen Y, Li Y, Zhang H, Huang X, Li Y, Li Z, Han J, Wu X, Liu H, Sun T. EGR3 Inhibits Tumor Progression by Inducing Schwann Cell-Like Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400066. [PMID: 38973154 PMCID: PMC11425834 DOI: 10.1002/advs.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Indexed: 07/09/2024]
Abstract
The mechanism and function of the expression of Schwann characteristics by nevus cells in the mature zone of the dermis are unknown. Early growth response 3 (EGR3) induces Schwann cell-like differentiation of melanoma cells by simulating the process of nevus maturation, which leads to a strong phenotypic transformation of the cells, including the formation of long protrusions and a decrease in cell motility, proliferation, and melanin production. Meanwhile, EGR3 regulates the levels of myelin protein zero (MPZ) and collagen type I alpha 1 chain (COL1A1) through SRY-box transcription factor 10 (SOX10)-dependent and independent mechanisms, by binding to non-strictly conserved motifs, respectively. Schwann cell-like differentiation demonstrates significant benefits in both in vivo and clinical studies. Finally, a CD86-P2A-EGR3 recombinant mRNA vaccine is developed which leads to tumor control through forced cell differentiation and enhanced immune infiltration. Together, these data support further development of the recombinant mRNA as a treatment for cancer.
Collapse
Affiliation(s)
- Cai‐hong Chen
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Yang Chen
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Yi‐nan Li
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Heng Zhang
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Xiu Huang
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Ying‐ying Li
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Zhi‐yang Li
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Jing‐xia Han
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Xin‐ying Wu
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| | - Hui‐juan Liu
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
- Tianjin International Joint Academy of BiomedicineTianjin300450China
| | - Tao Sun
- Tianjin Nankai University State Key Laboratory of Medicinal Chemical Biology and College of PharmacyTianjin300350China
| |
Collapse
|
3
|
Trocchia M, Ventrici A, Modestino L, Cristinziano L, Ferrara AL, Palestra F, Loffredo S, Capone M, Madonna G, Romanelli M, Ascierto PA, Galdiero MR. Innate Immune Cells in Melanoma: Implications for Immunotherapy. Int J Mol Sci 2024; 25:8523. [PMID: 39126091 PMCID: PMC11313504 DOI: 10.3390/ijms25158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
Collapse
Affiliation(s)
- Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
| | - Leonardo Cristinziano
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| |
Collapse
|
4
|
Badia-Bringué G, Canive M, Vázquez P, Garrido JM, Fernández A, Juste RA, Jiménez JA, González-Recio O, Alonso-Hearn M. Genome-Wide Association Study Reveals Quantitative Trait Loci and Candidate Genes Associated with High Interferon-gamma Production in Holstein Cattle Naturally Infected with Mycobacterium Bovis. Int J Mol Sci 2024; 25:6165. [PMID: 38892353 PMCID: PMC11172856 DOI: 10.3390/ijms25116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNɣ) and its use in bovine selective breeding programs have not been explored. In the current study, IFNɣ production was measured using a specific IFNɣ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNɣ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNɣ in response to Mb.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Joseba M. Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | | | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| |
Collapse
|
5
|
Haugh AM, Osorio RC, Francois RA, Tawil ME, Tsai KK, Tetzlaff M, Daud A, Vasudevan HN. Targeted DNA Sequencing of Cutaneous Melanoma Identifies Prognostic and Predictive Alterations. Cancers (Basel) 2024; 16:1347. [PMID: 38611025 PMCID: PMC11011039 DOI: 10.3390/cancers16071347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cutaneous melanoma (CM) can be molecularly classified into four groups: BRAF mutant, NRAS mutant, NF1 mutant and triple wild-type (TWT) tumors lacking any of these three alterations. In the era of immune checkpoint inhibition (ICI) and targeted molecular therapy, the clinical significance of these groups remains unclear. Here, we integrate targeted DNA sequencing with comprehensive clinical follow-up in CM patients. METHODS This was a retrospective cohort study that assessed clinical and molecular features from patients with localized or metastatic CM who underwent targeted next-generation sequencing as part of routine clinical care. A total of 254 patients with CM who had a CLIA-certified targeted sequencing assay performed on their tumor tissue were included. RESULTS Of the 254 patients with cutaneous melanoma, 77 were BRAF mutant (30.3%), 77 were NRAS mutant (30.3%), 47 were NF1 mutant (18.5%), 33 were TWT (13.0%) and the remaining 20 (7.9%) carried mutations in multiple driver genes (BRAF/NRAS/NF1 co-mutated). The majority of this co-mutation group carried mutations in NF1 (n = 19 or 90%) with co-occurring mutations in BRAF or NRAS, often with a weaker oncogenic variant. Consistently, NF1 mutant tumors harbored numerous significantly co-altered genes compared to BRAF or NRAS mutant tumors. The majority of TWT tumors (n = 29, 87.9%) harbor a pathogenic mutation within a known Ras/MAPK signaling pathway component. Of the 154 cases with available TMB data, the median TMB was 20 (range 0.7-266 mutations/Mb). A total of 14 cases (9.1%) were classified as having a low TMB (≤5 mutations/Mb), 64 of 154 (41.6%) had an intermediate TMB (>5 and ≤20 mutations/Mb), 40 of 154 (26.0%) had a high TMB (>20 and ≤50 mutations/Mb) and 36 of 154 (23.4%) were classified as having a very high TMB (>50 mutations/Mb). NRAS mutant melanoma demonstrated significantly decreased overall survival on multivariable analysis (HR for death 2.95, 95% CI 1.13-7.69, p = 0.027, log-rank test) compared with other TCGA molecular subgroups. Of the 116 patients in our cohort with available treatment data, 36 received a combination of dual ICI with anti-CTLA4 and anti-PD1 inhibition as first-line therapy. Elevated TMB was associated with significantly longer progression-free survival following dual-agent ICI (HR 0.26, 95% CI 0.07-0.90, p = 0.033, log-rank test). CONCLUSIONS NRAS mutation in CMs correlated with significantly worse overall survival. Elevated TMB was associated with increased progression-free survival for patients treated with a combination of dual ICI, supporting the potential utility of TMB as a predictive biomarker for ICI response in melanoma.
Collapse
Affiliation(s)
- Alexandra M. Haugh
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Robert C. Osorio
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rony A. Francois
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michael E. Tawil
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Katy K. Tsai
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Michael Tetzlaff
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adil Daud
- Department of Medicine, Division of Hematology/Oncology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94142, USA; (A.M.H.); (K.K.T.); (A.D.)
| | - Harish N. Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA (M.E.T.)
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Li J, Zong Y, Tuo Z, Liu J, Liu J. The role of RASA2 in predicting radioresistance in lung cancer through regulation of p53. Transl Lung Cancer Res 2024; 13:587-602. [PMID: 38601440 PMCID: PMC11002505 DOI: 10.21037/tlcr-24-160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Background One of the most common causes of lung cancer relapse after clinical treatment is radioresistance. However, the mechanism underlying radioresistance remains unclear. In this study, we investigated the role of Ras p21 protein activator (RASA2) in non-small cell lung cancer (NSCLC). Methods The messenger RNA (mRNA) of RASA2 was tested via reverse-transcription quantitative polymerase chain reaction (RT-qPCR) of cancer tissues from patients with NSCLC. Computed tomography (CT) and bioluminescent imaging (BLI) were used to monitor the tumor growth of patients and orthotopic mice, respectively. Protein-protein interaction was quantified via immunoprecipitation and glutathione S transferase (GST) pulldown assay. Western blotting was used to evaluate the phosphorylation and ubiquitination level of p53. Results The results indicated a negative correlation between the mRNA expression levels of RASA2 in tumor tissues with patients' response to radiotherapy. Patients with a high expression of RASA2 had a lower objective response rate (ORR) after 1 month of radiotherapy than patients with low expression of RASA2 after 1 month of radiotherapy. In terms of mechanism, we proved that RASA2 can directly bind to p53 to promote the phosphorylation of p53, which inhibits its transcriptional activity and further promotes its degradation through the ubiquitin/proteasome pathway. In this process, the apoptosis of tumor cells is inhibited due to impaired p53 surveillance, which leads to radioresistance. Conclusions Our results demonstrate that RASA2 negatively regulates p53 in cancer cells and therefore promotes radioresistance, providing a new predictive biomarker and a potential therapeutic target for radioresistance.
