1
|
Paes JF, Torres DG, Aquino DC, Alves EVB, Mesquita EA, Sousa MA, Fraiji NA, Passos LNM, Abreu RS, Silva GAV, Tarragô AM, de Souza Mourão LP. Exploring hematological alterations and genetics linked to SNV rs10974944 in myeloproliferative neoplasms among Amazon patients. Sci Rep 2024; 14:9389. [PMID: 38654055 PMCID: PMC11039700 DOI: 10.1038/s41598-024-60090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms are hematopoietic disorders characterized by panmyelosis. JAK2 V617F is a frequent variant in these diseases and often occurs in the 46/1 haplotype. The G allele of rs10974944 has been shown to be associated with this variant, specifically its acquisition, correlations with familial cases, and laboratory alterations. This study evaluated the association between the 46/1 haplotype and JAK2 V617F in patients with myeloproliferative neoplasms in a population from the Brazilian Amazon. Clinical, laboratory and molecular sequencing analyses were considered. Carriers of the G allele of rs10974944 with polycythemia vera showed an increase in mean corpuscular volume and mean corpuscular hemoglobin, while in those with essential thrombocythemia, there was an elevation in red blood cells, hematocrit, and hemoglobin. Associations were observed between rs10974944 and the JAK2 V617F, in which the G allele (OR 3.4; p < 0.0001) and GG genotype (OR 4.9; p = 0.0016) were associated with JAK2 V617F + and an increase in variant allele frequency (GG: OR 15.8; p = < 0.0001; G: OR 6.0; p = 0.0002). These results suggest an association between rs10974944 (G) and a status for JAK2 V617F, JAK2 V617F + _VAF ≥ 50%, and laboratory alterations in the erythroid lineage.
Collapse
Affiliation(s)
- Jhemerson F Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Dania G Torres
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Deborah C Aquino
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Emanuela V B Alves
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Erycka A Mesquita
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Miliane A Sousa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Nelson Abrahim Fraiji
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - Leny N M Passos
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - Rosângela S Abreu
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - George A V Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
| | - Andréa M Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus, AM, 69050-002, Brazil
| | - Lucivana P de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69850-000, Brazil.
- Escola Superior em Ciências da Saúde (ESA/UEA), Av. Carvalho Leal, 1777 - Cachoeirinha, Manaus, AM, 69065-001, Brazil.
| |
Collapse
|
2
|
Stacey SN, Zink F, Halldorsson GH, Stefansdottir L, Gudjonsson SA, Einarsson G, Hjörleifsson G, Eiriksdottir T, Helgadottir A, Björnsdottir G, Thorgeirsson TE, Olafsdottir TA, Jonsdottir I, Gretarsdottir S, Tragante V, Magnusson MK, Jonsson H, Gudmundsson J, Olafsson S, Holm H, Gudbjartsson DF, Sulem P, Helgason A, Thorsteinsdottir U, Tryggvadottir L, Rafnar T, Melsted P, Ulfarsson MÖ, Vidarsson B, Thorleifsson G, Stefansson K. Genetics and epidemiology of mutational barcode-defined clonal hematopoiesis. Nat Genet 2023; 55:2149-2159. [PMID: 37932435 PMCID: PMC10703693 DOI: 10.1038/s41588-023-01555-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single hematopoietic stem cell lineage. Using whole-genome sequencing of 45,510 Icelandic and 130,709 UK Biobank participants combined with a mutational barcode method, we identified 16,306 people with CH. Prevalence approaches 50% in elderly participants. Smoking demonstrates a dosage-dependent impact on risk of CH. CH associates with several smoking-related diseases. Contrary to published claims, we find no evidence that CH is associated with cardiovascular disease. We provide evidence that CH is driven by genes that are commonly mutated in myeloid neoplasia and implicate several new driver genes. The presence and nature of a driver mutation alters the risk profile for hematological disorders. Nevertheless, most CH cases have no known driver mutations. A CH genome-wide association study identified 25 loci, including 19 not implicated previously in CH. Splicing, protein and expression quantitative trait loci were identified for CD164 and TCL1A.
Collapse
Affiliation(s)
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Magnus K Magnusson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Ö Ulfarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Brynjar Vidarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Hematology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Paes J, Silva GAV, Tarragô AM, Mourão LPDS. The Contribution of JAK2 46/1 Haplotype in the Predisposition to Myeloproliferative Neoplasms. Int J Mol Sci 2022; 23:12582. [PMID: 36293440 PMCID: PMC9604447 DOI: 10.3390/ijms232012582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Haplotype 46/1 (GGCC) consists of a set of genetic variations distributed along chromosome 9p.24.1, which extend from the Janus Kinase 2 gene to Insulin like 4. Marked by four jointly inherited variants (rs3780367, rs10974944, rs12343867, and rs1159782), this haplotype has a strong association with the development of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) because it precedes the acquisition of the JAK2V617F variant, a common genetic alteration in individuals with these hematological malignancies. It is also described as one of the factors that increases the risk of familial MPNs by more than five times, 46/1 is associated with events related to inflammatory dysregulation, splenomegaly, splanchnic vein thrombosis, Budd-Chiari syndrome, increases in RBC count, platelets, leukocytes, hematocrit, and hemoglobin, which are characteristic of MPNs, as well as other findings that are still being elucidated and which are of great interest for the etiopathological understanding of these hematological neoplasms. Considering these factors, the present review aims to describe the main findings and discussions involving the 46/1 haplotype, and highlights the molecular and immunological aspects and their relevance as a tool for clinical practice and investigation of familial cases.
Collapse
Affiliation(s)
- Jhemerson Paes
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
| | - George A. V. Silva
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
- Fundação Oswaldo Cruz–Instituto Leônidas e Maria Deane (Fiocruz), Manaus 69027-070, AM, Brazil
| | - Andréa M. Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| | - Lucivana P. de Souza Mourão
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69850-000, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (FHEMOAM), Manaus 69050-001, AM, Brazil
| |
Collapse
|
4
|
Tian H, Wu R, Feng N, Zhang J, Zuo J. Recent advances in hydrogels-based osteosarcoma therapy. Front Bioeng Biotechnol 2022; 10:1042625. [PMID: 36312544 PMCID: PMC9597306 DOI: 10.3389/fbioe.2022.1042625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS), as a typical kind of bone tumors, has a high incidence among adolescents. Traditional tumor eradication avenues for OS such as chemotherapy, surgical therapy and radiation therapy usually have their own drawbacks including recurrence and metastasis. In addition, another serious issue in the treatment of OS is bone repair because the bone after tumor invasion usually has difficulty in repairing itself. Hydrogels, as a synthetic or natural platform with a porous three-dimensional structure, can be applied as desirable platforms for OS treatment. They can not only be used as carriers for tumor therapeutic drugs but mimic the extracellular matrix for the growth and differentiation of mesenchymal stem cells (MSCs), thus providing tumor treatment and enhancing bone regeneration at the same time. This review focuses the application of hydrogels in OS suppression and bone regeneration, and give some suggests on future development.
