1
|
Dong X, Zhang D, Zhang X, Liu Y, Liu Y. Network modeling links kidney developmental programs and the cancer type-specificity of VHL mutations. NPJ Syst Biol Appl 2024; 10:114. [PMID: 39362887 PMCID: PMC11449910 DOI: 10.1038/s41540-024-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Elucidating the molecular dependencies behind the cancer-type specificity of driver mutations may reveal new therapeutic opportunities. We hypothesized that developmental programs would impact the transduction of oncogenic signaling activated by a driver mutation and shape its cancer-type specificity. Therefore, we designed a computational analysis framework by combining single-cell gene expression profiles during fetal organ development, latent factor discovery, and information theory-based differential network analysis to systematically identify transcription factors that selectively respond to driver mutations under the influence of organ-specific developmental programs. After applying this approach to VHL mutations, which are highly specific to clear cell renal cell carcinoma (ccRCC), we revealed important regulators downstream of VHL mutations in ccRCC and used their activities to cluster patients with ccRCC into three subtypes. This classification revealed a more significant difference in prognosis than the previous mRNA profile-based method and was validated in an independent cohort. Moreover, we found that EP300, a key epigenetic factor maintaining the regulatory network of the subtype with the worst prognosis, can be targeted by a small inhibitor, suggesting a potential treatment option for a subset of patients with ccRCC. This work demonstrated an intimate relationship between organ development and oncogenesis from the perspective of systems biology, and the method can be generalized to study the influence of other biological processes on cancer driver mutations.
Collapse
Affiliation(s)
- Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Donglei Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xian Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Povala G, De Bastiani MA, Bellaver B, Ferreira PCL, Ferrari‐Souza JP, Lussier FZ, Souza DO, Rosa‐Neto P, Pascoal TA, Zatt B, Zimmer ER. Omics-derived biological modules reflect metabolic brain changes in Alzheimer's disease. Alzheimers Dement 2024; 20:6709-6721. [PMID: 39140361 PMCID: PMC11485394 DOI: 10.1002/alz.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Brain glucose hypometabolism, indexed by the fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging, is a metabolic signature of Alzheimer's disease (AD). However, the underlying biological pathways involved in these metabolic changes remain elusive. METHODS Here, we integrated [18F]FDG-PET images with blood and hippocampal transcriptomic data from cognitively unimpaired (CU, n = 445) and cognitively impaired (CI, n = 749) individuals using modular dimension reduction techniques and voxel-wise linear regression analysis. RESULTS Our results showed that multiple transcriptomic modules are associated with brain [18F]FDG-PET metabolism, with the top hits being a protein serine/threonine kinase activity gene cluster (peak-t(223) = 4.86, P value < 0.001) and zinc-finger-related regulatory units (peak-t(223) = 3.90, P value < 0.001). DISCUSSION By integrating transcriptomics with PET imaging data, we identified that serine/threonine kinase activity-associated genes and zinc-finger-related regulatory units are highly associated with brain metabolic changes in AD. HIGHLIGHTS We conducted an integrated analysis of system-based transcriptomics and fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) at the voxel level in Alzheimer's disease (AD). The biological process of serine/threonine kinase activity was the most associated with [18F]FDG-PET in the AD brain. Serine/threonine kinase activity alterations are associated with brain vulnerable regions in AD [18F]FDG-PET. Zinc-finger transcription factor targets were associated with AD brain [18F]FDG-PET metabolism.
Collapse
Affiliation(s)
- Guilherme Povala
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Graduate Program in ComputingUniversidade Federal de Pelotas (UFPEL)Porto AlegreBrazil
- Department of Psychiatry, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Department of Psychiatry, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pamela C. L. Ferreira
- Department of Psychiatry, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - João Pedro Ferrari‐Souza
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Firoza Z. Lussier
- Department of Psychiatry, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Diogo O. Souza
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Department of BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingMontrealQuebecCanada
| | - Tharick A. Pascoal
- Department of Psychiatry, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Neurology, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bruno Zatt
- Graduate Program in ComputingUniversidade Federal de Pelotas (UFPEL)Porto AlegreBrazil
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Department of PharmacologyUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Graduate Program in Biological Sciences: Pharmacology and TherapeuticsUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Brain Institute of Rio Grande do SulPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
| | | |
Collapse
|
3
|
Jiang A, Liu W, Liu Y, Hu J, Zhu B, Fang Y, Zhao X, Qu L, Lu J, Liu B, Qi L, Cai C, Luo P, Wang L. DCS, a novel classifier system based on disulfidptosis reveals tumor microenvironment heterogeneity and guides frontline therapy for clear cell renal carcinoma. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:263-279. [PMID: 39281723 PMCID: PMC11401502 DOI: 10.1016/j.jncc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Emerging evidence suggests that cell deaths are involved in tumorigenesis and progression, which may be treated as a novel direction of cancers. Recently, a novel type of programmed cell death, disulfidptosis, was discovered. However, the detailed biological and clinical impact of disulfidptosis and related regulators remains largely unknown. Methods In this work, we first enrolled pancancer datasets and performed multi-omics analysis, including gene expression, DNA methylation, copy number variation and single nucleic variation profiles. Then we deciphered the biological implication of disulfidptosis in clear cell renal cell carcinoma (ccRCC) by machine learning. Finally, a novel agent targeting at disulfidptosis in ccRCC was identified and verified. Results We found that disulfidptosis regulators were dysregulated among cancers, which could be explained by aberrant DNA methylation and genomic mutation events. Disulfidptosis scores were depressed among cancers and negatively correlated with epithelial mesenchymal transition. Disulfidptosis regulators could satisfactorily stratify risk subgroups in ccRCC, and a novel subtype, DCS3, owning with disulfidptosis depression, insensitivity to immune therapy and aberrant genome instability were identified and verified. Moreover, treating DCS3 with NU1025 could significantly inhibit ccRCC malignancy. Conclusion This work provided a better understanding of disulfidptosis in cancers and new insights into individual management based on disulfidptosis.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baohua Zhu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xuenan Zhao
- Center for Translational Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Lu
- Vocational Education Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
4
|
Barrios-Camacho CM, Zunitch MJ, Louie JD, Jang W, Schwob JE. An in vitro model of acute horizontal basal cell activation reveals gene regulatory networks underlying the nascent activation phase. Stem Cell Reports 2024; 19:1156-1171. [PMID: 39059377 PMCID: PMC11368683 DOI: 10.1016/j.stemcr.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
While horizontal basal cells (HBCs) make minor contributions to olfactory epithelium (OE) regeneration during homeostatic conditions, they possess a potent, latent capacity to activate and subsequently regenerate the OE following severe injury. Activation requires, and is mediated by, the downregulation of the transcription factor (TF) TP63. In this paper, we describe the cellular processes that drive the nascent stages of HBC activation. The compound phorbol 12-myristate 13-acetate (PMA) induces a rapid loss in TP63 protein and rapid enrichment of HOPX and the nuclear translocation of RELA, previously identified as components of HBC activation. Using bulk RNA sequencing (RNA-seq), we find that PMA-treated HBCs pass through various stages of activation identifiable by transcriptional regulatory signatures that mimic stages identified in vivo. These temporal stages are associated with varying degrees of engraftment and differentiation potential in transplantation assays. Together, these data show that our in vitro HBC activation system models physiologically relevant features of in vivo HBC activation and identifies new candidates for mechanistic testing.
Collapse
Affiliation(s)
- Camila M Barrios-Camacho
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Matthew J Zunitch
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Jonathan D Louie
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Woochan Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - James E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
5
|
Wang D, Zhang J, Wang J, Cai Z, Jin S, Chen G. Identification of collagen subtypes of gastric cancer for distinguishing patient prognosis and therapeutic response. CANCER INNOVATION 2024; 3:e125. [PMID: 38948250 PMCID: PMC11212290 DOI: 10.1002/cai2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 07/02/2024]
Abstract
Background Gastric cancer is a highly heterogeneous disease, presenting a major obstacle to personalized treatment. Effective markers of the immune checkpoint blockade response are needed for precise patient classification. We, therefore, divided patients with gastric cancer according to collagen gene expression to indicate their prognosis and treatment response. Methods We collected data for 1250 patients with gastric cancer from four cohorts. For the TCGA-STAD cohort, we used consensus clustering to stratify patients based on expression levels of 44 collagen genes and compared the prognosis and clinical characteristics between collagen subtypes. We then identified distinct transcriptomic and genetic alteration signatures for the subtypes. We analyzed the associations of collagen subtypes with the responses to chemotherapy, immunotherapy, and targeted therapy. We also established a platform-independent collagen-subtype predictor. We verified the findings in three validation cohorts (GSE84433, GSE62254, and GSE15459) and compared the collagen subtyping method with other molecular subtyping methods. Results We identified two subtypes of gastric adenocarcinoma: a high-expression collagen subtype (CS-H) and a low-expression collagen subtype (CS-L). Collagen subtype was an independent prognostic factor, with better overall survival in the CS-L subgroup. The inflammatory response, angiogenesis, and phosphoinositide 3-kinase (PI3K)/Akt pathways were transcriptionally active in the CS-H subtype, while DNA repair activity was significantly greater in the CS-L subtype. PIK3CA was frequently amplified in the CS-H subtype, while PIK3C2A, PIK3C2G, and PIK3R1 were frequently deleted in the CS-L subtype. CS-H subtype tumors were more sensitive to fluorouracil, while CS-L subtype tumors were more sensitive to immune checkpoint blockade. CS-L subtype was predicted to be more sensitive to HER2-targeted drugs, and CS-H subtype was predicted to be more sensitive to vascular endothelial growth factor and PI3K pathway-targeting drugs. Collagen subtyping also has the potential to be combined with existing molecular subtyping methods for better patient classification. Conclusions We classified gastric cancers into two subtypes based on collagen gene expression and validated these subtypes in three validation cohorts. The collagen subgroups differed in terms of prognosis, clinical characteristics, transcriptome, and genetic alterations. The subtypes were closely related to patient responses to chemotherapy, immunotherapy, and targeted therapy.
Collapse
Affiliation(s)
- Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhouChina
| | - Jing Zhang
- Department of Pathology, Clinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhouChina
| | - Jianchao Wang
- Department of Pathology, Clinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhouChina
| | - Zhonglin Cai
- Department of UrologyGongli Hospital of Shanghai Pudong New AreaShanghaiChina
| | - Shanfeng Jin
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhouChina
| | - Gang Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhouChina
| |
Collapse
|
6
|
He J, Perera D, Wen W, Ping J, Li Q, Lyu L, Chen Z, Shu X, Long J, Cai Q, Shu XO, Zheng W, Long Q, Guo X. Enhancing Disease Risk Gene Discovery by Integrating Transcription Factor-Linked Trans-located Variants into Transcriptome-Wide Association Analyses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.10.23295443. [PMID: 37873299 PMCID: PMC10593059 DOI: 10.1101/2023.10.10.23295443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transcriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-located variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-located variants to enhance model building. Using data from the Genotype-Tissue Expression project, we predict gene expression and alternative splicing and applied these models to large GWAS datasets for breast, prostate, and lung cancers. We demonstrate that transTF-TWAS outperforms other existing TWAS approaches in both constructing gene prediction models and identifying disease-associated genes, as evidenced by simulations and real data analysis. Our transTF-TWAS approach significantly contributes to the discovery of disease risk genes. Findings from this study have shed new light on several genetically driven key regulators and their associated regulatory networks underlying disease susceptibility.
