1
|
Viana R, Rubio T, Campos-Rodríguez Á, Sanz P. Glial Alterations in the Glutamatergic and GABAergic Signalling Pathways in a Mouse Model of Lafora Disease, a Severe Form of Progressive Myoclonus Epilepsy. Neuropathol Appl Neurobiol 2025; 51:e70009. [PMID: 40035482 DOI: 10.1111/nan.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
AIMS Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy characterised by the accumulation of insoluble deposits of glycogen in the brain and peripheral tissues. In mouse models of LD, we have identified neuroinflammation as a secondary hallmark of the disease, characterised by increased levels of reactive astrocytes and activated microglia. Our previous work demonstrated that the TNF and IL-6 inflammatory signalling pathways are the primary drivers of this neuroinflammatory phenotype. In this work, we aimed to investigate whether TNF and IL-6 pathway activation contributes to alterations in the glutamatergic and GABAergic signalling pathways. METHODS We performed immunofluorescence and western blot analyses on the hippocampus of a mouse model of LD to evaluate potential changes in proteins associated with glutamatergic and GABAergic signalling pathways. RESULTS Our findings reveal dysregulation in the expression of subunits of excitatory glutamatergic receptors (phospho-GluN2B and GluK2), as well as an increase in the levels of the GABA transporter GAT1. In addition, we detected activated forms of the Src and Lyn protein kinases in the hippocampus. More importantly, these alterations predominantly occur in nonneuronal cells, such as reactive astrocytes and microglia, underscoring the critical involvement of glial cells in the pathophysiology of LD. CONCLUSIONS The observed upregulation of glutamatergic receptor subunits likely amplifies excitatory glutamatergic signalling, whereas the increased expression of GAT1 may reduce the inhibitory GABAergic tone. These changes contribute to the characteristic hyperexcitability of LD.
Collapse
Affiliation(s)
- Rosa Viana
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, Valencia, Spain
| | - Ángela Campos-Rodríguez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| |
Collapse
|
2
|
Duan RN, Liu JD, Zhao XH, Song CY. Identification of biallelic intronic EPM2A mutations in a Lafora disease kindred. J Hum Genet 2025; 70:167-170. [PMID: 39558147 DOI: 10.1038/s10038-024-01306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Lafora disease (LD) is a severe autosomal recessive disease, which usually presents as seizure and myoclonus, followed by behavioral changes, dysarthria, intellectual decline, and finally progressed to dementia and a vegetative state. The main cause of LD is the loss-of-function mutations in EPM2A and NHLRC1 that encode laforin and malin, respectively. Targeted genetic testing is the gold standard to confirm the diagnosis of LD. To describe the pathogenic role of biallelic EPM2A intronic mutations carried by patients in a family diagnosed as LD. Here, we present clinical findings in a patient presenting with epileptic seizures and Lafora bodies in muscle biopsy. Long-read DNA and RNA sequencing were performed to identify the causative mutation. Western blot and qPCR confirmed the pathogenic role of biallelic EPM2A intronic mutations. Genetic testing identified two intronic mutations in EPM2A which caused aberrant mRNA splicing. c.301+1 G > A in EPM2A caused aberrant splicing at donor site and resulted in intron retention in transcript NM_005670.4, while c.476+14860 C > A caused aberrant splicing in transcript NM_001368129.2 and NM_001368132.1. Our findings expand the spectrum of variants in LD disease, additionally providing evidence linking non-coding regulatory regions mutations to LD disease.
Collapse
Affiliation(s)
- Ruo-Nan Duan
- Department of Neurology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Jin-De Liu
- Department of Neurology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Xiu-He Zhao
- Department of Neurology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Cheng-Yuan Song
- Department of Neurology, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
3
|
Gumusgoz E, Kasiri S, Youssef I, Verma M, Chopra R, Villarreal Acha D, Wu J, Marriam U, Alao E, Chen X, Guisso DR, Gray SJ, Shah BR, Minassian BA. Focused ultrasound widely broadens AAV-delivered Cas9 distribution and activity. Gene Ther 2025:10.1038/s41434-025-00517-w. [PMID: 39893321 DOI: 10.1038/s41434-025-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Because children have little temporal exposure to environment and aging, most pediatric neurological diseases are inherent, i.e. genetic. Since postnatal neurons and astrocytes are mostly non-replicating, gene therapy and genome editing present enormous promise in child neurology. Unlike in other organs, which are highly permissive to adeno-associated viruses (AAV), the mature blood-brain barrier (BBB) greatly limits circulating AAV distribution to the brain. Intrathecal administration improves distribution but to no more than 20% of brain cells. Focused ultrasound (FUS) opens the BBB transiently and safely. In the present work we opened the hippocampal BBB and delivered a Cas9 gene via AAV9 intrathecally. This allowed brain first-pass, and subsequent vascular circulation and re-entry through the opened BBB. The mouse model used was of Lafora disease, a neuroinflammatory disease due to accumulations of misshapen overlong-branched glycogen. Cas9 was targeted to the gene of the glycogen branch-elongating enzyme glycogen synthase. We show that FUS dramatically (2000-fold) improved hippocampal Cas9 distribution and greatly reduced the pathogenic glycogen accumulations and hippocampal inflammation. FUS is in regular clinical use for other indications. Our work shows that it has the potential to vastly broaden gene delivery or editing along with clearance of corresponding pathologic basis of brain disease.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ibrahim Youssef
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA
- FUS Instruments, Inc, Addison, TX, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA
- FUS Instruments, Inc, Addison, TX, USA
- Advanced Imaging Research Center, UTSW Medical Center, Dallas, TX, USA
- Solenic Medical Inc., Addison, TX, USA
| | - Daniel Villarreal Acha
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ummay Marriam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Esther Alao
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bhavya R Shah
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA.
- Advanced Neuroscience Imaging Research Lab, Department of Radiology, UTSW Medical Center, Dallas, TX, USA.
- Department of Neurology, UTSW Medical Center, Dallas, TX, USA.