Collapse
Affiliation(s)
- Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrui Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| |
Collapse
|
5
|
Koya Kutty S, Di Lazzaro G, Magrinelli F, Mulroy E, Latorre A, Bhatia KP. Late-Onset Chorea in JAK2-Associated Essential Thrombocythemia. Mov Disord Clin Pract 2021; 8:145-148. [PMID: 33426172 DOI: 10.1002/mdc3.13105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Shahedah Koya Kutty
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Internal Medicine International Islamic University Malaysia Pahang Malaysia
| | - Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Systems Medicine Tor Vergata University of Rome Rome Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
6
|
Chatrath A, Ratan A, Dutta A. Germline Variants That Affect Tumor Progression. Trends Genet 2020; 37:433-443. [PMID: 33203571 DOI: 10.1016/j.tig.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/31/2023]
Abstract
Germline variants have a rich history of being studied in the context of cancer risk. Emerging studies now suggest that germline variants contribute not only to cancer risk but to tumor progression as well. In this opinion article, we discuss the initial discoveries associating germline variants with patient outcome and the mechanisms by which germline variants affect molecular pathways. Germline variants affect molecular pathways through amino acid changes, alteration of splicing patterns or expression of genes, influencing the selection for somatic mutations, and causing genome-wide mutational enrichment. These molecular alterations can lead to tumor phenotypes that become clinically apparent such as metastasis, alterations to the immune microenvironment, and modulation of therapeutic response. Overall, the growing body of evidence suggests that germline variants play a larger role in tumor progression than has been previously appreciated and that germline variation holds substantial potential for improving personalized medicine and patient outcomes.
Collapse
Affiliation(s)
- Ajay Chatrath
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Park HS, Son BR, Shin KS, Kim HK, Yang Y, Jeong Y, Han HS, Lee KH, Kwon J. Germline JAK2 V617F mutation as a susceptibility gene causing myeloproliferative neoplasm in first-degree relatives. Leuk Lymphoma 2020; 61:3251-3254. [PMID: 32762473 DOI: 10.1080/10428194.2020.1802448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Hee Sue Park
- Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Bo Ra Son
- Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Kyeong Seob Shin
- Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hee Kyung Kim
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yaewon Yang
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea.,Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yusook Jeong
- Internal Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Hye Sook Han
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Ki Hyeong Lee
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Jihyun Kwon
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| |
Collapse
|
8
|
Shimomura Y, O'Shaughnessy R, Rajan N. PLCD1 and Pilar Cysts. J Invest Dermatol 2020; 139:2075-2077. [PMID: 31543210 DOI: 10.1016/j.jid.2019.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/25/2023]
Abstract
Trichilemmal or "pilar" cysts are commonly found on the scalp and are derived from the outer root sheath of the hair follicle. Multiple trichilemmal cysts present in an autosomal dominant pattern of inheritance, yet the genetic mechanism has remained elusive. In this issue, Hörer et al. (2019) highlight predisposing variants in PLCD1 in such families and propose a monoallelic mutational mechanism that drives cyst formation.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ryan O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Neil Rajan
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
9
|
Hörer S, Marrakchi S, Radner FPW, Zolles G, Heinz L, Eichmann TO, Has C, Salavei P, Mahfoudh N, Turki H, Zimmer AD, Fischer J. A Monoallelic Two-Hit Mechanism in PLCD1 Explains the Genetic Pathogenesis of Hereditary Trichilemmal Cyst Formation. J Invest Dermatol 2019; 139:2154-2163.e5. [PMID: 31082376 DOI: 10.1016/j.jid.2019.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
Abstract
Trichilemmal cysts are common hair follicle-derived intradermal cysts. The trait shows an autosomal dominant mode of transmission with incomplete penetrance. Here, we describe the pathogenetic mechanism for the development of hereditary trichilemmal cysts. By whole-exome sequencing of DNA from the blood samples of 5 affected individuals and subsequent Sanger sequencing of a family cohort including 35 affected individuals, this study identified a combination of the Phospholipase C Delta 1 germline variants c.903A>G, p.(Pro301Pro) and c.1379C>T, p.(Ser460Leu) as a high-risk factor for trichilemmal cyst development. Allele-specific PCRs and cloning experiments showed that these two variants are present on the same allele. The analysis of tissue from several cysts revealed that an additional somatic Phospholipase C Delta 1 mutation on the same allele is required for cyst formation. In two different functional in vitro assays, this study showed that the protein function of the cyst-specific 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase delta-1 protein variant is modified. This pathologic mechanism defines a monoallelic model of the two-hit mechanism proposed for tumor development and other hereditary cyst diseases.