Collapse
|
7
|
Lee S, Bondaruk J, Wang Y, Chen H, Lee JG, Majewski T, Mullen RD, Cogdell D, Chen J, Wang Z, Yao H, Kus P, Jeong J, Lee I, Choi W, Navai N, Guo C, Dinney C, Baggerly K, Mendelsohn C, McConkey D, Behringer RR, Kimmel M, Wei P, Czerniak B. Loss of LPAR6 and CAB39L dysregulates the basal-to-luminal urothelial differentiation program, contributing to bladder carcinogenesis. Cell Rep 2024; 43:114146. [PMID: 38676926 PMCID: PMC11265536 DOI: 10.1016/j.celrep.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
We describe a strategy that combines histologic and molecular mapping that permits interrogation of the chronology of changes associated with cancer development on a whole-organ scale. Using this approach, we present the sequence of alterations around RB1 in the development of bladder cancer. We show that RB1 is not involved in initial expansion of the preneoplastic clone. Instead, we found a set of contiguous genes that we term "forerunner" genes whose silencing is associated with the development of plaque-like field effects initiating carcinogenesis. Specifically, we identified five candidate forerunner genes (ITM2B, LPAR6, MLNR, CAB39L, and ARL11) mapping near RB1. Two of these genes, LPAR6 and CAB39L, are preferentially downregulated in the luminal and basal subtypes of bladder cancer, respectively. Their loss of function dysregulates urothelial differentiation, sensitizing the urothelium to N-butyl-N-(4-hydroxybutyl)nitrosamine-induced cancers, which recapitulate the luminal and basal subtypes of human bladder cancer.
Collapse
Affiliation(s)
- Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yishan Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - June Goo Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel D Mullen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Cogdell
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiansong Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ziqiao Wang
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Yao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Kus
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Joon Jeong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ilkyun Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keith Baggerly
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cathy Mendelsohn
- Department of Urology, Genetics & Development and Pathology, Columbia University, New York, NY 10032, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Jia X, Li Z, Zhou R, Feng W, Yi L, Zhang H, Chen B, Li Q, Huang S, Zhu X. Single cell and bulk RNA sequencing identifies tumor microenvironment subtypes and chemoresistance-related IGF1 + cancer-associated fibroblast in gastric cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167123. [PMID: 38484940 DOI: 10.1016/j.bbadis.2024.167123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) significantly influences prognosis and drug resistance in various tumors, yet its heterogeneity and the mechanisms affecting therapeutic response remain unclear in gastric cancer (GC). METHODS The heterogenous TME were explored with single-cell RNA-sequencing (scRNA-seq) data of 50 primary GC samples. We then identified four GC TME subtypes with nonnegative matrix factorization (NMF) and constructed a pearson nearest-centroid classifier based on subtype-specific upregulated genes. Genomic features and clinical significance of four subtypes were comprehensively evaluated. We reclustered fibroblasts to identify cancer-associated fibroblast (CAF) subtype associated with poor clinical outcomes. RT-qPCR and double immunofluorescence staining were applied to validate the findings. Cellchat analysis elucidated potential molecular mechanisms of the CAF subtype in GC disease progression and chemotherapy resistance. FINDINGS The GC TME exhibited high heterogeneity, influencing chemo-sensitivity. Four TME-based subtypes predicting response to immunotherapy and chemotherapy were identified and validated in 1406 GC patients. Among which, ISG1 subtype displayed higher fibroblasts infiltration and heightened oncogenic pathways, and inferior response to chemotherapy with unfavorable prognosis. Microsatellite instability-high (MSI-H) GCs within four TME subtypes showed immunological heterogeneity. We then reported an IGF1-overexpressing CAF was associated with chemo-resistance and GC recurrence. Cell communication analysis revealed IGF1+ CAF may induce drug-resistant phenotypes in tumor cells through IGF1-α6β4 integrin ligand-receptor binding and activation of EMT biological process. INTERPRETATION We identified four TME-based subtypes with different clinical outcomes and IGF1+ CAFs contributing to poor clinical outcomes in GC, which might provide guidance for individualized treatment and facilitate the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lixia Yi
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Dalfovo D, Scandino R, Paoli M, Valentini S, Romanel A. Germline determinants of aberrant signaling pathways in cancer. NPJ Precis Oncol 2024; 8:57. [PMID: 38429380 PMCID: PMC10907629 DOI: 10.1038/s41698-024-00546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a complex disease influenced by a heterogeneous landscape of both germline genetic variants and somatic aberrations. While there is growing evidence suggesting an interplay between germline and somatic variants, and a substantial number of somatic aberrations in specific pathways are now recognized as hallmarks in many well-known forms of cancer, the interaction landscape between germline variants and the aberration of those pathways in cancer remains largely unexplored. Utilizing over 8500 human samples across 33 cancer types characterized by TCGA and considering binary traits defined using a large collection of somatic aberration profiles across ten well-known oncogenic signaling pathways, we conducted a series of GWAS and identified genome-wide and suggestive associations involving 276 SNPs. Among these, 94 SNPs revealed cis-eQTL links with cancer-related genes or with genes functionally correlated with the corresponding traits' oncogenic pathways. GWAS summary statistics for all tested traits were then used to construct a set of polygenic scores employing a customized computational strategy. Polygenic scores for 24 traits demonstrated significant performance and were validated using data from PCAWG and CCLE datasets. These scores showed prognostic value for clinical variables and exhibited significant effectiveness in classifying patients into specific cancer subtypes or stratifying patients with cancer-specific aggressive phenotypes. Overall, we demonstrate that germline genetics can describe patients' genetic liability to develop specific cancer molecular and clinical profiles.
Collapse
Affiliation(s)
- Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Riccardo Scandino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Marta Paoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Samuel Valentini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, (TN), Italy.
| |
Collapse
|
10
|
Scott TG, Sathyan KM, Gioeli D, Guertin MJ. TRPS1 modulates chromatin accessibility to regulate estrogen receptor alpha (ER) binding and ER target gene expression in luminal breast cancer cells. PLoS Genet 2024; 20:e1011159. [PMID: 38377146 PMCID: PMC10906895 DOI: 10.1371/journal.pgen.1011159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.
Collapse
Affiliation(s)
- Thomas G. Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center Member, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J. Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
11
|
Okato A, Utsumi T, Ranieri M, Zheng X, Zhou M, Pereira LD, Chen T, Kita Y, Wu D, Hyun H, Lee H, Gdowski AS, Raupp JD, Clark-Garvey S, Manocha U, Chafitz A, Sherman F, Stephens J, Rose TL, Milowsky MI, Wobker SE, Serody JS, Damrauer JS, Wong KK, Kim WY. FGFR inhibition augments anti-PD-1 efficacy in murine FGFR3-mutant bladder cancer by abrogating immunosuppression. J Clin Invest 2024; 134:e169241. [PMID: 38226620 PMCID: PMC10786699 DOI: 10.1172/jci169241] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The combination of targeted therapy with immune checkpoint inhibition (ICI) is an area of intense interest. We studied the interaction of fibroblast growth factor receptor (FGFR) inhibition with ICI in urothelial carcinoma (UC) of the bladder, in which FGFR3 is altered in 50% of cases. Using an FGFR3-driven, Trp53-mutant genetically engineered murine model (UPFL), we demonstrate that UPFL tumors recapitulate the histology and molecular subtype of their FGFR3-altered human counterparts. Additionally, UPFL1 allografts exhibit hyperprogression to ICI associated with an expansion of T regulatory cells (Tregs). Erdafitinib blocked Treg proliferation in vitro, while in vivo ICI-induced Treg expansion was fully abrogated by FGFR inhibition. Combined erdafitinib and ICI resulted in high therapeutic efficacy. In aggregate, our work establishes that, in mice, co-alteration of FGFR3 and Trp53 results in high-grade, non-muscle-invasive UC and presents a previously underappreciated role for FGFR inhibition in blocking ICI-induced Treg expansion.
Collapse
Affiliation(s)
- Atsushi Okato
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Takanobu Utsumi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michela Ranieri
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Xingnan Zheng
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luiza D. Pereira
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Ting Chen
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Yuki Kita
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Di Wu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hyesun Hyun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hyojin Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Andrew S. Gdowski
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - John D. Raupp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sean Clark-Garvey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alison Chafitz
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Fiona Sherman
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Janaye Stephens
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - Tracy L. Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Matthew I. Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Sara E. Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine
| | - Jonathan S. Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
- Department of Pathology and Laboratory Medicine
- Department of Microbiology and Immunology
| | - Jeffrey S. Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, New York University, New York, New York, USA
| | - William Y. Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine
- Department of Genetics, and
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Lima BM, de Azevedo ALK, Giner IS, Gomig THB, Ribeiro EMDSF, Cavalli IJ. Biomarker potential of the LEF1/TCF family members in breast cancer: Bioinformatic investigation on expression and clinical significance. Genet Mol Biol 2023; 46:e20220346. [PMID: 38100720 PMCID: PMC10723634 DOI: 10.1590/1678-4685-gmb-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
The LEF1/TCF transcription factor family is related to the development of diverse tissue types, including the mammary tissue, and dysregulation of its expression and function has been described to favor breast tumorigenesis. However, the clinical and biological relevance of this gene family in breast cancer is still poorly understood. Here, we used bioinformatics approaches aiming to reduce this gap. We investigated its expression patterns in molecular and immune breast cancer subtypes; its correlation with immune cell infiltration, and its prognostic values in predicting outcomes. Also, through regulons construction, we determined the genes whose expression is influenced by these transcription factors, and the pathways in which they are involved. We found that LEF1 and TCF3 are over-expressed in breast tumors regarding non-tumor samples, while TCF4 and TCF7 are down-expressed, with the gene's methylation status being associated with its expression dysregulation. All four transcription factors presented significance at the diagnostic and prognostic levels. LEF1, TCF4, and TCF7 presented a significant correlation with immune cell infiltration, being associated with the immune subtypes of less favorable outcomes. Altogether, this research contributes to a more accurate understanding of the expression and clinical and biomarker significance of the LEF1/TCF transcription factors in breast cancer.
Collapse
Affiliation(s)
- Beatriz Miotto Lima
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | - Igor Samesima Giner
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | | | - Iglenir João Cavalli
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| |
Collapse
|
13
|
Barrios-Camacho CM, Zunitch MJ, Louie JD, Jang W, Schwob JE. An in vitro model of acute horizontal basal cell activation reveals dynamic gene regulatory networks underlying the acute activation phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.568855. [PMID: 38168359 PMCID: PMC10760135 DOI: 10.1101/2023.12.14.568855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Horizontal basal cells (HBCs) activate only in response to severe olfactory epithelium (OE) injury. This activation is mediated by the loss of the transcription factor TP63. Using the compound phorbol 12-myristate 13-acetate (PMA), we find that we can model the process of acute HBC activation. First, we find that PMA treatment induces a rapid loss in TP63 protein and induces the expression of HOPX and the nuclear translocation of RELA, previously identified to mediate HBC activation. Using bulk RNA sequencing, we find that PMA-treated HBCs pass through various stages of acute activation identifiable by transcriptional regulatory signatures that mimic stages identified in vivo . These temporal stages are associated with varying degrees of engraftment and differentiation potential in transplantation assays. Together, this data shows that our model can model physiologically relevant features of HBC activation and identifies new candidates for mechanistic testing.
Collapse
|
14
|
Zhu Y, Huang C, Zhang C, Zhou Y, Zhao E, Zhang Y, Pan X, Huang H, Liao W, Wang X. LncRNA MIR200CHG inhibits EMT in gastric cancer by stabilizing miR-200c from target-directed miRNA degradation. Nat Commun 2023; 14:8141. [PMID: 38065939 PMCID: PMC10709323 DOI: 10.1038/s41467-023-43974-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease, threatening millions of lives worldwide, yet the functional roles of long non-coding RNAs (lncRNAs) in different GC subtypes remain poorly characterized. Microsatellite stable (MSS)/epithelial-mesenchymal transition (EMT) GC is the most aggressive subtype associated with a poor prognosis. Here, we apply integrated network analysis to uncover lncRNA heterogeneity between GC subtypes, and identify MIR200CHG as a master regulator mediating EMT specifically in MSS/EMT GC. The expression of MIR200CHG is silenced in MSS/EMT GC by promoter hypermethylation, associated with poor prognosis. MIR200CHG reverses the mesenchymal identity of GC cells in vitro and inhibits metastasis in vivo. Mechanistically, MIR200CHG not only facilitates the biogenesis of its intronic miRNAs miR-200c and miR-141, but also protects miR-200c from target-directed miRNA degradation (TDMD) through direct binding to miR-200c. Our studies reveal a landscape of a subtype-specific lncRNA regulatory network, providing clinically relevant biological insights towards MSS/EMT GC.