Collapse
Affiliation(s)
- Jie Li
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhan Tuo
- Department of Radiology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwei Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Khorsandi K, Esfahani H, Ghamsari SK, Lakhshehei P. Targeting ferroptosis in melanoma: cancer therapeutics. Cell Commun Signal 2023; 21:337. [PMID: 37996827 PMCID: PMC10666330 DOI: 10.1186/s12964-023-01296-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 11/25/2023] Open
Abstract
Melanoma is an aggressive kind of skin cancer; its rate has risen rapidly over the past few decades. Melanoma reports for only about 1% of skin cancers but leads to a high majority of skin cancer deaths. Thus, new useful therapeutic approaches are currently required, to state effective treatments to consistently enhance the overall survival rate of melanoma patients. Ferroptosis is a recently identified cell death process, which is different from autophagy, apoptosis, necrosis, and pyroptosis in terms of biochemistry, genetics, and morphology which plays an important role in cancer treatment. Ferroptosis happens mostly by accumulating iron and lipid peroxides in the cell. Recently, studies have revealed that ferroptosis has a key role in the tumor's progression. Especially, inducing ferroptosis in cells can inhibit the tumor cells' growth, leading to back warding tumorigenesis. Here, we outline the ferroptosis characteristics from its basic role in melanoma cancer and mention its possible applications in melanoma cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamics, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - HomaSadat Esfahani
- Department of Photodynamics, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Parisa Lakhshehei
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Johansen KH, Golec DP, Okkenhaug K, Schwartzberg PL. Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion. Trends Immunol 2023; 44:917-931. [PMID: 37858490 PMCID: PMC10621891 DOI: 10.1016/j.it.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Following stimulation, the T cell receptor (TCR) and its coreceptors integrate multiple intracellular signals to initiate T cell proliferation, migration, gene expression, and metabolism. Among these signaling molecules are the small GTPases RAS and RAP1, which induce MAPK pathways and cellular adhesion to activate downstream effector functions. Although many studies have helped to elucidate the signaling intermediates that mediate T cell activation, the molecules and pathways that keep naive T cells in check are less understood. Several recent studies provide evidence that RASA2 and RASA3, which are GAP1-family GTPase-activating proteins (GAPs) that inactivate RAS and RAP1, respectively, are crucial molecules that limit T cell activation and adhesion. In this review we describe recent data on the roles of RASA2 and RASA3 as gatekeepers of T cell activation and migration.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Section of Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Rajalingam A, Sekar K, Ganjiwale A. Identification of Potential Genes and Critical Pathways in Postoperative Recurrence of Crohn's Disease by Machine Learning And WGCNA Network Analysis. Curr Genomics 2023; 24:84-99. [PMID: 37994325 PMCID: PMC10662376 DOI: 10.2174/1389202924666230601122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 11/24/2023] Open
Abstract
Background Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease affecting the entire gastrointestinal tract from the mouth to the anus. These patients often experience a period of symptomatic relapse and remission. A 20 - 30% symptomatic recurrence rate is reported in the first year after surgery, with a 10% increase each subsequent year. Thus, surgery is done only to relieve symptoms and not for the complete cure of the disease. The determinants and the genetic factors of this disease recurrence are also not well-defined. Therefore, enhanced diagnostic efficiency and prognostic outcome are critical for confronting CD recurrence. Methods We analysed ileal mucosa samples collected from neo-terminal ileum six months after surgery (M6=121 samples) from Crohn's disease dataset (GSE186582). The primary aim of this study is to identify the potential genes and critical pathways in post-operative recurrence of Crohn's disease. We combined the differential gene expression analysis with Recursive feature elimination (RFE), a machine learning approach to get five critical genes for the postoperative recurrence of Crohn's disease. The features (genes) selected by different methods were validated using five binary classifiers for recurrence and remission samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbor (KNN) with 10-fold cross-validation. We also performed weighted gene co-expression network analysis (WGCNA) to select specific modules and feature genes associated with Crohn's disease postoperative recurrence, smoking, and biological sex. Combined with other biological interpretations, including Gene Ontology (GO) analysis, pathway enrichment, and protein-protein interaction (PPI) network analysis, our current study sheds light on the in-depth research of CD diagnosis and prognosis in postoperative recurrence. Results PLOD2, ZNF165, BOK, CX3CR1, and ARMCX4, are the important genes identified from the machine learning approach. These genes are reported to be involved in the viral protein interaction with cytokine and cytokine receptors, lysine degradation, and apoptosis. They are also linked with various cellular and molecular functions such as Peptidyl-lysine hydroxylation, Central nervous system maturation, G protein-coupled chemoattractant receptor activity, BCL-2 homology (BH) domain binding, Gliogenesis and negative regulation of mitochondrial depolarization. WGCNA identified a gene co-expression module that was primarily involved in mitochondrial translational elongation, mitochondrial translational termination, mitochondrial translation, mitochondrial respiratory chain complex, mRNA splicing via spliceosome pathways, etc.; Both the analysis result emphasizes that the mitochondrial depolarization pathway is linked with CD recurrence leading to oxidative stress in promoting inflammation in CD patients. Conclusion These key genes serve as the novel diagnostic biomarker for the postoperative recurrence of Crohn's disease. Thus, among other treatment options present until now, these biomarkers would provide success in both diagnosis and prognosis, aiming for a long-lasting remission to prevent further complications in CD.
Collapse
Affiliation(s)
- Aruna Rajalingam
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Kanagaraj Sekar
- Laboratory for Structural Biology and Bio-computing, Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anjali Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| |
Collapse
|
10
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Chen L, Li Y, Chen Y. KLHL7 promotes hepatocellular carcinoma progression and molecular therapy resistance by degrading RASA2. iScience 2023; 26:106914. [PMID: 37378318 PMCID: PMC10291331 DOI: 10.1016/j.isci.2023.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/27/2022] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common aggressive tumor with a poor prognosis, and patients often seem to be refractory to the use of therapeutic drugs. In this study, we found that the KLHL7 expression was upregulated in HCC that was associated with poor patient prognosis. KLHL7 has been found to promote HCC development in both in vitro and in vivo experiments. Mechanistically, RASA2, a RAS GAP, was identified as a substrate of KLHL7. Upregulation of KLHL7 by growth factors promotes K48-linked polyubiquitination of RASA2 for degradation via the proteasomal pathway. Our in vivo experiments revealed that inhibition of KLHL7 in combination with lenvatinib treatment resulted in efficient killing of HCC cells. Together, these findings demonstrate a role for KLHL7 in HCC and reveal a mechanism by which growth factors regulate the RAS-MAPK pathway. It represents a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
12
|
Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol Res Pract 2023; 243:154371. [PMID: 36791561 DOI: 10.1016/j.prp.2023.154371] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/β-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- β, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.
Collapse
|
13
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Yakovian O, Sajman J, Alon M, Arafeh R, Samuels Y, Sherman E. NRas activity is regulated by dynamic interactions with nanoscale signaling clusters at the plasma membrane. iScience 2022; 25:105282. [PMID: 36304112 PMCID: PMC9593252 DOI: 10.1016/j.isci.2022.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/07/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
NRas is a key mediator of the mitogenic pathway in normal cells and in cancer cells. Its dynamics and nanoscale organization at the plasma membrane (PM) facilitate its signaling. Here, we used two-color photoactivated localization microscopy to resolve the organization of individual NRas and associated signaling proteins in live melanoma cells, with resolution down to ∼20 nm. Upon EGF activation, a fraction of NRas and BRAF (dis)assembled synchronously at the PM in co-clusters. NRas and BRAF clusters associated with GPI-enriched domains, serving as possible nucleation sites for these clusters. NRas and BRAF association in mutual clusters was reduced by the NRas farnesylation inhibitor lonafarnib, yet enhanced by the BRAF inhibitor vemurafenib. Surprisingly, dispersed NRas molecules associated with the periphery of self-clusters of either Grb2 or NF1. Thus, NRas-mediated signaling, which is critical in health and disease, is regulated by dynamic interactions with functional clusters of BRAF or other related proteins at the PM.
Collapse
Affiliation(s)
- Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel,Department of Molecular Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel,Corresponding author
| |
Collapse
|
16
|
Carnevale J, Shifrut E, Kale N, Nyberg WA, Blaeschke F, Chen YY, Li Z, Bapat SP, Diolaiti ME, O'Leary P, Vedova S, Belk J, Daniel B, Roth TL, Bachl S, Anido AA, Prinzing B, Ibañez-Vega J, Lange S, Haydar D, Luetke-Eversloh M, Born-Bony M, Hegde B, Kogan S, Feuchtinger T, Okada H, Satpathy AT, Shannon K, Gottschalk S, Eyquem J, Krenciute G, Ashworth A, Marson A. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 2022; 609:174-182. [PMID: 36002574 PMCID: PMC9433322 DOI: 10.1038/s41586-022-05126-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 07/20/2022] [Indexed: 12/17/2022]
Abstract
The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.