Collapse
Affiliation(s)
- Steffen Hörer
- Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerd Zolles
- Institute of Physiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Heinz
- Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pavel Salavei
- BIOSS Toolbox, Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Nadia Mahfoudh
- Department of Immunology, Hédi Chaker University Hospital, Sfax, Tunisia
| | - Hamida Turki
- Department of Dermatology, Hédi Chaker University Hospital, Sfax, Tunisia
| | - Andreas D Zimmer
- Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Judith Fischer
- Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Anelli L, Zagaria A, Specchia G, Albano F. The JAK2 GGCC (46/1) Haplotype in Myeloproliferative Neoplasms: Causal or Random? Int J Mol Sci 2018; 19:ijms19041152. [PMID: 29641446 PMCID: PMC5979434 DOI: 10.3390/ijms19041152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
The germline JAK2 haplotype known as “GGCC or 46/1 haplotype” (haplotypeGGCC_46/1) consists of a combination of single nucleotide polymorphisms (SNPs) mapping in a region of about 250 kb, extending from the JAK2 intron 10 to the Insulin-like 4 (INLS4) gene. Four main SNPs (rs3780367, rs10974944, rs12343867, and rs1159782) generating a “GGCC” combination are more frequently indicated to represent the JAK2 haplotype. These SNPs are inherited together and are frequently associated with the onset of myeloproliferative neoplasms (MPN) positive for both JAK2 V617 and exon 12 mutations. The association between the JAK2 haplotypeGGCC_46/1 and mutations in other genes, such as thrombopoietin receptor (MPL) and calreticulin (CALR), or the association with triple negative MPN, is still controversial. This review provides an overview of the frequency and the role of the JAK2 haplotypeGGCC_46/1 in the pathogenesis of different myeloid neoplasms and describes the hypothetical mechanisms at the basis of the association with JAK2 gene mutations. Moreover, possible clinical implications are discussed, as different papers reported contrasting data about the correlation between the JAK2 haplotypeGGCC_46/1 and blood cell count, survival, or disease progression.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
11
|
Jaffee EM, Dang CV, Agus DB, Alexander BM, Anderson KC, Ashworth A, Barker AD, Bastani R, Bhatia S, Bluestone JA, Brawley O, Butte AJ, Coit DG, Davidson NE, Davis M, DePinho RA, Diasio RB, Draetta G, Frazier AL, Futreal A, Gambhir SS, Ganz PA, Garraway L, Gerson S, Gupta S, Heath J, Hoffman RI, Hudis C, Hughes-Halbert C, Ibrahim R, Jadvar H, Kavanagh B, Kittles R, Le QT, Lippman SM, Mankoff D, Mardis ER, Mayer DK, McMasters K, Meropol NJ, Mitchell B, Naredi P, Ornish D, Pawlik TM, Peppercorn J, Pomper MG, Raghavan D, Ritchie C, Schwarz SW, Sullivan R, Wahl R, Wolchok JD, Wong SL, Yung A. Future cancer research priorities in the USA: a Lancet Oncology Commission. Lancet Oncol 2017; 18:e653-e706. [PMID: 29208398 PMCID: PMC6178838 DOI: 10.1016/s1470-2045(17)30698-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
We are in the midst of a technological revolution that is providing new insights into human biology and cancer. In this era of big data, we are amassing large amounts of information that is transforming how we approach cancer treatment and prevention. Enactment of the Cancer Moonshot within the 21st Century Cures Act in the USA arrived at a propitious moment in the advancement of knowledge, providing nearly US$2 billion of funding for cancer research and precision medicine. In 2016, the Blue Ribbon Panel (BRP) set out a roadmap of recommendations designed to exploit new advances in cancer diagnosis, prevention, and treatment. Those recommendations provided a high-level view of how to accelerate the conversion of new scientific discoveries into effective treatments and prevention for cancer. The US National Cancer Institute is already implementing some of those recommendations. As experts in the priority areas identified by the BRP, we bolster those recommendations to implement this important scientific roadmap. In this Commission, we examine the BRP recommendations in greater detail and expand the discussion to include additional priority areas, including surgical oncology, radiation oncology, imaging, health systems and health disparities, regulation and financing, population science, and oncopolicy. We prioritise areas of research in the USA that we believe would accelerate efforts to benefit patients with cancer. Finally, we hope the recommendations in this report will facilitate new international collaborations to further enhance global efforts in cancer control.
Collapse
Affiliation(s)
| | - Chi Van Dang
- Ludwig Institute for Cancer Research New York, NY; Wistar Institute, Philadelphia, PA, USA.
| | - David B Agus
- University of Southern California, Beverly Hills, CA, USA
| | - Brian M Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Alan Ashworth
- University of California San Francisco, San Francisco, CA, USA
| | | | - Roshan Bastani
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Sangeeta Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey A Bluestone
- University of California San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Atul J Butte
- University of California San Francisco, San Francisco, CA, USA
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nancy E Davidson
- Fred Hutchinson Cancer Research Center and University of Washington, Seattle, WA, USA
| | - Mark Davis
- California Institute for Technology, Pasadena, CA, USA
| | | | | | - Giulio Draetta
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Lindsay Frazier
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Futreal
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Patricia A Ganz
- Fielding School of Public Health and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Levi Garraway
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; The Broad Institute, Cambridge, MA, USA; Eli Lilly and Company, Boston, MA, USA
| | | | - Sumit Gupta
- Division of Haematology/Oncology, Hospital for Sick Children, Faculty of Medicine and IHPME, University of Toronto, Toronto, Canada
| | - James Heath
- California Institute for Technology, Pasadena, CA, USA
| | - Ruth I Hoffman
- American Childhood Cancer Organization, Beltsville, MD, USA
| | - Cliff Hudis
- Breast Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chanita Hughes-Halbert
- Medical University of South Carolina and the Hollings Cancer Center, Charleston, SC, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Hossein Jadvar
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Rick Kittles
- College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Scott M Lippman
- University of California San Diego Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - David Mankoff
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Institute for Genomic Medicine at Nationwide Children's Hospital Columbus, OH, USA; College of Medicine, Ohio State University, Columbus, OH, USA
| | - Deborah K Mayer
- University of North Carolina Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Kelly McMasters
- The Hiram C Polk Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dean Ornish
- University of California San Francisco, San Francisco, CA, USA
| | - Timothy M Pawlik
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | | | - Martin G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Raghavan
- Levine Cancer Institute, Carolinas HealthCare, Charlotte, NC, USA
| | | | - Sally W Schwarz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Richard Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Jedd D Wolchok
- Ludwig Center for Cancer Immunotherapy, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Sandra L Wong
- Department of Surgery, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alfred Yung
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Carter H, Ideker T. Common genetic variation in the germline influences where and how tumors develop. Mol Cell Oncol 2017; 4:e1302905. [PMID: 28616579 DOI: 10.1080/23723556.2017.1302905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/17/2022]
Abstract
Germline variation contributes to individual risk for developing specific types of cancer. Analyzing thousands of tumors, we found evidence that the germline also influences vulnerable tissue sites and the mutations that arise in tumor genomes. These associations provide new clues to unravel the biologic mechanisms underlying cancer predisposition.