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Della Vecchia S, Imbrici P, Liantonio A, Naef V, Damiani D, Licitra R, Bernardi S, Marchese M, Santorelli FM. Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model. Biomed Pharmacother 2025; 183:117800. [PMID: 39753095 PMCID: PMC11794196 DOI: 10.1016/j.biopha.2024.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
Lafora disease (LD) is an ultra-rare and still incurable neurodegenerative condition. Although several therapeutic strategies are being explored, including gene therapy, there are currently no treatments that can alleviate the course of the disease and slow its progression. Recently, gliflozins, a series of SGLT2 transporter inhibitors approved for use in type 2 diabetes mellitus, heart failure and chronic kidney disease, have been proposed as possible repositioning drugs for the treatment of LD. With this in mind, we tested dapagliflozin (50 µM), canagliflozin (2.5 µM) and empagliflozin (200 µM) in our epm2a-/- zebrafish model, investigating their effects on pathological behaviour. In the case of dapagliflozin, we also investigated the possible mechanisms of action. Overall, the gliflozins reduced or rescued neuronal hyperexcitability and locomotor impairment. Dapagliflozin also reduced spontaneous seizure-like events in epm2a-/- larvae. At the biochemical and molecular level, dapagliflozin was found to slightly reduce glycogen content, and suppress inflammation and oxidative stress. It also ameliorates autophagic homeostasis and improves lysosomal markers. In conclusion, our preclinical study showed that dapagliflozin was able to ameliorate part of the pathological phenotype of epm2a-/- zebrafish larvae and could potentially be a suitable drug for repurposing in LD. However, since our model does not present Lafora bodies (LBs), at this early disease stage at least, it would be important to use mouse models in order to ascertain whether it is able to prevent or reduce LB formation.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, Florence 50139, Italy.
| | - Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Naef
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Devid Damiani
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Rosario Licitra
- Department of Veterinary Sciences, University of Pisa, Pisa 56124, Italy
| | - Sara Bernardi
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | - Maria Marchese
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, Pisa 56128, Italy
| | | |
Collapse
|
5
|
Neoh GKS, Tan X, Chen S, Roura E, Dong X, Gilbert RG. Glycogen metabolism and structure: A review. Carbohydr Polym 2024; 346:122631. [PMID: 39245499 DOI: 10.1016/j.carbpol.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Glycogen is a glucose polymer that plays a crucial role in glucose homeostasis by functioning as a short-term energy storage reservoir in animals and bacteria. Abnormalities in its metabolism and structure can cause several problems, including diabetes, glycogen storage diseases (GSDs) and muscular disorders. Defects in the enzymes involved in glycogen synthesis or breakdown, resulting in either excessive accumulation or insufficient availability of glycogen in cells seem to account for the most common pathogenesis. This review discusses glycogen metabolism and structure, including molecular architecture, branching dynamics, and the role of associated components within the granules. The review also discusses GSD type XV and Lafora disease, illustrating the broader implications of aberrant glycogen metabolism and structure. These conditions also impart information on important regulatory mechanisms of glycogen, which hint at potential therapeutic targets. Knowledge gaps and potential future research directions are identified.
Collapse
Affiliation(s)
- Galex K S Neoh
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Eugeni Roura
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Shukla M, Chugh D, Ganesh S. Neuromuscular junction dysfunction in Lafora disease. Dis Model Mech 2024; 17:dmm050905. [PMID: 39301689 PMCID: PMC11512103 DOI: 10.1242/dmm.050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Lafora disease (LD), a fatal neurodegenerative disorder, is caused by mutations in the EPM2A gene encoding laforin phosphatase or NHLRC1 gene encoding malin ubiquitin ligase. LD symptoms include epileptic seizures, ataxia, dementia and cognitive decline. Studies on LD have primarily concentrated on the pathophysiology in the brain. A few studies have reported motor symptoms, muscle weakness and muscle atrophy. Intriguingly, skeletal muscles are known to accumulate Lafora polyglucosan bodies. Using laforin-deficient mice, an established model for LD, we demonstrate that LD pathology correlated with structural and functional impairments in the neuromuscular junction (NMJ). Specifically, we found impairment in NMJ transmission, which coincided with altered expression of NMJ-associated genes and reduced motor endplate area, fragmented junctions and loss of fully innervated junctions at the NMJ. We also observed a reduction in alpha-motor neurons in the lumbar spinal cord, with significant presynaptic morphological alterations. Disorganised myofibrillar patterns, slight z-line streaming and muscle atrophy were also evident in LD animals. In summary, our study offers insight into the neuropathic and myopathic alterations leading to motor deficits in LD.
Collapse
Affiliation(s)
- Monica Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Deepti Chugh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
7
|
Viana R, Rubio T, Campos-Rodríguez Á, Sanz P. Glial alterations in the glutamatergic and GABAergic signaling pathways in a mouse model of Lafora disease, a severe form of progressive myoclonus epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612874. [PMID: 39314331 PMCID: PMC11419120 DOI: 10.1101/2024.09.13.612874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies (LBs), in the brain but also in peripheral tissues. It is assumed that the accumulation of LBs is related to the appearance of the characteristic pathological features of the disease. In mouse models of LD, we and others have reported an increase in the levels of reactive astrocytes and activated microglia, which triggers the expression of the different pro-inflammatory mediators. Recently, we have demonstrated that the TNF and IL-6 inflammatory signaling pathways are the main mediators of the neuroinflammatory phenotype associated with the disease. In this work, we present evidence that the activation of these pathways produces a dysregulation in the levels of different subunits of the excitatory ionotropic glutamatergic receptors (phopho-GluN2B, phospho-GluA2, GluK2) and also an increase in the levels of the GABA transporter GAT1 in the hippocampus of the Epm2b-/- mice. In addition, we present evidence of the presence of activated forms of the Src and Lyn protein kinases in this area. These effects may increase the excitatory glutamatergic signaling and decrease the inhibitory GABAergic tone, leading to hyper-excitability. More importantly, the enhanced production of these subunits occurs in non-neuronal cells such as activated microglia and reactive astrocytes, pointing out a key role of glia in the pathophysiology of LD.
Collapse
|
8
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Zafra-Puerta L, Iglesias-Cabeza N, Burgos DF, Sciaccaluga M, González-Fernández J, Bellingacci L, Canonichesi J, Sánchez-Martín G, Costa C, Sánchez MP, Serratosa JM. Gene therapy for Lafora disease in the Epm2a -/- mouse model. Mol Ther 2024; 32:2130-2149. [PMID: 38796707 PMCID: PMC11286821 DOI: 10.1016/j.ymthe.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.