Collapse
Grants
- 2020N368 Shenzhen Science and Technology Innovation Commission
- C4024-22GF Research Grants Council, University Grants Committee (RGC, UGC)
- 14104223 Research Grants Council, University Grants Committee (RGC, UGC)
- 11103619 Research Grants Council, University Grants Committee (RGC, UGC)
- 14111522 Research Grants Council, University Grants Committee (RGC, UGC)
- R4017-18 Research Grants Council, University Grants Committee (RGC, UGC)
- 82173289 National Natural Science Foundation of China (National Science Foundation of China)
- 81872401 National Natural Science Foundation of China (National Science Foundation of China)
- Guangdong Basic and Applied Basic Research Foundation (Project No.2019B030302012), a startup grant (Project No. 4937084), direct grant (2021.077), Faculty Postdoctoral Fellowship Scheme 2021/22 (Project No. FPFS/2122/32), Shenzhen Bay Scholars Program.
- Guangdong Basic and Applied Basic Research Foundation (2021A1515010425)
Collapse
Affiliation(s)
- Yixiao Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengmei Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Enen Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xingyan Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
15
|
Kim HW, Baek M, Jung S, Jang S, Lee H, Yang SH, Kwak BS, Kim SJ. ELOVL2-AS1 suppresses tamoxifen resistance by sponging miR-1233-3p in breast cancer. Epigenetics 2023; 18:2276384. [PMID: 37908128 PMCID: PMC10621244 DOI: 10.1080/15592294.2023.2276384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Tamoxifen (Tam) has long been a top treatment option for breast cancer patients, but the challenge of eliminating cancer recurrence remains. Here, we identify a signalling pathway involving ELOVL2, ELOVL2-AS1, and miR-1233-3p, which contributes to drug resistance in Tam-resistant (TamR) breast cancer. ELOVL2-AS1, a long noncoding RNA, was significantly upregulated by its antisense gene, ELOVL2, which is known to be downregulated in TamR cells. Additionally, ELOVL2-AS1 underwent the most hypermethylation in MCF-7/TamR cells. Furthermore, patients with breast cancer who developed TamR during chemotherapy had significantly lower expression of ELOVL2-AS1 compared to those who responded to Tam. Ectopic downregulation of ELOVL2-AS1 by siRNA both stimulated cancer cell growth and deteriorated TamR. We also found that ELOVL2-AS1 sponges miR-1233-3p, which has pro-proliferative activity and elevates TamR, leading to the activation of potential target genes, such as MYEF2, NDST1, and PIK3R1. These findings suggest that ELOVL2-AS1, in association with ELOVL2, may contribute to the suppression of drug resistance by sponging miR-1233-3p in breast cancer.
Collapse
Affiliation(s)
- Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Siyeon Jang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeonjin Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Beom Seok Kwak
- Department of Surgery, Ilsan Hospital, College of Medicine, Dongguk University, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
16
|
Bai Y, Zhou L, Zhang C, Guo M, Xia L, Tang Z, Liu Y, Deng S. Dual network analysis of transcriptome data for discovery of new therapeutic targets in non-small cell lung cancer. Oncogene 2023; 42:3605-3618. [PMID: 37864031 PMCID: PMC10691970 DOI: 10.1038/s41388-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
The drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment- causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7 NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was associated with prognosis and was an independent prognostic factor for NSCLC patients. Knockout of PSMD2 inhibited the proliferation of NSCLC cells by inducing cell cycle arrest, and exhibited marked increase of cell cycle blocking protein p21, p27 and decrease of cell cycle driven protein CDK4, CDK6, CCND1 and CCNE1. IPA and molecular docking suggested bortezomib has stronger affinity to PSMD2 compared with reported targets PSMB1 and PSMB5. In vitro and In vivo experiments demonstrated the inhibitory effect of bortezomib in NSCLC with different driven mutations or with tyrosine kinase inhibitors resistance. Taken together, bortezomib could target PSMD2, PSMB1 and PSMB5 to inhibit the proteasome degradation of cell cycle check points, to block cell proliferation of NSCLC, which was potential optional drug for NSCLC patients.
Collapse
Affiliation(s)
- Yuquan Bai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhou
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanfen Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minzhang Guo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenying Tang
- College of Computer Science, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Lu X, Vano YA, Su X, Helleux A, Lindner V, Mouawad R, Spano JP, Rouprêt M, Compérat E, Verkarre V, Sun CM, Bennamoun M, Lang H, Barthelemy P, Cheng W, Xu L, Davidson I, Yan F, Fridman WH, Sautes-Fridman C, Oudard S, Malouf GG. Silencing of genes by promoter hypermethylation shapes tumor microenvironment and resistance to immunotherapy in clear-cell renal cell carcinomas. Cell Rep Med 2023; 4:101287. [PMID: 37967556 PMCID: PMC10694769 DOI: 10.1016/j.xcrm.2023.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
The efficacy of immune checkpoint inhibitors varies in clear-cell renal cell carcinoma (ccRCC), with notable primary resistance among patients. Here, we integrate epigenetic (DNA methylation) and transcriptome data to identify a ccRCC subtype characterized by cancer-specific promoter hypermethylation and epigenetic silencing of Polycomb targets. We develop and validate an index of methylation-based epigenetic silencing (iMES) that predicts primary resistance to immune checkpoint inhibition (ICI) in the BIONIKK trial. High iMES is associated with VEGF pathway silencing, endothelial cell depletion, immune activation/suppression, EZH2 activation, BAP1/SETD2 deficiency, and resistance to ICI. Combination therapy with hypomethylating agents or tyrosine kinase inhibitors may benefit patients with high iMES. Intriguingly, tumors with low iMES exhibit increased endothelial cells and improved ICI response, suggesting the importance of angiogenesis in ICI treatment. We also develop a transcriptome-based analogous system for extended applicability of iMES. Our study underscores the interplay between epigenetic alterations and tumor microenvironment in determining immunotherapy response.
Collapse
Affiliation(s)
- Xiaofan Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Yann-Alexandre Vano
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP, Université Paris Cité, Paris, France; Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandra Helleux
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Véronique Lindner
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Roger Mouawad
- Department of Medical Oncology, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Philippe Spano
- Department of Medical Oncology, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Morgan Rouprêt
- Sorbonne University, GRC 5 P, UKredictive Onco-Uro, AP-HP, Urology, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Eva Compérat
- Department of Pathology, Sorbonne University, AP-HP, Hôpital Tenon, Paris, France
| | - Virginie Verkarre
- Department of Pathology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP, Université Paris Cité, Paris, France
| | - Cheng-Ming Sun
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Mostefa Bennamoun
- Department of Medical Oncology, Institut Mutualiste Montsouris, Paris, France
| | - Hervé Lang
- Department of Urology, Strasbourg University Hospital, Strasbourg, France
| | - Philippe Barthelemy
- Department of Medical Oncology, Strasbourg University, Institut de Cancérologie de Strasbourg, Strasbourg, France
| | - Wenxuan Cheng
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Li Xu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Irwin Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Wolf Hervé Fridman
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Catherine Sautes-Fridman
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Stéphane Oudard
- Centre de Recherche Cordeliers, INSERM 1138, Université de Paris Cité, Sorbonne Université, Equipe labellisée Ligue contre le Cancer, 75006 Paris, France
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400 Illkirch, France; Department of Medical Oncology, Strasbourg University, Institut de Cancérologie de Strasbourg, Strasbourg, France.
| |
Collapse
|
18
|
Kendall TJ, Jimenez-Ramos M, Turner F, Ramachandran P, Minnier J, McColgan MD, Alam M, Ellis H, Dunbar DR, Kohnen G, Konanahalli P, Oien KA, Bandiera L, Menolascina F, Juncker-Jensen A, Alexander D, Mayor C, Guha IN, Fallowfield JA. An integrated gene-to-outcome multimodal database for metabolic dysfunction-associated steatotic liver disease. Nat Med 2023; 29:2939-2953. [PMID: 37903863 PMCID: PMC10667096 DOI: 10.1038/s41591-023-02602-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the commonest cause of chronic liver disease worldwide and represents an unmet precision medicine challenge. We established a retrospective national cohort of 940 histologically defined patients (55.4% men, 44.6% women; median body mass index 31.3; 32% with type 2 diabetes) covering the complete MASLD severity spectrum, and created a secure, searchable, open resource (SteatoSITE). In 668 cases and 39 controls, we generated hepatic bulk RNA sequencing data and performed differential gene expression and pathway analysis, including exploration of gender-specific differences. A web-based gene browser was also developed. We integrated histopathological assessments, transcriptomic data and 5.67 million days of time-stamped longitudinal electronic health record data to define disease-stage-specific gene expression signatures, pathogenic hepatic cell subpopulations and master regulator networks associated with adverse outcomes in MASLD. We constructed a 15-gene transcriptional risk score to predict future hepatic decompensation events (area under the receiver operating characteristic curve 0.86, 0.81 and 0.83 for 1-, 3- and 5-year risk, respectively). Additionally, thyroid hormone receptor beta regulon activity was identified as a critical suppressor of disease progression. SteatoSITE supports rational biomarker and drug development and facilitates precision medicine approaches for patients with MASLD.
Collapse
Affiliation(s)
- Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Maria Jimenez-Ramos
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Frances Turner
- Edinburgh Genomics (Bioinformatics), University of Edinburgh, Edinburgh, UK
| | | | - Jessica Minnier
- OHSU-PSU School of Public Health, Oregon Health & Sciences University, Portland, OR, USA
- Knight Cancer Institute Biostatistics Shared Resource, Oregon Health & Sciences University, Portland, OR, USA
| | - Michael D McColgan
- Precision Medicine Scotland-Innovation Centre (PMS-IC), University of Glasgow, Glasgow, UK
| | - Masood Alam
- Precision Medicine Scotland-Innovation Centre (PMS-IC), University of Glasgow, Glasgow, UK
| | - Harriet Ellis
- Precision Medicine Scotland-Innovation Centre (PMS-IC), University of Glasgow, Glasgow, UK
| | - Donald R Dunbar
- Edinburgh Genomics (Bioinformatics), University of Edinburgh, Edinburgh, UK
| | - Gabriele Kohnen
- Pathology Department, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Karin A Oien
- Pathology Department, Queen Elizabeth University Hospital, Glasgow, UK
| | - Lucia Bandiera
- School of Engineering, Institute of Bioengineering, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | - Filippo Menolascina
- School of Engineering, Institute of Bioengineering, University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh, UK
| | | | | | - Charlie Mayor
- NHS Greater Glasgow and Clyde Safe Haven, Glasgow, UK
| | - Indra Neil Guha
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | | |
Collapse
|
19
|
Qin Y, Zu X, Li Y, Han Y, Tan J, Cai C, Shen E, Liu P, Deng G, Feng Z, Wu W, Peng Y, Liu Y, Ma J, Zeng S, Chen Y, Shen H. A cancer-associated fibroblast subtypes-based signature enables the evaluation of immunotherapy response and prognosis in bladder cancer. iScience 2023; 26:107722. [PMID: 37694141 PMCID: PMC10485638 DOI: 10.1016/j.isci.2023.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most prevalent and heterogeneous urinary malignant tumors. Previous researches have reported a significant association between cancer-associated fibroblasts (CAFs) and poor prognosis of tumor patients. However, uncertainty surrounds the role of CAFs in the BLCA tumor microenvironment, necessitating further investigation into the CAFs-related gene signatures in BLCA. In this study, we identified three CAF subtypes in BLCA according to single-cell RNA-seq data and constructed CAFs-related risk score (CRRS) by screening 102,714 signatures. The survival analysis, ROC curves, and nomogram suggested that CRRS was a valuable predictor in 2,042 patients from 9 available public datasets and Xiangya real-world cohort. We further revealed the significant correlation between CRRS and clinicopathological characteristics, genome alterations, and epithelial-mesenchymal transition (EMT). A high CRRS indicated a non-inflamed phenotype and a lower remission rate of immunotherapy in BLCA. In conclusion, the CRRS had the potential to predict the prognosis and immunotherapy response of BLCA patients.
