1
|
Hansen J, von Melchner H, Wurst W. Mutant non-coding RNA resource in mouse embryonic stem cells. Dis Model Mech 2021; 14:14/2/dmm047803. [PMID: 33729986 PMCID: PMC7875499 DOI: 10.1242/dmm.047803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Gene trapping is a high-throughput approach that has been used to introduce insertional mutations into the genome of mouse embryonic stem (ES) cells. It is performed with generic gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA sequence tag for the rapid identification of the disrupted gene. Large-scale international efforts assembled a gene trap library of 566,554 ES cell lines with single gene trap integrations distributed throughout the genome. Here, we re-investigated this unique library and identified mutations in 2202 non-coding RNA (ncRNA) genes, in addition to mutations in 12,078 distinct protein-coding genes. Moreover, we found certain types of gene trap vectors preferentially integrating into genes expressing specific long non-coding RNA (lncRNA) biotypes. Together with all other gene-trapped ES cell lines, lncRNA gene-trapped ES cell lines are readily available for functional in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jens Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Harald von Melchner
- Department of Molecular Hematology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany .,Technische Universität München-Weihenstephan, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, D-81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, D-81377 München, Germany
| |
Collapse
|
2
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
3
|
Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis. PLoS Comput Biol 2016; 12:e1005074. [PMID: 27632082 PMCID: PMC5025164 DOI: 10.1371/journal.pcbi.1005074] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/22/2016] [Indexed: 02/05/2023] Open
Abstract
Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics. Infectious diseases result in millions of deaths and cost billions of dollars annually. Hence, there is urgency for developing more innovative and effective antiviral therapeutics. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses. We herein reported over 700 candidate cellular genes, over 20% of which were independently selected by multiple viruses in one or more cell types. Using systems biology-based analysis, we found that host genes associated with viral replication tended to occupy central hubs in the human protein interactome and to be ancient genes with low evolutionary rates, compared to non-virus-associated genes. Cell cycle phase-specific sub-network analysis showed that host cell cycle program played important roles during viral replication by regulating specific cell cycle phases. Moreover, we presented novel evidences to suggest that host genes supporting viral replication were frequently implicated in Mendelian and orphan diseases, or played critical roles in cancer. Importantly, we found approximately 110 new putative druggable antiviral targets by merging genome-wide gene-trap insertional mutagenesis, drug-gene network, and bioinformatics data. Furthermore, we have demonstrated the use of a computable representation of genetic testing to effectively identify new potential antiviral indications for existing drugs. In summary, this study presents new and important methodologies for developing broadly active antiviral therapeutics.
Collapse
|
4
|
Taylor J, Woodcock S. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way? ACTA ACUST UNITED AC 2015; 20:1040-51. [PMID: 26048892 DOI: 10.1177/1087057115590069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Abstract
For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery.
Collapse
Affiliation(s)
- Jessica Taylor
- Global HTS Centre, Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Simon Woodcock
- Global HTS Centre, Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| |
Collapse
|
5
|
Elert-Dobkowska E, Hennings JC, Hübner CA, Beetz C. Multiplex ligation-dependent probe amplification for identification of correctly targeted murine embryonic stem cell clones. Anal Biochem 2015; 474:35-7. [PMID: 25615417 DOI: 10.1016/j.ab.2015.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
Following locus-specific genome editing of mouse embryonic stem cells (ESCs), the identification of correctly targeted clones remains a challenge. We applied multiplex ligation-dependent probe amplification (MLPA) to screen for homologous recombination-based genomic integration of a knockout construct in which part of a gene is deleted. All candidate ESCs thereby identified were subsequently validated by conventional methods. Thus, MLPA represents a highly reliable as well as cost- and time-efficient alternative to currently applied methods such as Southern blotting and polymerase chain reaction (PCR)-based approaches. It is also applicable to knockin recombination strategies and compatible with the CRISPR/Cas9 system and other genome editing strategies.
Collapse
Affiliation(s)
- Ewelina Elert-Dobkowska
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany; Department of Genetics, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | | | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
6
|
Abstract
We have employed gene-trap insertional mutagenesis to identify candidate genes whose disruption confer phenotypic resistance to lytic infection, in independent studies using 12 distinct viruses and several different cell lines. Analysis of >2,000 virus-resistant clones revealed >1,000 candidate host genes, approximately 20 % of which were disrupted in clones surviving separate infections with 2–6 viruses. Interestingly, there were 83 instances in which the insertional mutagenesis vector disrupted transcripts encoding H/ACA-class and C/D-class small nucleolar RNAs (SNORAs and SNORDs, respectively). Of these, 79 SNORAs and SNORDs reside within introns of 29 genes (predominantly protein-coding), while 4 appear to be independent transcription units. siRNA studies targeting candidate SNORA/Ds provided independent confirmation of their roles in infection when tested against cowpox virus, Dengue Fever virus, influenza A virus, human rhinovirus 16, herpes simplex virus 2, or respiratory syncytial virus. Significantly, eight of the nine SNORA/Ds targeted with siRNAs enhanced cellular resistance to multiple viruses suggesting widespread involvement of SNORA/Ds in virus–host interactions and/or virus-induced cell death.
Collapse
|
7
|
Dziuba N, Ferguson MR, O'Brien WA, Sanchez A, Prussia AJ, McDonald NJ, Friedrich BM, Li G, Shaw MW, Sheng J, Hodge TW, Rubin DH, Murray JL. Identification of cellular proteins required for replication of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 2012; 28:1329-39. [PMID: 22404213 DOI: 10.1089/aid.2011.0358] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation.
Collapse
Affiliation(s)
- Natallia Dziuba
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Monique R. Ferguson
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - William A. O'Brien
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Zirus, Inc., Buford, Georgia
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Anthony Sanchez
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Andrew J. Prussia
- Department of Chemistry, Emory University, Atlanta, Georgia
- Emory Institute for Drug Discovery (EIDD), Emory University, Atlanta, Georgia
| | | | - Brian M. Friedrich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Guangyu Li
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Michael W. Shaw
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jinsong Sheng
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | | | - Donald H. Rubin
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
- Research Medicine, VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | | |
Collapse
|
8
|
Effective gene trapping mediated by Sleeping Beauty transposon. PLoS One 2012; 7:e44123. [PMID: 22952894 PMCID: PMC3432063 DOI: 10.1371/journal.pone.0044123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/30/2012] [Indexed: 01/14/2023] Open
Abstract
Gene trapping is a high-throughput approach to elucidate gene functions by disrupting and recapitulating expression of genes in a target genome. A number of transposon-based gene-trapping systems are developed for mutagenesis in cells and model organisms, but there is still much room for the improvement of their efficiency in gene disruption and mutation. Herein, a gene-trapping system mediated by Sleeping Beauty (SB) transposon was developed by inclusion of three functional cassettes. The mutation cassette can abrogate the splice of trapped genes and terminate their translation. Once an endogenous gene is captured, the finding cassette independently drives the translation of reporter gene in HeLa cells and zebrafish embryos. The efficiency cassette controls the remobilization of integrated traps through inducible expression of SB gene. Analysis of transposon-genome junctions indicate that most of trap cassettes are integrated into an intron without an obvious 3′ bias. The transcription of trapped genes was abrogated by alternative splicing of the mutation cassette. In addition, integrated transposons can be induced to excise from their original insertion sites. Furthermore, the Cre/LoxP system was introduced to delete the efficiency cassette for stabilization of gene interruption and bio-safety. Thus, this gene-trap vector is an alternative and effective tool for the capture and disruption of endogenous genes in vitro and in vivo.