Collapse
Affiliation(s)
- Luis Zafra-Puerta
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, 28029 Madrid, Spain
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Departament of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, University of Perugia, 06132 Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Jacopo Canonichesi
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
10
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-Cage Behavior. J Comp Neurol 2024; 532:e25660. [PMID: 39039998 PMCID: PMC11370821 DOI: 10.1002/cne.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
11
|
Rubio T, Campos-Rodríguez Á, Sanz P. Beneficial Effect of Fingolimod in a Lafora Disease Mouse Model by Preventing Reactive Astrogliosis-Derived Neuroinflammation and Brain Infiltration of T-lymphocytes. Mol Neurobiol 2024; 61:3105-3120. [PMID: 37971656 PMCID: PMC11087365 DOI: 10.1007/s12035-023-03766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Lafora disease (LD; OMIM#254780) is a rare, devastating, and fatal form of progressive myoclonus epilepsy that affects young adolescents and has no treatment yet. One of the hallmarks of the disease is the accumulation of aberrant poorly branched forms of glycogen (polyglucosans, PGs) in the brain and peripheral tissues. The current hypothesis is that this accumulation is causative of the pathophysiology of the disease. Another hallmark of LD is the presence of neuroinflammation. We have recently reported the presence of reactive glia-derived neuroinflammation in LD mouse models and defined the main inflammatory pathways that operate in these mice, mainly TNF and IL-6 signaling pathways. In addition, we described the presence of infiltration of peripheral immune cells in the brain parenchyma, which could cooperate and aggravate the neuroinflammatory landscape of LD. In this work, we have checked the beneficial effect of two compounds with the capacity to ameliorate neuroinflammation and reduce leukocyte infiltration into the brain, namely fingolimod and dimethyl fumarate. Our results indicate a beneficial effect of fingolimod in reducing reactive astrogliosis-derived neuroinflammation and T-lymphocyte infiltration, which correlated with the improved behavioral performance of the treated Epm2b-/- mice. On the contrary, dimethyl fumarate, although it was able to reduce reactive astrogliosis, was less effective in preventing neuroinflammation and T-lymphocyte infiltration and in modifying behavioral tests.
Collapse
Affiliation(s)
- Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | - Ángela Campos-Rodríguez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain.
| |
Collapse
|
12
|
Skurat AV, Segvich DM, Contreras CJ, Hu YC, Hurley TD, DePaoli-Roach AA, Roach PJ. Impaired malin expression and interaction with partner proteins in Lafora disease. J Biol Chem 2024; 300:107271. [PMID: 38588813 PMCID: PMC11063907 DOI: 10.1016/j.jbc.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Mitra S, Chen B, Shelton JM, Nitschke S, Wu J, Covington L, Dear M, Lynn T, Verma M, Nitschke F, Fuseya Y, Iwai K, Evers BM, Minassian BA. Myofiber-type-dependent 'boulder' or 'multitudinous pebble' formations across distinct amylopectinoses. Acta Neuropathol 2024; 147:46. [PMID: 38411740 DOI: 10.1007/s00401-024-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
At least five enzymes including three E3 ubiquitin ligases are dedicated to glycogen's spherical structure. Absence of any reverts glycogen to a structure resembling amylopectin of the plant kingdom. This amylopectinosis (polyglucosan body formation) causes fatal neurological diseases including adult polyglucosan body disease (APBD) due to glycogen branching enzyme deficiency, Lafora disease (LD) due to deficiencies of the laforin glycogen phosphatase or the malin E3 ubiquitin ligase and type 1 polyglucosan body myopathy (PGBM1) due to RBCK1 E3 ubiquitin ligase deficiency. Little is known about these enzymes' functions in glycogen structuring. Toward understanding these functions, we undertake a comparative murine study of the amylopectinoses of APBD, LD and PGBM1. We discover that in skeletal muscle, polyglucosan bodies form as two main types, small and multitudinous ('pebbles') or giant and single ('boulders'), and that this is primarily determined by the myofiber types in which they form, 'pebbles' in glycolytic and 'boulders' in oxidative fibers. This pattern recapitulates what is known in the brain in LD, innumerable dust-like in astrocytes and single giant sized in neurons. We also show that oxidative myofibers are relatively protected against amylopectinosis, in part through highly increased glycogen branching enzyme expression. We present evidence of polyglucosan body size-dependent cell necrosis. We show that sex influences amylopectinosis in genotype, brain region and myofiber-type-specific fashion. RBCK1 is a component of the linear ubiquitin chain assembly complex (LUBAC), the only known cellular machinery for head-to-tail linear ubiquitination critical to numerous cellular pathways. We show that the amylopectinosis of RBCK1 deficiency is not due to loss of linear ubiquitination, and that another function of RBCK1 or LUBAC must exist and operate in the shaping of glycogen. This work opens multiple new avenues toward understanding the structural determinants of the mammalian carbohydrate reservoir critical to neurologic and neuromuscular function and disease.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - John M Shelton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Lindsay Covington
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9148, USA
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Tori Lynn
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Yasuhiro Fuseya
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, 606-8501, Japan
| | - Bret M Evers
- Departments of Pathology and Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9073, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA.
| |
Collapse
|
14
|
Zafra-Puerta L, Colpaert M, Iglesias-Cabeza N, Burgos DF, Sánchez-Martín G, Gentry MS, Sánchez MP, Serratosa JM. Effect of intracerebroventricular administration of alglucosidase alfa in two mouse models of Lafora disease: Relevance for clinical practice. Epilepsy Res 2024; 200:107317. [PMID: 38341935 PMCID: PMC11759341 DOI: 10.1016/j.eplepsyres.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Lafora disease is a rare and fatal form of progressive myoclonic epilepsy with onset during early adolescence. The disease is caused by mutations in EPM2A, encoding laforin, or EPM2B, encoding malin. Both proteins have functions that affect glycogen metabolism, including glycogen dephosphorylation by laforin and ubiquitination of enzymes involved in glycogen metabolism by malin. Lack of function of laforin or malin results in the accumulation of polyglucosan that forms Lafora bodies in the central nervous system and other tissues. Enzyme replacement therapy through intravenous administration of alglucosidase alfa (Myozyme®) has shown beneficial effects removing polyglucosan aggregates in Pompe disease. We evaluated the effectiveness of intracerebroventricular administration of alglucosidase alfa in the Epm2a-/- knock-out and Epm2aR240X knock-in mouse models of Lafora disease. Seven days after a single intracerebroventricular injection of alglucosidase alfa in 12-month-old Epm2a-/- and Epm2aR240X mice, the number of Lafora bodies was not reduced. Additionally, a prolonged infusion of alglucosidase alfa for 2 or 4 weeks in 6- and 9-month-old Epm2a-/- mice did not result in a reduction in the number of LBs or the amount of glycogen in the brain. These findings hold particular significance in guiding a rational approach to the utilization of novel therapies in Lafora disease.
Collapse
Affiliation(s)
- Luis Zafra-Puerta
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare, Vicenza, Italy.
| | - Matthieu Colpaert
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32605, USA.