Collapse
Affiliation(s)
- Julia Carnevale
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
| | - Eric Shifrut
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Pathology Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Nupura Kale
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Sagar P Bapat
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Morgan E Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick O'Leary
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shane Vedova
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Julia Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Theodore L Roth
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Stefanie Bachl
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alejandro Allo Anido
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brooke Prinzing
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jorge Ibañez-Vega
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon Lange
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Marie Luetke-Eversloh
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Maelys Born-Bony
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bindu Hegde
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Kogan
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Hideho Okada
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Kevin Shannon
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
17
|
Rajkumar S, Berry D, Heney KA, Strong C, Ramsay L, Lajoie M, Alkallas R, Nguyen TT, Thomson C, Ahanfeshar-Adams M, Dankner M, Petrella T, Rose AAN, Siegel PM, Watson IR. Melanomas with concurrent BRAF non-p.V600 and NF1 loss-of-function mutations are targetable by BRAF/MEK inhibitor combination therapy. Cell Rep 2022; 39:110634. [PMID: 35385748 DOI: 10.1016/j.celrep.2022.110634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023] Open
Abstract
Although combination BRAF/MEK inhibition has produced significant survival benefits for BRAF p.V600 mutant melanomas, targeted therapies approved for BRAF non-p.V600 mutant melanomas remain limited. Through the analysis of 772 cutaneous melanoma exomes, we reveal that BRAF non-p.V600 mutations co-occurs more frequently with NF1 loss, but not with oncogenic NRAS mutations, than expected by chance. We present cell signaling data, which demonstrate that BRAF non-p.V600 mutants can signal as monomers and dimers within an NF1 loss context. Concordantly, BRAF inhibitors that inhibit both monomeric and dimeric BRAF synergize with MEK inhibition to significantly reduce cell viability in vitro and tumor growth in vivo in BRAF non-p.V600 mutant melanomas with co-occurring NF1 loss-of-function mutations. Our data suggest that patients harboring BRAF non-p.V600 mutant melanomas may benefit from current FDA-approved BRAF/MEK inhibitor combination therapy currently reserved for BRAF p.V600 mutant patients.
Collapse
Affiliation(s)
- Shivshankari Rajkumar
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Diana Berry
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Kayla A Heney
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Colton Strong
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - LeeAnn Ramsay
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Mathieu Lajoie
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Rached Alkallas
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Tan-Trieu Nguyen
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Cameron Thomson
- University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Matthew Dankner
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Teresa Petrella
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - April A N Rose
- Department of Oncology, McGill University, Montréal, QC H4A 3T2, Canada; Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Ian R Watson
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Research Institute of the McGill University Health Centre, Montréal, QC H3H 2R9, Canada.
| |
Collapse
|
18
|
Qiao L, Han J, Wang G, Yuan T, Gu Y. Promising novel biomarkers and candidate drugs or herbs in Osteoarthritis: Evidence from bioinformatics analysis of high‐throughput data. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220331090947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The most common joint illness is osteoarthritis (OA). The goal of this work was to find changes in gene signatures between normal knee joints and OA tissue samples and look for prospective gene targets for OA.
Methods:
The gene expression profiles of GSE12021, GSE51588, and GSE55457 were downloaded from Gene Expression Omnibus (GEO). Total 64 samples (40 OA and 24 standard control samples) were used. The limma program was used to find differentially expressed genes (DEGs) in OA versus NC. Functional annotation and protein-protein interaction (PPI) network construction of OA-specific DEGs were performed. Finally, the candidate drugs and herbs as potential drugs to treat OA were predicted in the DGIdb and TCMIO databases.
Results:
19 upregulated and 27 downregulated DEGs between OA and NC samples. DEGs such as PTN, COMP, NELL1 and MN1 have shown a significant correlation with OA and are expected to become new biomarkers. Cellular senescence,Positive regulation of ossification and Vascular endothelial growth factor (VEGF) were significantly enriched for OA‐specific DEGs.In cell composition analysis, DEGs were also found to be highly enriched in the cytosol.We have identified a total of 68 types of drugs or molecular compounds that are promising to reverse OA-related DEGs.Honeycomb and cinnamon oil have the possibility of treating OA.
Conclusion:
Our findings suggest new biomarkers that can be used to diagnose OA. Furthermore, we tried to find drugs and traditional Chinese medicine that may improve the progress of OA. This research may improve the identification and treatment of these uncontrollable chronic diseases.
Collapse
Affiliation(s)
- Linghui Qiao
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| | - Jie Han
- Wuxi No.2 People\'s Hospital,Affiliated Wuxi Clinical College of Nantong University, China
| | - Guancheng Wang
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| | - Tao Yuan
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| | - Yanglin Gu
- The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, China
| |
Collapse
|
19
|
Abstract
In this review, I provide a brief history of the discovery of RAS and the GAPs and GEFs that regulate its activity from a personal perspective. Much of this history has been driven by technological breakthroughs that occurred concurrently, such as molecular cloning, cDNA expression to analyze RAS proteins and their structures, and application of PCR to detect mutations. I discuss the RAS superfamily and RAS proteins as therapeutic targets, including recent advances in developing RAS inhibitors. I also describe the role of the RAS Initiative at Frederick National Laboratory for Cancer Research in advancing development of RAS inhibitors and providing new insights into signaling complexes and interaction of RAS proteins with the plasma membrane.
Collapse
Affiliation(s)
- Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States; Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
20
|
Abstract
Activating mutations in RAS genes are the most common genetic driver of human cancers. Yet, drugging this small GTPase has proven extremely challenging and therapeutic strategies targeting these recurrent alterations have long had limited success. To circumvent this difficulty, research has focused on the molecular dissection of the RAS pathway to gain a more-precise mechanistic understanding of its regulation, with the hope to identify new pharmacological approaches. Here, we review the current knowledge on the (dys)regulation of the RAS pathway, using melanoma as a paradigm. We first present a map of the main proteins involved in the RAS pathway, highlighting recent insights into their molecular roles and diverse mechanisms of regulation. We then overview genetic data pertaining to RAS pathway alterations in melanoma, along with insight into other cancers, that inform the biological function of members of the pathway. Finally, we describe the clinical implications of RAS pathway dysregulation in melanoma, discuss past and current approaches aimed at drugging the RAS pathway, and outline future opportunities for therapeutic development. Summary: This Review describes the molecular regulation of the RAS pathway, presents the clinical consequences of its pathological activation in human cancer, and highlights recent advances towards its therapeutic inhibition, using melanoma as an example.
Collapse
Affiliation(s)
- Amira Al Mahi
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| | - Julien Ablain
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| |
Collapse
|
21
|
Cherepakhin OS, Argenyi ZB, Moshiri AS. Genomic and Transcriptomic Underpinnings of Melanoma Genesis, Progression, and Metastasis. Cancers (Basel) 2021; 14:123. [PMID: 35008286 PMCID: PMC8750021 DOI: 10.3390/cancers14010123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a deadly skin cancer with rapidly increasing incidence worldwide. The discovery of the genetic drivers of melanomagenesis in the last decade has led the World Health Organization to reclassify melanoma subtypes by their molecular pathways rather than traditional clinical and histopathologic features. Despite this significant advance, the genomic and transcriptomic drivers of metastatic progression are less well characterized. This review describes the known molecular pathways of cutaneous and uveal melanoma progression, highlights recently identified pathways and mediators of metastasis, and touches on the influence of the tumor microenvironment on metastatic progression and treatment resistance. While targeted therapies and immune checkpoint blockade have significantly aided in the treatment of advanced disease, acquired drug resistance remains an unfortunately common problem, and there is still a great need to identify potential prognostic markers and novel therapeutic targets to aid in such cases.
Collapse
Affiliation(s)
| | - Zsolt B. Argenyi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Ata S. Moshiri
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Chen J, Huang J, Huang Q, Li J, Chen E, Xu W. RASA4 inhibits the HIFα signaling pathway to suppress proliferation of cervical cancer cells. Bioengineered 2021; 12:10723-10733. [PMID: 34752201 PMCID: PMC8809920 DOI: 10.1080/21655979.2021.2002499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RAS p21 protein activator 4 (RASA4) has been recognized as a Ca2+-promoted Ras–MAPK pathway suppressor that inhibits tumor growth. However, the role of RASA4 in cervical squamous cell carcinoma (CESC) remains unclear. The mRNA levels of RASA4 were analyzed using the GEO and GEPIA databases. Kaplan–Meier analysis and ROC analyses were conducted to determine the prognostic and diagnostic values for patients from the TCGA-CSCE cohort. The CCK8 and colony assays were performed to assess the impact of RASA4 ectopic expression and gene inactivation on tumor cell proliferation. In vivo experiments were performed. Luciferase reporter assays and LW6 (a HIFα inhibitor) were employed to verify the regulatory relationship between RASA4 and the HIFa signaling pathway. The GEPIA and GEO database analysis demonstrated poorly expressed RASA4 in the CESC tissues relative to that in the noncancerous tissues. Based on the TCGA database, poorly expressed RASA4 signified high prognostic and diagnostic values. Ectopically expressed RASA4 weakened the proliferative potential of HeLa cells, whereas RASA4 genetic inactivation produced the opposite impact in the HeLa and C-33A cells. The promoting effect of RASA4 deficiency on tumourigenesis was also recorded in vivo. Subsequently, RASA4 negatively regulated the HIFα-driven luciferase activities and weakened the expression of survivin. Meanwhile, LW6 treatment abrogated the increased proliferation of HeLa cells, as well as the increased expression of survivin by RASA4 depletion. Our findings indicated that RASA4 can inhibit the proliferation of cervical cancer cells by inactivating the HIFα signaling pathway, suggesting novel prospects for targeted therapy against CESC.