Collapse
|
9
|
Murray JL, McDonald NJ, Sheng J, Shaw MW, Hodge TW, Rubin DH, O'Brien WA, Smee DF. Inhibition of influenza A virus replication by antagonism of a PI3K-AKT-mTOR pathway member identified by gene-trap insertional mutagenesis. Antivir Chem Chemother 2012; 22:205-15. [PMID: 22374988 DOI: 10.3851/imp2080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Host genes serving potential roles in virus replication may be exploited as novel antiviral targets. METHODS Small interfering RNA (siRNA)-mediated knockdown of host gene expression was used to validate candidate genes in screens against six unrelated viruses, most importantly influenza. A mouse model of influenza A virus infection was used to evaluate the efficacy of a candidate FDA-approved drug identified in the screening effort. RESULTS Several genes in the PI3K-AKT-mTOR pathway were found to support broad-spectrum viral replication in vitro by RNA interference. This led to the discovery that everolimus, an mTOR inhibitor, showed in vitro antiviral activity against cowpox, dengue type 2, influenza A, rhino- and respiratory syncytial viruses. In a lethal mouse infection model of influenza A (H1N1 and H5N1) virus infection, everolimus treatment (1 mg/kg/day) significantly delayed death but could not prevent mortality. Fourteen days of treatment was more beneficial in delaying the time to death than treatment for seven days. Pathological findings in everolimus-treated mice showed reduced lung haemorrhage and lung weights in response to infection. CONCLUSIONS These results provide proof of concept that cellular targets can be identified by gene knockout methods, and highlight the importance of the PI3K-AKT-mTOR pathway in supporting viral infections.
Collapse
|
10
|
Fussenegger M, Moser S, Bailey JE. Regulated multicistronic expression technology for mammalian metabolic engineering. Cytotechnology 2011; 28:111-26. [PMID: 19003413 PMCID: PMC3449837 DOI: 10.1023/a:1008037916674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Contemporary basic research is rapidly revealing increasingly complex molecular regulatory networks which are often interconnected via key signal integrators. These connections among regulatory and catalytic networks often frustrate bioengineers as promising metabolic engineering strategies are bypassed by compensatory metabolic responses or cause unexpected, undesired outcomes such as apoptosis, product protein degradation or inappropriate post- translational modification. Therefore, for metabolic engineering to achieve greater success in mammalian cell culture processes and to become important for future applications such as gene therapy and tissue engineering, this technology must be enhanced to allow simultaneous, in cases conditional, reshaping of metabolic pathways to access difficult-to-attain cell states. Recent advances in this new territory of multigene metabolic engineering are intimately linked to the development of multicistronic expression technology which allows the simultaneous, and in some cases, regulated expression of several genes in mammalian cells. Here we review recent achievements in multicistronic expression technology in view of multigene metabolic engineering.
Collapse
Affiliation(s)
- M Fussenegger
- Swiss Federal Institute of Technology, ETH Zurich, Institute of Biotechnology, CH-8093, Zurich, Switzerland
| | | | | |
Collapse
|
11
|
Tchoubrieva E, Kalinna B. Advances in mRNA silencing and transgene expression: a gateway to functional genomics in schistosomes. Biotechnol Genet Eng Rev 2011; 26:261-80. [PMID: 21415884 DOI: 10.5661/bger-26-261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The completion of the WHO Schistosoma Genome Project in 2008, although not fully annotated, provides a golden opportunity to actively pursue fundamental research on the parasites genome. This analysis will aid identification of targets for drugs, vaccines and markers for diagnostic tools as well as for studying the biological basis of drug resistance, infectivity and pathology. For the validation of drug and vaccine targets, the genomic sequence data is only of use if functional analyses can be conducted (in the parasite itself). Until recently, gene manipulation approaches had not been seriously addressed. This situation is now changing and rapid advances have been made in gene silencing and transgenesis of schistosomes.
Collapse
Affiliation(s)
- Elissaveta Tchoubrieva
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, 3010 VIC, Australia
| | | |
Collapse
|
12
|
Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis 2010; 48:73-85. [PMID: 20095055 DOI: 10.1002/dvg.20594] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research.
Collapse
Affiliation(s)
- Chunmei Guan
- College of Life Science, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
13
|
Abstract
Gene trapping in mouse embryonic stem (ES) cells is an efficient method for the mutagenesis of the mammalian genome. Insertion of a gene trap vector disrupts gene function, reports gene expression, and provides a convenient tag for the identification of the insertion site. The trap vector can be delivered to ES cells by electroporation of a plasmid, by retroviral infection, or by transposon-mediated insertion. Recent developments in trapping technology involve the utilization of site-specific recombination sites, which allow the induced modification of trap alleles in vitro and in vivo. Gene trapping strategies have also been successfully developed to screen for genes that are acting in specific biological pathways. In this chapter, we review different applications of gene trapping, and we provide detailed experimental protocols for gene trapping in ES cells by retroviral and transposon gene trap vectors.
Collapse
Affiliation(s)
- Roland H Friedel
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
14
|
Abstract
Gene trapping is a technology originally developed for the simultaneous identification and mutation of genes by random integration in embryonic stem (ES) cells. While gene trapping was developed before efficient and high-throughput gene targeting, a significant proportion of the publically available mutant ES cell lines and mice were generated through a number of large-scale gene trapping initiatives. Moreover, elements of gene trap vectors continue to be incorporated into gene targeting vectors as a means to increase the efficiency of homologous recombination. Here, we review the current state of gene trapping technology and the applications of specific types of gene trap vector. As a component of this analysis, we consider the behavior of specific vector types both from the perspective of their application and how they can inform our annotation of the mammalian transcriptome. We consider the utility of gene trap vectors as tools for cell-based expression analysis, targeted screening in embryonic differentiation, and for use in cell lines derived from different lineages.
Collapse
Affiliation(s)
- Joshua M Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
15
|
De-Zolt S, Altschmied J, Ruiz P, von Melchner H, Schnütgen F. Gene-trap vectors and mutagenesis. Methods Mol Biol 2009; 530:29-47. [PMID: 19266330 DOI: 10.1007/978-1-59745-471-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene trapping can be used to introduce insertional mutations into the genome of mouse embryonic stem cells (ESCs). The method has been adapted for high-throughput use, in an effort to inactivate all genes in the mouse genome. Gene trapping is performed with vectors that simultaneously inactivate and report the expression of the trapped gene and provide a molecular tag for its rapid identification. Gene-trap approaches have been used successfully in the past by both academic and commercial organizations to create libraries of ESC lines harboring mutations in single genes that can be used for making mice. Presently, approximately 70% of the protein-coding genes in the mouse genome have been disrupted by gene-trap insertions. Here we describe the basic methodology used to induce and characterize gene-trap mutations in ESCs.
Collapse
Affiliation(s)
- Silke De-Zolt
- Department of Molecular Hematology, University of Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
16
|
Dyggve-Melchior-Clausen syndrome: chondrodysplasia resulting from defects in intracellular vesicle traffic. Proc Natl Acad Sci U S A 2008; 105:16171-6. [PMID: 18852472 DOI: 10.1073/pnas.0804259105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dyggve-Melchior-Clausen syndrome and Smith-McCort dysplasia are recessive spondyloepimetaphyseal dysplasias caused by loss-of-function mutations in dymeclin (Dym), a gene with previously unknown function. Here we report that Dym-deficient mice display defects in endochondral bone formation similar to that of Dyggve-Melchior-Clausen syndrome and Smith-McCort dysplasia, demonstrating functional conservation between the two species. Dym-mutant cells display multiple defects in vesicle traffic, as evidenced by enhanced dispersal of Golgi markers in interphase cells, delayed Golgi reassembly after brefeldin A treatment, delayed retrograde traffic of an endoplasmic reticulum-targeted Shiga toxin B subunit, and altered furin trafficking; and the Dym protein associates with multiple cellular proteins involved in vesicular traffic. These results establish dymeclin as a novel protein involved in Golgi organization and intracellular vesicle traffic and clarify the molecular basis for chondrodysplasia in mice and men.