Collapse
Affiliation(s)
- Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA.,Bioinformatics Program, University of California San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA.,Bioinformatics Program, University of California San Diego, La Jolla, CA, USA.,Department of Computer Science, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
14
|
Carter H, Marty R, Hofree M, Gross AM, Jensen J, Fisch KM, Wu X, DeBoever C, Van Nostrand EL, Song Y, Wheeler E, Kreisberg JF, Lippman SM, Yeo GW, Gutkind JS, Ideker T. Interaction Landscape of Inherited Polymorphisms with Somatic Events in Cancer. Cancer Discov 2017; 7:410-423. [PMID: 28188128 DOI: 10.1158/2159-8290.cd-16-1045] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
Recent studies have characterized the extensive somatic alterations that arise during cancer. However, the somatic evolution of a tumor may be significantly affected by inherited polymorphisms carried in the germline. Here, we analyze genomic data for 5,954 tumors to reveal and systematically validate 412 genetic interactions between germline polymorphisms and major somatic events, including tumor formation in specific tissues and alteration of specific cancer genes. Among germline-somatic interactions, we found germline variants in RBFOX1 that increased incidence of SF3B1 somatic mutation by 8-fold via functional alterations in RNA splicing. Similarly, 19p13.3 variants were associated with a 4-fold increased likelihood of somatic mutations in PTEN. In support of this association, we found that PTEN knockdown sensitizes the MTOR pathway to high expression of the 19p13.3 gene GNA11 Finally, we observed that stratifying patients by germline polymorphisms exposed distinct somatic mutation landscapes, implicating new cancer genes. This study creates a validated resource of inherited variants that govern where and how cancer develops, opening avenues for prevention research.Significance: This study systematically identifies germline variants that directly affect tumor evolution, either by dramatically increasing alteration frequency of specific cancer genes or by influencing the site where a tumor develops. Cancer Discovery; 7(4); 410-23. ©2017 AACR.See related commentary by Geeleher and Huang, p. 354This article is highlighted in the In This Issue feature, p. 339.
Collapse
Affiliation(s)
- Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, La Jolla, California. .,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, California.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, California
| | - Rachel Marty
- Bioinformatics Program, University of California, San Diego, La Jolla, California
| | - Matan Hofree
- Department of Computer Science, University of California, San Diego, La Jolla, California
| | - Andrew M Gross
- Bioinformatics Program, University of California, San Diego, La Jolla, California
| | - James Jensen
- Bioinformatics Program, University of California, San Diego, La Jolla, California
| | - Kathleen M Fisch
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, California.,Department of Medicine, Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, California
| | - Xingyu Wu
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Christopher DeBoever
- Bioinformatics Program, University of California, San Diego, La Jolla, California
| | - Eric L Van Nostrand
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - Yan Song
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - Emily Wheeler
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - Jason F Kreisberg
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, La Jolla, California.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, California
| | - Scott M Lippman
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Gene W Yeo
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, California
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California.,Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, California.,Institute for Genomic Medicine, University of California, San Diego, La Jolla, California.,Bioinformatics Program, University of California, San Diego, La Jolla, California.,Department of Computer Science, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Vainchenker W, Constantinescu SN, Plo I. Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Res 2016; 5. [PMID: 27134742 PMCID: PMC4841197 DOI: 10.12688/f1000research.8081.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 01/01/2023] Open
Abstract
The classic
BCR-ABL-negative myeloproliferative neoplasms (MPNs), a form of chronic malignant hemopathies, have been classified into polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). ET and PMF are two similar disorders in their pathogenesis, which is marked by a key role of the megakaryocyte (MK) lineage. Whereas ET is characterized by MK proliferation, PMF is also associated with aberrant MK differentiation (myelodysplasia), leading to the release of cytokines in the marrow environment, which causes the development of myelofibrosis. Thus, PMF is associated with both myeloproliferation and different levels of myelodysplastic features. MPNs are mostly driven by mutated genes called MPN drivers, which abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors. The recent discovery of
CALR mutations has closed a gap in our knowledge and has shown that this mutated endoplasmic reticulum chaperone activates the thrombopoietin receptor MPL and JAK2. These genetic studies have shown that there are two main types of MPNs: JAK2V617F-MPNs, including ET, PV, and PMF, and the MPL-/CALR-MPNs, which include only ET and PMF. These MPN driver mutations are associated with additional mutations in genes involved in epigenetics, splicing, and signaling, which can precede or follow the acquisition of MPN driver mutations. They are involved in clonal expansion or phenotypic changes or both, leading to myelofibrosis or leukemic transformation or both. Only a few patients with ET exhibit mutations in non-MPN drivers, whereas the great majority of patients with PMF harbor one or several mutations in these genes. However, the entire pathogenesis of ET and PMF may also depend on other factors, such as the patient’s constitutional genetics, the bone marrow microenvironment, the inflammatory response, and age. Recent advances allowed a better stratification of these diseases and new therapeutic approaches with the development of JAK2 inhibitors.
Collapse
Affiliation(s)
- William Vainchenker
- Gustave Roussy, Paris, France; Universite Paris-Saclay, Gustave Roussy, Paris, France
| | - Stefan N Constantinescu
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Plo
- Gustave Roussy, Paris, France; Universite Paris-Saclay, Gustave Roussy, Paris, France
| |
Collapse
|
16
|
|
17
|
No increase of JAK2 46/1 haplotype frequency in essential thrombocythemia with CALR mutations: Functional effect of the haplotype limited to allele with JAK2V617F mutation but not CALR mutation. Blood Cells Mol Dis 2015; 55:36-9. [DOI: 10.1016/j.bcmd.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/28/2015] [Indexed: 11/20/2022]
|
18
|
Catarsi P, Rosti V, Morreale G, Poletto V, Villani L, Bertorelli R, Pedrazzini M, Zorzetto M, Barosi G. JAK2 exon 14 skipping in patients with primary myelofibrosis: a minor splice variant modulated by the JAK2-V617F allele burden. PLoS One 2015; 10:e0116636. [PMID: 25617626 PMCID: PMC4305294 DOI: 10.1371/journal.pone.0116636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 12/11/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Primary myelofibrosis (PMF) is an acquired clonal disease of the hematopoietic stem cell compartment, characterized by bone marrow fibrosis, anemia, splenomegaly and extramedullary hematopoiesis. About 60% of patients with PMF harbor a somatic mutation of the JAK2 gene (JAK2-V617F) in their hematopoietic lineage. Recently, a splicing isoform of JAK2, lacking exon 14 (JAK2Δ14) was described in patients affected by myeloproliferative diseases. MATERIALS AND METHODS By using a specific RT-qPCR method, we measured the ratio between the splicing isoform and the JAK2 full-length transcript (JAK2+14) in granulocytes, isolated from peripheral blood, of forty-four patients with PMF and nine healthy donors. RESULTS We found that JAK2Δ14 was only slightly increased in patients and, at variance with published data, the splicing isoform was also detectable in healthy controls. We also found that, in patients bearing the JAK2-V617F mutation, the percentage of mutated alleles correlated with the observed increase in JAK2Δ14. Homozygosity for the mutation was also associated with a higher level of JAK2+14. Bioinformatic analysis indicates the possibility that the G>T transversion may interfere with the correct splicing of exon 14 by modifying a splicing regulatory sequence. CONCLUSIONS Increased levels of JAK2 full-length transcript and a small but significant increase in JAK2 exon 14 skipping, are associated with the JAK2-V617F allele burden in PMF granulocytes. Our data do not confirm a previous claim that the production of the JAK2Δ14 isoform is related to the pathogenesis of PMF.