Collapse
Affiliation(s)
- Junying Chen
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Jinbing Huang
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Qiaoqiao Huang
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Ji Li
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China.,Department of Obstetrics and Gynecology, The People's Hospital of Cenxi City, Cenxi city, China
| | - Erling Chen
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| | - Wensheng Xu
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, China
| |
Collapse
|
23
|
Peri A, Greenstein E, Alon M, Pai JA, Dingjan T, Reich-Zeliger S, Barnea E, Barbolin C, Levy R, Arnedo-Pac C, Kalaora S, Dassa B, Feldmesser E, Shang P, Greenberg P, Levin Y, Benedek G, Levesque MP, Adams DJ, Lotem M, Wilmott JS, Scolyer RA, Jönsson GB, Admon A, Rosenberg SA, Cohen CJ, Niv MY, Lopez-Bigas N, Satpathy AT, Friedman N, Samuels Y. Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. J Clin Invest 2021; 131:129466. [PMID: 34651586 DOI: 10.1172/jci129466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.
Collapse
Affiliation(s)
| | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Joy A Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Tamir Dingjan
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Eilon Barnea
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Ronen Levy
- Department of Molecular Cell Biology and
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ping Shang
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - James S Wilmott
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia
| | - Göran B Jönsson
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Arie Admon
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Cyrille J Cohen
- Laboratory of Tumor Immunotherapy, The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
24
|
Abstract
Neoplasia occurs as a result of genetic mutations. Research evaluating the association between gene mutations and skin cancer is limited and has produced inconsistent results. There are no established guidelines for screening skin cancer at molecular level. It should also be noted that the combinations of some mutations may play a role in skin tumors’ biology and immune response. There are three major types of skin cancer, and the originality of this study comes from its approach of each of them.
Collapse
|
25
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
26
|
MicroRNAs in Medullary Thyroid Carcinoma: A State of the Art Review of the Regulatory Mechanisms and Future Perspectives. Cells 2021; 10:cells10040955. [PMID: 33924120 PMCID: PMC8074316 DOI: 10.3390/cells10040955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignant neoplasia with a variable clinical course, with complete remission often difficult to achieve. Genetic alterations lead to fundamental changes not only in hereditary MTC but also in the sporadic form, with close correlations between mutational status and prognosis. In recent years, microRNAs (miRNAs) have become highly relevant as crucial players in MTC etiology. Current research has focused on their roles in disease carcinogenesis and development, but recent studies have expounded their potential as biomarkers and response predictors to novel biological drugs for advanced MTC. One such element which requires greater investigation is their mechanism of action and the molecular pathways involved in the regulation of gene expression. A more thorough understanding of these mechanisms will help realize the promising potential of miRNAs for MTC therapy and management.
Collapse
|
27
|
Yakovian O, Sajman J, Arafeh R, Neve-Oz Y, Alon M, Samuels Y, Sherman E. MEK Inhibition Reverses Aberrant Signaling in Melanoma Cells through Reorganization of NRas and BRAF in Self Nanoclusters. Cancer Res 2021; 81:1279-1292. [PMID: 33355187 DOI: 10.1158/0008-5472.can-20-1205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/29/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
Hotspot mutations of the oncogenes BRAF and NRas are the most common genetic alterations in cutaneous melanoma. Still, the nanoscale organization and signal coupling of these proteins remain incompletely understood, particularly upon expression of oncogenic NRas mutants. Here we employed single-molecule localization microscopy to study the nanoscale organization of NRas and BRAF at the plasma membrane (PM) of melanoma cells. NRas and BRAF resided in self-clusters that did not associate well in resting cells. In EGF-activated cells, NRas clusters became more diffused while overall protein levels at the PM increased; thus allowing enhanced association of NRas and BRAF and downstream signaling. In multiple melanoma cell lines, mutant NRas resided in more pronounced self-clusters relative to wild-type (WT) NRas yet associated more with the clustered and more abundant BRAF. In cells resistant to trametinib, a clinical MEK inhibitor (MEKi), a similar coclustering of NRas and BRAF was observed upon EGF activation. Strikingly, treatment of cells expressing mutant NRas with trametinib reversed the effect of mutant NRas expression by restoring the nonoverlapping self-clusters of NRas and BRAF and by reducing their PM levels and elevated pERK levels caused by mutant NRas. Our results indicate a new mechanism for signal regulation of NRas in melanoma through its nanoscale dynamic organization and a new mechanism for MEKi function in melanoma cells carrying NRas mutations but lacking MEK mutations. SIGNIFICANCE: Nanoscale dynamic organization of WT and mutant NRas relative to BRAF serves as a regulatory mechanism for NRas signaling and may be a viable therapeutic target for its sensitivity to MEKi.
Collapse
Affiliation(s)
- Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
28
|
Genetic Profiling of Malignant Melanoma Arising from an Ovarian Mature Cystic Teratoma: A Case Report. Int J Mol Sci 2021; 22:ijms22052436. [PMID: 33670958 PMCID: PMC7957566 DOI: 10.3390/ijms22052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian mature cystic teratomas comprise tissues derived from all three germ layers. In rare cases, malignant tumors arise from ovarian mature cystic teratoma. A variety of tumors can arise from mature cystic teratoma, among which primary malignant melanoma (MM), for which no molecular analyses such as genomic sequencing have been reported to date, is exceedingly rare, thereby limiting possible therapeutic options using precision medicine. We used targeted gene sequencing to analyze the status of 160 cancer-related genes in a patient with MM arising from an ovarian mature cystic teratoma (MM-MCT). KRAS amplification and homozygous deletion in PTEN and RB1 were detected in tumor samples collected from the patient. No KRAS amplification has been previously reported in cutaneous MM, indicating that the carcinogenesis of MM-MCT differs from that of primary cutaneous melanomas. A better understanding of the underlying genetic mechanisms will help clarify the carcinogenesis of MM-MCT. In turn, this will enable treatment with novel targeting agents as well as the initial exploration of gene-based precision oncological therapies, which aim to improve treatment outcomes for patients with this disease.
Collapse
|
29
|
Standardized diagnostic algorithm for spitzoid lesions aids clinical decision-making and management: a case series from a Swiss reference center. Oncotarget 2021; 12:125-130. [PMID: 33520116 PMCID: PMC7825637 DOI: 10.18632/oncotarget.27854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Importance: Spitzoid lesions are a group of melanocytic tumors characterized by spindle-like or epithelioid cells with variable malignant potential. While some spitzoid lesions are classified as evidently benign or malignant by clinic and histology, others present with unclear clinical and histological characteristics and are categorized as lesions of intermediate biologic potential. These lesions represent a challenge for pathologists and clinicians alike. No consensus on ancillary diagnostics and clinical management exists. Prediction of their clinical course is difficult. The implementation of ancillary diagnostics is currently subject of extensive discussions. Observations: We report three cases of spitzoid lesions in three young female patients (3-, 15- and 17 years old) from a single reference center with different clinical and histological manifestations. In each case, uncertain clinical and histological presentation led to the stepwise application of additional diagnostics using immunohistochemistry and a custom next generation sequencing panel optimized for melanocytic lesions (MelArray). Combining ancillary diagnostics helped determine clinical management in all cases by characterizing the biology of these lesions. Conclusions and Relevance: We illustrate how clinical, histological and molecular features contribute to an optimized management plan in these critical situations and present a possible algorithm for the assessment of spitzoid neoplasms.
Collapse
|
30
|
Plant miR171 modulates mTOR pathway in HEK293 cells by targeting GNA12. Mol Biol Rep 2021; 48:435-449. [PMID: 33386590 DOI: 10.1007/s11033-020-06070-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/04/2020] [Indexed: 01/07/2023]
Abstract
Plant microRNAs have shown the capacity to regulate mammalian systems. The potential bioactivity of miR171vr, an isoform of the plant miR171, on human embryonic kidney 293 (HEK293) cells was investigated. Bioinformatics simulations revealed that human G protein subunit alpha 12 (GNA12) transcript could represent an excellent target for miR171vr. To confirm this prediction, in vitro experiments were performed using a synthetic microRNA designed on miR171vr sequence. MiR-treated cells showed a significant decrease of GNA12 mRNA and protein levels, confirming the putative cross-kingdom interaction. In addition, miR171vr determined the modulation of GNA12 downstream signaling factors, including mTOR, as expected. Finally, the effect of the plant miRNA on HEK293 cell growth and its stability in presence of several stressors, such as those miming digestive processes and procedures for preparing food, were evaluated. All this preliminary evidence would suggest that miR171vr, introduced by diet or as supplement in gene therapies, could potentially influence human gene expression, especially for treating disorders where GNA12 is over-expressed (i.e. oral cancer, breast and prostate adenocarcinoma) or mTOR kinase is down-regulated (e.g. obesity, type 2 diabetes, neurodegeneration).
