1
|
Morfin C, Sebastian A, Wilson SP, Amiri B, Murugesh DK, Hum NR, Christiansen BA, Loots GG. Mef2c regulates bone mass through Sost-dependent and -independent mechanisms. Bone 2024; 179:116976. [PMID: 38042445 DOI: 10.1016/j.bone.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.
Collapse
Affiliation(s)
- Cesar Morfin
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Stephen P Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G Loots
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
2
|
Bourne LE, Hesketh A, Sharma A, Bucca G, Bush PG, Staines KA. The effects of physiological and injurious hydrostatic pressure on murine ex vivo articular and growth plate cartilage explants: an RNAseq study. Front Endocrinol (Lausanne) 2023; 14:1278596. [PMID: 38144567 PMCID: PMC10740163 DOI: 10.3389/fendo.2023.1278596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Chondrocytes are continuously exposed to loads placed upon them. Physiological loads are pivotal to the maintenance of articular cartilage health, while abnormal loads contribute to pathological joint degradation. Similarly, the growth plate cartilage is subject to various loads during growth and development. Due to the high-water content of cartilage, hydrostatic pressure is considered one of the main biomechanical influencers on chondrocytes and has been shown to play an important role in the mechano-regulation of cartilage. Methods Herein, we conducted RNAseq analysis of ex vivo hip cap (articular), and metatarsal (growth plate) cartilage cultures subjected to physiological (5 MPa) and injurious (50 MPa) hydrostatic pressure, using the Illumina platform (n = 4 replicates). Results Several hundreds of genes were shown to be differentially modulated by hydrostatic pressure, with the majority of these changes evidenced in hip cap cartilage cultures (375 significantly upregulated and 322 downregulated in 5 MPa versus control; 1022 upregulated and 724 downregulated in 50 MPa versus control). Conversely, fewer genes were differentially affected by hydrostatic pressure in the metatarsal cultures (5 significantly upregulated and 23 downregulated in 5 MPa versus control; 7 significantly upregulated and 19 downregulated in 50 MPa versus control). Using Gene Ontology annotations for Biological Processes, in the hip cap data we identified a number of pathways that were modulated by both physiological and injurious hydrostatic pressure. Pathways upregulated in response to 50 MPa versus control, included those involved in the generation of precursor metabolites and cellular respiration. Biological processes that were downregulated in this tissue included ossification, connective tissue development, and chondrocyte differentiation. Discussion Collectively our data highlights the divergent chondrocyte phenotypes in articular and growth plate cartilage. Further, we show that the magnitude of hydrostatic pressure application has distinct effects on gene expression and biological processes in hip cap cartilage explants. Finally, we identified differential expression of a number of genes that have previously been identified as osteoarthritis risk genes, including Ctsk, and Chadl. Together these data may provide potential genetic targets for future investigations in osteoarthritis research and novel therapeutics.
Collapse
Affiliation(s)
- Lucie E. Bourne
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Andrew Hesketh
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Aikta Sharma
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Giselda Bucca
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Peter G. Bush
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Katherine A. Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
3
|
Tan S, Qiu Y, Xiong H, Wang C, Chen Y, Wu W, Yang Z, Zhao F. Mussel-inspired cortical bone-adherent bioactive composite hydrogels promote bone augmentation through sequential regulation of endochondral ossification. Mater Today Bio 2023; 23:100843. [PMID: 37942424 PMCID: PMC10628777 DOI: 10.1016/j.mtbio.2023.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Endochondral ossification (ECO) plays an integral part in bone augmentation, which undergoes sequential processes including mesenchymal stem cells (MSC) condensation, chondrocyte differentiation, chondrocyte hypertrophy, and mineralized bone formation. Thus, accelerating these steps will speed up the osteogenesis process through ECO. Herein, inspired by the marine mussels' adhesive mechanism, a bioactive glass-dopamine (BG-Dopa) hydrogel was prepared by distributing the micro-nano BG to aldehyde modified hyaluronic acid with dopamine-modified gelatin. By in vitro and in vivo experiments, we confirm that after implanting in the bone augmentation position, the hydrogel can adhere to the cortical bone surface firmly without sliding. Moreover, the condensation and hypertrophy of stem cells were accelerated at the early stage of ECO. Whereafter, the osteogenic differentiation of the hypertrophic chondrocytes was promoted, which lead to accelerating the late stage of ECO process to achieve more bone augmentation. This experiment provides a new idea for the design of bone augmentation materials.
Collapse
Affiliation(s)
- Shuyi Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Huacui Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yifan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Wangxi Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
4
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Ahmed S, Rogers AV, Nowlan NC. Mechanical loading due to muscle movement regulates establishment of the collagen network in the developing murine skeleton. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231023. [PMID: 37859832 PMCID: PMC10582611 DOI: 10.1098/rsos.231023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Mechanical loading is critical for collagen network maintenance and remodelling in adult skeletal tissues, but the role of loading in collagen network formation during development is poorly understood. We test the hypothesis that mechanical loading is necessary for the onset and maturation of spatial localization and structure of collagens in prenatal cartilage and bone, using in vivo and in vitro mouse models of altered loading. The majority of collagens studied was aberrant in structure or localization, or both, when skeletal muscle was absent in vivo. Using in vitro bioreactor culture system, we demonstrate that mechanical loading directly modulates the spatial localization and structure of collagens II and X. Furthermore, we show that mechanical loading in vitro rescues aspects of the development of collagens II and X from the effects of fetal immobility. In conclusion, our findings show that mechanical loading is a critical determinant of collagen network establishment during prenatal skeletal development.
Collapse
Affiliation(s)
- Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, UK
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Chreitah A, Bress F, Aljanati O, Alkilany Z, Mohammed A, Kherbek F. A rare case of SCHMID metaphyseal chondrodysplasia associated with hypothyroidism,growth hormone deficiency and celiac disease: case report. Ann Med Surg (Lond) 2023; 85:4045-4049. [PMID: 37554853 PMCID: PMC10406062 DOI: 10.1097/ms9.0000000000000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/15/2023] [Indexed: 08/10/2023] Open
Abstract
UNLABELLED SCHMID metaphyseal chondrodysplasia is a rare cause of short stature with a good prognosis regarding other types of chondrodysplasia in reason of the normal integrity of the growth plate. CASE PRESENTATION The authors present a rare case of 4-year-2-month-old boy referred to our Unit for harmonious short stature, he had a waddling gait, subtle micromelia, and hyperlordosis, no special facies. CLINICAL DISCUSSION The skeletal scan made the diagnosis of SCHMID metaphyseal chondrodysplasia. The first laboratory workup showed elevated thyroid stimulating hormone and anti-tissue transglutaminase immunoglobulin A. The duodenal biopsies confirmed the diagnosis of coeliac disease. Treatment of levothyroxine was initiated with a gluten-free diet .6 years later, his re-evaluation showed a low insulin-like growth factor 1 and low growth hormone peaks confirming the diagnosis of growth hormone deficiency, Growth hormone therapy was initiated with an adjusted dose of levothyroxine. CONCLUSION Other causes of short stature should not be missed when diagnosing chondrodysplasia, and further investigations should be carried out to detect other concomitant disorders since metaphyseal chondrodysplasia is a rare cause for short stature while hypothyroidism and coeliac disease are relatively common.