Collapse
|
17
|
Yamamura KI, Araki K. Gene trap mutagenesis in mice: new perspectives and tools in cancer research. Cancer Sci 2008; 99:1-6. [PMID: 17877761 PMCID: PMC11159874 DOI: 10.1111/j.1349-7006.2007.00611.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/07/2007] [Indexed: 11/27/2022] Open
Abstract
The complete human DNA sequence of the human genome was published in 2004 and we entered the postgenomic era. However, many studies showed that gene function is much more complex than we expected, and that mutation of disease genes does not give any clue for molecular mechanisms for disease development. Since the first report on gene knockout mice in 1989, knockout mice have been shown to be a powerful tool for functional genomics and for the dissection of developmental processes in human diseases. In accordance with this successful application of knockout mice, three major mouse knockout programs are now underway worldwide, to mutate all protein-encoding genes in mouse embryonic stem cells using a combination of gene trapping and gene targeting. We developed the exchangeable gene trap method suitable for large scale mutagenesis in mice. In this method we can produce null mutation and post-insertional modification, enabling replacement of the marker gene with a gene of interest and conditional knockout. We herein discuss the effect of this gene-driven type approach for cancer research, especially for finding the genes that are related to cancer, but are paid little attention in hypothesis-driven cancer research.
Collapse
Affiliation(s)
- Ken-ichi Yamamura
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | | |
Collapse
|
18
|
Mátés L, Izsvák Z, Ivics Z. Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 2007; 8 Suppl 1:S1. [PMID: 18047686 PMCID: PMC2106849 DOI: 10.1186/gb-2007-8-s1-s1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.
Collapse
Affiliation(s)
- Lajos Mátés
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str, 13092 Berlin, Germany
| | | | | |
Collapse
|
19
|
Roma G, Sardiello M, Cobellis G, Cruz P, Lago G, Sanges R, Stupka E. The UniTrap resource: tools for the biologist enabling optimized use of gene trap clones. Nucleic Acids Res 2007; 36:D741-6. [PMID: 17942430 PMCID: PMC2238955 DOI: 10.1093/nar/gkm825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have developed a comprehensive resource devoted to biologists wanting to optimize the use of gene trap clones in their experiments. We have processed 300 602 such clones from both public and private projects to generate 28 199 ‘UniTraps’, i.e. distinct collections of unambiguous insertions at the same subgenic region of annotated genes. The UniTrap resource contains data relative to 9583 trapped genes, which represent 42.3% of the mouse gene content. Among the trapped genes, 7 728 have a counterpart in humans, and 677 are known to be involved in the pathogenesis of human diseases. The aim of this analysis is to provide the wet lab researchers with a comprehensive database and curated tools for (i) identifying and comparing the clones carrying a trap into the genes of interest, (ii) evaluating the severity of the mutation to the protein function in each independent trapping event and (iii) supplying complete information to perform PCR, RT-PCR and restriction experiments to verify the clone and identify the exact point of vector insertion. To share this unique resource with the scientific community, we have designed and implemented a web interface that is freely accessible at http://unitrap.cbm.fvg.it/.
Collapse
Affiliation(s)
- Guglielmo Roma
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino, 111, 80131, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Nord AS, Vranizan K, Tingley W, Zambon AC, Hanspers K, Fong LG, Hu Y, Bacchetti P, Ferrin TE, Babbitt PC, Doniger SW, Skarnes WC, Young SG, Conklin BR. Modeling insertional mutagenesis using gene length and expression in murine embryonic stem cells. PLoS One 2007; 2:e617. [PMID: 17637833 PMCID: PMC1910612 DOI: 10.1371/journal.pone.0000617] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 05/31/2007] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High-throughput mutagenesis of the mammalian genome is a powerful means to facilitate analysis of gene function. Gene trapping in embryonic stem cells (ESCs) is the most widely used form of insertional mutagenesis in mammals. However, the rules governing its efficiency are not fully understood, and the effects of vector design on the likelihood of gene-trapping events have not been tested on a genome-wide scale. METHODOLOGY/PRINCIPAL FINDINGS In this study, we used public gene-trap data to model gene-trap likelihood. Using the association of gene length and gene expression with gene-trap likelihood, we constructed spline-based regression models that characterize which genes are susceptible and which genes are resistant to gene-trapping techniques. We report results for three classes of gene-trap vectors, showing that both length and expression are significant determinants of trap likelihood for all vectors. Using our models, we also quantitatively identified hotspots of gene-trap activity, which represent loci where the high likelihood of vector insertion is controlled by factors other than length and expression. These formalized statistical models describe a high proportion of the variance in the likelihood of a gene being trapped by expression-dependent vectors and a lower, but still significant, proportion of the variance for vectors that are predicted to be independent of endogenous gene expression. CONCLUSIONS/SIGNIFICANCE The findings of significant expression and length effects reported here further the understanding of the determinants of vector insertion. Results from this analysis can be applied to help identify other important determinants of this important biological phenomenon and could assist planning of large-scale mutagenesis efforts.
Collapse
Affiliation(s)
- Alex S. Nord
- Department of Medicine, MacDonald Medical Research Laboratories, University of California at Los Angeles, California, United States of America
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California at San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (AN); (BC)
| | - Karen Vranizan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Functional Genomics Laboratory, University of California at Berkeley, California, United States of America
| | - Whittemore Tingley
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Department of Medicine, University of California at San Francisco, California, United States of America
| | - Alexander C. Zambon
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Department of Medicine, University of California at San Francisco, California, United States of America
| | - Kristina Hanspers
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Department of Medicine, University of California at San Francisco, California, United States of America
| | - Loren G. Fong
- Department of Medicine, MacDonald Medical Research Laboratories, University of California at Los Angeles, California, United States of America
| | - Yan Hu
- Department of Medicine, MacDonald Medical Research Laboratories, University of California at Los Angeles, California, United States of America
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California at San Francisco, California, United States of America
| | - Thomas E. Ferrin
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California at San Francisco, California, United States of America
| | - Patricia C. Babbitt
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California at San Francisco, California, United States of America
| | - Scott W. Doniger
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Stephen G. Young
- Department of Medicine, MacDonald Medical Research Laboratories, University of California at Los Angeles, California, United States of America
| | - Bruce R. Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Department of Medicine, University of California at San Francisco, California, United States of America
- Department of Molecular and Cellular Pharmacology, University of California at San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (AN); (BC)
| |
Collapse
|
21
|
Kim SO, Ha SD, Lee S, Stanton S, Beutler B, Han J. Mutagenesis by retroviral insertion in chemical mutagen-generated quasi-haploid mammalian cells. Biotechniques 2007; 42:493-501. [PMID: 17489237 DOI: 10.2144/000112390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diploidy is a major obstacle to the mutagenic analysis of function in cultured mammalian cells. Here, we show that 6–8 rounds of chemical mutagenesis generates quasi-haploid cells that can be used as targets for insertional mutagenesis using a specially designed retroviral vector that permits rapid identification of disrupted genes in each cell that bears a phenotype of interest. The utility of combined chemical and insertional mutagenesis is illustrated by the identification of novel host genes that are required for macrophage sensitivity to anthrax lethal factor.