Collapse
Affiliation(s)
- Paolo Catarsi
- Center for the Study and Treatment of Myelofibrosis, Biotechnology Research Laboratories, Fondazione IRCCS “Policlinico San Matteo”, Pavia (PV), Italy
- * E-mail:
| | - Vittorio Rosti
- Center for the Study and Treatment of Myelofibrosis, Biotechnology Research Laboratories, Fondazione IRCCS “Policlinico San Matteo”, Pavia (PV), Italy
| | - Giacomo Morreale
- Viticulture Research Center, Consiglio per la Ricerca e la sperimentazione in Agricoltura, Conegliano (TV), Italy
| | - Valentina Poletto
- Center for the Study and Treatment of Myelofibrosis, Biotechnology Research Laboratories, Fondazione IRCCS “Policlinico San Matteo”, Pavia (PV), Italy
| | - Laura Villani
- Center for the Study and Treatment of Myelofibrosis, Biotechnology Research Laboratories, Fondazione IRCCS “Policlinico San Matteo”, Pavia (PV), Italy
| | - Roberto Bertorelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione “Bruno Kessler”, Trento (TN), Italy
| | - Matteo Pedrazzini
- Cardiovascular Genetics Laboratory, Biomedical and Technology Research Centre, Istituto Auxologico Italiano, Cusano Milanino (MI), Italy
| | - Michele Zorzetto
- Laboratory of Biochemistry and Genetics, Division of Pneumology, Department of Molecular Medicine, Fondazione IRCCS “Policlinico San Matteo”, Pavia (PV), Italy
| | - Giovanni Barosi
- Center for the Study and Treatment of Myelofibrosis, Biotechnology Research Laboratories, Fondazione IRCCS “Policlinico San Matteo”, Pavia (PV), Italy
| | | |
Collapse
|
19
|
The JAK2 46/1 haplotype (GGCC) in myeloproliferative neoplasms and splanchnic vein thrombosis: a pooled analysis of 26 observational studies. Ann Hematol 2014; 93:1845-52. [DOI: 10.1007/s00277-014-2134-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/03/2014] [Indexed: 12/20/2022]
|
20
|
Wang H, Sun G, Zhang P, Zhang J, Gui E, Zu M, Jia E, Xu H, Xu L, Zhang J, Lu Z. JAK2 V617F mutation and 46/1 haplotype in Chinese Budd-Chiari syndrome patients. J Gastroenterol Hepatol 2014; 29:208-14. [PMID: 23980667 DOI: 10.1111/jgh.12379] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM The presence of JAK2V617F was reported to be associated with JAK2 46/1 haplotype, which was considered as an independent risk factor for Budd-Chiari syndrome (BCS) in Western countries. However, little is known in China. Therefore, the aim of this study was to determine whether the 46/1 haplotype is associated with such patients. METHODS Patients with primary BCS and controls were consecutively admitted in our study from October 2009 to December 2012. The subjects were detected for the JAK2V617F mutation by allele-specific polymerase chain reaction (AS-PCR) and the JAK2 46/1 haplotype by real-time PCR. RESULTS The prevalence of JAK2V617F mutation was 2.37% (7/295) in BCS patients, and 46/1 haplotype was overrepresented in JAK2V617F-positive BCS patients compared with controls (P < 0.01). The risk for the JAK2V617F-positive BCS with CC genotype was elevated compared with subjects presented TT genotype (OR = 13.4, 95%CI = 2.01-89.5) and non-CC genotype (OR = 15.0, 95%CI = 2.45-91.7). CONCLUSIONS Our study showed that the presence of 46/1 haplotype increased the risk of JAK2V617F-positive BCS in China. In addition, low prevalence of JAK2V617F mutation in BCS patients suggested that myeloproliferative neoplasms (MPNs) should not be an etiological factor of BCS in China.
Collapse
Affiliation(s)
- Hui Wang
- Department of Public Health, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Relationship between the 46/1 haplotype of the JAK2 gene and the JAK2 mutational status and allele burden, the initial findings, and the survival of patients with myelofibrosis. Ann Hematol 2013; 93:797-802. [DOI: 10.1007/s00277-013-1989-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|
22
|
Wöhrl S, Moritz KB, Bracher A, Fischer G, Stingl G, Loewe R. A c-kit mutation in exon 18 in familial mastocytosis. J Invest Dermatol 2012. [PMID: 23190889 DOI: 10.1038/jid.2012.394] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefan Wöhrl
- Floridsdorf Allergy Centre (FAZ), Vienna, Austria; Division of Immunology, Department of Dermatology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria.
| | - Katharina B Moritz
- Division of Immunology, Department of Dermatology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - Andreas Bracher
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Stingl
- Division of Immunology, Department of Dermatology, Allergy and Infectious Diseases, Medical University of Vienna, Vienna, Austria
| | - Robert Loewe
- Skin and Endothelium Research Division (SERD), Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Dermatology, Division of General Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Abstract
Major advances in myeloproliferative neoplasms in the last decade have cast light on their complexity. The identification of JAK2 (V617F) briefly promised a unifying mechanism of pathogenesis with a single pathway that could be efficiently targeted. Instead, there have been major advances in understanding acquired and background genetic and epigenetic contributors to this group of disorders, with refined risk prediction models and experimental therapeutics that have provided a more nuanced model of disease. In aggregate these observations likely explain the heterogeneity of these disorders and their generally unpredictable response to therapy. Molecular studies, beginning with the identification of JAK2 (V617F), have led to a concept of MPN subtypes existing on a continuum, and additional discoveries such as TET2 and EZH2 mutations have provided the molecular underpinnings to begin to explain overlapping phenotypes in myeloid malignancies more generally. In many ways the pace of molecular discovery is outstripping our ability to integrate these observations into clinical care, both in terms of molecular diagnostics and medical decision making. This review will attempt to summarize, within a clinical context, our evolving understanding of myeloproliferative neoplasms. It focuses on biology, histopathology, prognostic scoring systems, stem cell transplantation as well as selected clinical/preclinical therapeutic observations.