Collapse
Affiliation(s)
- Ahmad Chreitah
- Faculty Of Human Medicine, Department of Endocrinology Medicine
| | - Fatima Bress
- Department of Endocrinology Medicine, Tishreen University Hospital, Latakia, Syria
| | - Omar Aljanati
- Department of Endocrinology Medicine, Tishreen University Hospital, Latakia, Syria
| | - Zeina Alkilany
- Department of Endocrinology Medicine, Tishreen University Hospital, Latakia, Syria
| | - Aria Mohammed
- Department of Endocrinology Medicine, Tishreen University Hospital, Latakia, Syria
| | - Fatima Kherbek
- Department of Endocrinology Medicine, Tishreen University Hospital, Latakia, Syria
| |
Collapse
|
7
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
8
|
Tüysüz B, Kasap B, Sarıtaş M, Alkaya DU, Bozlak S, Kıykım A, Durmaz A, Yıldırım T, Akpınar E, Apak H, Vural M. Natural history and genetic spectrum of the Turkish metaphyseal dysplasia cohort, including rare types caused by biallelic COL10A1, COL2A1, and LBR variants. Bone 2023; 167:116614. [PMID: 36400164 DOI: 10.1016/j.bone.2022.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Metaphyseal chondrodysplasias are a heterogeneous group of diseases characterized by short and bowed long bones and metaphyseal abnormality. The aim of this study is to investigate the genetic etiology and prognostic findings in patients with metaphyseal dysplasia. METHODS Twenty-four Turkish patients were included in this study and 13 of them were followed for 2-21 years. COL10A1, RMRP sequencing and whole exome sequencing were performed. RESULTS Results: Seven heterozygous pathogenic variants in COL10A1 were detected in 17 patients with Schmid type metaphyseal chondrodysplasia(MCDS). The phenotype was more severe in patients with heterozygous missense variants (one in signal peptide domain at the N-terminus of the protein, the other, class-1 group mutation at NC1 domain) compared to the patients with truncating variants. Short stature and coxa vara deformity appeared after 3 and 5 years of age, respectively, while large femoral head resolved after the age of 13 years in MCDS group. Interestingly, one patient with severe phenotype also had a biallelic missense variant in NC1 domain of COL10A1. Three patients with biallelic mutations in RMRP had prenatal onset short stature with short limb, and typical findings of cartilage hair hypoplasia (CHH). While immunodeficiency or recurrent infections were not observed, resistant congenital anemia was detected in one. Biallelic mutation in LBR was described in a patient with prenatal onset short stature, short and curved limb and metaphyseal abnormalities. Unlike previously reported patients, this patient had ectodermal findings, similar to CHH. A biallelic COL2A1 mutation was also found in the patient with lower limb deformities and metaphyseal involvement without vertebral and epiphyseal changes. CONCLUSION Long-term clinical characteristics are presented in a metaphyseal dysplasia cohort, including rare types caused by biallelic COL10A1, COL2A1, and LBR variants. We also point out that the domains where mutations on COL10A1 take place are important in the genotype-phenotype relationship.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey.
| | - Büşra Kasap
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey; Department of Genetics, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Merve Sarıtaş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey; Department of Genetics, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Serdar Bozlak
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Ayça Kıykım
- Department of Pediatric Immunology and Allergy, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Asude Durmaz
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Timur Yıldırım
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Evren Akpınar
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Hilmi Apak
- Department of Pediatric Hematology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Mehmet Vural
- Department of Neonatology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
9
|
Skuladottir AT, Bjornsdottir G, Ferkingstad E, Einarsson G, Stefansdottir L, Nawaz MS, Oddsson A, Olafsdottir TA, Saevarsdottir S, Walters GB, Magnusson SH, Bjornsdottir A, Sveinsson OA, Vikingsson A, Hansen TF, Jacobsen RL, Erikstrup C, Schwinn M, Brunak S, Banasik K, Ostrowski SR, Troelsen A, Henkel C, Pedersen OB, Jonsdottir I, Gudbjartsson DF, Sulem P, Thorgeirsson TE, Stefansson H, Stefansson K. A genome-wide meta-analysis identifies 50 genetic loci associated with carpal tunnel syndrome. Nat Commun 2022; 13:1598. [PMID: 35332129 PMCID: PMC8948232 DOI: 10.1038/s41467-022-29133-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy and has a largely unknown underlying biology. In a genome-wide association study of CTS (48,843 cases and 1,190,837 controls), we found 53 sequence variants at 50 loci associated with the syndrome. The most significant association is with a missense variant (p.Glu366Lys) in SERPINA1 that protects against CTS (P = 2.9 × 10-24, OR = 0.76). Through various functional analyses, we conclude that at least 22 genes mediate CTS risk and highlight the role of 19 CTS variants in the biology of the extracellular matrix. We show that the genetic component to the risk is higher in bilateral/recurrent/persistent cases than nonrecurrent/nonpersistent cases. Anthropometric traits including height and BMI are genetically correlated with CTS, in addition to early hormonal-replacement therapy, osteoarthritis, and restlessness. Our findings suggest that the components of the extracellular matrix play a key role in the pathogenesis of CTS.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad Sulaman Nawaz
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Arnor Vikingsson
- Landspitali-the National University Hospital of Iceland, Reykjavik, Iceland
| | - Thomas Folkmann Hansen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Troelsen
- Department of Orthopaedic Surgery, CAG ROAD - Research OsteoArthritis Denmark, Copenhagen University Hospital, Hvidovre, Denmark
| | - Cecilie Henkel
- Department of Orthopaedic Surgery, CORH, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Immunology, Zealand University Hospital-Køge, Køge, Denmark.
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
10
|
O-fucosylation of thrombospondin type 1 repeats is essential for ECM remodeling and signaling during bone development. Matrix Biol 2022; 107:77-96. [DOI: 10.1016/j.matbio.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
|
11
|
Bian H, Zhu T, Liang Y, Hei R, Zhang X, Li X, Chen J, Lu Y, Gu J, Qiao L, Zheng Q. Expression Profiling and Functional Analysis of Candidate Col10a1 Regulators Identified by the TRAP Program. Front Genet 2021; 12:683939. [PMID: 34276786 PMCID: PMC8283764 DOI: 10.3389/fgene.2021.683939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic chondrocytes and their specific marker, the type X collagen gene (Col10a1), are critical components of endochondral bone formation during skeletal development. We previously found that Runx2 is an indispensable mouse Col10a1 gene regulator and identified many other transcription factors (TFs) that potentially interact with the 150-bp Col10a1 cis-enhancer. However, the roles of these candidate TFs in Col10a1 expression and chondrocyte hypertrophy have not been elucidated. Here, we focus on 32 candidate TFs recently identified by analyzing the 150-bp Col10a1 enhancer using the transcription factor affinity prediction (TRAP) program. We found that 12 TFs (Hoxa3, Lsx, Evx2, Dlx5, S8, Pax2, Egr2, Mef2a, Barhl2, GKlf, Sox17, and Crx) were significantly upregulated and four TFs (Lhx4, Tbx5, Mef2c, and Hb9) were significantly downregulated in hypertrophic MCT cells, which show upregulation of Col10a1 expression. Most of the differential expression pattern of these TFs conformed with the results obtained from ATDC5 cell model and primary mouse chondrocytes. Notably, Tbx5 was downregulated upon Col10a1 upregulation, overexpression of Tbx5 decreased Col10a1 expression, and knock-down of Tbx5 increased Col10a1 expression in hypertrophic chondrocytes, suggesting that Tbx5 is a negative regulator of Col10a1. We further generated a stable Tbx5-overexpressing ATDC5 cell line and ColX-Tbx5 transgenic mice driven by Col10a1-specific enhancers and promoters. Tbx5 overexpression decreased Col10a1 expression in ATDC5 cells cultured as early as day 7 and in limb tissue on post-natal day 1. Slightly weaker alkaline phosphatase staining was also observed in cell culture on day 7 and in limb digits on embryonic day 17.5, indicating mildly delayed ossification. Further characterization of these candidate Col10a1 transcriptional regulators could help identify novel therapeutic targets for skeletal diseases associated with abnormal chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Huiqin Bian
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ting Zhu
- Laboratory of Clinical Medicine, Huai'an Women & Children Hospital, Affiliated to Yangzhou University, Huai'an, China
| | - Yuting Liang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruoxuan Hei
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaojing Zhang
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochen Li
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jinnan Chen
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaojuan Lu
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.,Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
| | - Junxia Gu
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Longwei Qiao
- Suzhou Affiliated to State Key Laboratory of Reproductive Medicine, School of Gusu, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
| | - Qiping Zheng
- Department of Hematology and Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.,Shenzhen Academy of Peptide Targeting Technology at Pingshan and Shenzhen Tyercan Bio-Pharm Co., Ltd., Shenzhen, China
| |
Collapse
|
12
|
Abstract
Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.