Collapse
Affiliation(s)
- Sung O Kim
- Department of Microbiology, University of Western Ontario, London, ON, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Qu S, Rinehart C, Wu HH, Wang SE, Carter B, Xin H, Kotlikoff M, Arteaga CL. Gene targeting of ErbB3 using a Cre-mediated unidirectional DNA inversion strategy. Genesis 2007; 44:477-86. [PMID: 16991114 DOI: 10.1002/dvg.20243] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recombinase-mediated unidirectional DNA inversion and transcriptional arrest is a promising strategy for high throughput conditional mutagenesis in the mouse. Banks of mouse embryonic stem cells with defined, transcriptionally silent insertions that can be activated by Cre recombinase would take advantage of existing transgenic Cre lines to rapidly produce hundreds of lineage specific and temporally controlled knockout mice for each gene, thereby introducing significant parallelism to functional gene annotation. However, the extent to which this strategy results in effective gene knockout has not been established. To test the feasibility of this strategy we targeted ErbB3, a member of the ErbB family of tyrosine kinase receptors, using this strategy. Insertion of a reversed "flipflox" vector consisting of a gene inactivation cassette (GI) and an internal ribosome entry site (IRES)-GFP reporter into intron 1 of ErbB3 was transcriptionally silent and did not affect ErbB3 expression. Crosses with ubiquitous and lineage specific Cre recombinase expressing lines permanently inverted the inserted GI cassette and blocked ErbB3 expression. Unidirectional DNA inversion by in vivo recombination is an effective strategy for targeted or ubiquitous gene knockout.
Collapse
Affiliation(s)
- Shimian Qu
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6838, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Our ability to genetically manipulate the mouse has had a great impact on medical research over the last few decades. Mouse genetics has developed into a powerful tool for dissecting the genetic causes of human disease and identifying potential targets for pharmaceutical intervention. With the recent sequencing of the human and mouse genomes, a large number of novel genes have been identified whose function in normal and disease physiology remains largely unknown. Government-sponsored multinational efforts are underway to analyze the function of all mouse genes through mutagenesis and phenotyping, making the mouse the interpreter of the human genome. A number of technologies are available for the generation of mutant mice, including gene targeting, gene trapping and transposon, chemical or radiation-induced mutagenesis. In this chapter, we review the current status of gene trapping technology, including its applicability to conditional mutagenesis.
Collapse
Affiliation(s)
- A Abuin
- Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | |
Collapse
|
24
|
Abstract
Over the past years new vectors and methodologies have been developed to carry out large-scale genome-wide insertional mutagenesis screens in the mouse. Gene trapping, the most commonly used technique, is based on the insertion of a retroviral- or plasmid-based vector into a gene, resulting in a loss-of-function mutation, while simultaneously reporting its expression pattern and providing a molecular tag to facilitate cloning. The discovery of vertebrate DNA transposons in the mouse and recent improvements has also led to their increased use in insertional mutagenesis screens. Several public resources have been set-up recently by the academic community to distribute information and materials generated from these large-scale screens. These new resources should accelerate the study and understanding of biological and developmental processes.
Collapse
Affiliation(s)
- Christopher S Raymond
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
25
|
Lin Q, Donahue SL, Moore-Jarrett T, Cao S, Osipovich AB, Ruley HE. Mutagenesis of diploid mammalian genes by gene entrapment. Nucleic Acids Res 2006; 34:e139. [PMID: 17062627 PMCID: PMC1635309 DOI: 10.1093/nar/gkl728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The present study describes a genome-wide method for biallelic mutagenesis in mammalian cells. Novel poly(A) gene trap vectors, which contain features for direct cloning vector–cell fusion transcripts and for post-entrapment genome engineering, were used to generate a library of 979 mutant ES cells. The entrapment mutations generally disrupted gene expression and were readily transmitted through the germline, establishing the library as a resource for constructing mutant mice. Cells homozygous for most entrapment loci could be isolated by selecting for enhanced expression of an inserted neomycin-resistance gene that resulted from losses of heterozygosity (LOH). The frequencies of LOH measured at 37 sites in the genome ranged from 1.3 × 10−5 to 1.2 × 10−4 per cell and increased with increasing distance from the centromere, implicating mitotic recombination in the process. The ease and efficiency of obtaining homozygous mutations will (i) facilitate genetic studies of gene function in cultured cells, (ii) permit genome-wide studies of recombination events that result in LOH and mediate a type of chromosomal instability important in carcinogenesis, and (iii) provide new strategies for phenotype-driven mutagenesis screens in mammalian cells.
Collapse
Affiliation(s)
| | | | | | | | | | - H. Earl Ruley
- To whom correspondence should be addressed. Tel: +615 343 1379; Fax: +615 343 7392;
| |
Collapse
|
26
|
Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 2006; 123:513-29. [PMID: 16859902 DOI: 10.1016/j.mod.2006.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 12/11/2022]
Abstract
We report a novel gene tagging, identification and mutagenicity ('gene-breaking') method for the zebrafish, Danio rerio. This modular approach consists of two distinct and separable molecular cassettes. The first is a gene-finding cassette. In this study, we employed a 3' gene-tagging approach that selectively 'traps' transcripts regardless of expression status, and we show that this cassette identifies both known and novel endogenous transcripts in transgenic zebrafish. The second is a transcriptional termination mutagenicity cassette assembled from a combination of a splice acceptor and polyadenylation signal to disrupt tagged transcripts upon integration into intronic sequence. We identified both novel and conserved loci as linked phenotypic mutations using this gene-breaking strategy, generating molecularly null mutations in both larval lethal and adult viable loci. We show that the Histone 2a family member z (H2afza) variant is essential for larval development through the generation of a lethal locus with a truncation of conserved carboxy-terminal residues in the protein. In principle this gene-breaking strategy is scalable for functional genomics screens and can be used in Sleeping Beauty transposon and other gene delivery systems in the zebrafish.
Collapse
Affiliation(s)
- Sridhar Sivasubbu
- University of Minnesota, Department of Genetics, Cell Biology and Development, Arnold and Mabel Beckman Center for Transposon Research, 321 Church St SE, 6-160 Jackson Hall, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nord AS, Chang PJ, Conklin BR, Cox AV, Harper CA, Hicks GG, Huang CC, Johns SJ, Kawamoto M, Liu S, Meng EC, Morris JH, Rossant J, Ruiz P, Skarnes WC, Soriano P, Stanford WL, Stryke D, von Melchner H, Wurst W, Yamamura KI, Young SG, Babbitt PC, Ferrin TE. The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res 2006; 34:D642-8. [PMID: 16381950 PMCID: PMC1347459 DOI: 10.1093/nar/gkj097] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gene trapping is a method of generating murine embryonic stem (ES) cell lines containing insertional mutations in known and novel genes. A number of international groups have used this approach to create sizeable public cell line repositories available to the scientific community for the generation of mutant mouse strains. The major gene trapping groups worldwide have recently joined together to centralize access to all publicly available gene trap lines by developing a user-oriented Website for the International Gene Trap Consortium (IGTC). This collaboration provides an impressive public informatics resource comprising ∼45 000 well-characterized ES cell lines which currently represent ∼40% of known mouse genes, all freely available for the creation of knockout mice on a non-collaborative basis. To standardize annotation and provide high confidence data for gene trap lines, a rigorous identification and annotation pipeline has been developed combining genomic localization and transcript alignment of gene trap sequence tags to identify trapped loci. This information is stored in a new bioinformatics database accessible through the IGTC Website interface. The IGTC Website () allows users to browse and search the database for trapped genes, BLAST sequences against gene trap sequence tags, and view trapped genes within biological pathways. In addition, IGTC data have been integrated into major genome browsers and bioinformatics sites to provide users with outside portals for viewing this data. The development of the IGTC Website marks a major advance by providing the research community with the data and tools necessary to effectively use public gene trap resources for the large-scale characterization of mammalian gene function.