Collapse
Affiliation(s)
- Harper G Hubbeling
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
24
|
Abstract
Genome-wide association studies (GWAS) have successfully identified common polymorphisms that are strongly associated with many traits, including cancer. A gene desert located on chromosome 8q24 is associated with multiple cancer types. One of the closest genes is the MYC proto-oncogene. Investigations are now turning toward a mechanistic understanding of these (and other) risk loci. Recent studies demonstrate that the 8q24 loci are enhancers and that they physically interact with MYC. A still unresolved issue is the absence of a consistent association between genotype status at the risk loci and steady-state MYC expression levels in adult human tissues. Clarifying the function of the 8q24 variants and their link to MYC regulation by further in vivo and in vitro functional studies will allow a deeper understanding of the mechanisms underlying human cancer development.
Collapse
Affiliation(s)
- Chiara Grisanzio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
25
|
Nahajevszky S, Andrikovics H, Batai A, Adam E, Bors A, Csomor J, Gopcsa L, Koszarska M, Kozma A, Lovas N, Lueff S, Matrai Z, Meggyesi N, Sinko J, Sipos A, Varkonyi A, Fekete S, Tordai A, Masszi T. The prognostic impact of germline 46/1 haplotype of Janus kinase 2 in cytogenetically normal acute myeloid leukemia. Haematologica 2011; 96:1613-8. [PMID: 21791467 DOI: 10.3324/haematol.2011.043885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Prognostic risk stratification according to acquired or inherited genetic alterations has received increasing attention in acute myeloid leukemia in recent years. A germline Janus kinase 2 haplotype designated as the 46/1 haplotype has been reported to be associated with an inherited predisposition to myeloproliferative neoplasms, and also to acute myeloid leukemia with normal karyotype. The aim of this study was to assess the prognostic impact of the 46/1 haplotype on disease characteristics and treatment outcome in acute myeloid leukemia. DESIGN AND METHODS Janus kinase 2 rs12343867 single nucleotide polymorphism tagging the 46/1 haplotype was genotyped by LightCycler technology applying melting curve analysis with the hybridization probe detection format in 176 patients with acute myeloid leukemia under 60 years diagnosed consecutively and treated with curative intent. RESULTS The morphological subtype of acute myeloid leukemia with maturation was less frequent among 46/1 carriers than among non-carriers (5.6% versus 17.2%, P = 0.018, cytogenetically normal subgroup: 4.3% versus 20.6%, P = 0.031), while the morphological distribution shifted towards the myelomonocytoid form in 46/1 haplotype carriers (28.1% versus 14.9%, P = 0.044, cytogenetically normal subgroup: 34.0% versus 11.8%, P = 0.035). In cytogenetically normal cases of acute myeloid leukemia, the 46/1 carriers had a considerably lower remission rate (78.7% versus 94.1%, P = 0.064) and more deaths in remission or in aplasia caused by infections (46.8% versus 23.5%, P = 0.038), resulting in the 46/1 carriers having shorter disease-free survival and overall survival compared to the 46/1 non-carriers. In multivariate analysis, the 46/1 haplotype was an independent adverse prognostic factor for disease-free survival (P = 0.024) and overall survival (P = 0.024) in patients with a normal karyotype. Janus kinase 2 46/1 haplotype had no impact on prognosis in the subgroup with abnormal karyotype. CONCLUSIONS Janus kinase 2 46/1 haplotype influences morphological distribution, increasing the predisposition towards an acute myelomonocytoid form. It may be a novel, independent unfavorable risk factor in acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Sarolta Nahajevszky
- Department of Hematology and Stem Cell Transplantation, St Istvan and St Laszlo Hospital, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu W, He L, Ramírez J, Krishnaswamy S, Kanteti R, Wang YC, Salgia R, Ratain MJ. Functional EGFR germline polymorphisms may confer risk for EGFR somatic mutations in non-small cell lung cancer, with a predominant effect on exon 19 microdeletions. Cancer Res 2011; 71:2423-7. [PMID: 21292812 DOI: 10.1158/0008-5472.can-10-2689] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Somatic mutations in the EGFR tyrosine kinase domain play a critical role in the development and treatment of non-small cell lung cancer (NSCLC). Strong genetic influence on susceptibility to these mutations has been suggested. To identify the genetic factors conferring risk for the EGFR tyrosine kinase mutations in NSCLC, a case-control study was conducted in 141 Taiwanese NSCLC patients by focusing on three functional polymorphisms in the EGFR gene [-216G/T, intron 1 (CA)n, and R497K]. Allelic imbalance of the EGFR -216G/T polymorphism was also tested in the heterozygous patients and in the NCI-60 cancer cell lines to further verify its function. We found that the frequencies of the alleles -216T and CA-19 are significantly higher in the patients with any mutation (P = 0.032 and 0.01, respectively), in particular in those with exon 19 microdeletions (P = 0.006 and 0.033, respectively), but not in the patients with L858R mutation. The -216T allele is favored to be amplified in both tumor DNA of lung cancer patients and cancer cell lines. We conclude that the local haplotype structures across the EGFR gene may favor the development of cellular malignancies and thus significantly confer risk to the occurrence of EGFR mutations in NSCLC, particularly the exon 19 microdeletions.