Collapse
Affiliation(s)
- Shinya Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto 603-8555, Japan; .,JT Biohistory Research Hall, Osaka, 569-1125, Japan
| |
Collapse
|
13
|
Wu H, Wang S, Li G, Yao Y, Wang N, Sun X, Fang L, Jiang X, Zhao J, Wang Y, Xu C. Characterization of a novel COL10A1 variant associated with Schmid-type metaphyseal chondrodysplasia and a literature review. Mol Genet Genomic Med 2021; 9:e1668. [PMID: 33764685 PMCID: PMC8172203 DOI: 10.1002/mgg3.1668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/22/2020] [Accepted: 02/19/2021] [Indexed: 12/05/2022] Open
Abstract
Background Schmid‐type metaphyseal chondrodysplasia (SMCD) is a rare autosomal dominant skeletal dysplasia caused by heterozygous mutations in COL10A1, the gene which encodes collagen type X alpha 1 chain. However, its genotype–phenotype relationship has not been fully determined. Subjects and Methods The proband is a 2‐year‐old boy, born of non‐consanguineous Chinese parents. We conducted a systematic analysis of the clinical and radiological characteristics and a follow‐up study of the proband. Whole‐exome sequencing was applied for the genetic analysis, together with bioinformatic analysis of predicted consequences of the identified variant. A homotrimer model was built to visualize the affected region and predict possible outcomes of this variant. Furthermore, a literature review and genotype–phenotype analysis were performed by online searching all cases with SMCD. Results A novel heterozygous variant (NM_000493.4: c.1863_1866delAATG, NP_000484.2: p.(Met622 Thrfs*54)) was identified in COL10A1 gene in the affected child. And it was predicted to be pathogenic by in silico analysis. Protein modeling revealed that the variant was located in the NC1 domain, which was predicted to produce truncated collagen and impair the trimerization of collagen type X alpha 1 chain and combination with molecules in the matrix. Moreover, genotype–phenotype correlation analysis demonstrated that patients with truncating variants or variants in NC1 domain often presented earlier onset and severer symptoms compared with those with non‐truncating or variants in non‐NC1 domains. Conclusion The NC1 domain of COL10A1 was proved to be the hotspot region underlying SMCD, patients with variants in NC1 domain were more likely to present severer manifestations at an earlier age.
Collapse
Affiliation(s)
- Huixiao Wu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Shuping Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology and Metabolism, Dongying people's Hospital, Dongying, China
| | - Guimei Li
- Department of Pediatric, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yangyang Yao
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Wang
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Xiaoqing Sun
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Li Fang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Xiuyun Jiang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| | - Yanzhou Wang
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China.,Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
| |
Collapse
|
14
|
de França M, de Faria Soares MDF, Luce ALP, Perrone E. Schmid metaphyseal chondrodysplasia: an example of radiology guidance to molecular diagnosis. Radiol Case Rep 2020; 15:2554-2556. [PMID: 33082897 PMCID: PMC7553887 DOI: 10.1016/j.radcr.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 11/26/2022] Open
Abstract
Schmid metaphyseal chondrodysplasia is a rare genetic cause of skeletal dysplasia. Patients usually present skeletal abnormalities but no major visceral malformations or intellectual disability. We report a case of a 2-year-old male patient with short stature, progressive genu varum, and waddling gait. Radiographic findings were essential to guide investigation and molecular confirmation, allowing proper treatment and genetic counseling.
Collapse
Affiliation(s)
- Marina de França
- Department of Medical Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ana Luiza Pilla Luce
- Department of Medical Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eduardo Perrone
- Department of Medical Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Marzin P, Cormier-Daire V. New perspectives on the treatment of skeletal dysplasia. Ther Adv Endocrinol Metab 2020; 11:2042018820904016. [PMID: 32166011 PMCID: PMC7054735 DOI: 10.1177/2042018820904016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
The last few decades have been marked by the identification of numerous genes implicated in genetic disorders, helping in the elucidation of the underlying pathophysiology of these conditions. This has allowed new therapeutic approaches to emerge such as cellular therapy, gene therapy, or pharmacological therapy for various conditions. Skeletal dysplasias are good models to illustrate these scientific advances. Indeed, several therapeutic strategies are currently being investigated in osteogenesis imperfecta; there are ongoing clinical trials based on pharmacological approaches, targeting signaling pathways in achondroplasia and fibrodysplasia ossificans progressiva or the endoplasmic reticulum stress in metaphyseal dysplasia type Schmid or pseudoachondroplasia. Moreover, the treatment of hypophosphatasia or Morquio A disease illustrates the efficacy of enzyme drug replacement. To provide a highly specialized multidisciplinary approach, these treatments are managed by reference centers. The emergence of treatments in skeletal dysplasia provides new perspectives on the prognosis of these severe conditions and may change prenatal counseling in these diseases over the coming years.
Collapse
Affiliation(s)
- Pauline Marzin
- Clinical Genetics, INSERM UMR 1163, Paris
Descartes-Sorbonne Paris Cité University, IMAGINE Institute, Necker Enfants
Malades Hospital, Paris, France
| | - Valérie Cormier-Daire
- Clinical Genetics, INSERM UMR 1163, Paris
Descartes-Sorbonne Paris Cité University, IMAGINE Institute, Necker Enfants
Malades Hospital, 149 rue de sevres, Paris, 75015, France
| |
Collapse
|
16
|
Identification of two novel COL10A1 heterozygous mutations in two Chinese pedigrees with Schmid-type metaphyseal chondrodysplasia. BMC MEDICAL GENETICS 2019; 20:200. [PMID: 31856751 PMCID: PMC6923838 DOI: 10.1186/s12881-019-0937-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
Background Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results We found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765 T > A (p.Phe589Ile)] and [c.1846A > G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.