Collapse
Affiliation(s)
- Alex S. Nord
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
- Wellcome Trust Sanger InstituteHinxton, Cambridge CB10 1SA, UK
| | - Patricia J. Chang
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Bruce R. Conklin
- Gladstone Institute of Cardiovascular Disease, University of California San Francisco Department of Medicine and Pharmacology1650 Owens Street, San Francisco, CA 94158, USA
| | - Antony V. Cox
- Wellcome Trust Sanger InstituteHinxton, Cambridge CB10 1SA, UK
| | - Courtney A. Harper
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Geoffrey G. Hicks
- Manitoba Institute of Cell Biology, University of Manitoba675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Conrad C. Huang
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Susan J. Johns
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Michiko Kawamoto
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Songyan Liu
- Manitoba Institute of Cell Biology, University of Manitoba675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Elaine C. Meng
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - John H. Morris
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Janet Rossant
- The Hospital for Sick ChildrenToronto, Ontario, Canada M5G 1X8
| | - Patricia Ruiz
- Center for Cardiovascular Research, Charité Universitätsmedizin and Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics14195 Berlin, Germany
| | | | - Philippe Soriano
- Fred Hutchinson Cancer Research Center1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | | - Doug Stryke
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Harald von Melchner
- Department of Molecular Hematology, University of Frankfurt Medical School60590 Frankfurt am Main, Germany
| | - Wolfgang Wurst
- GSF Research Center for Environment and Health, Institute for Developmental GeneticsIngolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Ken-ichi Yamamura
- Institute of Molecular Embryology and Genetics, Kumamoto University2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Stephen G. Young
- University of CaliforniaLos Angeles, 650 Charles E. Young Dr So., Los Angeles, CA 90095, USA
| | - Patricia C. Babbitt
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | - Thomas E. Ferrin
- University of CaliforniaSan Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
- To whom correspondence should be addressed.
| |
Collapse
|
28
|
Abstract
Gene trapping in embryonic stem cells (ESCs) generates random, sequence-tagged insertional mutations, which can often report the gene expression pattern of the mutated gene. This mutagenesis strategy has often been coupled to expression or function-based assays in gene discovery screens. The availability of the mouse genome sequence has shifted gene trapping from a gene discovery platform to a high-throughput mutagenesis platform. At present, a concerted worldwide effort is underway to develop a library of loss-of-function mutations in all mouse genes. The International Gene Trap Consortium (IGTC) is leading the way by making a first pass of the genome by random mutagenesis before a high-throughput gene targeting program takes over. In this chapter, we provide a methods guidebook to exploring and using the IGTC resource, explain the different kinds of vectors and insertions that reside in the different libraries, and provide advice and methods for investigators to design novel expression-based "cottage industry" screens.
Collapse
Affiliation(s)
- William L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le Doux JM, Shaw MW, Luo CC, Lippincott-Schwartz J, Sanchez A, Rubin DH, Hodge TW. Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 2005; 79:11742-51. [PMID: 16140752 PMCID: PMC1212642 DOI: 10.1128/jvi.79.18.11742-11751.2005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rab proteins and their effectors facilitate vesicular transport by tethering donor vesicles to their respective target membranes. By using gene trap insertional mutagenesis, we identified Rab9, which mediates late-endosome-to-trans-Golgi-network trafficking, among several candidate host genes whose disruption allowed the survival of Marburg virus-infected cells, suggesting that Rab9 is utilized in Marburg replication. Although Rab9 has not been implicated in human immunodeficiency virus (HIV) replication, previous reports suggested that the late endosome is an initiation site for HIV assembly and that TIP47-dependent trafficking out of the late endosome to the trans-Golgi network facilitates the sorting of HIV Env into virions budding at the plasma membrane. We examined the role of Rab9 in the life cycles of HIV and several unrelated viruses, using small interfering RNA (siRNA) to silence Rab9 expression before viral infection. Silencing Rab9 expression dramatically inhibited HIV replication, as did silencing the host genes encoding TIP47, p40, and PIKfyve, which also facilitate late-endosome-to-trans-Golgi vesicular transport. In addition, silencing studies revealed that HIV replication was dependent on the expression of Rab11A, which mediates trans-Golgi-to-plasma-membrane transport, and that increased HIV Gag was sequestered in a CD63+ endocytic compartment in a cell line stably expressing Rab9 siRNA. Replication of the enveloped Ebola, Marburg, and measles viruses was inhibited with Rab9 siRNA, although the non-enveloped reovirus was insensitive to Rab9 silencing. These results suggest that Rab9 is an important cellular target for inhibiting diverse viruses and help to define a late-endosome-to-plasma-membrane vesicular transport pathway important in viral assembly.
Collapse
Affiliation(s)
- James L Murray
- National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Over the past two decades, molecular genetic studies have enabled a common conceptual framework for the development and basic function of the nervous system. These studies, and the pioneering efforts of mouse geneticists and neuroscientists to identify and clone genes for spontaneous mouse mutants, have provided a paradigm for understanding complex processes of the vertebrate brain. Gene cloning for human brain malformations and degenerative disorders identified other important central nervous system (CNS) genes. However, because many debilitating human disorders are genetically complex, phenotypic screens are difficult to design. This difficulty has led to large-scale, genomic approaches to discover genes that are uniquely expressed in brain circuits and regions that control complex behaviors. In this review, we summarize current phenotype- and genotype-driven approaches to discover novel CNS-expressed genes, as well as current approaches to carry out large-scale, gene-expression screens in the CNS.
Collapse
Affiliation(s)
- Mary E Hatten
- Laboratory of Developmental Neurobiology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
31
|
Forrai A, Robb L. The gene trap resource: a treasure trove for hemopoiesis research. Exp Hematol 2005; 33:845-56. [PMID: 16038776 DOI: 10.1016/j.exphem.2005.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
The laboratory mouse is an invaluable tool for functional gene discovery because of its genetic malleability and a biological similarity to human systems that facilitates identification of human models of disease. A number of mutagenic technologies are being used to elucidate gene function in the mouse. Gene trapping is an insertional mutagenesis strategy that is being undertaken by multiple research groups, both academic and private, in an effort to introduce mutations across the mouse genome. Large-scale, publicly funded gene trap programs have been initiated in several countries with the International Gene Trap Consortium coordinating certain efforts and resources. We outline the methodology of mammalian gene trapping and how it can be used to identify genes expressed in both primitive and definitive blood cells and to discover hemopoietic regulator genes. Mouse mutants with hematopoietic phenotypes derived using gene trapping are described. The efforts of the large-scale gene trapping consortia have now led to the availability of libraries of mutagenized ES cell clones. The identity of the trapped locus in each of these clones can be identified by sequence-based searching via the world wide web. This resource provides an extraordinary tool for all researchers wishing to use mouse genetics to understand gene function.