Collapse
Affiliation(s)
- Yiming Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiongbing Zu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Edward Shen
- Department of Life Science, McMaster University, Hamilton L8S 4L8, ON, Canada
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ganlu Deng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530022, Guangxi, China
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
20
|
Ferraz RS, Cavalcante JVF, Magalhães L, Ribeiro‐dos‐Santos Â, Dalmolin RJS. Revealing metastatic castration-resistant prostate cancer master regulator through lncRNAs-centered regulatory network. Cancer Med 2023; 12:19279-19290. [PMID: 37644825 PMCID: PMC10557827 DOI: 10.1002/cam4.6481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive form of cancer unresponsive to androgen deprivation therapy (ADT) that spreads quickly to other organs. Despite reduced androgen levels after ADT, mCRPC development and lethality continues to be conducted by the androgen receptor (AR) axis. The maintenance of AR signaling in mCRPC is a result of AR alterations, androgen intratumoral production, and the action of regulatory elements, such as noncoding RNAs (ncRNAs). ncRNAs are key elements in cancer signaling, acting in tumor growth, metabolic reprogramming, and tumor progression. In prostate cancer (PCa), the ncRNAs have been reported to be associated with AR expression, PCa proliferation, and castration resistance. In this study, we aimed to reconstruct the lncRNA-centered regulatory network of mCRPC and identify the lncRNAs which act as master regulators (MRs). METHODS We used publicly available RNA-sequencing to infer the regulatory network of lncRNAs in mCRPC. Five gene signatures were employed to conduct the master regulator analysis. Inferred MRs were then subjected to functional enrichment and symbolic regression modeling. The latter approach was applied to identify the lncRNAs with greater predictive capacity and potential as a biomarker in mCRPC. RESULTS We identified 31 lncRNAs involved in cellular proliferation, tumor metabolism, and invasion-metastasis cascade. SNHG18 and HELLPAR were the highlights of our results. SNHG18 was downregulated in mCRPC and enriched to metastasis signatures. It accurately distinguished both mCRPC and primary CRPC from normal tissue and was associated with epithelial-mesenchymal transition (EMT) and cell-matrix adhesion pathways. HELLPAR consistently distinguished mCRPC from primary CRPC and normal tissue using only its expression. CONCLUSION Our results contribute to understanding the regulatory behavior of lncRNAs in mCRPC and indicate SNHG18 and HELLPAR as master regulators and potential new diagnostic targets in this tumor.
Collapse
Affiliation(s)
- Rafaella Sousa Ferraz
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | | | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | - Ândrea Ribeiro‐dos‐Santos
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | | |
Collapse
|
21
|
Bailey P, Ridgway RA, Cammareri P, Treanor-Taylor M, Bailey UM, Schoenherr C, Bone M, Schreyer D, Purdie K, Thomson J, Rickaby W, Jackstadt R, Campbell AD, Dimonitsas E, Stratigos AJ, Arron ST, Wang J, Blyth K, Proby CM, Harwood CA, Sansom OJ, Leigh IM, Inman GJ. Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression. Nat Commun 2023; 14:5211. [PMID: 37626054 PMCID: PMC10457401 DOI: 10.1038/s41467-023-40822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The molecular basis of disease progression from UV-induced precancerous actinic keratosis (AK) to malignant invasive cutaneous squamous cell carcinoma (cSCC) and potentially lethal metastatic disease remains unclear. DNA sequencing studies have revealed a massive mutational burden but have yet to illuminate mechanisms of disease progression. Here we perform RNAseq transcriptomic profiling of 110 patient samples representing normal sun-exposed skin, AK, primary and metastatic cSCC and reveal a disease continuum from a differentiated to a progenitor-like state. This is accompanied by the orchestrated suppression of master regulators of epidermal differentiation, dynamic modulation of the epidermal differentiation complex, remodelling of the immune landscape and an increase in the preponderance of tumour specific keratinocytes. Comparative systems analysis of human cSCC coupled with the generation of genetically engineered murine models reveal that combinatorial sequential inactivation of the tumour suppressor genes Tgfbr2, Trp53, and Notch1 coupled with activation of Ras signalling progressively drives cSCC progression along a differentiated to progenitor axis. Taken together we provide a comprehensive map of the cSCC disease continuum and reveal potentially actionable events that promote and accompany disease progression.
Collapse
Affiliation(s)
- Peter Bailey
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- Department of Surgery, University of Heidelberg, Heidelberg, 69120, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, 69120, Germany.
| | | | - Patrizia Cammareri
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Mairi Treanor-Taylor
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Edinburgh Medical School, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | | | - Max Bone
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Daniel Schreyer
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karin Purdie
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
| | - Jason Thomson
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - William Rickaby
- St John's Institute of Dermatology, St Thomas's Hospital, London, SE1 7EP, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- German Cancer Research Centre (DKFZ), Heidelberg, 61920, Germany
| | | | - Emmanouil Dimonitsas
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, 16121, Greece
| | - Alexander J Stratigos
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, 16121, Greece
| | - Sarah T Arron
- Department of Dermatology, University of of California at San Francisco, San Francisco, CA, USA
| | - Jun Wang
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
| | - Karen Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Charlotte M Proby
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 4HN, UK
| | - Catherine A Harwood
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Owen J Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Irene M Leigh
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK.
| | - Gareth J Inman
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| |
Collapse
|
22
|
Scott TG, Sathyan KM, Gioeli D, Guertin MJ. TRPS1 modulates chromatin accessibility to regulate estrogen receptor (ER) binding and ER target gene expression in luminal breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547524. [PMID: 37461612 PMCID: PMC10349936 DOI: 10.1101/2023.07.03.547524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer in women. The most common subtype is luminal breast cancer, which is typically driven by the estrogen receptor α (ER), a transcription factor (TF) that activates many genes required for proliferation. Multiple effective therapies target this pathway, but individuals often develop resistance. Thus, there is a need to identify additional targets that regulate ER activity and contribute to breast tumor progression. TRPS1 is a repressive GATA-family TF that is overexpressed in breast tumors. Common genetic variants in the TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. However, we do not know how TRPS1 regulates target genes to mediate these breast cancer patient and cellular outcomes. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over eighty percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes ER to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the activity of other TFs, both activating and repressing transcription of genes related to cancer cell fitness.
Collapse
Affiliation(s)
- Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
23
|
Vlasov I, Filatova E, Slominsky P, Shadrina M. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test. Sci Rep 2023; 13:9985. [PMID: 37340011 DOI: 10.1038/s41598-023-36611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.
Collapse
Affiliation(s)
- Ivan Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, .
| | - Elena Filatova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Petr Slominsky
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Maria Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| |
Collapse
|
24
|
Moon SJ, Jung SM, Baek IW, Park KS, Kim KJ. Molecular signature of neutrophil extracellular trap mediating disease module in idiopathic inflammatory myopathy. J Autoimmun 2023; 138:103063. [PMID: 37220716 DOI: 10.1016/j.jaut.2023.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
The rarity and heterogeneity of idiopathic inflammatory myopathy (IIM) pose challenges for researching IIM in affected individuals. We analyzed integrated transcriptomic datasets obtained using muscle tissues from patients with five distinct IIM subtypes to investigate the shared and distinctive cellular and molecular characteristics. A transcriptomic dataset of muscle tissues from normal controls (n = 105) and patients with dermatomyositis (n = 89), polymyositis (n = 33), inclusion body myositis (n = 121), immune-mediated necrotizing myositis (n = 75), and anti-synthetase syndrome (n = 18) was used for differential gene-expression analysis, functional-enrichment analysis, gene set-enrichment analysis, disease-module identification, and kernel-based diffusion scoring. Damage-associated molecular pattern-associated pathways and neutrophil-mediated immunity were significantly enriched across different IIM subtypes, although their activities varied. Interferons-signaling pathways were differentially activated across all five IIM subtypes. In particular, neutrophil extracellular trap (NET) formation was significantly activated and correlated with Fcγ R-mediated signaling pathways. NET formation-associated genes were key for establishing disease modules, and FCGRs, C1QA, and SERPINE1 markedly perturbed the disease modules. Integrated transcriptomic analysis of muscle tissues identified NETs as key components of neutrophil-mediated immunity involved in the pathogenesis of IIM subtypes and, thus, has therapeutically targetable value.
Collapse
Affiliation(s)
- Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In-Woon Baek
- Division of Rheumatology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Robertson AG, Meghani K, Cooley LF, McLaughlin KA, Fall LA, Yu Y, Castro MAA, Groeneveld CS, de Reyniès A, Nazarov VI, Tsvetkov VO, Choy B, Raggi D, Marandino L, Montorsi F, Powles T, Necchi A, Meeks JJ. Expression-based subtypes define pathologic response to neoadjuvant immune-checkpoint inhibitors in muscle-invasive bladder cancer. Nat Commun 2023; 14:2126. [PMID: 37105962 PMCID: PMC10140274 DOI: 10.1038/s41467-023-37568-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Checkpoint immunotherapy (CPI) has increased survival for some patients with advanced-stage bladder cancer (BCa). However, most patients do not respond. Here, we characterized the tumor and immune microenvironment in pre- and post-treatment tumors from the PURE01 neoadjuvant pembrolizumab immunotherapy trial, using a consolidative approach that combined transcriptional and genetic profiling with digital spatial profiling. We identify five distinctive genetic and transcriptomic programs and validate these in an independent neoadjuvant CPI trial to identify the features of response or resistance to CPI. By modeling the regulatory network, we identify the histone demethylase KDM5B as a repressor of tumor immune signaling pathways in one resistant subtype (S1, Luminal-excluded) and demonstrate that inhibition of KDM5B enhances immunogenicity in FGFR3-mutated BCa cells. Our study identifies signatures associated with response to CPI that can be used to molecularly stratify patients and suggests therapeutic alternatives for subtypes with poor response to neoadjuvant immunotherapy.
Collapse
Affiliation(s)
| | - Khyati Meghani
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Folgosa Cooley
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kimberly A McLaughlin
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Leigh Ann Fall
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yanni Yu
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | - Clarice S Groeneveld
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France
- Oncologie Moleculaire, Institut Curie, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aurélien de Reyniès
- Université Paris Cité, INSERM U1138 Centre de Recherches des Cordeliers, APHP, SeQOIA-IT, Paris, France
| | | | | | - Bonnie Choy
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Daniele Raggi
- Department of Medical Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Laura Marandino
- Department of Medical Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - Francesco Montorsi
- Department of Urology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Thomas Powles
- Barts Experimental Cancer Medicine Centre, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Andrea Necchi
- Department of Medical Oncology, IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Joshua J Meeks
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60611, USA.
| |
Collapse
|
26
|
Babal YK, Sonmez E, Aksan Kurnaz I. Nervous system-related gene regulatory networks and functional evolution of ETS proteins across species. Biosystems 2023; 227-228:104891. [PMID: 37030605 DOI: 10.1016/j.biosystems.2023.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
The ETS domain transcription factor family is one of the major transcription factor superfamilies that play regulatory roles in development, cell growth, and cancer progression. Although different functions of ETS member proteins in the nervous system have been demonstrated in various studies, their role in neuronal cell differentiation and the evolutionary conservation of its target genes have not yet been extensively studied. In this study, we focused on the regulatory role of ETS transcription factors in neuronal differentiation and their functional evolution by comparative transcriptomics. In order to investigate the regulatory role of ETS transcription factors in neuronal differentiation across species, transcriptional profiles of ETS members and their target genes were investigated by comparing differentially expressed genes and gene regulatory networks, which were analyzed using human, gorilla, mouse, fruit fly and worm transcriptomics datasets. Bioinformatics approaches to examine the evolutionary conservation of ETS transcription factors during neuronal differentiation have shown that ETS member proteins regulate genes associated with neuronal differentiation, nervous system development, axon, and synaptic regulation in different organisms. This study is a comparative transcriptomic study of ETS transcription factors in terms of neuronal differentiation using a gene regulatory network inference algorithm. Overall, a comparison of gene regulation networks revealed that ETS members are indeed evolutionarily conserved in the regulation of neuronal differentiation. Nonetheless, ETS, PEA3, and ELF subfamilies were found to be relatively more active transcription factors in the transcriptional regulation of neuronal differentiation.