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| | - Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32605, USA.
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| | - Jose M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
15
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
16
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Zafra-Puerta L, Burgos DF, Iglesias-Cabeza N, González-Fernández J, Sánchez-Martín G, Sánchez MP, Serratosa JM. Gene replacement therapy for Lafora disease in the Epm2a -/- mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571636. [PMID: 38168354 PMCID: PMC10760157 DOI: 10.1101/2023.12.14.571636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. Common symptoms include seizures, dementia, and a progressive neurological decline leading to death within 5-15 years from onset. The disease results from mutations transmitted with autosomal recessive inheritance in the EPM2A gene, encoding laforin, a dual-specificity phosphatase, or the EPM2B gene, encoding malin, an E3-ubiquitin ligase. Laforin has glucan phosphatase activity, is an adapter of enzymes involved in glycogen metabolism, is involved in endoplasmic reticulum-stress and protein clearance, and acts as a tumor suppressor protein. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein can lead to alterations in this complex, leading to the formation of Lafora bodies that contain abnormal, insoluble, and hyperphosphorylated forms of glycogen called polyglucosans. We used the Epm2a -/- knock-out mouse model of Lafora disease to apply a gene replacement therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment by means of neuropathological studies, behavioral tests, video-electroencephalography recording, and proteomic/phosphoproteomic analysis. Gene therapy with recombinant adeno-associated virus containing the EPM2A gene ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Improvements were observed for up to nine months following a single intracerebroventricular injection. In conclusion, gene replacement therapy with human EPM2A gene in the Epm2a -/- knock-out mice shows promise as a potential treatment for Lafora disease.
Collapse
|
18
|
Ferrari Aggradi CR, Rimoldi M, Romagnoli G, Velardo D, Meneri M, Iacobucci D, Ripolone M, Napoli L, Ciscato P, Moggio M, Comi GP, Ronchi D, Corti S, Abati E. Lafora Disease: A Case Report and Evolving Treatment Advancements. Brain Sci 2023; 13:1679. [PMID: 38137127 PMCID: PMC10742041 DOI: 10.3390/brainsci13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.
Collapse
Affiliation(s)
- Carola Rita Ferrari Aggradi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Martina Rimoldi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gloria Romagnoli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Davide Iacobucci
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Patrizia Ciscato
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| |
Collapse
|
19
|
Donohue KJ, Fitzsimmons B, Bruntz RC, Markussen KH, Young LEA, Clarke HA, Coburn PT, Griffith LE, Sanders W, Klier J, Burke SN, Maurer AP, Minassian BA, Sun RC, Kordasiewisz HB, Gentry MS. Gys1 Antisense Therapy Prevents Disease-Driving Aggregates and Epileptiform Discharges in a Lafora Disease Mouse Model. Neurotherapeutics 2023; 20:1808-1819. [PMID: 37700152 PMCID: PMC10684475 DOI: 10.1007/s13311-023-01434-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Patients with Lafora disease have a mutation in EPM2A or EPM2B, resulting in dysregulation of glycogen metabolism throughout the body and aberrant glycogen molecules that aggregate into Lafora bodies. Lafora bodies are particularly damaging in the brain, where the aggregation drives seizures with increasing severity and frequency, coupled with neurodegeneration. Previous work employed mouse genetic models to reduce glycogen synthesis by approximately 50%, and this strategy significantly reduced Lafora body formation and disease phenotypes. Therefore, an antisense oligonucleotide (ASO) was developed to reduce glycogen synthesis in the brain by targeting glycogen synthase 1 (Gys1). To test the distribution and efficacy of this drug, the Gys1-ASO was administered to Epm2b-/- mice via intracerebroventricular administration at 4, 7, and 10 months. The mice were then sacrificed at 13 months and their brains analyzed for Gys1 expression, glycogen aggregation, and neuronal excitability. The mice treated with Gys1-ASO exhibited decreased Gys1 protein levels, decreased glycogen aggregation, and reduced epileptiform discharges compared to untreated Epm2b-/- mice. This work provides proof of concept that a Gys1-ASO halts disease progression of EPM2B mutations of Lafora disease.
Collapse
Affiliation(s)
- Katherine J Donohue
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Bethany Fitzsimmons
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Ronald C Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Kia H Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Harrison A Clarke
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Peyton T Coburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Laiken E Griffith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - William Sanders
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Jack Klier
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA
| | - Andrew P Maurer
- Department of Neuroscience and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Holly B Kordasiewisz
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-cage Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557226. [PMID: 37745312 PMCID: PMC10515855 DOI: 10.1101/2023.09.11.557226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Lafora Disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD, as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ~6-7 months and ~12 months of age, malin deficient mice ("KO") and wild type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age dependent LB accumulation, gliosis and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. Using an in vitro assay of neocortical function, paroxysmal increases in network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but were similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced post-ictal suppression of movement, feeding and drinking behavior. Together, these results highlight a stark clinicopathologic dissociation in a mouse model of LD, where LBs accrue substantially without clinically meaningful changes in overall wellbeing. Our findings allude to a delay between LB accumulation and neurobehavioral decline: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
21
|
Burgos DF, Sciaccaluga M, Worby CA, Zafra-Puerta L, Iglesias-Cabeza N, Sánchez-Martín G, Prontera P, Costa C, Serratosa JM, Sánchez MP. Epm2a R240X knock-in mice present earlier cognitive decline and more epileptic activity than Epm2a -/- mice. Neurobiol Dis 2023; 181:106119. [PMID: 37059210 DOI: 10.1016/j.nbd.2023.106119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
Lafora disease is a rare recessive form of progressive myoclonic epilepsy, usually diagnosed during adolescence. Patients present with myoclonus, neurological deterioration, and generalized tonic-clonic, myoclonic, or absence seizures. Symptoms worsen until death, usually within the first ten years of clinical onset. The primary histopathological hallmark is the formation of aberrant polyglucosan aggregates called Lafora bodies in the brain and other tissues. Lafora disease is caused by mutations in either the EPM2A gene, encoding laforin, or the EPM2B gene, coding for malin. The most frequent EPM2A mutation is R241X, which is also the most prevalent in Spain. The Epm2a-/- and Epm2b-/- mouse models of Lafora disease show neuropathological and behavioral abnormalities similar to those seen in patients, although with a milder phenotype. To obtain a more accurate animal model, we generated the Epm2aR240X knock-in mouse line with the R240X mutation in the Epm2a gene, using genetic engineering based on CRISPR-Cas9 technology. Epm2aR240X mice exhibit most of the alterations reported in patients, including the presence of LBs, neurodegeneration, neuroinflammation, interictal spikes, neuronal hyperexcitability, and cognitive decline, despite the absence of motor impairments. The Epm2aR240X knock-in mouse displays some symptoms that are more severe that those observed in the Epm2a-/- knock-out, including earlier and more pronounced memory loss, increased levels of neuroinflammation, more interictal spikes and increased neuronal hyperexcitability, symptoms that more precisely resemble those observed in patients. This new mouse model can therefore be specifically used to evaluate how new therapies affects these features with greater precision.