Collapse
|
17
|
Chen Q, Wu SN, Chen YX, C SK, Zhang L, Wei HY, Kumar SA. A novel missense COL10A1 mutation: c.2020G>A; p. Gly674Arg linked with the bowed legs stature in the Schmid metaphyseal chondrodysplasia-affected Chinese lineage. Bone Rep 2019; 12:100240. [PMID: 31921940 PMCID: PMC6950639 DOI: 10.1016/j.bonr.2019.100240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022] Open
Abstract
To evaluate the clinical-phenotypic characteristics of Schmid metaphyseal chondrodysplasia (SMCD) inflicted by a novel missense mutation of COL10A1 gene: c.2020G > A; p.Gly674Arg. A female child aged about 3 yrs. and 8 months was subjected to Radiograph test to validate the symptoms of SMCD. The polymorphism analysis by the next-generation sequencing (NGS) was performed using the peripheral blood DNA samples of the patient and other family inmates, including, the younger male sibling. The effect of the mutation on the non-collagenous carboxyl-terminal (NC1) domain of collagen X was studied using the SWISS-MODEL online server for trimer modelling; PROSA and PROCHECK-Ramachandran plot for structural validation; Mean Square Plot (RMSF) for structural rigidity. Radiograph examination of lower limbs confirmed the bowed legs in both the patient and her younger brother (study groups). The inheritance of the novel missense mutation of COL10A1: c.2020G > A; p.Gly674Arg (at chromosome-6q22.1) was confirmed in the study groups from the SMCD-affected mother. The extended interactions of the mutant-Arg674 with the Ser552 and Phe589 (β strand B) in the NC1 domain of α1(X) chain monomer is more likely to intervene its trimer formation by weakening the structural rigidity of the crucial strand H compared to its wild type. This plausibly deters the collagen X synthesis inflicting the bowed legs with the altered distal ulna bone morphology in the study groups. The inheritance of COL10A1 mutation: c.2020G > A; p.Gly674Arg has inflicted the SMCD with the characteristic bowed legs in the study groups. Radiograph and NGS could be a valid diagnostic module to initiate the treatment of SMCD. A novel missense COL10A1 mutation (c.2020G>A; p.Gly674Arg) of NC1 domain of collagen X preceding Schmid Metaphyseal Chondrodysplasia. COL10A1 mutation (p.Gly674Arg) and the disturbed trimer structure of α1(X) chain monomer of collagen X. COL10A1 mutation (p.Gly674Arg) and the reduced rigidity of α1(X) chain monomer of collagen X. The mutated NC1 domain of collagen X structure and the bowed legs stature. Cupping and fraying of the distal ulna bone regulated by the weakened rigidity of the α1(X) chain monomer of collagen X.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Endocrinology and Metabolism, Henan provincial key laboratory of children's genetics and metabolic diseases, Henan children's hospital (Children's hospital affiliated to Zhengzhou University), No-33, Longhu Waihuan East road, Zhengzhou 450018, China
| | - Sheng-Nan Wu
- Department of Endocrinology and Metabolism, Henan provincial key laboratory of children's genetics and metabolic diseases, Henan children's hospital (Children's hospital affiliated to Zhengzhou University), No-33, Longhu Waihuan East road, Zhengzhou 450018, China
| | - Yong-Xing Chen
- Department of Endocrinology and Metabolism, Henan provincial key laboratory of children's genetics and metabolic diseases, Henan children's hospital (Children's hospital affiliated to Zhengzhou University), No-33, Longhu Waihuan East road, Zhengzhou 450018, China
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Sector-15, CBD Belapur, Navi Mumbai 400614, India
| | - Lu Zhang
- Shanghai We-Health Biomedical Technology Co. Ltd, Shanghai 201315, China
| | - Hai-Yan Wei
- Department of Endocrinology and Metabolism, Henan provincial key laboratory of children's genetics and metabolic diseases, Henan children's hospital (Children's hospital affiliated to Zhengzhou University), No-33, Longhu Waihuan East road, Zhengzhou 450018, China
| | - Senthil Arun Kumar
- Department of Endocrinology and Metabolism, Henan provincial key laboratory of children's genetics and metabolic diseases, Henan children's hospital (Children's hospital affiliated to Zhengzhou University), No-33, Longhu Waihuan East road, Zhengzhou 450018, China
| |
Collapse
|
18
|
Forouhan M, Sonntag S, Boot-Handford RP. Carbamazepine reduces disease severity in a mouse model of metaphyseal chondrodysplasia type Schmid caused by a premature stop codon (Y632X) in the Col10a1 gene. Hum Mol Genet 2019; 27:3840-3853. [PMID: 30010889 PMCID: PMC6216233 DOI: 10.1093/hmg/ddy253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations, mostly in the region of the COL10A1 gene encoding the C-terminal non-collagenous domain, cause the dwarfism metaphyseal chondrodysplasia type Schmid (MCDS). In most cases, the disease mechanism involves the misfolding of the mutant protein causing increased endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). However, in an iliac crest biopsy, the COL10A1 p.Y632X mutation was found to produce instability of the mutant mRNA such that little mutant protein may be produced. To investigate the disease mechanism further, a gene-targeted mouse model of the Col10a1 p.Y632X mutation was generated. In this model, the mutant mRNA showed no instability, and in mice heterozygous for the mutation, mutant and wild-type mRNAs were present at equal concentrations. The protein was translated from the mutant allele and retained within the cell, triggering increased ER stress and a UPR. The mutation produced a relatively severe form of MCDS. Nevertheless, treatment of the mice with carbamazepine (CBZ), a drug which stimulates intracellular proteolysis and alleviates ER stress, effectively reduced the disease severity in this model of MCDS caused by a premature stop codon in the Col10a1 gene. Specifically, the drug reduced ER stress in the growth plate, restored growth plate architecture toward the wild-type state, significantly increased bone growth and within 2 weeks of treatment corrected the MCDS-induced hip distortion. These results indicate that CBZ is likely to be effective in ongoing clinical trials against all forms of MCDS whether caused by premature stop codons or substitutions.
Collapse
Affiliation(s)
- Mitra Forouhan
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - Raymond P Boot-Handford
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health and Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
20
|
Boot-Handford RP. Gene cloning to clinical trials-the trials and tribulations of a life with collagen. Int J Exp Pathol 2019; 100:4-11. [PMID: 30912609 DOI: 10.1111/iep.12311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022] Open
Abstract
This review, based on the BSMB Fell-Muir Lecture I presented in July 2018 at the Matrix Biology Europe Conference in Manchester, gives a personal perspective of my own laboratory's contributions to research into type X collagen, metaphyseal chondrodysplasia type Schmid and potential treatments for this disorder that are currently entering clinical trial. I have tried to set the advances made in the context of the scientific technologies available at the time and how these have changed over the more than three decades of this research.
Collapse
Affiliation(s)
- Raymond P Boot-Handford
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Shen Y, Jing D, Hao J, Tang G, Yang P, Zhao Z. The Effect of β-Aminopropionitrile on Skeletal Micromorphology and Osteogenesis. Calcif Tissue Int 2018; 103:411-421. [PMID: 29916126 DOI: 10.1007/s00223-018-0430-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
Collagen cross-linking, as a form of collagen post-translational modification, plays a crucial role in maintaining bone mechanical properties as well as in regulating cell biological functions. Shifts in cross-links profile are found apparently correlated to kinds of skeletal pathology and diseases, whereas little is known about the relationship between collagen cross-links and osteogenesis. Here, we hypothesized that the inhibition of collagen cross-links could impair skeletal microstructure and inhibit osteogenesis. A mouse model of collagen cross-linking defects has been established using subcutaneous injection of 350 mg/kg β-aminopropionitrile (BAPN) daily for 4 weeks, and same dose of phosphate buffered saline (PBS) served as control group. The analysis of bone microstructural parameters revealed a significant decrease of bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), and increase of bone surface ratio (BS/BV), structure model index (SMI) as well as trabecular separation (Tb.Sp) in the experimental group (p < 0.05), whereas there was no difference observed in bone mineral density (BMD). Histological staining displayed that the BAPN treatment caused thinner trabeculae and decrease of collagen content in proximal tibiae. The analysis of osteogenesis PCR (Polymerase Chain Reaction) array reflected that BAPN remarkably influenced the expression of Alpl, Bglap, Bgn, Bmp5, Col10a1, Col1a1, Col1a2, Col5a1, Itga2b, and Serpinh1. The results of immunohistochemistry displayed a significant reduction in the mean optical densities of OCN and COL1 at the presence of BAPN. The overall results of this study suggested that BAPN alters bone microstructure and hinders the expression of osteogenic genes without affecting mineralization processes, indicating the influences of collagen cross-links on osteogenesis may be a potential pathological mechanism in skeletal diseases.
Collapse
Affiliation(s)
- Yu Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China
| | - Dian Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China
| | - Jin Hao
- Harvard School of Dental Medicine, Harvard University, Cambridge, MA, USA
| | - Ge Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, #14, 3rd section of Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
22
|
Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol 2018; 71-72:51-69. [PMID: 29803938 PMCID: PMC6146013 DOI: 10.1016/j.matbio.2018.05.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
Hyaline cartilages, fibrocartilages and elastic cartilages play multiple roles in the human body including bearing loads in articular joints and intervertebral discs, providing joint lubrication, forming the external ears and nose, supporting the trachea, and forming the long bones during development and growth. The structure and organization of cartilage's extracellular matrix (ECM) are the primary determinants of normal function. Most diseases involving cartilage lead to dramatic changes in the ECM which can govern disease progression (e.g., in osteoarthritis), cause the main symptoms of the disease (e.g., dwarfism caused by genetically inherited mutations) or occur as collateral damage in pathological processes occurring in other nearby tissues (e.g., osteochondritis dissecans and inflammatory arthropathies). Challenges associated with cartilage diseases include poor understanding of the etiology and pathogenesis, delayed diagnoses due to the aneural nature of the tissue and drug delivery challenges due to the avascular nature of adult cartilages. This narrative review provides an overview of the clinical and pathological features as well as current treatment options available for various cartilage diseases. Late breaking advances are also described in the quest for development and delivery of effective disease modifying drugs for cartilage diseases including osteoarthritis, the most common form of arthritis that affects hundreds of millions of people worldwide.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Wang C, Tan Z, Niu B, Tsang KY, Tai A, Chan WCW, Lo RLK, Leung KKH, Dung NWF, Itoh N, Zhang MQ, Chan D, Cheah KSE. Inhibiting the integrated stress response pathway prevents aberrant chondrocyte differentiation thereby alleviating chondrodysplasia. eLife 2018; 7:37673. [PMID: 30024379 PMCID: PMC6053305 DOI: 10.7554/elife.37673] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 12/16/2022] Open
Abstract
The integrated stress response (ISR) is activated by diverse forms of cellular stress, including endoplasmic reticulum (ER) stress, and is associated with diseases. However, the molecular mechanism(s) whereby the ISR impacts on differentiation is incompletely understood. Here, we exploited a mouse model of Metaphyseal Chondrodysplasia type Schmid (MCDS) to provide insight into the impact of the ISR on cell fate. We show the protein kinase RNA-like ER kinase (PERK) pathway that mediates preferential synthesis of ATF4 and CHOP, dominates in causing dysplasia by reverting chondrocyte differentiation via ATF4-directed transactivation of Sox9. Chondrocyte survival is enabled, cell autonomously, by CHOP and dual CHOP-ATF4 transactivation of Fgf21. Treatment of mutant mice with a chemical inhibitor of PERK signaling prevents the differentiation defects and ameliorates chondrodysplasia. By preventing aberrant differentiation, titrated inhibition of the ISR emerges as a rationale therapeutic strategy for stress-induced skeletal disorders.