Collapse
Affiliation(s)
- Yigit Koray Babal
- Gebze Technical University, Institute of Biotechnology, 41400, Gebze Kocaeli, Turkey.
| | - Ekin Sonmez
- Gebze Technical University, Institute of Biotechnology, 41400, Gebze Kocaeli, Turkey
| | - Isil Aksan Kurnaz
- Gebze Technical University, Institute of Biotechnology, 41400, Gebze Kocaeli, Turkey; Gebze Technical University, Dept Molecular Biology and Genetics, 41400, Gebze Kocaeli, Turkey
| |
Collapse
|
27
|
Fontugne J, Wong J, Cabel L, Neyret-Kahn H, Karboul N, Maillé P, Rapinat A, Gentien D, Nicolas A, Baulande S, Sibony M, Bernard-Pierrot I, Radvanyi F, Allory Y. Progression-associated molecular changes in basal/squamous and sarcomatoid bladder carcinogenesis. J Pathol 2023; 259:455-467. [PMID: 36695554 DOI: 10.1002/path.6060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The aggressive basal/squamous (Ba/Sq) bladder cancer (BLCA) subtype is often diagnosed at the muscle-invasive stage and can progress to the sarcomatoid variant. Identification of molecular changes occurring during progression from non-muscle-invasive BLCA (NMIBC) to Ba/Sq muscle-invasive BLCA (MIBC) is thus challenging in human disease. We used the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) mouse model of Ba/Sq MIBC to study longitudinally the molecular changes leading to the Ba/Sq phenotype and to the sarcomatoid variant using IHC and microdissection followed by RNA-seq at all stages of progression. A shift to the Ba/Sq phenotype started in early progression stages. Pathway analysis of gene clusters with coordinated expression changes revealed Shh signaling loss and a shift from fatty acid metabolism to glycolysis. An upregulated cluster, appearing early in carcinogenesis, showed relevance to human disease, identifying NMIBC patients at risk of progression. Similar to the human counterpart, sarcomatoid BBN tumors displayed a Ba/Sq phenotype and epithelial-mesenchymal transition (EMT) features. An EGFR/FGFR1 signaling switch occurred with sarcomatoid dedifferentiation and correlated with EMT. BLCA cell lines with high EMT were the most sensitive to FGFR1 knockout and resistant to EGFR knockout. Taken together, these findings provide insights into the underlying biology of Ba/Sq BLCA progression and sarcomatoid dedifferentiation with potential clinical implications. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jacqueline Fontugne
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France.,Department of Pathology, Institut Curie, Saint-Cloud, France.,Université Paris-Saclay, Université Versailles St-Quentin, Montigny-le-Bretonneux, France
| | - Jennifer Wong
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France.,Department of Genetics, Institut Curie, Paris, France
| | - Luc Cabel
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Hélène Neyret-Kahn
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Narjesse Karboul
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Pascale Maillé
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Audrey Rapinat
- Genomics Core Facility, Translational Research Department, PSL Research University, Institut Curie, Paris, France
| | - David Gentien
- Genomics Core Facility, Translational Research Department, PSL Research University, Institut Curie, Paris, France
| | - André Nicolas
- Department of Pathology, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie, PSL Research University, Paris, France
| | | | - Isabelle Bernard-Pierrot
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France
| | - Yves Allory
- Institut Curie, CNRS, UMR144, Equipe labellisée Ligue Contre le Cancer, PSL Research University, Paris, France.,Department of Pathology, Institut Curie, Saint-Cloud, France.,Université Paris-Saclay, Université Versailles St-Quentin, Montigny-le-Bretonneux, France
| |
Collapse
|
28
|
Zheng C, Wei Y, Zhang P, Xu L, Zhang Z, Lin K, Hou J, Lv X, Ding Y, Chiu Y, Jain A, Islam N, Malovannaya A, Wu Y, Ding F, Xu H, Sun M, Chen X, Chen Y. CRISPR/Cas9 screen uncovers functional translation of cryptic lncRNA-encoded open reading frames in human cancer. J Clin Invest 2023; 133:e159940. [PMID: 36856111 PMCID: PMC9974104 DOI: 10.1172/jci159940] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/19/2023] [Indexed: 03/02/2023] Open
Abstract
Emerging evidence suggests that cryptic translation within long noncoding RNAs (lncRNAs) may produce novel proteins with important developmental/physiological functions. However, the role of this cryptic translation in complex diseases (e.g., cancer) remains elusive. Here, we applied an integrative strategy combining ribosome profiling and CRISPR/Cas9 screening with large-scale analysis of molecular/clinical data for breast cancer (BC) and identified estrogen receptor α-positive (ER+) BC dependency on the cryptic ORFs encoded by lncRNA genes that were upregulated in luminal tumors. We confirmed the in vivo tumor-promoting function of an unannotated protein, GATA3-interacting cryptic protein (GT3-INCP) encoded by LINC00992, the expression of which was associated with poor prognosis in luminal tumors. GTE-INCP was upregulated by estrogen/ER and regulated estrogen-dependent cell growth. Mechanistically, GT3-INCP interacted with GATA3, a master transcription factor key to mammary gland development/BC cell proliferation, and coregulated a gene expression program that involved many BC susceptibility/risk genes and impacted estrogen response/cell proliferation. GT3-INCP/GATA3 bound to common cis regulatory elements and upregulated the expression of the tumor-promoting and estrogen-regulated BC susceptibility/risk genes MYB and PDZK1. Our study indicates that cryptic lncRNA-encoded proteins can be an important integrated component of the master transcriptional regulatory network driving aberrant transcription in cancer, and suggests that the "hidden" lncRNA-encoded proteome might be a new space for therapeutic target discovery.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Longyong Xu
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA
| | - Kangyu Lin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yao Ding
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Anna Malovannaya
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core and
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center
- Genetics and Epigenetics Program, and
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology
- Lester and Sue Smith Breast Center, and
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
29
|
Steroidogenic Factor 1, a Goldilocks Transcription Factor from Adrenocortical Organogenesis to Malignancy. Int J Mol Sci 2023; 24:ijms24043585. [PMID: 36835002 PMCID: PMC9959402 DOI: 10.3390/ijms24043585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Steroidogenic factor-1 (SF-1, also termed Ad4BP; NR5A1 in the official nomenclature) is a nuclear receptor transcription factor that plays a crucial role in the regulation of adrenal and gonadal development, function and maintenance. In addition to its classical role in regulating the expression of P450 steroid hydroxylases and other steroidogenic genes, involvement in other key processes such as cell survival/proliferation and cytoskeleton dynamics have also been highlighted for SF-1. SF-1 has a restricted pattern of expression, being expressed along the hypothalamic-pituitary axis and in steroidogenic organs since the time of their establishment. Reduced SF-1 expression affects proper gonadal and adrenal organogenesis and function. On the other hand, SF-1 overexpression is found in adrenocortical carcinoma and represents a prognostic marker for patients' survival. This review is focused on the current knowledge about SF-1 and the crucial importance of its dosage for adrenal gland development and function, from its involvement in adrenal cortex formation to tumorigenesis. Overall, data converge towards SF-1 being a key player in the complex network of transcriptional regulation within the adrenal gland in a dosage-dependent manner.
Collapse
|
30
|
Jiang J, Hakimjavadi H, Bray JK, Perkins C, Gosling A, daSilva L, Bulut G, Ali J, Setiawan VW, Campbell-Thompson M, Chamala S, Schmittgen TD. Transcriptional Profile of Human Pancreatic Acinar Ductal Metaplasia. GASTRO HEP ADVANCES 2023; 2:532-543. [PMID: 37425649 PMCID: PMC10328139 DOI: 10.1016/j.gastha.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND AIMS Aberrant acinar to ductal metaplasia (ADM), one of the earliest events involved in exocrine pancreatic cancer development, is typically studied using pancreata from genetically engineered mouse models. METHODS We used primary, human pancreatic acinar cells from organ donors to evaluate the transcriptional and pathway profiles during the course of ADM. RESULTS Following 6 days of three-dimensional culture on Matrigel, acinar cells underwent morphological and molecular changes indicative of ADM. mRNA from 14 donors' paired cells (day 0, acinar phenotype and day 6, ductal phenotype) was subjected to whole transcriptome sequencing. Acinar cell specific genes were significantly downregulated in the samples from the day 6 cultures while ductal cell-specific genes were upregulated. Several regulons of ADM were identified including transcription factors with reduced activity (PTF1A, RBPJL, and BHLHA15) and those ductal and progenitor transcription factors with increased activity (HNF1B, SOX11, and SOX4). Cells with the ductal phenotype contained higher expression of genes increased in pancreatic cancer while cells with an acinar phenotype had lower expression of cancer-associated genes. CONCLUSION Our findings support the relevancy of human in vitro models to study pancreas cancer pathogenesis and exocrine cell plasticity.
Collapse
Affiliation(s)
- Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Hesamedin Hakimjavadi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Julie K. Bray
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey Perkins
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Alyssa Gosling
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Lais daSilva
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Gamze Bulut
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Jamel Ali
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
| | - V. Wendy Setiawan
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
- Department of Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Srikar Chamala
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Thomas D. Schmittgen
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| |
Collapse
|
31
|
Gao G, Hausmann S, Flores NM, Benitez AM, Shen J, Yang X, Person MD, Gayatri S, Cheng D, Lu Y, Liu B, Mazur PK, Bedford MT. The NFIB/CARM1 partnership is a driver in preclinical models of small cell lung cancer. Nat Commun 2023; 14:363. [PMID: 36690626 PMCID: PMC9870865 DOI: 10.1038/s41467-023-35864-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
The coactivator associated arginine methyltransferase (CARM1) promotes transcription, as its name implies. It does so by modifying histones and chromatin bound proteins. We identified nuclear factor I B (NFIB) as a CARM1 substrate and show that this transcription factor utilizes CARM1 as a coactivator. Biochemical studies reveal that tripartite motif 29 (TRIM29) is an effector molecule for methylated NFIB. Importantly, NFIB harbors both oncogenic and metastatic activities, and is often overexpressed in small cell lung cancer (SCLC). Here, we explore the possibility that CARM1 methylation of NFIB is important for its transforming activity. Using a SCLC mouse model, we show that both CARM1 and the CARM1 methylation site on NFIB are critical for the rapid onset of SCLC. Furthermore, CARM1 and methylated NFIB are responsible for maintaining similar open chromatin states in tumors. Together, these findings suggest that CARM1 might be a therapeutic target for SCLC.
Collapse
Affiliation(s)
- Guozhen Gao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natasha M Flores
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaojie Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Maria D Person
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sitaram Gayatri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Evozyne Inc., Chicago, IL, 60614, USA
| | - Donghang Cheng
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pawel K Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Jung SM, Baek IW, Park KS, Kim KJ. De novo molecular subtyping of salivary gland tissue in the context of Sjögren's syndrome heterogeneity. Clin Immunol 2022; 245:109171. [DOI: 10.1016/j.clim.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
|
33
|
He J, Wen W, Beeghly A, Chen Z, Cao C, Shu XO, Zheng W, Long Q, Guo X. Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers. Nat Commun 2022; 13:7118. [PMID: 36402776 PMCID: PMC9675749 DOI: 10.1038/s41467-022-34888-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses. Under the sTF-TWAS framework, we build genetic models to predict alternative splicing and gene expression in normal breast, prostate and lung tissues from the Genotype-Tissue Expression project and apply these models to data from large genome-wide association studies (GWAS) conducted among European-ancestry populations. At Bonferroni-corrected P < 0.05, we identify 354 putative susceptibility genes for these cancers, including 189 previously unreported in GWAS loci and 45 in loci unreported by GWAS. These findings provide additional insight into the genetic susceptibility of human cancers. Additionally, we show the generalizability of the sTF-TWAS on non-cancer diseases.