Collapse
Affiliation(s)
- Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain; Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Carolyn A Worby
- University of California at San Diego, 9500 Gilman Drive, La Jolla CA92093-0721, USA
| | - Luis Zafra-Puerta
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain; Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain; Fondazione Malattie Rare Mauro Baschirotto BIRD Onlus, Longare (VI), Italy
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Paolo Prontera
- Medical Genetics Unit, S. Maria della Misericordia Hospital, Perugia 06132, Italy
| | - Cinzia Costa
- Section of Neurology, S. Maria della Misericordia Hospital, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain.
| |
Collapse
|
22
|
Vincent A, Ahmed K, Hussein R, Berberovic Z, Tumber A, Zhao X, Minassian BA. Retinal Phenotyping of a Murine Model of Lafora Disease. Genes (Basel) 2023; 14:genes14040854. [PMID: 37107612 PMCID: PMC10137594 DOI: 10.3390/genes14040854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Lafora disease (LD) is a progressive neurologic disorder caused by biallelic pathogenic variants in EPM2A or EPM2B, leading to tissue accumulation of polyglucosan aggregates termed Lafora bodies (LBs). This study aimed to characterize the retinal phenotype in Epm2a−/− mice by examining knockout (KO; Epm2a−/−) and control (WT) littermates at two time points (10 and 14 months, respectively). In vivo exams included electroretinogram (ERG) testing, optical coherence tomography (OCT) and retinal photography. Ex vivo retinal testing included Periodic acid Schiff Diastase (PASD) staining, followed by imaging to assess and quantify LB deposition. There was no significant difference in any dark-adapted or light-adapted ERG parameters between KO and WT mice. The total retinal thickness was cFigure mparable between the groups and the retinal appearance was normal in both groups. On PASD staining, LBs were observed in KO mice within the inner and outer plexiform layers and in the inner nuclear layer. The average number of LBs within the inner plexiform layer in KO mice were 1743 ± 533 and 2615 ± 915 per mm2, at 10 and 14 months, respectively. This is the first study to characterize the retinal phenotype in an Epm2a−/− mouse model, demonstrating significant LB deposition in the bipolar cell nuclear layer and its synapses. This finding may be used to monitor the efficacy of experimental treatments in mouse models.
Collapse
Affiliation(s)
- Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Kashif Ahmed
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rowaida Hussein
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Xiaochu Zhao
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Duran J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells 2023; 12:cells12050722. [PMID: 36899857 PMCID: PMC10000527 DOI: 10.3390/cells12050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.
Collapse
Affiliation(s)
- Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Kumarasinghe L, Garcia-Gimeno MA, Ramirez J, Mayor U, Zugaza JL, Sanz P. P-Rex1 is a novel substrate of the E3 ubiquitin ligase Malin associated with Lafora disease. Neurobiol Dis 2023; 177:105998. [PMID: 36638890 PMCID: PMC10682699 DOI: 10.1016/j.nbd.2023.105998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Laforin and Malin are two proteins that are encoded by the genes EPM2A and EPM2B, respectively. Laforin is a glucan phosphatase and Malin is an E3-ubiquitin ligase, and these two proteins function as a complex. Mutations occurring at the level of one of the two genes lead to the accumulation of an aberrant form of glycogen meant to cluster in polyglucosans that go under the name of Lafora bodies. Individuals affected by the appearance of these polyglucosans, especially at the cerebral level, experience progressive neurodegeneration and several episodes of epilepsy leading to the manifestation of a fatal form of a rare disease called Lafora disease (LD), for which, to date, no treatment is available. Despite the different dysfunctions described for this disease, many molecular aspects still demand elucidation. An effective way to unknot some of the nodes that prevent the achievement of better knowledge of LD is to focus on the substrates that are ubiquitinated by the E3-ubiquitin ligase Malin. Some substrates have already been provided by previous studies based on protein-protein interaction techniques and have been associated with some alterations that mark the disease. In this work, we have used an unbiased alternative approach based on the activity of Malin as an E3-ubiquitin ligase. We report the discovery of novel bonafide substrates of Malin and have characterized one of them more deeply, namely PIP3-dependent Rac exchanger 1 (P-Rex1). The analysis conducted upon this substrate sets the genesis of the delineation of a molecular pathway that leads to altered glucose uptake, which could be one of the origin of the accumulation of the polyglucosans present in the disease.
Collapse
Affiliation(s)
- L Kumarasinghe
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain
| | - M A Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politécnica de València, 46022, Valencia, Spain
| | - J Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain
| | - U Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, UPV/EHU, Leioa, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain
| | - J L Zugaza
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 48009 Bilbao, Spain; Achucarro Basque Center for Neuroscience, Scientific Park UPV/EHU, 48940 Leioa, Bizkaia, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| | - P Sanz
- Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 28029 Madrid, Spain.
| |
Collapse
|
25
|
Burgos DF, Machío-Castello M, Iglesias-Cabeza N, Giráldez BG, González-Fernández J, Sánchez-Martín G, Sánchez MP, Serratosa JM. Early Treatment with Metformin Improves Neurological Outcomes in Lafora Disease. Neurotherapeutics 2023; 20:230-244. [PMID: 36303102 PMCID: PMC10119355 DOI: 10.1007/s13311-022-01304-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/31/2022] Open
Abstract
Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B genes that usually appears during adolescence. The Epm2a-/- and Epm2b-/- knock-out mouse models of the disease develop behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administration in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegeneration, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with slower deterioration of their daily living activities.