Collapse
Affiliation(s)
- Cheng Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Zhijia Tan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Ben Niu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Wilson C W Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Rebecca L K Lo
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Keith K H Leung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Nelson W F Dung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, University of Kyoto, Kyoto, Japan
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, United States.,MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Danny Chan
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
24
|
Yan J, Li J, Hu J, Zhang L, Wei C, Sultana N, Cai X, Zhang W, Cai CL. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development. J Biol Chem 2018; 293:9162-9175. [PMID: 29735531 DOI: 10.1074/jbc.ra118.001825] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre (Tbx18Cre/+) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 (Smad4f/f ) in the limbs of mice. We found that the Smad4-deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan, in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 (Runx2), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4-deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia.
Collapse
Affiliation(s)
- Jianyun Yan
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,the Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China, and
| | - Jun Li
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jun Hu
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lu Zhang
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chengguo Wei
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nishat Sultana
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Xiaoqiang Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Weijia Zhang
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chen-Leng Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
25
|
Li N, Wang Q, Zhu T, Qiao L, Zhang F, Mi R, Wang B, Chen L, Gu J, Lu Y, Zheng Q. In vitro functional characterization of prostaglandin-endoperoxide synthase 2 during chondrocyte hypertrophic differentiation. Oncotarget 2017; 7:36280-36292. [PMID: 27121205 PMCID: PMC5095000 DOI: 10.18632/oncotarget.8889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase 2 (Cox-2) has been implicated an essential role during bone repair, but the mechanisms remain elusive. Bone repair healing is known to include processes similar to endochondral ossification. In this study, we investigated the in vitro effect of Cox-2 on Col10a1 expression and chondrocyte hypertrophy, two critical components of endochondral ossification. Using quantitative RT-PCR, we detected increased mRNA levels of Cox-2 and Col10a1 in hypertrophic MCT cells, while cells treated with Cox-2 inhibitor, NS398, showed decreased mRNA and protein levels of Cox-2 and Col10a1. Increased Cox-2 also correlated with significantly upregulated Col10a1 in hypertrophic ATDC5 cells, whereas inhibition of Cox-2 significantly decreased Col10a1 expression. We further generated a Cox-2-expressing ATDC5 stable cell line. Compared with the controls, Cox-2 over-expression significantly increased Col10a1 as early as day 7 of continuous culturing, but not at days 14 and 21. Enhanced Alp staining was also observed in day 7 stable cell line. Correspondingly, we detected significantly increased levels of Runx2, Alp, Bcl-2, Bax, Col1a1, Osterix, and Bsp in day 7 stable line. Most of these genes have been associated with chondrocyte maturation and apoptosis. Together, our results support that Cox-2 promotes Col10a1 expression and chondrocyte hypertrophy in vitro, possibly through upregulation of Runx2 and other relevant transcription factors.
Collapse
Affiliation(s)
- Na Li
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ting Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Longwei Qiao
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, 215002, China
| | - Fei Zhang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rui Mi
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Bo Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Junxia Gu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
26
|
Zhang C, Liu J, Iqbal F, Lu Y, Mustafa S, Bukhari F, Lou H, Fu R, Wu Z, Yang X, Bukhari I, Aslam M, Xu S. A missense point mutation in COL10A1 identified with whole-genome deep sequencing in a 7-generation Pakistan dwarf family. Heredity (Edinb) 2017; 120:83-89. [PMID: 29234170 DOI: 10.1038/s41437-017-0021-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
Disease-associated variants in the human genome are continually being identified using DNA sequencing technologies that are especially effective for Mendelian disorders. Here we sequenced whole genome to high coverage (>30×) of 6 members of a 7-generation family with dwarfism from a consanguineous tribe in Pakistan to determine the causal variant(s). We identified a missense variant rs111033552 (c.2011T>C [p.Ser671Pro]) located in COL10A1 (encodes the alpha chain of type X collagen) as the most likely contributor to the dwarfism. We further confirmed the variant in 22 family members using Sanger sequencing. All affected individuals are heterozygous for the missense mutation rs111033552 and no individual homozygous was observed. Moreover, the mutation was absent in 69,985 individuals representing >150 global populations. Taking advantage of whole-genome sequencing data, we also examined other variant forms, including copy number variation and insertion/deletion, but failed to identify such variants enriched in the affected individuals. Thus rs111033552 had priority for linkage with dwarfism.
Collapse
Affiliation(s)
- Chao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaojiao Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Furhan Iqbal
- Department of Zoology, Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Yan Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China
| | - Saima Mustafa
- Department of Zoology, Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Firdous Bukhari
- Department of Zoology, Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Haiyi Lou
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China
| | - Ruiqing Fu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhendong Wu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiong Yang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ihtisham Bukhari
- Department of Biochemistry, Biomarkers Research Program Prince Mutaib Chair for Biomarkers of Osteoporosis, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Aslam
- Department of Zoology, Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Collaborative Innovation Center of Genetics and Development, Shanghai, 200438, China.
| |
Collapse
|
27
|
Mullan LA, Mularczyk EJ, Kung LH, Forouhan M, Wragg JM, Goodacre R, Bateman JF, Swanton E, Briggs MD, Boot-Handford RP. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism. J Clin Invest 2017; 127:3861-3865. [PMID: 28920921 PMCID: PMC5617653 DOI: 10.1172/jci93094] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022] Open
Abstract
The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress–associated dwarfism MCDS.