Collapse
Affiliation(s)
- Ariel Forrai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
32
|
Yamaguchi Y, Ogura S, Ishida M, Karasawa M, Takada S. Gene trap screening as an effective approach for identification of Wnt-responsive genes in the mouse embryo. Dev Dyn 2005; 233:484-95. [PMID: 15778975 DOI: 10.1002/dvdy.20348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we examined whether gene trap methodology, which would be available for systematic identification and functional analysis of genes, is effective for screening of Wnt-responsive genes during mouse development. We screened out two individual clones among 794 gene-trapped embryonic stem cell lines by their in vitro response to WNT-3A proteins. One gene was mainly expressed in the ductal epithelium of several developing organs, including the kidney and the salivary glands, and the other gene was expressed in neural crest cells and the telencephalic flexure. The spatial and temporal expression of these two genes coincided well with that of several Wnt genes. Furthermore, the expression of these two genes was significantly decreased in embryos deficient for Wnts or in cultures of embryonic tissues treated with a Wnt signal inhibitor. These results indicate that the gene trap is an effective method for systematic identification of Wnt-responsive genes during embryogenesis.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| | | | | | | | | |
Collapse
|
33
|
Osipovich AB, Singh A, Ruley HE. Post-entrapment genome engineering: first exon size does not affect the expression of fusion transcripts generated by gene entrapment. Genome Res 2005; 15:428-35. [PMID: 15741512 PMCID: PMC551569 DOI: 10.1101/gr.3258105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene trap mutagenesis in mouse embryonic stem cells has been widely used for genome-wide studies of mammalian gene function. However, while large numbers of genes can be disrupted, individual mutations may suffer from limitations due to the structure and/or placement of targeting vector. To extend the utility of gene trap mutagenesis, replaceable 3' [or poly(A)] gene trap vectors were developed that permit sequences inserted in individual entrapment clones to be engineered by Cre-mediated recombination. 3' traps incorporating different drug resistance genes could be readily exchanged, simply by selecting for the drug-resistance gene of the replacement vector. By substituting different 3' traps, we show that otherwise identical fusion genes containing a large first exon (804 nt) are not expressed at appreciably lower levels than genes expressing small first exons (384 and 151 nt). Thus, size appears to have less effect on the expression and processing of first exons than has been reported for internal exons. Finally, a retroviral poly(A) trap (consisting of a RNA polymerase II promoter, a neomycin-resistance gene, and 5'-splice site) typically produced mutagenized clones in which vector sequences spliced to the 3'-terminal exons of cellular transcription units, suggesting strong selection for fusion transcripts that evade nonsense-mediated decay. The efficient exchange of poly(A) traps should greatly extend the utility of mutant libraries generated by gene entrapment and provides new strategies to study the rules that govern the expression of exons inserted throughout the genome.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | |
Collapse
|
34
|
Cobellis G, Nicolaus G, Iovino M, Romito A, Marra E, Barbarisi M, Sardiello M, Di Giorgio FP, Iovino N, Zollo M, Ballabio A, Cortese R. Tagging genes with cassette-exchange sites. Nucleic Acids Res 2005; 33:e44. [PMID: 15741177 PMCID: PMC552971 DOI: 10.1093/nar/gni045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In an effort to make transgenesis more flexible and reproducible, we developed a system based on novel 5′ and 3′ ‘gene trap’ vectors containing heterospecific Flp recognition target sites and the corresponding ‘exchange’ vectors allowing the insertion of any DNA sequence of interest into the trapped locus. Flp-recombinase-mediated cassette exchange was demonstrated to be highly efficient in our system, even in the absence of locus-specific selection. The feasibility of constructing a library of ES cell clones using our gene trap vectors was tested and a thousand insertion sites were characterized, following electroporation in ES cells, by RACE–PCR and sequencing. We validated the system in vivo for two trapped loci in transgenic mice and demonstrated that the reporter transgenes inserted into the trapped loci have an expression pattern identical to the endogenous genes. We believe that this system will facilitate in vivo studies of gene function and large-scale generation of mouse models of human diseases, caused by not only loss but also gain of function alleles.
Collapse
Affiliation(s)
- Gilda Cobellis
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Giancarlo Nicolaus
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Mariangela Iovino
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Antonio Romito
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Emanuele Marra
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Manlio Barbarisi
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Marco Sardiello
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Francesco P. Di Giorgio
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Nicola Iovino
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| | - Massimo Zollo
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Via P. Castellino111, 80131 Naples, Italy
- Medical Genetics, Department of Pediatrics, Federico II UniversityVia S. Pansini, 5, 80131 Naples, Italy
- To whom correspondence should be addressed. Tel: +39 081 6132207; Fax: +39 081 5790919;
| | - Riccardo Cortese
- Istituto di Ricerche di Biologia Molecolare P. AngelettiVia Pontina km 30,600, 00040 Pomezia, Rome, Italy
| |
Collapse
|
35
|
Discovery of mammalian genes that participate in virus infection. BMC Cell Biol 2004; 5:41. [PMID: 15522117 PMCID: PMC534806 DOI: 10.1186/1471-2121-5-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 11/02/2004] [Indexed: 11/10/2022] Open
Abstract
Background Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. Results Candidate genes required for lytic reovirus infection were identified by tagged sequence mutagenesis, a process that permits rapid identification of genes disrupted by gene entrapment. One hundred fifty-one reovirus resistant clones were selected from cell libraries containing 2 × 105 independently disrupted genes, of which 111 contained mutations in previously characterized genes and functionally anonymous transcription units. Collectively, the genes associated with reovirus resistance differed from genes targeted by random gene entrapment in that known mutational hot spots were under represented, and a number of mutations appeared to cluster around specific cellular processes, including: IGF-II expression/signalling, vesicular transport/cytoskeletal trafficking and apoptosis. Notably, several of the genes have been directly implicated in the replication of reovirus and other viruses at different steps in the viral lifecycle. Conclusions Tagged sequence mutagenesis provides a rapid, genome-wide strategy to identify candidate cellular genes required for virus infection. The candidate genes provide a starting point for mechanistic studies of cellular processes that participate in the virus lifecycle and may provide targets for novel anti-viral therapies.
Collapse
|
36
|
Sheng J, Organ EL, Hao C, Wells KS, Ruley HE, Rubin DH. Mutations in the IGF-II pathway that confer resistance to lytic reovirus infection. BMC Cell Biol 2004; 5:32. [PMID: 15333144 PMCID: PMC517494 DOI: 10.1186/1471-2121-5-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 08/27/2004] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Viruses are obligate intracellular parasites and rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. RESULTS A gene entrapment approach was used to identify candidate cellular genes that affect reovirus infection or virus induced cell lysis. Four of the 111 genes disrupted in clones selected for resistance to infection by reovirus type 1 involved the insulin growth factor-2 (IGF-II) pathway, including: the mannose-6-phosphate/IGF2 receptor (Igf2r), a protease associated with insulin growth factor binding protein 5 (Prss11), and the CTCF transcriptional regulator (Ctcf). The disruption of Ctcf, which encodes a repressor of Igf2, was associated with enhanced Igf2 gene expression. Plasmids expressing either the IGF-II pro-hormone or IGF-II without the carboxy terminal extension (E)-peptide sequence independently conferred high levels of cellular resistance to reovirus infection. Forced IGF-II expression results in a block in virus disassembly. In addition, Ctcf disruption and forced Igf2 expression both enabled cells to proliferate in soft agar, a phenotype associated with malignant growth in vivo. CONCLUSION These results indicate that IGF-II, and by inference other components of the IGF-II signalling pathway, can confer resistance to lytic reovirus infection. This report represents the first use of gene entrapment to identify host factors affecting virus infection. Concomitant transformation observed in some virus resistant cells illustrates a potential mechanism of carcinogenesis associated with chronic virus infection.