Collapse
|
31
|
Conway JR, Dietlein F, Taylor-Weiner A, AlDubayan S, Vokes N, Keenan T, Reardon B, He MX, Margolis CA, Weirather JL, Haq R, Schilling B, Stephen Hodi F, Schadendorf D, Liu D, Van Allen EM. Integrated molecular drivers coordinate biological and clinical states in melanoma. Nat Genet 2020; 52:1373-1383. [PMID: 33230298 PMCID: PMC8054830 DOI: 10.1038/s41588-020-00739-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
Abstract
We performed harmonized molecular and clinical analysis on 1,048 melanomas and discovered markedly different global genomic properties among subtypes (BRAF, (N)RAS, NF1, Triple Wild-Type), subtype-specific preferences for secondary driver genes, and active mutational processes previously unreported in melanoma. Secondary driver genes significantly enriched in specific subtypes reflected preferential dysregulation of additional pathways, such as induction of TGF-β signaling in BRAF melanomas and inactivation of the SWI/SNF complex in (N)RAS melanomas, and select co-mutation patterns coordinated selective response to immune checkpoint blockade. We also defined the mutational landscape of Triple Wild-Type melanomas and identified enrichment of DNA repair defect signatures in this subtype, which were associated with transcriptional downregulation of key DNA repair genes and may revive previously discarded or currently unconsidered therapeutic modalities for genomically stratified melanoma patient subsets. Broadly, harmonized meta-analysis of melanoma whole-exomes identified distinct molecular drivers that may point to multiple opportunities for biological and therapeutic investigation.
Collapse
Affiliation(s)
- Jake R Conway
- Division of Medical Sciences, Harvard University, Boston, MA, USA.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Felix Dietlein
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amaro Taylor-Weiner
- Division of Medical Sciences, Harvard University, Boston, MA, USA.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Saud AlDubayan
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Natalie Vokes
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tanya Keenan
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brendan Reardon
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Meng Xiao He
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Graduate Program in Biophysics, Boston, MA, USA
| | - Claire A Margolis
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason L Weirather
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rizwan Haq
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bastian Schilling
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany.,Department of Dermatology, University Hospital, Essen, Germany.,German Cancer Consortium of Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - F Stephen Hodi
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, Essen, Germany.,German Cancer Consortium of Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - David Liu
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
32
|
Louveau B, Jouenne F, Têtu P, Sadoux A, Gruber A, Lopes E, Delyon J, Serror K, Marco O, Da Meda L, Ndiaye A, Lermine A, Dumaz N, Battistella M, Baroudjian B, Lebbe C, Mourah S. A Melanoma-Tailored Next-Generation Sequencing Panel Coupled with a Comprehensive Analysis to Improve Routine Melanoma Genotyping. Target Oncol 2020; 15:759-771. [PMID: 33151472 DOI: 10.1007/s11523-020-00764-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor molecular deciphering is crucial in clinical management. Pan-cancer next-generation sequencing panels have moved towards exhaustive molecular characterization. However, because of treatment resistance and the growing emergence of pharmacological targets, tumor-specific customized panels are needed to guide therapeutic strategies. OBJECTIVE The objective of this study was to present such a customized next-generation sequencing panel in melanoma. METHODS Melanoma patients with somatic molecular profiling performed as part of routine care were included. High-throughput sequencing was performed with a melanoma tailored next-generation sequencing panel of 64 genes involved in molecular classification, prognosis, theranostic, and therapeutic resistance. Single nucleotide variants and copy number variations were screened, and a comprehensive molecular analysis identified clinically relevant alterations. RESULTS Four hundred and twenty-one melanoma cases were analyzed (before any treatment initiation for 94.8% of patients). After bioinformatic prioritization, we uncovered 561 single nucleotide variants, 164 copy number variations, and four splice-site mutations. At least one alteration was detected in 368 (87.4%) lesions, with BRAF, NRAS, CDKN2A, CCND1, and MET as the most frequently altered genes. Among patients with BRAFV600 mutated melanoma, 44.5% (77 of 173) harbored at least one concurrent alteration driving potential resistance to mitogen-activated protein kinase inhibitors. In patients with RAS hotspot mutated lesions and in patients with neither BRAFV600 nor RAS hotspot mutations, alterations constituting potential pharmacological targets were found in 56.9% (66 of 116) and 47.7% (63 of 132) of cases, respectively. CONCLUSIONS Our tailored next-generation sequencing assay coupled with a comprehensive analysis may improve therapeutic management in a significant number of patients with melanoma. Updating such a panel and implementing multi-omic approaches will further enhance patients' clinical management.
Collapse
Affiliation(s)
- Baptiste Louveau
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Pauline Têtu
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Aurélia Gruber
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Eddie Lopes
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Julie Delyon
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kevin Serror
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Oren Marco
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Da Meda
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aminata Ndiaye
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alban Lermine
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Dumaz
- INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Maxime Battistella
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Pathology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Barouyr Baroudjian
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céleste Lebbe
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France. .,Université de Paris, Paris, France. .,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.
| |
Collapse
|
33
|
Bellazzo A, Collavin L. Cutting the Brakes on Ras-Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers (Basel) 2020; 12:cancers12103066. [PMID: 33096593 PMCID: PMC7588890 DOI: 10.3390/cancers12103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GTPase-Activating Proteins (RasGAPs) are a group of structurally related proteins with a fundamental role in controlling the activity of Ras in normal and cancer cells. In particular, loss of function of RasGAPs may contribute to aberrant Ras activation in cancer. Here we review the multiple molecular mechanisms and factors that are involved in downregulating RasGAPs expression and functions in cancer. Additionally, we discuss how extracellular stimuli from the tumor microenvironment can control RasGAPs expression and activity in cancer cells and stromal cells, indirectly affecting Ras activation, with implications for cancer development and progression. Abstract The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.
Collapse
|
34
|
Tang J, Fewings E, Chang D, Zeng H, Liu S, Jorapur A, Belote RL, McNeal AS, Tan TM, Yeh I, Arron ST, Judson-Torres RL, Bastian BC, Shain AH. The genomic landscapes of individual melanocytes from human skin. Nature 2020; 586:600-605. [PMID: 33029006 PMCID: PMC7581540 DOI: 10.1038/s41586-020-2785-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/03/2020] [Indexed: 01/13/2023]
Abstract
Every cell in the human body has a unique set of somatic mutations, yet it remains difficult to comprehensively genotype an individual cell1. Here, we developed solutions to overcome this obstacle in the context of normal human skin, thus offering the first glimpse into the genomic landscapes of individual melanocytes from human skin. As expected, sun-shielded melanocytes had fewer mutations than sun-exposed melanocytes. However, within sun-exposed sites, melanocytes on chronically sun-exposed skin (e.g. the face) displayed a lower mutation burden than melanocytes on intermittently sun-exposed skin (e.g. the back). Melanocytes located adjacent to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, implying that the mutation burden of normal skin can be harnessed to measure cumulative sun damage and skin cancer risk. Moreover, melanocytes from healthy skin commonly harbor pathogenic mutations, though these mutations tended to be weakly oncogenic, likely explaining why they did not give rise to discernible lesions. Phylogenetic analyses identified groups of related melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells, invisible to the naked eye. Overall, our study offers an unprecedented view into the genomic landscapes of individual melanocytes, revealing key insights into the causes and origins of melanoma.
Collapse
Affiliation(s)
- Jessica Tang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eleanor Fewings
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Darwin Chang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hanlin Zeng
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shanshan Liu
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Aparna Jorapur
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Belote
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Andrew S McNeal
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Tuyet M Tan
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sarah T Arron
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robert L Judson-Torres
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Boris C Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - A Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Diefenbach RJ, Lee JH, Menzies AM, Carlino MS, Long GV, Saw RPM, Howle JR, Spillane AJ, Scolyer RA, Kefford RF, Rizos H. Design and Testing of a Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Cancers (Basel) 2020; 12:E2228. [PMID: 32785074 PMCID: PMC7465941 DOI: 10.3390/cancers12082228] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Detection of melanoma-associated mutations using circulating tumor DNA (ctDNA) from plasma is a potential alternative to using genomic DNA from invasive tissue biopsies. In this study, we developed a custom melanoma next-generation sequencing (NGS) panel which includes 123 amplicons in 30 genes covering driver and targetable mutations and alterations associated with treatment resistance. Analysis of a cohort of 74 stage III and IV treatment-naïve melanoma patients revealed that sensitivity of ctDNA detection was influenced by the amount of circulating-free DNA (cfDNA) input and stage of melanoma. At the recommended cfDNA input quantity of 20 ng (available in 28/74 patients), at least one cancer-associated mutation was detected in the ctDNA of 84% of stage IV patients and 47% of stage III patients with a limit of detection for mutant allele frequency (MAF) of 0.2%. This custom melanoma panel showed significant correlation with droplet digital PCR (ddPCR) and provided a more comprehensive melanoma mutation profile. Our custom panel could be further optimized by replacing amplicons spanning the TERT promoter, which did not perform well due to the high GC content. To increase the detection rate to 90% of stage IV melanoma and decrease the sensitivity to 0.1% MAF, we recommend increasing the volume of plasma to 8 mL to achieve minimal recommended cfDNA input and the refinement of poorly performing amplicons. Our panel can also be expanded to include new targetable and treatment resistance mutations to improve the tracking of treatment response and resistance in melanoma patients treated with systemic drug therapies.