Collapse
Affiliation(s)
- Daniel F Burgos
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, 28029, Madrid, Spain
| | - María Machío-Castello
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Nerea Iglesias-Cabeza
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Beatriz G Giráldez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan González-Fernández
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
- Department of Parasitology, School of Pharmacy, Complutense de Madrid University, 28040, Madrid, Spain
| | - Gema Sánchez-Martín
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - José M Serratosa
- Laboratory of Neurology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Autónoma de Madrid University (IIS-FJD, UAM), Av. Reyes Católicos, 2, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
26
|
Rubio T, Viana R, Moreno-Estellés M, Campos-Rodríguez Á, Sanz P. TNF and IL6/Jak2 signaling pathways are the main contributors of the glia-derived neuroinflammation present in Lafora disease, a fatal form of progressive myoclonus epilepsy. Neurobiol Dis 2023; 176:105964. [PMID: 36526090 PMCID: PMC10682476 DOI: 10.1016/j.nbd.2022.105964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Lafora disease (LD; OMIM#254780) is a rare form of progressive myoclonus epilepsy (prevalence <1:1,000,000) characterized by the accumulation of insoluble deposits of aberrant glycogen (polyglucosans), named Lafora bodies, in the brain but also in peripheral tissues. LD is the most severe form of the group of progressive myoclonus epilepsies, since patients present a rapid deterioration and dementia with amplification of seizures, leading to death after a decade from the onset of the first symptoms. We have recently described that reactive glia-derived neuroinflammation should be considered a novel hallmark of LD since we observed a florid upregulation of differentially expressed genes in both LD mouse lines, which were mainly related to mediators of inflammatory response. In this work, we define an upregulation of the expression of mediators of the TNF and IL6/JAK2 signaling pathways in LD. In addition, we describe the activation of the non-canonical form of the inflammasome. Furthermore, we describe the infiltration of peripheral immune cells in the brain parenchyma, which could aggravate glia-derived neuroinflammation. Finally, we describe CXCL10 and S100b as blood biomarkers of the disease, which will allow the study of the progression of the disease using serum blood samples. We consider that the identification of these initial inflammatory changes in LD will be very important to implement possible anti-inflammatory therapeutic strategies to prevent the development of the disease.
Collapse
Affiliation(s)
- Teresa Rubio
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Mireia Moreno-Estellés
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | | - Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain..
| |
Collapse
|
27
|
Mitra S, Chen B, Wang P, Chown EE, Dear M, Guisso DR, Mariam U, Wu J, Gumusgoz E, Minassian BA. Laforin targets malin to glycogen in Lafora progressive myoclonus epilepsy. Dis Model Mech 2023; 16:dmm049802. [PMID: 36511140 PMCID: PMC9844227 DOI: 10.1242/dmm.049802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin-malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Erin E. Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dikran R. Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ummay Mariam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emrah Gumusgoz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Progressive myoclonic epilepsies—English Version. ZEITSCHRIFT FÜR EPILEPTOLOGIE 2022. [DOI: 10.1007/s10309-022-00546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Della Vecchia S, Marchese M, Santorelli FM. Glial Contributions to Lafora Disease: A Systematic Review. Biomedicines 2022; 10:biomedicines10123103. [PMID: 36551859 PMCID: PMC9776290 DOI: 10.3390/biomedicines10123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Lafora disease (LD) is a neurodegenerative condition characterized by the accumulation of polyglucosan bodies (PBs) throughout the brain. Alongside metabolic and molecular alterations, neuroinflammation has emerged as another key histopathological feature of LD. METHODS To investigate the role of astrocytes and microglia in LD, we performed a systematic review according to the PRISMA statement. PubMed, Scopus, and Web-of-Science database searches were performed independently by two reviewers. RESULTS Thirty-five studies analyzing the relationship of astrocytes and microglia with LD and/or the effects of anti-inflammatory treatments in LD animal models were identified and included in the review. Although LD has long been dominated by a neuronocentric view, a growing body of evidence suggests a role of glial cells in the disease, starting with the finding that these cells accumulate PBs. We discuss the potential meaning of glial PB accumulations, the likely factors activating glial cells, and the possible contribution of glial cells to LD neurodegeneration and epilepsy. CONCLUSIONS Given the evidence for the role of neuroinflammation in LD, future studies should consider glial cells as a potential therapeutic target for modifying/delaying LD progression; however, it should be kept in mind that these cells can potentially assume multiple reactive phenotypes, which could influence the therapeutic response.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Correspondence: (S.D.V.); (F.M.S.)
| | - Maria Marchese
- Neurobiology, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Neurobiology, IRCCS Stella Maris Foundation, Calambrone, 56128 Pisa, Italy
- Correspondence: (S.D.V.); (F.M.S.)
| |
Collapse
|
30
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Molecular architecture of the glycogen- committed PP1/PTG holoenzyme. Nat Commun 2022; 13:6199. [PMID: 36261419 PMCID: PMC9582199 DOI: 10.1038/s41467-022-33693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The delicate alternation between glycogen synthesis and degradation is governed by the interplay between key regulatory enzymes altering the activity of glycogen synthase and phosphorylase. Among these, the PP1 phosphatase promotes glycogenesis while inhibiting glycogenolysis. PP1 is, however, a master regulator of a variety of cellular processes, being conveniently directed to each of them by scaffolding subunits. PTG, Protein Targeting to Glycogen, addresses PP1 action to glycogen granules. In Lafora disease, the most aggressive pediatric epilepsy, genetic alterations leading to PTG accumulation cause the deposition of insoluble polyglucosans in neurons. Here, we report the crystallographic structure of the ternary complex PP1/PTG/carbohydrate. We further refine the mechanism of the PTG-mediated PP1 recruitment to glycogen by identifying i) an unusual combination of recruitment sites, ii) their contributions to the overall binding affinity, and iii) the conformational heterogeneity of this complex by in solution SAXS analyses.
Collapse
|
32
|
Mollá B, Heredia M, Campos Á, Sanz P. Pharmacological Modulation of Glutamatergic and Neuroinflammatory Pathways in a Lafora Disease Mouse Model. Mol Neurobiol 2022; 59:6018-6032. [PMID: 35835895 PMCID: PMC9463199 DOI: 10.1007/s12035-022-02956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022]
Abstract
Lafora disease (LD) is a fatal rare neurodegenerative disorder that affects young adolescents and has no treatment yet. The hallmark of LD is the presence of polyglucosan inclusions (PGs), called Lafora bodies (LBs), in the brain and peripheral tissues. LD is caused by mutations in either EPM2A or EPM2B genes, which, respectively, encode laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase, with identical clinical features. LD knockout mouse models (Epm2a - / - and Epm2b - / -) recapitulate PG body accumulation, as in the human pathology, and display alterations in glutamatergic transmission and neuroinflammatory pathways in the brain. In this work, we show the results of four pre-clinical trials based on the modulation of glutamatergic transmission (riluzole and memantine) and anti-neuroinflammatory interventions (resveratrol and minocycline) as therapeutical strategies in an Epm2b - / - mouse model. Drugs were administered in mice from 3 to 5 months of age, corresponding to early stage of the disease, and we evaluated the beneficial effect of the drugs by in vivo behavioral phenotyping and ex vivo histopathological brain analyses. The behavioral assessment was based on a battery of anxiety, cognitive, and neurodegenerative tests and the histopathological analyses included a panel of markers regarding PG accumulation, astrogliosis, and microgliosis. Overall, the outcome of ameliorating the excessive glutamatergic neurotransmission present in Epm2b - / - mice by memantine displayed therapeutic effectiveness at the behavioral levels. Modulation of neuroinflammation by resveratrol and minocycline also showed beneficial effects at the behavioral level. Therefore, our study suggests that both therapeutical strategies could be beneficial for the treatment of LD patients. A mouse model of Lafora disease (Epm2b-/-) was used to check the putative beneficial effect of different drugs aimed to ameliorate the alterations in glutamatergic transmission and/or neuroinflammation present in the model. Drugs in blue gave a more positive outcome than the rest.