Collapse
Affiliation(s)
- Jinsong Sheng
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
| | - Edward L Organ
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chuanming Hao
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, 37232, USA
| | - K Sam Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - H Earl Ruley
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Donald H Rubin
- Research Medicine, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN, USA
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
37
|
Osipovich AB, White-Grindley EK, Hicks GG, Roshon MJ, Shaffer C, Moore JH, Ruley HE. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment. Nucleic Acids Res 2004; 32:2912-24. [PMID: 15155860 PMCID: PMC419606 DOI: 10.1093/nar/gkh604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Hirashima M, Bernstein A, Stanford WL, Rossant J. Gene-trap expression screening to identify endothelial-specific genes. Blood 2004; 104:711-8. [PMID: 15090446 DOI: 10.1182/blood-2004-01-0254] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The endothelial cell is a key cellular component for blood vessel formation. Many signaling receptors expressed in endothelial cells play critical roles in vascular development during embryogenesis. However, downstream response genes required for vascular differentiation are still not clearly identified. Here we describe the development of a protocol for gene-trap expression screening in embryonic stem (ES) cells for endothelial-specific genes. ES cells were differentiated into endothelial cells on an OP9 feeder cell layer in 96-well plates. In a pilot screen, 5 gene-trapped ES cell lines showed an up-regulated expression of the gene trap lacZ reporter out of 864 ES clones screened. One of the trapped genes was endoglin, an endothelial-specific transforming growth factor-beta type III receptor, and another was ASPP1, a p53-binding protein. In vivo expression analysis of the lacZ reporter confirmed that both genes are specifically expressed in endothelial cells during early mouse embryogenesis. Gene-trap expression screening can thus be used to identify early endothelial-specific genes and analyze their function in mice.
Collapse
Affiliation(s)
- Masanori Hirashima
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
39
|
Davis CG. The role of functional genomics in selecting disease targets for antibody-based therapy. Drug Dev Res 2004. [DOI: 10.1002/ddr.10343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Chen WV, Delrow J, Corrin PD, Frazier JP, Soriano P. Identification and validation of PDGF transcriptional targets by microarray-coupled gene-trap mutagenesis. Nat Genet 2004; 36:304-12. [PMID: 14981515 DOI: 10.1038/ng1306] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 01/23/2004] [Indexed: 11/09/2022]
Abstract
We developed a versatile, high-throughput genetic screening strategy by coupling gene mutagenesis and expression profiling technologies. Using a retroviral gene-trap vector optimized for efficient mutagenesis and cloning, we randomly disrupted genes in mouse embryonic stem (ES) cells and amplified them to construct a cDNA microarray. With this gene-trap array, we show that transcriptional target genes of platelet-derived growth factor (PDGF) can be efficiently and reliably identified in physiologically relevant cells and are immediately accessible to genetic studies to determine their in vivo roles and relative contributions to PDGF-regulated developmental processes. The same platform can be used to search for genes of specific biological relevance in a broad array of experimental settings, providing a fast track from gene identification to functional validation.
Collapse
Affiliation(s)
- Weisheng V Chen
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
41
|
Kuhnert F, Stuhlmann H. Identifying early vascular genes through gene trapping in mouse embryonic stem cells. Curr Top Dev Biol 2004; 62:261-81. [PMID: 15522745 DOI: 10.1016/s0070-2153(04)62009-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frank Kuhnert
- Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
42
|
Frank AC, Meyers KA, Welsh IC, O'Brien TP. Development of an enhanced GFP-based dual-color reporter to facilitate genetic screens for the recovery of mutations in mice. Proc Natl Acad Sci U S A 2003; 100:14103-8. [PMID: 14615591 PMCID: PMC283553 DOI: 10.1073/pnas.1936166100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutagenesis screens to isolate a variety of alleles leading to null and non-null phenotypes represent an important approach for the characterization of gene function. Genetic schemes that use visible markers permit the efficient recovery of chemically induced mutations. We have developed a universal reporter system to visibly mark chromosomes for genetic screens in the mouse. The dual-color reporter is based on a single vector that drives the ubiquitous coexpression of the enhanced GFP (EGFP) spectral variants yellow and cyan. We show that widespread expression of the dual-color reporter is readily detected in embryonic stem cells, mice, and throughout developmental stages. CRE-loxP- and FLPe-FRT-mediated deletion of each color cassette demonstrates the modular design of the marker system. Random integration followed by plasmid rescue and sequence-based mapping was used to introduce the marker to a defined genomic location. Thus, single-step placement will simplify the construction of a genomewide bank of marked chromosomes. The dual-color nature of the marker permits complete identification of genetic classes of progeny as embryos or mice in classic regionally directed screens. The design also allows for more efficient and novel schemes, such as marked suppressor screens, in the mouse. The result is a versatile reporter that can be used independently or in combination with the growing sets of deletion and inversion resources to enhance the design and application of a wide variety of genetic schemes for the functional dissection of the mammalian genome.
Collapse
|
43
|
Largaespada DA. Generating and manipulating transgenic animals using transposable elements. Reprod Biol Endocrinol 2003; 1:80. [PMID: 14613544 PMCID: PMC280724 DOI: 10.1186/1477-7827-1-80] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 11/07/2003] [Indexed: 11/10/2022] Open
Abstract
Transposable elements, or transposons, have played a significant role in the history of biological research. They have had a major influence on the structure of genomes during evolution, they can cause mutations, and their study led to the concept of so-called "selfish DNA". In addition, transposons have been manipulated as useful gene transfer vectors. While primarily restricted to use in invertebrates, prokaryotes, and plants, it is now clear that transposon technology and biology are just as relevant to the study of vertebrate species. Multiple transposons now have been shown to be active in vertebrates and they can be used for germline transgenesis, somatic cell transgenesis/gene therapy, and random germline insertional mutagenesis. The sophistication of these applications and the number of active elements are likely to increase over the next several years. This review covers the vertebrate-active retrotransposons and transposons that have been well studied and adapted for use as gene transfer agents. General considerations and predictions about the future utility of transposon technology are discussed.
Collapse
Affiliation(s)
- David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Hansen J, Floss T, Van Sloun P, Füchtbauer EM, Vauti F, Arnold HH, Schnütgen F, Wurst W, von Melchner H, Ruiz P. A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome. Proc Natl Acad Sci U S A 2003; 100:9918-22. [PMID: 12904583 PMCID: PMC187885 DOI: 10.1073/pnas.1633296100] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A major challenge of the postgenomic era is the functional characterization of every single gene within the mammalian genome. In an effort to address this challenge, we assembled a collection of mutations in mouse embryonic stem (ES) cells, which is the largest publicly accessible collection of such mutations to date. Using four different gene-trap vectors, we generated 5,142 sequences adjacent to the gene-trap integration sites (gene-trap sequence tags; http://genetrap.de) from >11,000 ES cell clones. Although most of the gene-trap vector insertions occurred randomly throughout the genome, we found both vector-independent and vector-specific integration "hot spots." Because >50% of the hot spots were vector-specific, we conclude that the most effective way to saturate the mouse genome with gene-trap insertions is by using a combination of gene-trap vectors. When a random sample of gene-trap integrations was passaged to the germ line, 59% (17 of 29) produced an observable phenotype in transgenic mice, a frequency similar to that achieved by conventional gene targeting. Thus, gene trapping allows a large-scale and cost-effective production of ES cell clones with mutations distributed throughout the genome, a resource likely to accelerate genome annotation and the in vivo modeling of human disease.