Collapse
Affiliation(s)
- Russell J. Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
| | - Jenny H. Lee
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robyn P. M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Julie R. Howle
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Breast and Melanoma Surgery Department, Division of Surgery, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, NSW 2050, Australia
| | - Richard F. Kefford
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (R.P.M.S.); (J.R.H.); (A.J.S.); (R.A.S.); (R.F.K.)
| |
Collapse
|
36
|
Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int J Mol Sci 2020; 21:ijms21134576. [PMID: 32605090 PMCID: PMC7369697 DOI: 10.3390/ijms21134576] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The common mutation BRAFV600 in primary melanomas activates the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway and the introduction of proto-oncogene B-Raf (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors (BRAFi and MEKi) was a breakthrough in the treatment of these cancers. However, 15–20% of tumors harbor primary resistance to this therapy, and moreover, patients develop acquired resistance to treatment. Understanding the molecular phenomena behind resistance to BRAFi/MEKis is indispensable in order to develop novel targeted therapies. Most often, resistance develops due to either the reactivation of the MAPK/ERK pathway or the activation of alternative kinase signaling pathways including phosphatase and tensin homolog (PTEN), neurofibromin 1 (NF-1) or RAS signaling. The hyperactivation of tyrosine kinase receptors, such as the receptor of the platelet-derived growth factor β (PDFRβ), insulin-like growth factor 1 receptor (IGF-1R) and the receptor for hepatocyte growth factor (HGF), lead to the induction of the AKT/3-phosphoinositol kinase (PI3K) pathway. Another pathway resulting in BRAFi/MEKi resistance is the hyperactivation of epidermal growth factor receptor (EGFR) signaling or the deregulation of microphthalmia-associated transcription factor (MITF).
Collapse
Affiliation(s)
- Anna M. Czarnecka
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
37
|
Alkallas R, Lajoie M, Moldoveanu D, Hoang KV, Lefrançois P, Lingrand M, Ahanfeshar-Adams M, Watters K, Spatz A, Zippin JH, Najafabadi HS, Watson IR. Multi-omic analysis reveals significantly mutated genes and DDX3X as a sex-specific tumor suppressor in cutaneous melanoma. NATURE CANCER 2020; 1:635-652. [PMID: 35121978 PMCID: PMC8832745 DOI: 10.1038/s43018-020-0077-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
The high background tumor mutation burden in cutaneous melanoma limits the ability to identify significantly mutated genes (SMGs) that drive this cancer. To address this, we performed a mutation significance study of over 1,000 melanoma exomes, combined with a multi-omic analysis of 470 cases from The Cancer Genome Atlas. We discovered several SMGs with co-occurring loss-of-heterozygosity and loss-of-function mutations, including PBRM1, PLXNC1 and PRKAR1A, which encodes a protein kinase A holoenzyme subunit. Deconvolution of bulk tumor transcriptomes into cancer, immune and stromal components revealed a melanoma-intrinsic oxidative phosphorylation signature associated with protein kinase A pathway alterations. We also identified SMGs on the X chromosome, including the RNA helicase DDX3X, whose loss-of-function mutations were exclusively observed in males. Finally, we found that tumor mutation burden and immune infiltration contain complementary information on survival of patients with melanoma. In summary, our multi-omic analysis provides insights into melanoma etiology and supports contribution of specific mutations to the sex bias observed in this cancer.
Collapse
Affiliation(s)
- Rached Alkallas
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Mathieu Lajoie
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Dan Moldoveanu
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Department of General Surgery, McGill University, Montréal, Québec, Canada
| | - Karen Vo Hoang
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Philippe Lefrançois
- Division of Dermatology, McGill University Health Centre, Montréal, Québec, Canada
| | - Marine Lingrand
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | - Kevin Watters
- Department of Pathology, McGill University and McGill University Health Center, Montréal, Québec, Canada
| | - Alan Spatz
- Department of Pathology, McGill University and McGill University Health Center, Montréal, Québec, Canada
- Lady Davis Institute, Montréal, Québec, Canada
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical College, New York, NY, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- McGill University and Genome Québec Innovation Centre, McGill University, Montréal, Québec, Canada
| | - Ian R Watson
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
38
|
Sudhan DR, Guerrero-Zotano A, Won H, González Ericsson P, Servetto A, Huerta-Rosario M, Ye D, Lee KM, Formisano L, Guo Y, Liu Q, Kinch LN, Red Brewer M, Dugger T, Koch J, Wick MJ, Cutler RE, Lalani AS, Bryce R, Auerbach A, Hanker AB, Arteaga CL. Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Cancer Cell 2020; 37:183-199.e5. [PMID: 31978326 PMCID: PMC7301608 DOI: 10.1016/j.ccell.2019.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/30/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
We developed neratinib-resistant HER2-mutant cancer cells by gradual dose escalation. RNA sequencing identified TORC1 signaling as an actionable mechanism of drug resistance. Primary and acquired neratinib resistance in HER2-mutant breast cancer patient-derived xenografts (PDXs) was also associated with TORC1 hyperactivity. Genetic suppression of RAPTOR or RHEB ablated P-S6 and restored sensitivity to the tyrosine kinase inhibitor. The combination of the TORC1 inhibitor everolimus and neratinib potently arrested the growth of neratinib-resistant xenografts and organoids established from neratinib-resistant PDXs. RNA and whole-exome sequencing revealed RAS-mediated TORC1 activation in a subset of neratinib-resistant models. DNA sequencing of HER2-mutant tumors clinically refractory to neratinib, as well as circulating tumor DNA profiling of patients who progressed on neratinib, showed enrichment of genomic alterations that converge to activate the mTOR pathway.
Collapse
Affiliation(s)
- Dhivya R Sudhan
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Helen Won
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Alberto Servetto
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mariela Huerta-Rosario
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dan Ye
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyung-Min Lee
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luigi Formisano
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Guo
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Monica Red Brewer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Teresa Dugger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Koch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | - Ariella B Hanker
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
39
|
Diefenbach RJ, Lee JH, Strbenac D, Yang JYH, Menzies AM, Carlino MS, Long GV, Spillane AJ, Stretch JR, Saw RPM, Thompson JF, Ch’ng S, Scolyer RA, Kefford RF, Rizos H. Analysis of the Whole-Exome Sequencing of Tumor and Circulating Tumor DNA in Metastatic Melanoma. Cancers (Basel) 2019; 11:cancers11121905. [PMID: 31795494 PMCID: PMC6966626 DOI: 10.3390/cancers11121905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
The use of circulating tumor DNA (ctDNA) to monitor cancer progression and response to therapy has significant potential but there is only limited data on whether this technique can detect the presence of low frequency subclones that may ultimately confer therapy resistance. In this study, we sought to evaluate whether whole-exome sequencing (WES) of ctDNA could accurately profile the mutation landscape of metastatic melanoma. We used WES to identify variants in matched, tumor-derived genomic DNA (gDNA) and plasma-derived ctDNA isolated from a cohort of 10 metastatic cutaneous melanoma patients. WES parameters such as sequencing coverage and total sequencing reads were comparable between gDNA and ctDNA. The mutant allele frequency of common single nucleotide variants was lower in ctDNA, reflecting the lower read depth and minor fraction of ctDNA within the total circulating free DNA pool. There was also variable concordance between gDNA and ctDNA based on the total number and identity of detected variants and this was independent of the tumor biopsy site. Nevertheless, established melanoma driver mutations and several other melanoma-associated mutations were concordant between matched gDNA and ctDNA. This study highlights that WES of ctDNA could capture clinically relevant mutations present in melanoma metastases and that enhanced sequencing sensitivity will be required to identify low frequency mutations.
Collapse
Affiliation(s)
- Russell J. Diefenbach
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Jenny H. Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (J.Y.H.Y.)
| | - Jean Y. H. Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia; (D.S.); (J.Y.H.Y.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2145, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Jonathan R. Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
| | - Robyn P. M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Sydney Ch’ng
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Richard F. Kefford
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; (R.J.D.); (J.H.L.)
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW 2065, Australia; (A.M.M.); (M.S.C.); (G.V.L.); (A.J.S.); (J.R.S.); (R.P.M.S.); (J.F.T.); (S.C.); (R.A.S.); (R.F.K.)