Collapse
Affiliation(s)
- Lorna A Mullan
- Wellcome Trust Centre for Cell-Matrix Research.,Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ewa J Mularczyk
- Wellcome Trust Centre for Cell-Matrix Research.,Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Louise H Kung
- Wellcome Trust Centre for Cell-Matrix Research.,Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, Manchester, United Kingdom.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Mitra Forouhan
- Wellcome Trust Centre for Cell-Matrix Research.,Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jordan Ma Wragg
- Wellcome Trust Centre for Cell-Matrix Research.,Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Royston Goodacre
- School of Chemistry and Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - John F Bateman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Eileithyia Swanton
- Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael D Briggs
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raymond P Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research.,Faculty of Biology, Medicine and Health, and Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
28
|
Chan WCW, Tsang KY, Cheng YW, Ng VCW, Chik H, Tan ZJ, Boot-Handford R, Boyde A, Cheung KMC, Cheah KSE, Chan D. Activating the unfolded protein response in osteocytes causes hyperostosis consistent with craniodiaphyseal dysplasia. Hum Mol Genet 2017; 26:4572-4587. [DOI: 10.1093/hmg/ddx339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
|
29
|
Boegheim IJM, Leegwater PAJ, van Lith HA, Back W. Current insights into the molecular genetic basis of dwarfism in livestock. Vet J 2017; 224:64-75. [PMID: 28697878 DOI: 10.1016/j.tvjl.2017.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 11/29/2022]
Abstract
Impairment of bone growth at a young age leads to dwarfism in adulthood. Dwarfism can be categorised as either proportionate, an overall size reduction without changes in body proportions, or disproportionate, a size reduction in one or more limbs, with changes in body proportions. Many forms of dwarfism are inherited and result from structural disruptions or disrupted signalling pathways. Hormonal disruptions are evident in Brooksville miniature Brahman cattle and Z-linked dwarfism in chickens, caused by mutations in GH1 and GHR. Furthermore, mutations in IHH are the underlying cause of creeper achondroplasia in chickens. Belgian blue cattle display proportionate dwarfism caused by a mutation in RNF11, while American Angus cattle dwarfism is caused by a mutation in PRKG2. Mutations in EVC2 are associated with dwarfism in Japanese brown cattle and Tyrolean grey cattle. Fleckvieh dwarfism is caused by mutations in the GON4L gene. Mutations in COL10A1 and COL2A1 cause dwarfism in pigs and Holstein cattle, both associated with structural disruptions, while several mutations in ACAN are associated with bulldog-type dwarfism in Dexter cattle and dwarfism in American miniature horses. In other equine breeds, such as Shetland ponies and Friesian horses, dwarfism is caused by mutations in SHOX and B4GALT7. In Texel sheep, chondrodysplasia is associated with a deletion in SLC13A1. This review discusses genes known to be involved in these and other forms of dwarfism in livestock.
Collapse
Affiliation(s)
- Iris J M Boegheim
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, NL-3584 CM Utrecht, The Netherlands
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Hein A van Lith
- Division of Animal Welfare and Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, NL-3584 CM Utrecht, The Netherlands; Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Universiteitsweg 100, NL-3584 CG Utrecht, The Netherlands
| | - Willem Back
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, NL-3584 CM Utrecht, The Netherlands.
| |
Collapse
|
30
|
Melrose J, Shu C, Whitelock JM, Lord MS. The cartilage extracellular matrix as a transient developmental scaffold for growth plate maturation. Matrix Biol 2016; 52-54:363-383. [PMID: 26807757 DOI: 10.1016/j.matbio.2016.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The cartilage growth plate is a specialized developmental tissue containing characteristic zonal arrangements of chondrocytes. The proliferative and differentiative states of chondrocytes are tightly regulated at all stages including the initial limb bud and rudiment cartilage stages of development, the establishment of the primary and secondary ossification centers, development of the growth plates and laying down of bone. A multitude of spatio-temporal signals, including transcription factors, growth factors, morphogens and hormones, control chondrocyte maturation and terminal chondrocyte differentiation/hypertrophy, cell death/differentiation, calcification and vascular invasion of the growth plate and bone formation during morphogenetic transition of the growth plate. This involves hierarchical, integrated signaling from growth and factors, transcription factors, mechanosensory cues and proteases in the extracellular matrix to regulate these developmental processes to facilitate progressive changes in the growth plate culminating in bone formation and endochondral ossification. This review provides an overview of selected components which have particularly important roles in growth plate biology including collagens, proteoglycans, glycosaminoglycans, growth factors, proteases and enzymes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cindy Shu
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
| | - John M Whitelock
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Megan S Lord
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
31
|
Kudelko M, Chan CWL, Sharma R, Yao Q, Lau E, Chu IK, Cheah KSE, Tanner JA, Chan D. Label-Free Quantitative Proteomics Reveals Survival Mechanisms Developed by Hypertrophic Chondrocytes under ER Stress. J Proteome Res 2015; 15:86-99. [DOI: 10.1021/acs.jproteome.5b00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Rakesh Sharma
- Department
of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Baron J, Sävendahl L, De Luca F, Dauber A, Phillip M, Wit JM, Nilsson O. Short and tall stature: a new paradigm emerges. Nat Rev Endocrinol 2015; 11:735-46. [PMID: 26437621 PMCID: PMC5002943 DOI: 10.1038/nrendo.2015.165] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the past, the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis was often considered to be the main system that regulated childhood growth and, therefore, determined short stature and tall stature. However, findings have now revealed that the GH-IGF-1 axis is just one of many regulatory systems that control chondrogenesis in the growth plate, which is the biological process that drives height gain. Consequently, normal growth in children depends not only on GH and IGF-1 but also on multiple hormones, paracrine factors, extracellular matrix molecules and intracellular proteins that regulate the activity of growth plate chondrocytes. Mutations in the genes that encode many of these local proteins cause short stature or tall stature. Similarly, genome-wide association studies have revealed that the normal variation in height seems to be largely due to genes outside the GH-IGF-1 axis that affect growth at the growth plate through a wide variety of mechanisms. These findings point to a new conceptual framework for understanding short and tall stature that is centred not on two particular hormones but rather on the growth plate, which is the structure responsible for height gain.
Collapse
Affiliation(s)
- Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lars Sävendahl
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Francesco De Luca
- St. Christopher’s Hospital for Children, Section of Endocrinology and Diabetes; Drexel University College of Medicine, Department of Pediatrics, Philadelphia, PA, U.S.A
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, Division of Endocrinology, Cincinnati, Ohio, USA
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children’s Diabetes, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
| | - Jan M. Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Center for Molecular Medicine, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
33
|
Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V. Efficacy of the porcine species in biomedical research. Front Genet 2015; 6:293. [PMID: 26442109 PMCID: PMC4584988 DOI: 10.3389/fgene.2015.00293] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/04/2015] [Indexed: 01/02/2023] Open
Abstract
Since domestication, pigs have been used extensively in agriculture and kept as companion animals. More recently they have been used in biomedical research, given they share many physiological and anatomical similarities with humans. Recent technological advances in assisted reproduction, somatic cell cloning, stem cell culture, genome editing, and transgenesis now enable the creation of unique porcine models of human diseases. Here, we highlight the potential applications and advantages of using pigs, particularly minipigs, as indispensable large animal models in fundamental and clinical research, including the development of therapeutics for inherited and chronic disorders, and cancers.
Collapse
Affiliation(s)
- Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue QC, Canada
| |
Collapse
|
34
|
Park H, Hong S, Cho SI, Cho TJ, Choi IH, Jin DK, Sohn YB, Park SW, Cho HH, Cheon JE, Kim SY, Kim JY, Park SS, Seong MW. Case of mild Schmid-type metaphyseal chondrodysplasia with novel sequence variation involving an unusual mutational site of the COL10A1 gene. Eur J Med Genet 2015; 58:175-9. [DOI: 10.1016/j.ejmg.2014.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
|
35
|
Gu J, Lu Y, Li F, Qiao L, Wang Q, Li N, Borgia JA, Deng Y, Lei G, Zheng Q. Identification and characterization of the novel Col10a1 regulatory mechanism during chondrocyte hypertrophic differentiation. Cell Death Dis 2014; 5:e1469. [PMID: 25321476 PMCID: PMC4649528 DOI: 10.1038/cddis.2014.444] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/03/2023]
Abstract
The majority of human skeleton develops through the endochondral pathway, in which cartilage-forming chondrocytes proliferate and enlarge into hypertrophic chondrocytes that eventually undergo apoptosis and are replaced by bone. Although at a terminal differentiation stage, hypertrophic chondrocytes have been implicated as the principal engine of bone growth. Abnormal chondrocyte hypertrophy has been seen in many skeletal dysplasia and osteoarthritis. Meanwhile, as a specific marker of hypertrophic chondrocytes, the type X collagen gene (COL10A1) is also critical for endochondral bone formation, as mutation and altered COL10A1 expression are often accompanied by abnormal chondrocyte hypertrophy in many skeletal diseases. However, how the type X collagen gene is regulated during chondrocyte hypertrophy has not been fully elucidated. We have recently demonstrated that Runx2 interaction with a 150-bp mouse Col10a1 cis-enhancer is required but not sufficient for its hypertrophic chondrocyte-specific reporter expression in transgenic mice, suggesting requirement of additional Col10a1 regulators. In this study, we report in silico sequence analysis of this 150-bp enhancer and identification of its multiple binding factors, including AP1, MEF2, NFAT, Runx1 and TBX5. Using this enhancer as bait, we performed yeast one-hybrid assay and identified multiple candidate Col10a1-interacting genes, including cyclooxygenase 1 (Cox-1) and Cox-2. We have also performed mass spectrometry analysis and detected EF1-alpha, Fus, GdF7 and Runx3 as components of the specific complex formed by the cis-enhancer and nuclear extracts from hypertrophic MCT (mouse chondrocytes immortalized with large T antigen) cells that express Col10a1 abundantly. Notably, some of the candidate genes are differentially expressed in hypertrophic MCT cells and have been associated with chondrocyte hypertrophy and Runx2, an indispensible Col10a1 regulator. Intriguingly, we detected high-level Cox-2 expression in hypertrophic MCT cells. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays confirmed the interaction between Cox-2 and Col10a1 cis-enhancer, supporting its role as a candidate Col10a1 regulator. Together, our data support a Cox-2-containing, Runx2-centered Col10a1 regulatory mechanism, during chondrocyte hypertrophic differentiation.