Collapse
Affiliation(s)
- Jingni He
- grid.22072.350000 0004 1936 7697Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada ,grid.452223.00000 0004 1757 7615Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Wanqing Wen
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Alicia Beeghly
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Zhishan Chen
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Chen Cao
- grid.22072.350000 0004 1936 7697Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Xiao-Ou Shu
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Wei Zheng
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Quan Long
- grid.22072.350000 0004 1936 7697Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Medical Genetics, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Department of Mathematics & Statistics, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Xingyi Guo
- grid.152326.10000 0001 2264 7217Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|
34
|
The Potential of NORAD-PUMILIO- RALGAPB Regulatory Axis as a Biomarker in Breast Cancer. Noncoding RNA 2022; 8:ncrna8060076. [PMID: 36412911 PMCID: PMC9680495 DOI: 10.3390/ncrna8060076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction: Long non-coding RNAs (LncRNA) represent a heterogeneous family of RNAs that have emerged as regulators of various biological processes through their association with proteins in ribonucleoproteins complexes. The dynamic of these interactions can affect cell metabolism, including cancer development. Annually, breast cancer causes thousands of deaths worldwide, and searching for new biomarkers is pivotal for better diagnosis and treatment. Methods: Based on in silico prediction analysis, we focus on LncRNAs that have binding sites for PUMILIO, an RBP family involved in post-transcriptional regulation and associated with cancer progression. We compared the expression levels of these LncRNAs in breast cancer and non-tumor samples from the TCGA database. We analyzed the impact of overall and disease-free survival associated with the expression of the LncRNAs and co-expressed genes and targets of PUMILIO proteins. Results: Our results found NORAD as the most relevant LncRNA with a PUMILIO binding site in breast cancer, differently expressed between Luminal A and Basal subtypes. Additionally, NORAD was co-expressed in a Basal-like subtype (0.55) with the RALGAPB gene, a target gene of PUMILIO related to chromosome stability during cell division. Conclusion: These data suggest that this molecular axis may provide insights for developing novel therapeutic strategies for breast cancer.
Collapse
|
35
|
Warrick JI, Hu W, Yamashita H, Walter V, Shuman L, Craig JM, Gellert LL, Castro MAA, Robertson AG, Kuo F, Ostrovnaya I, Sarungbam J, Chen YB, Gopalan A, Sirintrapun SJ, Fine SW, Tickoo SK, Kim K, Thomas J, Karan N, Gao SP, Clinton TN, Lenis AT, Chan TA, Chen Z, Rao M, Hollman TJ, Li Y, Socci ND, Chavan S, Viale A, Mohibullah N, Bochner BH, Pietzak EJ, Teo MY, Iyer G, Rosenberg JE, Bajorin DF, Kaag M, Merrill SB, Joshi M, Adam R, Taylor JA, Clark PE, Raman JD, Reuter VE, Chen Y, Funt SA, Solit DB, DeGraff DJ, Al-Ahmadie HA. FOXA1 repression drives lineage plasticity and immune heterogeneity in bladder cancers with squamous differentiation. Nat Commun 2022; 13:6575. [PMID: 36323682 PMCID: PMC9630410 DOI: 10.1038/s41467-022-34251-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Cancers arising from the bladder urothelium often exhibit lineage plasticity with regions of urothelial carcinoma adjacent to or admixed with regions of divergent histomorphology, most commonly squamous differentiation. To define the biologic basis for and clinical significance of this morphologic heterogeneity, here we perform integrated genomic analyses of mixed histology bladder cancers with separable regions of urothelial and squamous differentiation. We find that squamous differentiation is a marker of intratumoral genomic and immunologic heterogeneity in patients with bladder cancer and a biomarker of intrinsic immunotherapy resistance. Phylogenetic analysis confirms that in all cases the urothelial and squamous regions are derived from a common shared precursor. Despite the presence of marked genomic heterogeneity between co-existent urothelial and squamous differentiated regions, no recurrent genomic alteration exclusive to the urothelial or squamous morphologies is identified. Rather, lineage plasticity in bladder cancers with squamous differentiation is associated with loss of expression of FOXA1, GATA3, and PPARG, transcription factors critical for maintenance of urothelial cell identity. Of clinical significance, lineage plasticity and PD-L1 expression is coordinately dysregulated via FOXA1, with patients exhibiting morphologic heterogeneity pre-treatment significantly less likely to respond to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Joshua I Warrick
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Vonn Walter
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lauren Shuman
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jenna M Craig
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lan L Gellert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Parana, Curitiba, Paraná, Brazil
| | - A Gordon Robertson
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sahussapont J Sirintrapun
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwanghee Kim
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jasmine Thomas
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nagar Karan
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sizhi Paul Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy N Clinton
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew T Lenis
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manisha Rao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis J Hollman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyun Li
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas D Socci
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shweta Chavan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neeman Mohibullah
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard H Bochner
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene J Pietzak
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Min Yuen Teo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew Kaag
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Suzanne B Merrill
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Monika Joshi
- Department of Medicine, Division of Hematology-Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Rosalyn Adam
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, MO, USA
| | - Peter E Clark
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Jay D Raman
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Victor E Reuter
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Funt
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Deparment of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Hikmat A Al-Ahmadie
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Leng K, Rose IVL, Kim H, Xia W, Romero-Fernandez W, Rooney B, Koontz M, Li E, Ao Y, Wang S, Krawczyk M, Tcw J, Goate A, Zhang Y, Ullian EM, Sofroniew MV, Fancy SPJ, Schrag MS, Lippmann ES, Kampmann M. CRISPRi screens in human iPSC-derived astrocytes elucidate regulators of distinct inflammatory reactive states. Nat Neurosci 2022; 25:1528-1542. [PMID: 36303069 PMCID: PMC9633461 DOI: 10.1038/s41593-022-01180-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/07/2022] [Indexed: 01/30/2023]
Abstract
Astrocytes become reactive in response to insults to the central nervous system by adopting context-specific cellular signatures and outputs, but a systematic understanding of the underlying molecular mechanisms is lacking. In this study, we developed CRISPR interference screening in human induced pluripotent stem cell-derived astrocytes coupled to single-cell transcriptomics to systematically interrogate cytokine-induced inflammatory astrocyte reactivity. We found that autocrine-paracrine IL-6 and interferon signaling downstream of canonical NF-κB activation drove two distinct inflammatory reactive signatures, one promoted by STAT3 and the other inhibited by STAT3. These signatures overlapped with those observed in other experimental contexts, including mouse models, and their markers were upregulated in human brains in Alzheimer's disease and hypoxic-ischemic encephalopathy. Furthermore, we validated that markers of these signatures were regulated by STAT3 in vivo using a mouse model of neuroinflammation. These results and the platform that we established have the potential to guide the development of therapeutics to selectively modulate different aspects of inflammatory astrocyte reactivity.
Collapse
Affiliation(s)
- Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Indigo V L Rose
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Wenlong Xia
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Brendan Rooney
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Mark Koontz
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Emmy Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yan Ao
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shinong Wang
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mitchell Krawczyk
- Interdepartmental PhD Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julia Tcw
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison Goate
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erik M Ullian
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen P J Fancy
- Departments of Neurology and Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew S Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Muzzi JCD, Magno JM, Souza JS, Alvarenga LM, de Moura JF, Figueiredo BC, Castro MAA. Comprehensive Characterization of the Regulatory Landscape of Adrenocortical Carcinoma: Novel Transcription Factors and Targets Associated with Prognosis. Cancers (Basel) 2022; 14:5279. [PMID: 36358698 PMCID: PMC9657296 DOI: 10.3390/cancers14215279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/31/2023] Open
Abstract
We reconstructed a transcriptional regulatory network for adrenocortical carcinoma (ACC) using transcriptomic and clinical data from The Cancer Genome Atlas (TCGA)-ACC cohort. We investigated the association of transcriptional regulatory units (regulons) with overall survival, molecular phenotypes, and immune signatures. We annotated the ACC regulons with cancer hallmarks and assessed single sample regulon activities in the European Network for the Study of Adrenal Tumors (ENSAT) cohort. We found 369 regulons associated with overall survival and subdivided them into four clusters: RC1 and RC2, associated with good prognosis, and RC3 and RC4, associated with worse outcomes. The RC1 and RC3 regulons were highly correlated with the 'Steroid Phenotype,' while the RC2 and RC4 regulons were highly correlated with a molecular proliferation signature. We selected two regulons, NR5A1 (steroidogenic factor 1, SF-1) and CENPA (Centromeric Protein A), that were consistently associated with overall survival for further downstream analyses. The CENPA regulon was the primary regulator of MKI-67 (a marker of proliferation KI-67), while the NR5A1 regulon is a well-described transcription factor (TF) in ACC tumorigenesis. We also found that the ZBTB4 (Zinc finger and BTB domain-containing protein 4) regulon, which is negatively associated with CENPA in our transcriptional regulatory network, is also a druggable anti-tumorigenic TF. We anticipate that the ACC regulons may be used as a reference for further investigations concerning the complex molecular interactions in ACC tumors.
Collapse
Affiliation(s)
- João C. D. Muzzi
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Jéssica M. Magno
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Jean S. Souza
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Larissa M. Alvarenga
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
| | - Juliana F. de Moura
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
| | - Bonald C. Figueiredo
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
- Molecular Oncology Laboratory, Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), Curitiba 80030-110, Brazil
| | - Mauro A. A. Castro
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
| |
Collapse
|
38
|
Kalantari E, Kouchaki S, Miaskowski C, Kober K, Barnaghi P. Network analysis to identify symptoms clusters and temporal interconnections in oncology patients. Sci Rep 2022; 12:17052. [PMID: 36224203 PMCID: PMC9556713 DOI: 10.1038/s41598-022-21140-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022] Open
Abstract
Oncology patients experience numerous co-occurring symptoms during their treatment. The identification of sentinel/core symptoms is a vital prerequisite for therapeutic interventions. In this study, using Network Analysis, we investigated the inter-relationships among 38 common symptoms over time (i.e., a total of six time points over two cycles of chemotherapy) in 987 oncology patients with four different types of cancer (i.e., breast, gastrointestinal, gynaecological, and lung). In addition, we evaluated the associations between and among symptoms and symptoms clusters and examined the strength of these interactions over time. Eight unique symptom clusters were identified within the networks. Findings from this research suggest that changes occur in the relationships and interconnections between and among co-occurring symptoms and symptoms clusters that depend on the time point in the chemotherapy cycle and the type of cancer. The evaluation of the centrality measures provides new insights into the relative importance of individual symptoms within various networks that can be considered as potential targets for symptom management interventions.