- Correspondence: ; Tel.: +61-298-502-762
| |
Collapse
|
40
|
Trifonova EA, Popovich AA, Vagaitseva KV, Bocharova AV, Gavrilenko MM, Ivanov VV, Stepanov VA. The Multiplex Genotyping Method for Single-Nucleotide Polymorphisms of Genes Associated with Obesity and Body Mass Index. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Nagler A, Vredevoogd DW, Alon M, Cheng PF, Trabish S, Kalaora S, Arafeh R, Goldin V, Levesque MP, Peeper DS, Samuels Y. A genome-wide CRISPR screen identifies FBXO42 involvement in resistance toward MEK inhibition in NRAS-mutant melanoma. Pigment Cell Melanoma Res 2019; 33:334-344. [PMID: 31549767 PMCID: PMC7383499 DOI: 10.1111/pcmr.12825] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022]
Abstract
NRAS mutations are the most common alterations among RAS isoforms in cutaneous melanoma, with patients harboring these aggressive tumors having a poor prognosis and low survival rate. The main line of treatment for these patients is MAPK pathway‐targeted therapies, such as MEK inhibitors, but, unfortunately, the response to these inhibitors is variable due to tumor resistance. Identifying genetic modifiers involved in resistance toward MEK‐targeted therapy may assist in the development of new therapeutic strategies, enhancing treatment response and patient survival. Our whole‐genome CRISPR‐Cas9 knockout screen identified the target Kelch domain‐containing F‐Box protein 42 (FBXO42) as a factor involved in NRAS‐mutant melanoma‐acquired resistance to the MEK1/2 inhibitor trametinib. We further show that FBXO42, an E3 ubiquitin ligase, is involved in the TAK1 signaling pathway, possibly prompting an increase in active P38. In addition, we demonstrate that combining trametinib with the TAK1 inhibitor, takinib, is a far more efficient treatment than trametinib alone in NRAS‐mutant melanoma cells. Our findings thus show a new pathway involved in NRAS‐mutant melanoma resistance and provide new opportunities for novel therapeutic options.
Collapse
Affiliation(s)
- Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Sophie Trabish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Victoria Goldin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, Zurich, Switzerland
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Li L, Fan Y, Huang X, Luo J, Zhong L, Shu XS, Lu L, Xiang T, Chan ATC, Yeo W, Chen C, Chan WY, Huganir RL, Tao Q. Tumor Suppression of Ras GTPase-Activating Protein RASA5 through Antagonizing Ras Signaling Perturbation in Carcinomas. iScience 2019; 21:1-18. [PMID: 31654850 PMCID: PMC6820368 DOI: 10.1016/j.isci.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/08/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrant RAS signaling activation is common in cancers with even few Ras mutations, indicating alternative dysregulation other than genetic mutations. We identified a Ras GTPase-activating gene RASA5/SYNGAP1, at the common 6p21.3 deletion, methylated/downregulated in multiple carcinomas and different from other RASA family members (RASA1–RASA4), indicating its special functions in tumorigenesis. RASA5 mutations are rare, unlike other RASA members, whereas its promoter CpG methylation is frequent in multiple cancer cell lines and primary carcinomas and associated with patient’s poor survival. RASA5 expression inhibited tumor cell migration/invasion and growth in mouse model, functioning as a tumor suppressor. RASA5 suppressed RAS signaling, depending on its Ras GTPase-activating protein catalytic activity, which could be counteracted by oncogenic HRas Q61L mutant. RASA5 knockdown enhanced Ras signaling to promote tumor cell growth. RASA5 also inhibited epithelial–mesenchymal transition (EMT) through regulating actin reorganization. Thus, epigenetic inactivation of RASA5 contributing to hyperactive RAS signaling is involved in Ras-driven human oncogenesis. RASA5 is normally widely expressed but epigenetically silenced in multiple cancers Epigenetic disruption of RASA5 is associated with tumor progression in patients RASA5 suppresses RAS signaling, depending on its RasGAP catalytic activity RASA5 functions as a tumor suppressor through inhibiting EMT and metastasis
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| | - Yichao Fan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jie Luo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xing-Sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong; School of Medicine and Institute of Molecular Medicine, Shenzhen University, Shenzhen, China
| | - Li Lu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Winnie Yeo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of CAS and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wai Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| |
Collapse
|
43
|
Jiang M, Shi X, Zhu H, Wei W, Li J. Two GEO MicroRNA Expression Profile Based High-Throughput Screen to Identify MicroRNA-31-3p Regulating Growth of Medullary Thyroid Carcinoma Cell by Targeting RASA2. Med Sci Monit 2019; 25:5170-5180. [PMID: 31298226 PMCID: PMC6642674 DOI: 10.12659/msm.916815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Medullary thyroid carcinoma (MTC), a rare type of thyroid cancer, is a big challenge in clinical treatment. However, the pathogenesis of MTC remains poorly understand. MicroRNAs (miRNAs) were previously demonstrated to be involved in the pathogenesis of MTC, however, the roles of majority of miRNAs in MTC are still undetermined. Material/Methods Two GEO miRNA expression profiles (GSE40807, GSE97070) were downloaded, and the differentially expressed miRNAs (DEmiRNAs) of GSE40807 and GSE97070 were analyzed by bioinformatics methods. Expressions of miRNAs were detected by quantitative real-time polymerase chain reaction; cell proliferation was examined through Cell Counting Kit-8, colony formation and in vivo tumor growth assays; the interaction between miRNA and mRNA was verified by dual-luciferase reporter assay; functional analysis of target genes was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID, www.david.ncifcrf.gov) software. Results Ten miRNAs were identified to be dysregulated in both GSE40807 and GSE97070 datasets, and miR-31-3p showed the highest change fold (Log fold change=−3.460625 in GSE40807 and Log fold change=−0.07084374 in GSE97070). MiR-31-3p expression was significantly downregulated in MTC, and low miR-31-3p expression showed a poor prognosis relative to high miR-31-3p expression (P<0.05). Functionally, miR-31-3p inhibited MTC cell proliferation in vitro and in vivo. Functional analysis also showed that the target genes of miR-31-3p were involved in numerous of biochemical processes and pathways, of which Ras signaling pathway was selected for further study. RASA2, overexpressed in MTC, were negatively regulated by miR-31-3p. In addition, we found that knockdown of RASA2 inhibited MTC cell proliferation. Conclusions Reduced expression level of miR-31-3p might play a key role in the tumorigenesis of MTC by targeting critical pathways, especially Ras signaling pathway.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjian, China (mainland)
| | - Hua Zhu
- Department of Mental Health, Shenzhen Futian Hospital for Chronic Diseases, Shenzhen, Guangdong, China (mainland)
| | - Wu Wei
- Department of Emergency, Dongying District People's Hospital, Dongying, Shandong, China (mainland)
| | - Jinyan Li
- Department of Radiology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
44
|
Puig-Saus C, Ribas A. Gene editing: Towards the third generation of adoptive T-cell transfer therapies. IMMUNO-ONCOLOGY TECHNOLOGY 2019; 1:19-26. [PMID: 35755321 PMCID: PMC9216344 DOI: 10.1016/j.iotech.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
First-generation adoptive T-cell transfer (ACT) administering tumor-infiltrating lymphocytes (TILs), and second-generation ACT using autologous T cells genetically modified to express tumor-specific T-cell receptors (TCRs) or chimeric antigen receptors (CARs) have both shown promise for the treatment of several cancers, including melanoma, leukemia and lymphoma. However, these treatments require labor-intensive manufacturing of the cell product for each patient, frequently utilize lentiviral or retroviral vectors to genetically modify the T cells, and have limited antitumor efficacy in solid tumors. Gene editing is revolutionizing the field of gene therapy, and ACT is at the forefront of this revolution. Gene-editing technologies can be used to re-engineer the phenotype of T cells to increase their antitumor potency, to generate off-the-shelf ACT products, and to replace endogenous TCRs with tumor-specific TCRs or CARs using homology-directed repair (HDR) donor templates. Adeno-associated viral vectors or linear DNA have been used as HDR donor templates. Of note, non-viral delivery substantially reduces the time required to generate clinical-grade reagents for manufacture of T-cell products—a critical step for the translation of personalized T-cell therapies. These technological advances in the field using gene editing open the door to the third generation of ACT therapies. CRISPR-Cas9 allows the generation of tumor-specific T cells for adoptive T-cell transfer (ACT). Gene editing allows generation of off-the-shelf ACT products. Gene editing can tailor T-cell phenotype and increase antitumor potency. Non-viral gene editing is a requirement for personalized ACT. Personalized third-generation ACT: gene-edited neoantigen-specific T cells.
Collapse
Affiliation(s)
- Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, USA
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, USA.,Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, USA.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, USA
| |
Collapse
|
45
|
Lopez J, Coll J, Haimel M, Kandasamy S, Tarraga J, Furio-Tari P, Bari W, Bleda M, Rueda A, Gräf S, Rendon A, Dopazo J, Medina I. HGVA: the Human Genome Variation Archive. Nucleic Acids Res 2019; 45:W189-W194. [PMID: 28535294 PMCID: PMC5570161 DOI: 10.1093/nar/gkx445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets.