Collapse
Affiliation(s)
- J Gu
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Y Lu
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - F Li
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - L Qiao
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Q Wang
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - N Li
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - J A Borgia
- Department of Pathology and Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Y Deng
- Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - G Lei
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Q Zheng
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
36
|
Discovery and validation of new potential biomarkers for early detection of colon cancer. PLoS One 2014; 9:e106748. [PMID: 25215506 PMCID: PMC4162553 DOI: 10.1371/journal.pone.0106748] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accurate detection of characteristic proteins secreted by colon cancer tumor cells in biological fluids could serve as a biomarker for the disease. The aim of the present study was to identify and validate new serum biomarkers and demonstrate their potential usefulness for early diagnosis of colon cancer. METHODS The study was organized in three sequential phases: 1) biomarker discovery, 2) technical and biological validation, and 3) proof of concept to test the potential clinical use of selected biomarkers. A prioritized subset of the differentially-expressed genes between tissue types (50 colon mucosa from cancer-free individuals and 100 normal-tumor pairs from colon cancer patients) was validated and further tested in a series of serum samples from 80 colon cancer cases, 23 patients with adenoma and 77 cancer-free controls. RESULTS In the discovery phase, 505 unique candidate biomarkers were identified, with highly significant results and high capacity to discriminate between the different tissue types. After a subsequent prioritization, all tested genes (N = 23) were successfully validated in tissue, and one of them, COL10A1, showed relevant differences in serum protein levels between controls, patients with adenoma (p = 0.0083) and colon cancer cases (p = 3.2e-6). CONCLUSION We present a sequential process for the identification and further validation of biomarkers for early detection of colon cancer that identifies COL10A1 protein levels in serum as a potential diagnostic candidate to detect both adenoma lesions and tumor. IMPACT The use of a cheap serum test for colon cancer screening should improve its participation rates and contribute to decrease the burden of this disease.
Collapse
|
37
|
Lu Y, Qiao L, Lei G, Mira RR, Gu J, Zheng Q. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
39
|
Bonafé L, Liang J, Gorna MW, Zhang Q, Ha-Vinh R, Campos-Xavier AB, Unger S, Beckmann JS, Le Béchec A, Stevenson B, Giedion A, Liu X, Superti-Furga G, Wang W, Spahr A, Superti-Furga A. MMP13mutations are the cause of recessive metaphyseal dysplasia, Spahr type. Am J Med Genet A 2014; 164A:1175-9. [PMID: 24648384 DOI: 10.1002/ajmg.a.36431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/19/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Luisa Bonafé
- Division of Molecular Pediatrics; Lausanne University Hospital; Lausanne Switzerland
| | | | - Maria W. Gorna
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | | | - Russia Ha-Vinh
- Division of Molecular Pediatrics; Lausanne University Hospital; Lausanne Switzerland
| | | | - Sheila Unger
- Medical Genetics Service; Lausanne University Hospital; Lausanne Switzerland
| | - Jacques S. Beckmann
- Medical Genetics Service; Lausanne University Hospital; Lausanne Switzerland
| | - Antony Le Béchec
- Vital-IT-High Performance Computing Center; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne Switzerland
| | - Brian Stevenson
- Vital-IT-High Performance Computing Center; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne Switzerland
| | - Andres Giedion
- Division of Radiology; University Children's Hospital; Zurich Switzerland
| | | | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences; Vienna Austria
| | | | | | - Andrea Superti-Furga
- Division of Molecular Pediatrics; Lausanne University Hospital; Lausanne Switzerland
- Department of Pediatrics; Lausanne University Hospital, University of Lausanne; Lausanne Switzerland
| |
Collapse
|
40
|
Aldea D, Hanna P, Munoz D, Espinoza J, Torrejon M, Sachs L, Buisine N, Oulion S, Escriva H, Marcellini S. Evolution of the vertebrate bone matrix: an expression analysis of the network forming collagen paralogues in amphibian osteoblasts. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:375-84. [PMID: 23677533 DOI: 10.1002/jez.b.22511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 11/08/2022]
Abstract
The emergence of vertebrates is closely associated to the evolution of mineralized bone tissue. However, the molecular basis underlying the origin and subsequent diversification of the skeletal mineralized matrix is still poorly understood. One efficient way to tackle this issue is to compare the expression, between vertebrate species, of osteoblastic genes coding for bone matrix proteins. In this work, we have focused on the evolution of the network forming collagen family which contains the Col8a1, Col8a2, and Col10a1 genes. Both phylogeny and synteny reveal that these three paralogues are vertebrate-specific and derive from two independent duplications in the vertebrate lineage. To shed light on the evolution of this family, we have analyzed the osteoblastic expression of the network forming collagens in endochondral and intramembraneous skeletal elements of the amphibian Xenopus tropicalis. Remarkably, we find that amphibian osteoblasts express Col10a1, a gene strongly expressed in osteoblasts in actinopterygians but not in amniotes. In addition, while Col8a1 is known to be robustly expressed in mammalian osteoblasts, the expression levels of its amphibian orthologue are dramatically reduced. Our work reveals that while a skeletal expression of network forming collagen members is widespread throughout vertebrates, osteoblasts from divergent vertebrate lineages express different combinations of network forming collagen paralogues.
Collapse
Affiliation(s)
- Daniel Aldea
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Register TC, Divers J, Bowden DW, Carr JJ, Lenchik L, Wagenknecht LE, Hightower RC, Xu J, Smith SC, Hruska KA, Langefeld CD, Freedman BI. Relationships between serum adiponectin and bone density, adiposity and calcified atherosclerotic plaque in the African American-Diabetes Heart Study. J Clin Endocrinol Metab 2013; 98:1916-22. [PMID: 23543659 PMCID: PMC3644610 DOI: 10.1210/jc.2012-4126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CONTEXT Adiposity, bone mineral density (BMD), and calcified atherosclerotic plaque (CP) exhibit complex interrelationships that are not well understood. Adipokines vary in relation to changes in body composition and may play roles in regulation of BMD and risk of cardiovascular disease. OBJECTIVE Our objective was to examine the relationship between serum adiponectin and quantitative computed tomography-derived measures of volumetric BMD (vBMD) in thoracic and lumbar vertebrae, adipose tissue volumes, and CP in coronary, carotid, and infrarenal aortoiliac arteries. Generalized linear models were fitted to test for associations between adiponectin and measured phenotypes. PARTICIPANTS A total of 479 unrelated African Americans with type 2 diabetes, 57% female with a mean ± SD (median) age of 55.6 ± 9.5 (55.0) years and diabetes duration of 10.3 ± 8.2 (8.0) years. RESULTS Serum adiponectin was 8.26 ± 7.41 (6.10) μg/mL, coronary artery CP mass score was 280 ± 634 (14), carotid artery CP was 47 ± 133 (0), and aortoiliac CP was 1616 ± 2864 (319). Women had significantly higher body mass index and serum adiponectin and lower coronary and carotid artery calcium than males (all P < .05). Before and after adjusting for age, sex, body mass index, mean arterial pressure, smoking status, hemoglobin A1c, thiazolidinedione use, and low-density lipoprotein-cholesterol, adiponectin was inversely associated with thoracic and lumbar vertebral vBMD [parameter estimates (PEs) of -0.06 and -0.021, respectively; both P < .0005], visceral adipose tissue (PE -0.02; P < 0.0001), and C-reactive protein (PE -0.07; P < .0001) and positively associated with intermuscular adipose tissue (PE 0.01; P = .03). After covariate adjustment, significant associations were not observed between adiponectin and CP in any vascular bed (P > .1). CONCLUSION Serum adiponectin levels were inversely associated with cross-sectional measures of thoracic and lumbar vertebral vBMD, inflammation, and visceral adiposity in African Americans but not with vascular CP after adjustment for covariates. The data support a regulatory/signaling role for adiponectin in the modulation of bone density.