Collapse
Affiliation(s)
- Jens Hansen
- Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, D-85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nagy A, Perrimon N, Sandmeyer S, Plasterk R. Tailoring the genome: the power of genetic approaches. Nat Genet 2003; 33 Suppl:276-84. [PMID: 12610537 DOI: 10.1038/ng1115] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last century, genetics has developed into one of the most powerful tools for addressing basic questions concerning inheritance, development, individual and social operations and death. Here we summarize the current approaches to these questions in four of the most advanced models organisms: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly) and Mus musculus (mouse). The genomes of each of these four models have been sequenced, and all have well developed methods of efficient genetic manipulations.
Collapse
Affiliation(s)
- Andras Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | |
Collapse
|
46
|
Roshon M, DeGregori JV, Ruley HE. Gene trap mutagenesis of hnRNP A2/B1: a cryptic 3' splice site in the neomycin resistance gene allows continued expression of the disrupted cellular gene. BMC Genomics 2003; 4:2. [PMID: 12546712 PMCID: PMC149352 DOI: 10.1186/1471-2164-4-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/20/2003] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Tagged sequence mutagenesis is a process for constructing libraries of sequenced insertion mutations in embryonic stem cells that can be transmitted into the mouse germline. To better predict the functional consequences of gene entrapment on cellular gene expression, the present study characterized the effects of a U3Neo gene trap retrovirus inserted into an intron of the hnRNP A2/B1 gene. The mutation was selected for analysis because it occurred in a highly expressed gene and yet did not produce obvious phenotypes following germline transmission. RESULTS Sequences flanking the integrated gene trap vector in 1B4 cells were used to isolate a full-length cDNA whose predicted amino acid sequence is identical to the human A2 protein at all but one of 341 amino acid residues. hnRNP A2/B1 transcripts extending into the provirus utilize a cryptic 3' splice site located 28 nucleotides downstream of the neomycin phosphotransferase start codon. The inserted Neo sequence and proviral poly(A) site function as an 3' terminal exon that is utilized to produce hnRNP A2/B1-Neo fusion transcripts, or skipped to produce wild-type hnRNP A2/B1 transcripts. This results in only a modest disruption of hnRNPA2/B1 gene expression. CONCLUSIONS Expression of the occupied hnRNP A2/B1 gene and utilization of the viral poly(A) site are consistent with an exon definition model of pre-mRNA splicing. These results reveal a mechanism by which U3 gene trap vectors can be expressed without disrupting cellular gene expression, thus suggesting ways to improve these vectors for gene trap mutagenesis.
Collapse
Affiliation(s)
- Michael Roshon
- Department of Microbiology and Immunology, Room AA4210 MCN, Vanderbilt University School of Medicine, 1161 21st Ave South, Nashville, TN. 37232-2363, USA
- Present Address: Department of Emergency Medicine, Carolinas Medical Center, PO Box 32861, Charolette, NC 28232-2861, USA
| | - James V DeGregori
- Department of Microbiology and Immunology, Room AA4210 MCN, Vanderbilt University School of Medicine, 1161 21st Ave South, Nashville, TN. 37232-2363, USA
- Univ. of Colorado Health Sci. Center, 4200 E. 9th Ave., Box C229 (or room BRB802), Denver, CO 80262, USA
| | - H Earl Ruley
- Department of Microbiology and Immunology, Room AA4210 MCN, Vanderbilt University School of Medicine, 1161 21st Ave South, Nashville, TN. 37232-2363, USA
| |
Collapse
|
47
|
Abstract
In the postgenomic era the mouse will be central to the challenge of ascribing a function to the 40,000 or so genes that constitute our genome. In this review, we summarize some of the classic and modern approaches that have fueled the recent dramatic explosion in mouse genetics. Together with the sequencing of the mouse genome, these tools will have a profound effect on our ability to generate new and more accurate mouse models and thus provide a powerful insight into the function of human genes during the processes of both normal development and disease.
Collapse
|
48
|
Rantanen M, Palmén T, Pätäri A, Ahola H, Lehtonen S, Aström E, Floss T, Vauti F, Wurst W, Ruiz P, Kerjaschki D, Holthöfer H. Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. J Am Soc Nephrol 2002; 13:1586-94. [PMID: 12039988 DOI: 10.1097/01.asn.0000016142.29721.22] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanisms maintaining glomerular filtration barrier are under intensive study. This study describes a mutant Nphs1 mouse line generated by gene-trapping. Nephrin, encoded by Nphs1, is a structural protein of interpodocyte filtration slits crucial for formation of primary urine. Nephrin(trap/trap) mutants show characteristic features of proteinuric disease and die soon after birth. Morphologically, fibrotic glomeruli with distorted structures and cystic tubular lesions were observed, but no prominent changes in the branching morphogenesis of the developing collecting ducts could be found. Western blotting and immunohistochemical analyses confirmed the absence of nephrin in nephrin(trap/trap) glomeruli. The immunohistochemical staining showed also that the interaction partner of nephrin, CD2-associated protein (CD2AP), and the slit-diaphragm-associated protein, ZO-1alpha (-), appeared unchanged, whereas the major anionic apical membrane protein of podocytes, podocalyxin, somewhat punctate as compared with the wild-type (wt) and nephrin(wt/trap) stainings. Electron microscopy revealed that >90% of the podocyte foot processes were fused. The remaining interpodocyte junctions lacked slit diaphragms and, instead, showed tight adhering areas. In the heterozygote glomeruli, approximately one third of the foot processes were fused and real-time RT-PCR showed >60% decrease of nephrin-specific transcripts. These results show an effective nephrin gene elimination, resulting in a phenotype that resembles human congenital nephrotic syndrome. Although the nephrin(trap/trap) mice can be used to study the pathophysiology of the disease, the heterozygous mice may provide a useful model to study the gene dose effect of this crucial protein of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Maija Rantanen
- Biomedicum, Molecular Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abuin A, Holt KH, Platt KA, Sands AT, Zambrowicz BP. Full-speed mammalian genetics: in vivo target validation in the drug discovery process. Trends Biotechnol 2002; 20:36-42. [PMID: 11742676 DOI: 10.1016/s0167-7799(01)01843-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The completion of the Human Genome Project has signaled the beginning of the post-genome era, with a corresponding shift in focus from the sequencing and identification of genes to the exploration of gene function. A rate-limiting step in deriving value from this gene sequence information is determining the potential pharmaceutical applications of genes and their encoded proteins. This validation step is crucial for focusing efforts and resources on only the most promising targets. Strategies using reverse mouse genetics provide excellent methods for validating potential targets and therapeutic proteins in vivo in a mammalian model system.
Collapse
Affiliation(s)
- Alejandro Abuin
- Lexicon Genetics Incorporated, 4000 Research Forest Drive, The Woodlands, TX 77381, USA
| | | | | | | | | |
Collapse
|
50
|
Badarinarayana V, Estep PW, Shendure J, Edwards J, Tavazoie S, Lam F, Church GM. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat Biotechnol 2001; 19:1060-5. [PMID: 11689852 DOI: 10.1038/nbt1101-1060] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe a method of genome-wide analysis of quantitative growth phenotypes using insertional mutagenesis and DNA microarrays. We applied the method to assess the fitness contributions of Escherichia coli gene domains under specific growth conditions. A transposon library was subjected to competitive growth selection in Luria-Bertani (LB) and in glucose minimal media. Transposon-containing genomic DNA fragments from the selected libraries were compared with the initial unselected transposon insertion library on DNA microarrays to identify insertions that affect fitness. Genes involved in the biosynthesis of nutrients not provided in the growth medium were found to be significantly enriched in the set of genes containing negatively selected insertions. The data also identify fitness contributions of several uncharacterized genes, including putative transcriptional regulators and enzymes. The applicability of this high-resolution array selection in other species is discussed.
Collapse
Affiliation(s)
- V Badarinarayana
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|