Collapse
Affiliation(s)
- Javier Lopez
- Genomics England, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacobo Coll
- Genomics England, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthias Haimel
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK.,Department of Medicine, University ofCambridge, Cambridge, CB2 0QQ, UK.,NIHR BioResource-Rare Diseases,Cambridge University Hospitals, CambridgeBiomedical Campus, Cambridge CB2 0QQ, UK
| | - Swaathi Kandasamy
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Joaquin Tarraga
- HPC Service, UIS, University of Cambridge, Cambridge CB3 0FB, UK
| | | | - Wasim Bari
- Genomics England, Charterhouse Square, London EC1M 6BQ, UK
| | - Marta Bleda
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK.,Department of Medicine, University ofCambridge, Cambridge, CB2 0QQ, UK.,NIHR BioResource-Rare Diseases,Cambridge University Hospitals, CambridgeBiomedical Campus, Cambridge CB2 0QQ, UK
| | - Antonio Rueda
- Genomics England, Charterhouse Square, London EC1M 6BQ, UK
| | - Stefan Gräf
- Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK.,Department of Medicine, University ofCambridge, Cambridge, CB2 0QQ, UK.,NIHR BioResource-Rare Diseases,Cambridge University Hospitals, CambridgeBiomedical Campus, Cambridge CB2 0QQ, UK
| | - Augusto Rendon
- Genomics England, Charterhouse Square, London EC1M 6BQ, UK.,Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Joaquin Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, Sevilla 41013, Spain.,Functional Genomics Node (INB), FPS, Hospital Virgen del Rocio, Sevilla 41013, Spain.,Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Sevilla 41013, Spain
| | - Ignacio Medina
- HPC Service, UIS, University of Cambridge, Cambridge CB3 0FB, UK
| |
Collapse
|
46
|
Knowles EEM, Mathias SR, Mollon J, Rodrigue A, Koenis MMG, Dyer TD, Goring HHH, Curran JE, Olvera RL, Duggirala R, Almasy L, Blangero J, Glahn DC. A QTL on chromosome 3q23 influences processing speed in humans. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12530. [PMID: 30379395 PMCID: PMC6458095 DOI: 10.1111/gbb.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/24/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (eg, mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multidimensional model applied to a battery of cognitive tasks. Linkage and QTL-specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican-American individuals from extended pedigrees. We found that performance on all three distinct processing-speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome-wide significant quantitative trait locus (QTL) on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, P = 1.86 × 10-03 ).
Collapse
Affiliation(s)
- Emma E. M. Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel R. Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Josephine Mollon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Amanda Rodrigue
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marinka M. G. Koenis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas D. Dyer
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Harald H. H. Goring
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Joanne E. Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Rene L. Olvera
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Laura Almasy
- Department of Genetics at University of Pennsylvania and Department of Biomedical and Health Informatics at Children’s Hospital of Philadelphia, PA, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - David C. Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
47
|
Post JB, Hami N, Mertens AEE, Elfrink S, Bos JL, Snippert HJG. CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget 2019; 10:1440-1457. [PMID: 30858928 PMCID: PMC6402720 DOI: 10.18632/oncotarget.26677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-EGFR therapy is used to treat metastatic colorectal cancer (CRC) patients, for which initial response rates of 10-20% have been achieved. Although the presence of HER2 amplifications and oncogenic mutations in KRAS, NRAS, and BRAF are associated with EGFR-targeted therapy resistance, for a large population of CRC patients the underlying mechanism of RAS-MEK-ERK hyperactivation is not clear. Loss-of-function mutations in RASGAPs are often speculated in literature to promote CRC growth as being negative regulators of RAS, but direct experimental evidence is lacking. We generated a CRISPR-mediated knock out panel of all RASGAPs in patient-derived CRC organoids and found that only loss of NF1, but no other RASGAPs e.g. RASA1, results in enhanced RAS-ERK signal amplification and improved tolerance towards limited EGF stimulation. Our data suggests that NF1-deficient CRCs are likely not responsive to anti-EGFR monotherapy and can potentially function as a biomarker for CRC progression.
Collapse
Affiliation(s)
- Jasmin B Post
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Nizar Hami
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Alexander E E Mertens
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Suraya Elfrink
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Johannes L Bos
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Hugo J G Snippert
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| |
Collapse
|
48
|
RASA2 and NF1; two-negative regulators of Ras with complementary functions in melanoma. Oncogene 2018; 38:2432-2434. [PMID: 30478445 DOI: 10.1038/s41388-018-0578-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/07/2018] [Accepted: 10/17/2018] [Indexed: 11/08/2022]
|
49
|
Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM, Bui CT, Li PJ, Diolaiti ME, Ashworth A, Marson A. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell 2018; 175:1958-1971.e15. [PMID: 30449619 DOI: 10.1016/j.cell.2018.10.024] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Human T cells are central effectors of immunity and cancer immunotherapy. CRISPR-based functional studies in T cells could prioritize novel targets for drug development and improve the design of genetically reprogrammed cell-based therapies. However, large-scale CRISPR screens have been challenging in primary human cells. We developed a new method, single guide RNA (sgRNA) lentiviral infection with Cas9 protein electroporation (SLICE), to identify regulators of stimulation responses in primary human T cells. Genome-wide loss-of-function screens identified essential T cell receptor signaling components and genes that negatively tune proliferation following stimulation. Targeted ablation of individual candidate genes characterized hits and identified perturbations that enhanced cancer cell killing. SLICE coupled with single-cell RNA sequencing (RNA-seq) revealed signature stimulation-response gene programs altered by key genetic perturbations. SLICE genome-wide screening was also adaptable to identify mediators of immunosuppression, revealing genes controlling responses to adenosine signaling. The SLICE platform enables unbiased discovery and characterization of functional gene targets in primary cells.
Collapse
Affiliation(s)
- Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Carnevale
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Victoria Tobin
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theodore L Roth
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan M Woo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christina T Bui
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - P Jonathan Li
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Morgan E Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
50
|
Hill KS, Roberts ER, Wang X, Marin E, Park TD, Son S, Ren Y, Fang B, Yoder S, Kim S, Wan L, Sarnaik AA, Koomen JM, Messina JL, Teer JK, Kim Y, Wu J, Chalfant CE, Kim M. PTPN11 Plays Oncogenic Roles and Is a Therapeutic Target for BRAF Wild-Type Melanomas. Mol Cancer Res 2018; 17:583-593. [PMID: 30355677 DOI: 10.1158/1541-7786.mcr-18-0777] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/06/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
Melanoma is one of the most highly mutated cancer types. To identify functional drivers of melanoma, we searched for cross-species conserved mutations utilizing a mouse melanoma model driven by loss of PTEN and CDKN2A, and identified mutations in Kras, Erbb3, and Ptpn11. PTPN11 encodes the SHP2 protein tyrosine phosphatase that activates the RAS/RAF/MAPK pathway. Although PTPN11 is an oncogene in leukemia, lung, and breast cancers, its roles in melanoma are not clear. In this study, we found that PTPN11 is frequently activated in human melanoma specimens and cell lines and is required for full RAS/RAF/MAPK signaling activation in BRAF wild-type (either NRAS mutant or wild-type) melanoma cells. PTPN11 played oncogenic roles in melanoma by driving anchorage-independent colony formation and tumor growth. In Pten- and Cdkn2a-null mice, tet-inducible and melanocyte-specific PTPN11E76K expression significantly enhanced melanoma tumorigenesis. Melanoma cells derived from this mouse model showed doxycycline-dependent tumor growth in nude mice. Silencing PTPN11E76K expression by doxycycline withdrawal caused regression of established tumors by induction of apoptosis and senescence, and suppression of proliferation. Moreover, the PTPN11 inhibitor (SHP099) also caused regression of NRASQ61K -mutant melanoma. Using a quantitative tyrosine phosphoproteomics approach, we identified GSK3α/β as one of the key substrates that were differentially tyrosine-phosphorylated in these experiments modulating PTPN11. This study demonstrates that PTPN11 plays oncogenic roles in melanoma and regulates RAS and GSK3β signaling pathways. IMPLICATIONS: This study identifies PTPN11 as an oncogenic driver and a novel and actionable therapeutic target for BRAF wild-type melanoma.
Collapse
Affiliation(s)
- Kristen S Hill
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Evan R Roberts
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Xue Wang
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Ellen Marin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Taeeun D Park
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Sorany Son
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Yuan Ren
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Bin Fang
- Department of Proteomics, Moffitt Cancer Center, Tampa, Florida
| | - Sean Yoder
- Molecular Genomics Core, Moffitt Cancer Center, Tampa, Florida
| | - Sungjune Kim
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida.,Department of Radiology, Moffitt Cancer Center, Tampa, Florida
| | - Lixin Wan
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Amod A Sarnaik
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Proteomics, Moffitt Cancer Center, Tampa, Florida
| | - Jane L Messina
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida.,Department of Research Service, James A. Haley Veterans Hospital, Tampa, Florida
| | - Minjung Kim
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida. .,Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida.,Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida
| |
Collapse
|