Collapse
Affiliation(s)
- Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kemper KE, Visscher PM, Goddard ME. Genetic architecture of body size in mammals. Genome Biol 2013; 13:244. [PMID: 22546202 DOI: 10.1186/gb4016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Much of the heritability for human stature is caused by mutations of small-to-medium effect. This is because detrimental pleiotropy restricts large-effect mutations to very low frequencies.
Collapse
Affiliation(s)
- Kathryn E Kemper
- Faculty of Land and Environment, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
43
|
Abstract
Much of the heritability for human stature is caused by mutations of small-to-medium effect. This is because detrimental pleiotropy restricts large-effect mutations to very low frequencies.
Collapse
Affiliation(s)
- Kathryn E Kemper
- Faculty of Land and Environment, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
44
|
Ding M, Lu Y, Abbassi S, Li F, Li X, Song Y, Geoffroy V, Im HJ, Zheng Q. Targeting Runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development. J Cell Physiol 2012; 227:3446-56. [PMID: 22223437 DOI: 10.1002/jcp.24045] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Runx2 is a known master transcription factor for osteoblast differentiation, as well as an essential regulator for chondrocyte maturation. Recently, more and more data has shown that Runx2 regulates hypertrophic chondrocyte-specific type X collagen gene (Col10a1) expression in different species. However, how Runx2 regulation of Col10a1 expression impacts chondrocyte maturation, an essential step of endochondral bone formation, remains unknown. We have recently generated transgenic mice in which Flag-tagged Runx2 was driven by a cell-specific Col10a1 control element. Significantly increased level of Runx2 and Col10a1 mRNA transcripts were detected in transgenic mouse limbs at both E17.5 (embryonic day 17.5) and P1 (post-natal day1) stages, suggesting an in vivo correlation of Runx2 and Col10a1 expression. Surprisingly, skeletal staining suggested delayed ossification in both the axial and the appendicular skeleton of transgenic mice from E14.5 until P6. Histological analysis showed elongated hypertrophic zones in transgenic mice, with less von Kossa and TUNEL staining in long bone sections at both E17.5 and P1 stages, suggesting defective mineralization due to delayed chondrocyte maturation or apoptosis. Indeed, we detected increased level of anti-apoptotic genes B-cell leukemia/lymphoma 2, Osteopontin, and Sox9 in transgenic mice by real-time RT-PCR. Moreover, immunohistochemistry and Western blotting analysis also suggested increased Sox9 expression in hypertrophic chondrocytes of transgenic mice. Together, our data suggest that targeting Runx2 in hypertrophic chondrocytes upregulates expression of Col10a1 and other marker genes (such as Sox9). This will change the local matrix environment, delay chondrocyte maturation, reduce apoptosis and matrix mineralization, and eventually, lead to impaired endochondral ossification.
Collapse
Affiliation(s)
- Ming Ding
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kung LHW, Rajpar MH, Briggs MD, Boot-Handford RP. Hypertrophic chondrocytes have a limited capacity to cope with increases in endoplasmic reticulum stress without triggering the unfolded protein response. J Histochem Cytochem 2012; 60:734-48. [PMID: 22859705 PMCID: PMC3524565 DOI: 10.1369/0022155412458436] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations causing metaphyseal chondrodysplasia type Schmid (MCDS) (e.g., Col10a1p.N617K) induce the pathology by a mechanism involving increased endoplasmic reticulum (ER) stress triggering an unfolded protein response (UPR) in hypertrophic chondrocytes (Rajpar et al. 2009). Here we correlate the expression of mutant protein with the onset of the UPR and disease pathology (hypertrophic zone [HZ] expansion) in MCDS and ColXTgcog mouse lines from E14.5 to E17.5. Embryos homozygous for the Col10a1p.N617K mutation displayed a delayed secretion of mutant collagen X accompanied by a UPR at E14.5, delayed ossification of the primary center at E15.5, and an expanded HZ at E17.5. Heterozygote embryos expressed mutant collagen X from E14.5 but exhibited no evidence of a UPR or an HZ expansion until after E17.5. Embryos positive for the ER stress-inducing ColXTgcog allele expressed Tgcog at E14.5, but the onset of the UPR was not apparent until E15.5 in homozygous and E17.5 in hemizygous embryos. Only homozygous embryos exhibited an HZ expansion at E17.5. The differential onset of the UPR and pathology, dependent on mutation type and gene dosage, indicates that hypertrophic chondrocytes have a latent capacity to deal with ER stress, which must be exceeded to trigger the UPR and HZ expansion.
Collapse
Affiliation(s)
- Louise H W Kung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | | | | | | |
Collapse
|
46
|
A novel mutation leading to elongation of the deduced α1(X) chain results in Metaphyseal Chondrodysplasia type Schmid. Clin Chim Acta 2011; 412:1266-9. [DOI: 10.1016/j.cca.2011.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 12/24/2022]
|
47
|
Schmid-type metaphyseal chondrodysplasia as the result of a collagen type X defect due to a novel COL10A1 nonsense mutation: A case report of a novel COL10A1 mutation. J Orthop Sci 2011; 16:245-9. [PMID: 21360259 DOI: 10.1007/s00776-011-0021-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/26/2010] [Indexed: 01/11/2023]
|
48
|
Tsang KY, Chan D, Bateman JF, Cheah KSE. In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences. J Cell Sci 2010; 123:2145-54. [PMID: 20554893 DOI: 10.1242/jcs.068833] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disturbances to the balance of protein synthesis, folding and secretion in the endoplasmic reticulum (ER) induce stress and thereby the ER stress signaling (ERSS) response, which alleviates this stress. In this Commentary, we review the emerging idea that ER stress caused by abnormal physiological conditions and/or mutations in genes that encode client proteins of the ER is a key factor underlying different developmental processes and the pathology of diverse diseases, including diabetes, neurodegeneration and skeletal dysplasias. Recent studies in mouse models indicate that the effect of ERSS in vivo and the nature of the cellular strategies induced to ameliorate pathological ER stress are crucial factors in determining cell fate and clinical disease features. Importantly, ERSS can affect cellular proliferation and the differentiation program; cells that survive the stress can become 'reprogrammed' or dysfunctional. These cell-autonomous adaptation strategies can generate a spectrum of context-dependent cellular consequences, ranging from recovery to death. Secondary effects can include altered cell-extracellular-matrix interactions and non-cell-autonomous alteration of paracrine signaling, which contribute to the final phenotypic outcome. Recent reports showing that ER stress can be alleviated by chemical compounds suggest the potential for novel therapeutic approaches.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry and Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
49
|
Abstract
The skeletal dysplasias (osteochondrodysplasias) are a heterogeneous group of more than 350 disorders frequently associated with orthopedic complications and varying degrees of dwarfism or short stature. These disorders are diagnosed based on radiographic, clinical, and molecular criteria. The molecular mechanisms have been elucidated in many of these disorders providing for improved clinical diagnosis and reproductive choices for affected individuals and their families. An increasing variety of medical and surgical treatment options can be offered to affected individuals to try to improve their quality of life and lifespan.
Collapse
|
50
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2010; 61:198-223. [PMID: 19549927 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|