Collapse
Affiliation(s)
- Elaheh Kalantari
- grid.5475.30000 0004 0407 4824Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, UK ,grid.7445.20000 0001 2113 8111UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, UK
| | - Samaneh Kouchaki
- grid.5475.30000 0004 0407 4824Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, Guildford, UK ,grid.7445.20000 0001 2113 8111UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, UK
| | - Christine Miaskowski
- grid.266102.10000 0001 2297 6811Department of Physiological Nursing, University of California San Francisco, San Francisco, CA USA
| | - Kord Kober
- grid.266102.10000 0001 2297 6811Department of Physiological Nursing, University of California San Francisco, San Francisco, CA USA
| | - Payam Barnaghi
- grid.7445.20000 0001 2113 8111Department of Brain Sciences, Imperial College London, London, UK ,grid.7445.20000 0001 2113 8111UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, UK
| |
Collapse
|
39
|
Warrick JI, Knowles MA, Hurst CD, Shuman L, Raman JD, Walter V, Putt J, Dyrskjøt L, Groeneveld C, Castro MAA, Robertson AG, DeGraff DJ. A transcriptional network of cell cycle dysregulation in noninvasive papillary urothelial carcinoma. Sci Rep 2022; 12:16538. [PMID: 36192513 PMCID: PMC9529892 DOI: 10.1038/s41598-022-20927-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Human cancers display a restricted set of expression profiles, despite diverse mutational drivers. This has led to the hypothesis that select sets of transcription factors act on similar target genes as an integrated network, buffering a tumor's transcriptional state. Noninvasive papillary urothelial carcinoma (NIPUC) with higher cell cycle activity has higher risk of recurrence and progression. In this paper, we describe a transcriptional network of cell cycle dysregulation in NIPUC, which was delineated using the ARACNe algorithm applied to expression data from a new cohort (n = 81, RNA sequencing), and two previously published cohorts. The transcriptional network comprised 121 transcription factors, including the pluripotency factors SOX2 and SALL4, the sex hormone binding receptors ESR1 and PGR, and multiple homeobox factors. Of these 121 transcription factors, 65 and 56 were more active in tumors with greater and less cell cycle activity, respectively. When clustered by activity of these transcription factors, tumors divided into High Cell Cycle versus Low Cell Cycle groups. Tumors in the High Cell Cycle group demonstrated greater mutational burden and copy number instability. A putative mutational driver of cell cycle dysregulation, such as homozygous loss of CDKN2A, was found in only 50% of High Cell Cycle NIPUC, suggesting a prominent role of transcription factor activity in driving cell cycle dysregulation. Activity of the 121 transcription factors strongly associated with expression of EZH2 and other members of the PRC2 complex, suggesting regulation by this complex influences expression of the transcription factors in this network. Activity of transcription factors in this network also associated with signatures of pluripotency and epithelial-to-mesenchymal transition (EMT), suggesting they play a role in driving evolution to invasive carcinoma. Consistent with this, these transcription factors differed in activity between NIPUC and invasive urothelial carcinoma.
Collapse
Affiliation(s)
- Joshua I Warrick
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Margaret A Knowles
- Divison of Molecular Medicine, Leeds Institute of Molecular Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Carolyn D Hurst
- Divison of Molecular Medicine, Leeds Institute of Molecular Research at St James's, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Lauren Shuman
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jay D Raman
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Vonn Walter
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jeffrey Putt
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Clarice Groeneveld
- Cartes d'Identité des Tumeurs (CIT) Program, Ligue Nationale Contre le Cancer, Équipe Oncologie Moleculaire, Institut Curie, Paris, France
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, PR, 81520-260, Brazil
| | | | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
40
|
Mercatelli D, Cabrelle C, Veltri P, Giorgi FM, Guzzi PH. Detection of pan-cancer surface protein biomarkers via a network-based approach on transcriptomics data. Brief Bioinform 2022; 23:6695270. [DOI: 10.1093/bib/bbac400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cell surface proteins have been used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. Many of these proteins lie at the top of signaling cascades regulating cell responses and gene expression, therefore acting as ‘signaling hubs’. It has been previously demonstrated that the integrated network analysis on transcriptomic data is able to infer cell surface protein activity in breast cancer. Such an approach has been implemented in a publicly available method called ‘SURFACER’. SURFACER implements a network-based analysis of transcriptomic data focusing on the overall activity of curated surface proteins, with the final aim to identify those proteins driving major phenotypic changes at a network level, named surface signaling hubs. Here, we show the ability of SURFACER to discover relevant knowledge within and across cancer datasets. We also show how different cancers can be stratified in surface-activity-specific groups. Our strategy may identify cancer-wide markers to design targeted therapies and biomarker-based diagnostic approaches.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Chiara Cabrelle
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Pierangelo Veltri
- Department of Surgical and Medical Sciences, Magna Graecia University , 88100 Catanzaro , Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Pietro H Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University , 88100 Catanzaro , Italy
| |
Collapse
|
41
|
Zhong C, Xie T, Chen L, Zhong X, Li X, Cai X, Chen K, Lan S. Immune depletion of the methylated phenotype of colon cancer is closely related to resistance to immune checkpoint inhibitors. Front Immunol 2022; 13:983636. [PMID: 36159794 PMCID: PMC9492852 DOI: 10.3389/fimmu.2022.983636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
Background Molecular typing based on single omics data has its limitations and requires effective integration of multiple omics data for tumor typing of colorectal cancer (CRC). Methods Transcriptome expression, DNA methylation, somatic mutation, clinicopathological information, and copy number variation were retrieved from TCGA, UCSC Xena, cBioPortal, FireBrowse, or GEO. After pre-processing and calculating the clustering prediction index (CPI) with gap statistics, integrative clustering analysis was conducted via MOVICS. The tumor microenvironment (TME) was deconvolved using several algorithms such as GSVA, MCPcounter, ESTIMATE, and PCA. The metabolism-relevant pathways were extracted through ssGSEA. Differential analysis was based on limma and enrichment analysis was carried out by Enrichr. DNA methylation and transcriptome expression were integrated via ELMER. Finally, nearest template or hemotherapeutic sensitivity prediction was conducted using NTP or pRRophetic. Results Three molecular subtypes (CS1, CS2, and CS3) were recognized by integrating transcriptome, DNA methylation, and driver mutations. CRC patients in CS3 had the most favorable prognosis. A total of 90 differentially mutated genes among the three CSs were obtained, and CS3 displayed the highest tumor mutation burden (TMB), while significant instability across the entire chromosome was observed in the CS2 group. A total of 30 upregulated mRNAs served as classifiers were identified and the similar diversity in clinical outcomes of CS3 was validated in four external datasets. The heterogeneity in the TME and metabolism-related pathways were also observed in the three CSs. Furthermore, we found CS2 tended to loss methylations while CS3 tended to gain methylations. Univariate and multivariate Cox regression revealed that the subtypes were independent prognostic factors. For the drug sensitivity analysis, we found patients in CS2 were more sensitive to ABT.263, NSC.87877, BIRB.0796, and PAC.1. By Integrating with the DNA mutation and RNA expression in CS3, we identified that SOX9, a specific marker of CS3, was higher in the tumor than tumor adjacent by IHC in the in-house cohort and public cohort. Conclusion The molecular subtypes based on integrated multi-omics uncovered new insights into the prognosis, mechanisms, and clinical therapeutic targets for CRC.
Collapse
Affiliation(s)
- Chengqian Zhong
- Department of Digestive Endoscopy center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Tingjiang Xie
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Long Chen
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xuejing Zhong
- Department of Science and Education, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xinjing Li
- Department of Pathology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiumei Cai
- Department of Digestive Endoscopy center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Kaihong Chen
- Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Shiqian Lan
- Department of Digestive Endoscopy center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
42
|
Multi-omics analysis defines highly refractory RAS burdened immature subgroup of infant acute lymphoblastic leukemia. Nat Commun 2022; 13:4501. [PMID: 36042201 PMCID: PMC9427775 DOI: 10.1038/s41467-022-32266-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) represents the most refractory type of childhood leukemia. To uncover the molecular heterogeneity of this disease, we perform RNA sequencing, methylation array analysis, whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia. Our multi-omics clustering followed by single-sample and single-cell inference of hematopoietic differentiation establishes five robust integrative clusters (ICs) with different master transcription factors, fusion partners and corresponding stages of B-lymphopoietic and early hemato-endothelial development: IRX-type differentiated (IC1), IRX-type undifferentiated (IC2), HOXA-type MLLT1 (IC3), HOXA-type MLLT3 (IC4), and HOXA-type AFF1 (IC5). Importantly, our deep mutational analysis reveals that the number of RAS pathway mutations predicts prognosis and that the most refractory subgroup of IC2 possesses 100% frequency and the heaviest burden of RAS pathway mutations. Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-guided risk stratification and individualized therapy.
Collapse
|
43
|
Multi-omics data integration and modeling unravels new mechanisms for pancreatic cancer and improves prognostic prediction. NPJ Precis Oncol 2022; 6:57. [PMID: 35978026 PMCID: PMC9385633 DOI: 10.1038/s41698-022-00299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), has recently been found to be a heterogeneous disease, although the extension of its diversity remains to be fully understood. Here, we harmonize transcriptomic profiles derived from both PDAC epithelial and microenvironment cells to develop a Master Regulators (MR)-Gradient model that allows important inferences on transcriptional networks, epigenomic states, and metabolomics pathways that underlies this disease heterogeneity. This gradient model was generated by applying a blind source separation based on independent components analysis and robust principal component analyses (RPCA), following regulatory network inference. The result of these analyses reveals that PDAC prognosis strongly associates with the tumor epithelial cell phenotype and the immunological component. These studies were complemented by integration of methylome and metabolome datasets generated from patient-derived xenograft (PDX), together experimental measurements of metabolites, immunofluorescence microscopy, and western blot. At the metabolic level, PDAC favorable phenotype showed a positive correlation with enzymes implicated in complex lipid biosynthesis. In contrast, the unfavorable phenotype displayed an augmented OXPHOS independent metabolism centered on the Warburg effect and glutaminolysis. Epigenetically, we find that a global hypermethylation profile associates with the worst prognosis. Lastly, we report that, two antagonistic histone code writers, SUV39H1/SUV39H2 (H3K9Me3) and KAT2B (H3K9Ac) were identified key deregulated pathways in PDAC. Our analysis suggests that the PDAC phenotype, as it relates to prognosis, is determined by a complex interaction of transcriptomic, epigenomic, and metabolic features. Furthermore, we demonstrated that PDAC prognosis could be modulated through epigenetics.
Collapse
|
44
|
Cheng Y, Yin Y, Zhang A, Bernstein AM, Kawaguchi R, Gao K, Potter K, Gilbert HY, Ao Y, Ou J, Fricano-Kugler CJ, Goldberg JL, He Z, Woolf CJ, Sofroniew MV, Benowitz LI, Geschwind DH. Transcription factor network analysis identifies REST/NRSF as an intrinsic regulator of CNS regeneration in mice. Nat Commun 2022; 13:4418. [PMID: 35906210 PMCID: PMC9338053 DOI: 10.1038/s41467-022-31960-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/08/2022] [Indexed: 01/30/2023] Open
Abstract
The inability of neurons to regenerate long axons within the CNS is a major impediment to improving outcome after spinal cord injury, stroke, and other CNS insults. Recent advances have uncovered an intrinsic program that involves coordinate regulation by multiple transcription factors that can be manipulated to enhance growth in the peripheral nervous system. Here, we use a systems genomics approach to characterize regulatory relationships of regeneration-associated transcription factors, identifying RE1-Silencing Transcription Factor (REST; Neuron-Restrictive Silencer Factor, NRSF) as a predicted upstream suppressor of a pro-regenerative gene program associated with axon regeneration in the CNS. We validate our predictions using multiple paradigms, showing that mature mice bearing cell type-specific deletions of REST or expressing dominant-negative mutant REST show improved regeneration of the corticospinal tract and optic nerve after spinal cord injury and optic nerve crush, which is accompanied by upregulation of regeneration-associated genes in cortical motor neurons and retinal ganglion cells, respectively. These analyses identify a role for REST as an upstream suppressor of the intrinsic regenerative program in the CNS and demonstrate the utility of a systems biology approach involving integrative genomics and bio-informatics to prioritize hypotheses relevant to CNS repair.