Collapse
Affiliation(s)
- Wanqing Liu
- Department of Medicine; Comprehensive Cancer Center, and Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hsiao HH, Liu YC, Tsai HJ, Lee CP, Hsu JF, Lin SF. JAK2V617Fmutation is associated with special alleles in essential thrombocythemia. Leuk Lymphoma 2011; 52:478-82. [DOI: 10.3109/10428194.2010.542260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Van Etten RA, Koschmieder S, Delhommeau F, Perrotti D, Holyoake T, Pardanani A, Mesa R, Green T, Ibrahim AR, Mughal T, Gale RP, Goldman J. The Ph-positive and Ph-negative myeloproliferative neoplasms: some topical pre-clinical and clinical issues. Haematologica 2011; 96:590-601. [PMID: 21242185 DOI: 10.3324/haematol.2010.035675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This review focuses on topical issues in the biology and treatment of the myeloproliferative neoplasms (MPNs). Studies in transgenic mice suggest that BCR-ABL1 reduces the fraction of self-renewing 'leukemic' stem cells in the bone marrow but that some of these cells survive treatment with imatinib. This also seems to operate in humans. Data from models also strongly support the notion that JAK2(V617F) can initiate and sustain MPNs in mice; relevance to disease in humans is less clear. These data also support the hypothesis that level of JAK2(V617F) expression influences the MPN phenotype: higher levels favor erythrocytosis whereas lower levels favor thrombocytosis. Although TET2-mutations were thought to precede JAK2(V617F) in some persons with MPNs, it now appears that TET2 mutations may occur after JAK2(V617F). Further understanding of signal-transduction pathways activated in chronic myeloid leukemia suggests various possible targets for new therapies including the WNT/beta catenin, notch and hedgehog pathways. Finally, the clinical role of the new JAK2- and BCR-ABL1-inhibitors is considered. Much further progress is likely in several of these areas soon.
Collapse
Affiliation(s)
- Richard A Van Etten
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Andrikovics H, Nahajevszky S, Koszarska M, Meggyesi N, Bors A, Halm G, Lueff S, Lovas N, Matrai Z, Csomor J, Rasonyi R, Egyed M, Varkonyi J, Mikala G, Sipos A, Kozma A, Adam E, Fekete S, Masszi T, Tordai A. JAK2 46/1 haplotype analysis in myeloproliferative neoplasms and acute myeloid leukemia. Leukemia 2010; 24:1809-13. [DOI: 10.1038/leu.2010.172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Abstract
The clinical course of the classic myeloproliferative neoplasms (MPNs) is burdened by an increased rate of cardiovascular events, which are the major cause of mortality. Age and history of thrombosis are the criteria used to stratify patients to the most appropriate therapeutic options. However, the mechanisms ultimately responsible for the increased thrombotic tendency have not yet been elucidated; abnormalities of blood cell count, neutrophil and platelet activation, and a state of hypercoagulability can all occur. Recurrent mutations in JAK2 or MPL have been described in MPNs and serve as disease markers. There is also evidence that a JAK2V617F mutant state represents an independent factor associated with thrombosis, and abnormalities of cell function attributable to JAK2V617F have been characterized. It is hoped that elucidation of the role mutant JAK2 plays in MPNs will improve our understanding of the pathophysiology of thrombosis and eventually result in improved patient treatment using molecularly targeted drugs.
Collapse
|
33
|
Aranaz P, Ormazábal C, Hurtado C, Erquiaga I, Calasanz MJ, García-Delgado M, Novo FJ, Vizmanos JL. A new potential oncogenic mutation in the FERM domain of JAK2 in BCR/ABL1-negative and V617F-negative chronic myeloproliferative neoplasms revealed by a comprehensive screening of 17 tyrosine kinase coding genes. ACTA ACUST UNITED AC 2010; 199:1-8. [DOI: 10.1016/j.cancergencyto.2010.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/14/2009] [Accepted: 01/03/2010] [Indexed: 12/13/2022]
|
34
|
Robison K. Application of second-generation sequencing to cancer genomics. Brief Bioinform 2010; 11:524-34. [DOI: 10.1093/bib/bbq013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
35
|
Abstract
The 46/1 JAK2 haplotype predisposes to V617F-positive myeloproliferative neoplasms, but the underlying mechanism is obscure. We analyzed essential thrombocythemia patients entered into the PT-1 studies and, as expected, found that 46/1 was overrepresented in V617F-positive cases (n = 404) versus controls (n = 1492, P = 3.9 x 10(-11)). The 46/1 haplotype was also overrepresented in cases without V617F (n = 347, P = .009), with an excess seen for both MPL exon 10 mutated and V617F, MPL exon 10 nonmutated cases. Analysis of further MPL-positive, V617F-negative cases confirmed an excess of 46/1 (n = 176, P = .002), but no association between MPL mutations and MPL haplotype was seen. An excess of 46/1 was also seen in JAK2 exon 12 mutated cases (n = 69, P = .002), and these mutations preferentially arose on the 46/1 chromosome (P = .029). No association between 46/1 and clinical or laboratory features was seen in the PT-1 cohort either with or without V617F. The excess of 46/1 in JAK2 exon 12 cases is compatible with both the "hypermutability" and "fertile ground" hypotheses, but the excess in MPL-mutated cases argues against the former. No difference in sequence, splicing, or expression of JAK2 was found on 46/1 compared with other haplotypes, suggesting that any functional difference of JAK2 on 46/1, if it exists, must be relatively subtle.
Collapse
|
36
|
Molecular aspects of myeloproliferative neoplasms. Int J Hematol 2010; 91:165-73. [PMID: 20186505 DOI: 10.1007/s12185-010-0530-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 01/31/2023]
Abstract
During these past 5 years several studies have provided major genetic insights into the pathogenesis of the so-called classical myeloproliferative neoplasms (MPNs): polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The discovery of the JAK2V617F mutation first, then of the JAK2 exon 12 and MPLW515 mutations, have modified the understanding of these diseases, their diagnosis, and management. Now it is established that almost 100% of PV patients present a JAK2 mutation. Nearly 60% of ET patients and 50% of patients with PMF have the JAK2V617F mutation. The MPLW515 mutations are also present in a small proportion of ET and PMF patients. These mutations are oncogenic events that cause these disorders; however, they do not explain the heterogeneity of the entities in which they occur. Genetic defects have not been yet identified in around 40% of ET and PMF. There are likely additional somatic genetic factors important for the MPN phenotype like the recently described TET2, ASXL1, and CBL mutations. Moreover, polymorphisms in the JAK2 gene have been recently described as associated with MPN. Additional studies of large cohorts are required to dissect the genetic events in MPNs and the mechanisms of these oncogenic cooperations.