Collapse
Affiliation(s)
- Belén Mollá
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Miguel Heredia
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Ángela Campos
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
| | - Pascual Sanz
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
33
|
Faltus C, Lahnsteiner A, Barrdahl M, Assenov Y, Hüsing A, Bogatyrova O, Laplana M, Johnson T, Muley T, Meister M, Warth A, Thomas M, Plass C, Kaaks R, Risch A. Identification of NHLRC1 as a Novel AKT Activator from a Lung Cancer Epigenome-Wide Association Study (EWAS). Int J Mol Sci 2022; 23:ijms231810699. [PMID: 36142605 PMCID: PMC9505874 DOI: 10.3390/ijms231810699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Changes in DNA methylation identified by epigenome-wide association studies (EWAS) have been recently linked to increased lung cancer risk. However, the cellular effects of these differentially methylated positions (DMPs) are often unclear. Therefore, we investigated top differentially methylated positions identified from an EWAS study. This included a putative regulatory region of NHLRC1. Hypomethylation of this gene was recently linked with decreased survival rates in lung cancer patients. HumanMethylation450 BeadChip array (450K) analysis was performed on 66 lung cancer case-control pairs from the European Prospective Investigation into Cancer and Nutrition Heidelberg lung cancer EWAS (EPIC HD) cohort. DMPs identified in these pre-diagnostic blood samples were then investigated for differential DNA methylation in lung tumor versus adjacent normal lung tissue from The Cancer Genome Atlas (TCGA) and replicated in two independent lung tumor versus adjacent normal tissue replication sets with MassARRAY. The EPIC HD top hypermethylated DMP cg06646708 was found to be a hypomethylated region in multiple data sets of lung tumor versus adjacent normal tissue. Hypomethylation within this region caused increased mRNA transcription of the closest gene NHLRC1 in lung tumors. In functional assays, we demonstrate attenuated proliferation, viability, migration, and invasion upon NHLRC1 knock-down in lung cancer cells. Furthermore, diminished AKT phosphorylation at serine 473 causing expression of pro-apoptotic AKT-repressed genes was detected in these knock-down experiments. In conclusion, this study demonstrates the powerful potential for discovery of novel functional mechanisms in oncogenesis based on EWAS DNA methylation data. NHLRC1 holds promise as a new prognostic biomarker for lung cancer survival and prognosis, as well as a target for novel treatment strategies in lung cancer patients.
Collapse
Affiliation(s)
- Christian Faltus
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Myrto Barrdahl
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
| | - Anika Hüsing
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
| | - Marina Laplana
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, 25198 Lleida, Spain
| | - Theron Johnson
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
| | - Thomas Muley
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Michael Meister
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Arne Warth
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael Thomas
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Thoraxklinik at University Hospital Heidelberg, University of Heidelberg, 69126 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, DKFZ-German Cancer Research Center, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ–German Cancer Research Center, 69120 Heidelberg, Germany
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +43-662-8044-7220
| |
Collapse
|
34
|
Goodspeed K, Bailey RM, Prasad S, Sadhu C, Cardenas JA, Holmay M, Bilder DA, Minassian BA. Gene Therapy: Novel Approaches to Targeting Monogenic Epilepsies. Front Neurol 2022; 13:805007. [PMID: 35847198 PMCID: PMC9284605 DOI: 10.3389/fneur.2022.805007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic epilepsies are a spectrum of disorders characterized by spontaneous and recurrent seizures that can arise from an array of inherited or de novo genetic variants and disrupt normal brain development or neuronal connectivity and function. Genetically determined epilepsies, many of which are due to monogenic pathogenic variants, can result in early mortality and may present in isolation or be accompanied by neurodevelopmental disability. Despite the availability of more than 20 antiseizure medications, many patients with epilepsy fail to achieve seizure control with current therapies. Patients with refractory epilepsy—particularly of childhood onset—experience increased risk for severe disability and premature death. Further, available medications inadequately address the comorbid developmental disability. The advent of next-generation gene sequencing has uncovered genetic etiologies and revolutionized diagnostic practices for many epilepsies. Advances in the field of gene therapy also present the opportunity to address the underlying mechanism of monogenic epilepsies, many of which have only recently been described due to advances in precision medicine and biology. To bring precision medicine and genetic therapies closer to clinical applications, experimental animal models are needed that replicate human disease and reflect the complexities of these disorders. Additionally, identifying and characterizing clinical phenotypes, natural disease course, and meaningful outcome measures from epileptic and neurodevelopmental perspectives are necessary to evaluate therapies in clinical studies. Here, we discuss the range of genetically determined epilepsies, the existing challenges to effective clinical management, and the potential role gene therapy may play in transforming treatment options available for these conditions.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - Rachel M. Bailey
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern, Dallas, TX, United States
| | - Suyash Prasad
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Chanchal Sadhu
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Jessica A. Cardenas
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Mary Holmay
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Deborah A. Bilder
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, United States
| | - Berge A. Minassian
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Berge A. Minassian
| |
Collapse
|
35
|
Trehalose Treatment in Zebrafish Model of Lafora Disease. Int J Mol Sci 2022; 23:ijms23126874. [PMID: 35743315 PMCID: PMC9224929 DOI: 10.3390/ijms23126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a−/− zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.