Collapse
Affiliation(s)
- Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Alice Zhang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander M Bernstein
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kun Gao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kyra Potter
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yan Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Ou
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine J Fricano-Kugler
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute and Wu Tsai Neuroscience Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Larry I Benowitz
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, 02115, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
45
|
Bondaruk J, Jaksik R, Wang Z, Cogdell D, Lee S, Chen Y, Dinh KN, Majewski T, Zhang L, Cao S, Tian F, Yao H, Kuś P, Chen H, Weinstein JN, Navai N, Dinney C, Gao J, Theodorescu D, Logothetis C, Guo CC, Wang W, McConkey D, Wei P, Kimmel M, Czerniak B. The origin of bladder cancer from mucosal field effects. iScience 2022; 25:104551. [PMID: 35747385 PMCID: PMC9209726 DOI: 10.1016/j.isci.2022.104551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 06/02/2022] [Indexed: 12/30/2022] Open
Abstract
Whole-organ mapping was used to study molecular changes in the evolution of bladder cancer from field effects. We identified more than 100 dysregulated pathways, involving immunity, differentiation, and transformation, as initiators of carcinogenesis. Dysregulation of interleukins signified the involvement of inflammation in the incipient phases of the process. An aberrant methylation/expression of multiple HOX genes signified dysregulation of the differentiation program. We identified three types of mutations based on their geographic distribution. The most common were mutations restricted to individual mucosal samples that targeted uroprogenitor cells. Two types of mutations were associated with clonal expansion and involved large areas of mucosa. The α mutations occurred at low frequencies while the β mutations increased in frequency with disease progression. Modeling revealed that bladder carcinogenesis spans 10-15 years and can be divided into dormant and progressive phases. The progressive phase lasted 1-2 years and was driven by β mutations.
Collapse
Affiliation(s)
- Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yujie Chen
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX, USA
| | - Khanh Ngoc Dinh
- Department of Statistics and the Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Shaolong Cao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paweł Kuś
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John N. Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neema Navai
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Santonja Á, Moya-García AA, Ribelles N, Jiménez-Rodríguez B, Pajares B, Fernández-De Sousa CE, Pérez-Ruiz E, Del Monte-Millán M, Ruiz-Borrego M, de la Haba J, Sánchez-Rovira P, Romero A, González-Neira A, Lluch A, Alba E. Role of germline variants in the metastasis of breast carcinomas. Oncotarget 2022; 13:843-862. [PMID: 35782051 PMCID: PMC9245581 DOI: 10.18632/oncotarget.28250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer-related deaths in breast cancer patients are associated with metastasis, a multistep, intricate process that requires the cooperation of tumour cells, tumour microenvironment and metastasis target tissues. It is accepted that metastasis does not depend on the tumour characteristics but the host’s genetic makeup. However, there has been limited success in determining the germline genetic variants that influence metastasis development, mainly because of the limitations of traditional genome-wide association studies to detect the relevant genetic polymorphisms underlying complex phenotypes. In this work, we leveraged the extreme discordant phenotypes approach and the epistasis networks to analyse the genotypes of 97 breast cancer patients. We found that the host’s genetic makeup facilitates metastases by the dysregulation of gene expression that can promote the dispersion of metastatic seeds and help establish the metastatic niche—providing a congenial soil for the metastatic seeds.
Collapse
Affiliation(s)
- Ángela Santonja
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Aurelio A Moya-García
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Nuria Ribelles
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Bella Pajares
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Cristina E Fernández-De Sousa
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain
| | | | - María Del Monte-Millán
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | - Juan de la Haba
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Biomedical Research Institute, Complejo Hospitalario Reina Sofía, Córdoba, Spain
| | | | - Atocha Romero
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Lluch
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain.,INCLIVA Biomedical Research Institute, Universidad de Valencia, Valencia, Spain
| | - Emilio Alba
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| |
Collapse
|
47
|
Adam RS, Poel D, Ferreira Moreno L, Spronck JMA, de Back TR, Torang A, Gomez Barila PM, ten Hoorn S, Markowetz F, Wang X, Verheul HMW, Buffart TE, Vermeulen L. Development of a miRNA-based classifier for detection of colorectal cancer molecular subtypes. Mol Oncol 2022; 16:2693-2709. [PMID: 35298091 PMCID: PMC9297751 DOI: 10.1002/1878-0261.13210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Previously, colorectal cancer (CRC) has been classified into four distinct molecular subtypes based on transcriptome data. These consensus molecular subtypes (CMSs) have implications for our understanding of tumor heterogeneity and the prognosis of patients. So far, this classification has been based on the use of messenger RNAs (mRNAs), although microRNAs (miRNAs) have also been shown to play a role in tumor heterogeneity and biological differences between CMSs. In contrast to mRNAs, miRNAs have a smaller size and increased stability, facilitating their detection. Therefore, we built a miRNA-based CMS classifier by converting the existing mRNA-based CMS classification using machine learning (training dataset of n = 271). The performance of this miRNA-assigned CMS classifier (CMS-miRaCl) was evaluated in several datasets, achieving an overall accuracy of ~ 0.72 (0.6329-0.7987) in the largest dataset (n = 158). To gain insight into the biological relevance of CMS-miRaCl, we evaluated the most important features in the classifier. We found that miRNAs previously reported to be relevant in microsatellite-instable CRCs or Wnt signaling were important features for CMS-miRaCl. Following further studies to validate its robustness, this miRNA-based alternative might simplify the implementation of CMS classification in clinical workflows.
Collapse
Affiliation(s)
- Ronja S. Adam
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Dennis Poel
- Department of Medical OncologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Leandro Ferreira Moreno
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Joey M. A. Spronck
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Tim R. de Back
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Arezo Torang
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Patricia M. Gomez Barila
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Sanne ten Hoorn
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | | | - Xin Wang
- Department of Biomedical SciencesCity University of Hong KongKowloon TongHong Kong
- Shenzhen Research InstituteCity University of Hong KongShenzhenChina
| | - Henk M. W. Verheul
- Department of Medical OncologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Tineke E. Buffart
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Department of Gastrointestinal OncologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR)Center for Experimental and Molecular Medicine (CEMM)Cancer Center Amsterdam and Amsterdam Gastroenterology and MetabolismAmsterdam University Medical CentersThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| |
Collapse
|
48
|
Combined exome and transcriptome sequencing of non-muscle-invasive bladder cancer: associations between genomic changes, expression subtypes, and clinical outcomes. Genome Med 2022; 14:59. [PMID: 35655252 PMCID: PMC9164468 DOI: 10.1186/s13073-022-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three-quarters of bladder cancer patients present with early-stage disease (non-muscle-invasive bladder cancer, NMIBC, UICC TNM stages Ta, T1 and Tis); however, most next-generation sequencing studies to date have concentrated on later-stage disease (muscle-invasive BC, stages T2+). We used exome and transcriptome sequencing to comprehensively characterise NMIBCs of all grades and stages to identify prognostic genes and pathways that could facilitate treatment decisions. Tumour grading is based upon microscopy and cellular appearances (grade 1 BCs are less aggressive, and grade 3 BCs are most aggressive), and we chose to also focus on the most clinically complex NMIBC subgroup, those patients with grade 3 pathological stage T1 (G3 pT1) disease. METHODS Whole-exome and RNA sequencing were performed in total on 96 primary NMIBCs including 22 G1 pTa, 14 G3 pTa and 53 G3 pT1s, with both exome and RNA sequencing data generated from 75 of these individual samples. Associations between genomic alterations, expression profiles and progression-free survival (PFS) were investigated. RESULTS NMIBCs clustered into 3 expression subtypes with different somatic alteration characteristics. Amplifications of ARNT and ERBB2 were significant indicators of worse PFS across all NMIBCs. High APOBEC mutagenesis and high tumour mutation burden were both potential indicators of better PFS in G3pT1 NMIBCs. The expression of individual genes was not prognostic in BCG-treated G3pT1 NMIBCs; however, downregulated interferon-alpha and gamma response pathways were significantly associated with worse PFS (adjusted p-value < 0.005). CONCLUSIONS Multi-omic data may facilitate better prognostication and selection of therapeutic interventions in patients with G3pT1 NMIBC. These findings demonstrate the potential for improving the management of high-risk NMIBC patients and warrant further prospective validation.
Collapse
|
49
|
High-Throughput Profiling of Colorectal Cancer Liver Metastases Reveals Intra- and Inter-Patient Heterogeneity in the EGFR and WNT Pathways Associated with Clinical Outcome. Cancers (Basel) 2022; 14:cancers14092084. [PMID: 35565214 PMCID: PMC9104154 DOI: 10.3390/cancers14092084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor heterogeneity can greatly influence therapy outcome and patient survival. In this study, we aimed at unraveling inter- and intra-patient heterogeneity of colorectal cancer liver metastases (CRLM). To this end, we comprehensively characterized CRLM using state-of-the-art high-throughput technologies combined with bioinformatics analyses. We found a high degree of inter- and intra-patient heterogeneity among the metastases, in particular in genes of the WNT and EGFR pathways. Through analyzing the master regulators and effectors associated with the regulation of these genes, we identified a specific gene signature that was highly expressed in a large cohort of colorectal cancer patients and associated with clinical outcome. Abstract Seventy percent of patients with colorectal cancer develop liver metastases (CRLM), which are a decisive factor in cancer progression. Therapy outcome is largely influenced by tumor heterogeneity, but the intra- and inter-patient heterogeneity of CRLM has been poorly studied. In particular, the contribution of the WNT and EGFR pathways, which are both frequently deregulated in colorectal cancer, has not yet been addressed in this context. To this end, we comprehensively characterized normal liver tissue and eight CRLM from two patients by standardized histopathological, molecular, and proteomic subtyping. Suitable fresh-frozen tissue samples were profiled by transcriptome sequencing (RNA-Seq) and proteomic profiling with reverse phase protein arrays (RPPA) combined with bioinformatic analyses to assess tumor heterogeneity and identify WNT- and EGFR-related master regulators and metastatic effectors. A standardized data analysis pipeline for integrating RNA-Seq with clinical, proteomic, and genetic data was established. Dimensionality reduction of the transcriptome data revealed a distinct signature for CRLM differing from normal liver tissue and indicated a high degree of tumor heterogeneity. WNT and EGFR signaling were highly active in CRLM and the genes of both pathways were heterogeneously expressed between the two patients as well as between the synchronous metastases of a single patient. An analysis of the master regulators and metastatic effectors implicated in the regulation of these genes revealed a set of four genes (SFN, IGF2BP1, STAT1, PIK3CG) that were differentially expressed in CRLM and were associated with clinical outcome in a large cohort of colorectal cancer patients as well as CRLM samples. In conclusion, high-throughput profiling enabled us to define a CRLM-specific signature and revealed the genes of the WNT and EGFR pathways associated with inter- and intra-patient heterogeneity, which were validated as prognostic biomarkers in CRC primary tumors as well as liver metastases.
Collapse
|
50
|
Deng H, Tang F, Zhou M, Shan D, Chen X, Cao K. Identification and Validation of N6-Methyladenosine-Related Biomarkers for Bladder Cancer: Implications for Immunotherapy. Front Oncol 2022; 12:820242. [PMID: 35311150 PMCID: PMC8924666 DOI: 10.3389/fonc.2022.820242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) has emerged as one of the most important modifications of RNA. Based on the expression of 23 different modes of m6A regulatory factors, we identified three different m6A modification patterns in bladder cancer. The effects of the three different modes of m6A modification on clinicopathological characteristics, immune cell infiltration levels and expression levels of immune checkpoint genes were comprehensively analyzed. In addition, the effects of different modes of m6A modification on the therapeutic efficacy of anti-PD-L1 immunotherapy (atezolizumab) are also discussed. Our results confirm that m6A methylation plays an important role in immune cell recruitment in the tumor microenvironment of bladder cancer, which influences the efficacy of anti-PD-L1 therapy for bladder cancer. We further confirmed the important role of FTO protein in the biological function of bladder cancer cells by performing in vitro experiments. FTO functions as an oncogene in bladder cancer cells, and upon FTO knockdown, the level of m6A enzyme activity in bladder cancer cells was significantly increased, apoptosis was increased, and cell proliferation and cell invasion were reduced. In addition, our study also confirmed that K216H and K216E are probably important targets for regulating FTO. We provide new insights into the regulatory pathways of the immune microenvironment and the methylation function of m6A in bladder cancer, which will help in designing novel diagnostic methods, prognostic tools, and therapeutic targets.
Collapse
Affiliation(s)
- Hongyu Deng
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dongyong Shan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|