Collapse
|
37
|
Ferguson LR, Han DY, Fraser AG, Huebner C, Lam WJ, Morgan AR, Duan H, Karunasinghe N. Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn's disease in a New Zealand population. Mutat Res 2010; 690:108-15. [PMID: 20109474 DOI: 10.1016/j.mrfmmm.2010.01.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/08/2010] [Accepted: 01/19/2010] [Indexed: 02/07/2023]
Abstract
The Signal Transducers and Activators of Transcription (STAT)-Janus kinase (JAK) pathway controls signal transduction between cell surface receptors and the nucleus. Two members of that pathway, STAT3 and JAK2, enhanced the risk of Crohn's disease (CD) in recent genome-wide association studies. We replicated these findings in a New Zealand Caucasian case-control cohort, by genotyping two single nucleotide polymorphisms (SNPs) in STAT3 (rs744166(G>A) and rs3816769(C>T)) and rs10758669(A>C) in JAK2, in 302 CD patients and 382 controls. For STAT3, there was a significant decrease in the frequency of the G allele of rs744166 and the C allele of rs3816769 in CD patients as compared with controls (OR=0.76, 95% CI=0.61-0.95, p=0.013; OR=0.71, 95% CI=0.56-0.89, p=0.003). For the JAK2 rs10758669 polymorphism, the homozygous C/C or heterozygous A/C genotypes increased the risk of having CD as compared with the homozygous A/A (OR=1.76, 95% CI=1.26-2.45 and OR=2.36, 95% CI=1.44-3.86, respectively, p=0.0003). Variant alleles in either gene significantly modified the likelihood of inflammatory disease in a colonic location, and of developing extra-intestinal manifestations. The JAK2 variant also strongly enhanced the risk of ileocolonic disease, with stricturing or ileal/stricturing behaviour, requiring a bowel resection. We further studied a subset of our control population, stratified for JAK2 rs10758669 and/or STAT3 rs3816769 genotype. Carrying either the JAK2 or STAT3 IBD risk allele was associated with significantly enhanced susceptibility to DNA damage, as estimated by comet assays in peripheral blood leukocytes, with or without a subsequent oxidative challenge. That is, both risk alleles enhance genomic instability. The JAK2 SNP is part of a haplotype previously associated with enhanced susceptibility to myeloproliferative neoplasms, but functional consequences of the STAT3 variant had not been previously demonstrated. It will be of interest to follow up CD patients carrying either JAK2 or STAT3 risk alleles for development of further secondary effects, including cancer.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, FM&HS, The University of Auckland, Auckland, New Zealand; Nutrigenomics New Zealand, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Although genome-wide analyses have identified somatic alterations contributing to the pathogenesis of pediatric acute lymphoblastic leukemia (ALL), few studies have identified germline variants conferring risk of this disease. Two reports now provide the first genome-wide glimpse into the role of inherited alleles in ALL pathogenesis.
Collapse
|
39
|
Treviño LR, Yang W, French D, Hunger S, Carroll WL, Devidas M, Willman C, Neale G, Downing J, Raimondi S, Pui CH, Evans WE, Relling MV. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 2009; 41:1001-5. [PMID: 19684603 PMCID: PMC2762391 DOI: 10.1038/ng.432] [Citation(s) in RCA: 379] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/24/2009] [Indexed: 01/02/2023]
Abstract
Using the Affymetrix 500K Mapping array and publicly available genotypes, we identified 18 SNPs whose allele frequency differed significantly(P < 1 x 10(-5)) between pediatric acute lymphoblastic leukemia (ALL) cases (n = 317) and non-ALL controls (n = 17,958). Two SNPs in ARID5B not only differed between ALL and non-ALL groups (rs10821936, P = 1.4 x 10(-15), odds ratio (OR) = 1.91; rs10994982, P = 5.7 x 10(-9), OR = 1.62) but also distinguished B-hyperdiploid ALL from other subtypes (rs10821936, P = 1.62 x 10(-5), OR = 2.17; rs10994982, P = 0.003, OR 1.72). These ARID5B SNPs also distinguished B-hyperdiploid ALL from other subtypes in an independent validation cohort (n = 124 children with ALL; P = 0.003 and P = 0.0008, OR 2.45 and 2.86, respectively) and were associated with methotrexate accumulation and gene expression pattern in leukemic lymphoblasts. We conclude that germline variants affect susceptibility to, and characteristics of, specific ALL subtypes.
Collapse
MESH Headings
- Alleles
- Antimetabolites, Antineoplastic/metabolism
- Antimetabolites, Antineoplastic/therapeutic use
- Case-Control Studies
- Child
- Child, Preschool
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 7
- Cohort Studies
- DNA-Binding Proteins/genetics
- Dopa Decarboxylase/genetics
- Gene Dosage
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Frequency
- Genetic Predisposition to Disease
- Genetic Variation
- Genome-Wide Association Study
- Germ Cells
- Germ-Line Mutation
- Haplotypes
- Humans
- Ikaros Transcription Factor/genetics
- Linkage Disequilibrium
- Methotrexate/metabolism
- Methotrexate/therapeutic use
- Odds Ratio
- Oncogene Proteins, Fusion/genetics
- Polyglutamic Acid/metabolism
- Polymorphism, Single Nucleotide
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Probability
- Reproducibility of Results
- Risk Factors
- Trans-Activators
- Transcription Factors/genetics
- White People/genetics
Collapse
Affiliation(s)
| | - Wenjian Yang
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | | | | | | | | | | | - James Downing
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | - Ching-Hon Pui
- St. Jude Children’s Research Hospital, Memphis TN, USA
| | | | | |
Collapse
|
40
|
Vannucchi AM, Masala G, Antonioli E, Chiara Susini M, Guglielmelli P, Pieri L, Maggi L, Caini S, Palli D, Bogani C, Ponziani V, Pancrazzi A, Annunziato F, Bosi A. Increased Risk of Lymphoid Neoplasms in Patients with Philadelphia Chromosome–Negative Myeloproliferative Neoplasms. Cancer Epidemiol Biomarkers Prev 2009; 18:2068-73. [DOI: 10.1158/1055-9965.epi-09-0353] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Novara F, Beri S, Bernardo ME, Bellazzi R, Malovini A, Ciccone R, Cometa AM, Locatelli F, Giorda R, Zuffardi O. Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood. Hum Genet 2009; 126:511-20. [PMID: 19484265 PMCID: PMC2762534 DOI: 10.1007/s00439-009-0689-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/19/2009] [Indexed: 12/03/2022]
Abstract
Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands.
Collapse
Affiliation(s)
- Francesca Novara
- Biologia Generale e Genetica Medica, Università degli Studi di Pavia, Via Forlanini, 14, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|