Collapse
|
36
|
Rozenova KA, Lehman JS, Grande JP, Fine AL, Wieland CN. Utilization of Skin Biopsy for Diagnosis in a case of Lafora Disease. J Cutan Pathol 2022; 49:885-888. [PMID: 35708461 DOI: 10.1111/cup.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Lafora disease is a rare inherited neurodegenerative disease with onset in adolescence. Patients present with progressive myoclonic seizures and cognitive decline. The disease is linked to mutations in either of the two genes encoding malin and laforin, and it is associated with the accumulation of polyglucosan inclusions (Lafora bodies) in various tissues, such as brain, liver, muscle, and skin, with the skin being particularly accessible for biopsy. Histopathologic examination of affected tissue with demonstration of Lafora bodies, together with presence of pathologic mutation in EPM2A or NHLRC1 genes, is sufficient for diagnosis of this neurologic disorder when clinically suspected. Here, we report the case of a 16-year-old female with progressive neurologic symptoms and homozygous mutation in the NHLRC1 gene encoding malin. Skin biopsy was instrumental in reaching the final diagnosis by demonstrating Lafora bodies in sweat glands by histopathologic and electron microscopic examination. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Krasimira A Rozenova
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Julia S Lehman
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Anthony L Fine
- Department of Neurology and Pediatrics, Mayo Clinic, Rochester, Minnesota
| | - Carilyn N Wieland
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
37
|
Davarzani A, Shahrokhi A, Hashemi SS, Ghasemi A, Habibi Kavashkohei MR, Farboodi N, Lang AE, Ghiasi M, Rohani M, Alavi A. The second family affected with a PRDM8-related disease. Neurol Sci 2022; 43:3847-3855. [DOI: 10.1007/s10072-021-05815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
|
38
|
Tahara M, Higurashi N, Narita A, Ida H. Long-term efficacy of low-dose perampanel for progressive myoclonus epilepsy in a patient with Gaucher disease type 3. Brain Dev 2022; 44:308-312. [PMID: 34991910 DOI: 10.1016/j.braindev.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE We report the case of a patient with progressive myoclonus epilepsy due to Gaucher disease type 3 whose seizures and ability to perform activities of daily living were significantly improved after starting low-dose perampanel therapy. CASE Our patient's generalized tonic-clonic seizures and myoclonus did not improve despite the administration of multiple antiseizure medications and enzyme replacement therapy. The myoclonus reduced following pharmacological chaperone therapy, but this effect was temporary, and the generalized tonic-clonic seizures continued to occur. However, the generalized tonic-clonic seizures disappeared following treatment with 2 mg/day of perampanel. In addition, the decrease in myoclonus dramatically improved motor function such as talking, eating, and walking and stabilized the patient's mental status. These effects have been sustained for more than 4 years. CONCLUSION Perampanel is expected to be effective in the treatment of progressive myoclonus epilepsy associated with Gaucher disease type 3 and should be considered the drug of choice for this condition.
Collapse
Affiliation(s)
- Mayu Tahara
- Department of Pediatrics, The Jikei University School of Medicine, Japan.
| | | | - Aya Narita
- Division of Child Neurology, Tottori University Hospital, Japan
| | - Hiroyuki Ida
- Department of Pediatrics, The Jikei University School of Medicine, Japan
| |
Collapse
|
39
|
Gentry MS, Markussen KH, Donohue KJ. Two Diseases-One Preclinical Treatment Targeting Glycogen Synthesis. Neurotherapeutics 2022; 19:977-981. [PMID: 35460010 PMCID: PMC9294113 DOI: 10.1007/s13311-022-01240-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 01/30/2023] Open
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Kia H Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Katherine J Donohue
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
40
|
Gumusgoz E, Kasiri S, Guisso DR, Wu J, Dear M, Verhalen B, Minassian BA. AAV-Mediated Artificial miRNA Reduces Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics 2022; 19:982-993. [PMID: 35347645 PMCID: PMC9294094 DOI: 10.1007/s13311-022-01218-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Dikran R Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Matthew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Brandy Verhalen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Present affiliation: Corteva Agriscience, Johnston, IA, 50131, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
41
|
Xingxua T, Xinjuan L, Yuncan C, Dongyan W. Compound heterozygosity for novel variations of the NHLRC1 Gene in a family with Lafora Disease. Clin Neurol Neurosurg 2022; 218:107255. [DOI: 10.1016/j.clineuro.2022.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
|
42
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
Napoli E, Panoutsopoulos AA, Kysar P, Satriya N, Sterling K, Shibata B, Imai D, Ruskin DN, Zarbalis KS, Giulivi C. Wdfy3 regulates glycophagy, mitophagy, and synaptic plasticity. J Cereb Blood Flow Metab 2021; 41:3213-3231. [PMID: 34187232 PMCID: PMC8669292 DOI: 10.1177/0271678x211027384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autophagy is essential to cell function, as it enables the recycling of intracellular constituents during starvation and in addition functions as a quality control mechanism by eliminating spent organelles and proteins that could cause cellular damage if not properly removed. Recently, we reported on Wdfy3's role in mitophagy, a clinically relevant macroautophagic scaffold protein that is linked to intellectual disability, neurodevelopmental delay, and autism spectrum disorder. In this study, we confirm our previous report that Wdfy3 haploinsufficiency in mice results in decreased mitophagy with accumulation of mitochondria with altered morphology, but expanding on that observation, we also note decreased mitochondrial localization at synaptic terminals and decreased synaptic density, which may contribute to altered synaptic plasticity. These changes are accompanied by defective elimination of glycogen particles and a shift to increased glycogen synthesis over glycogenolysis and glycophagy. This imbalance leads to an age-dependent higher incidence of brain glycogen deposits with cerebellar hypoplasia. Our results support and further extend Wdfy3's role in modulating both brain bioenergetics and synaptic plasticity by including glycogen as a target of macroautophagic degradation.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Patricia Kysar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nathaniel Satriya
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kira Sterling
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Denise Imai
- Anatomic Pathology Service, Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, USA
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| |
Collapse
|
44
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
45
|
LUBAC: a new player in polyglucosan body disease. Biochem Soc Trans 2021; 49:2443-2454. [PMID: 34709403 PMCID: PMC8589444 DOI: 10.1042/bst20210838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Altered protein ubiquitination is associated with the pathobiology of numerous diseases; however, its involvement in glycogen metabolism and associated polyglucosan body (PB) disease has not been investigated in depth. In PB disease, excessively long and less branched glycogen chains (polyglucosan bodies, PBs) are formed, which precipitate in different tissues causing myopathy, cardiomyopathy and/or neurodegeneration. Linear ubiquitin chain assembly complex (LUBAC) is a multi-protein complex composed of two E3 ubiquitin ligases HOIL-1L and HOIP and an adaptor protein SHARPIN. Together they are responsible for M1-linked ubiquitination of substrates primarily related to immune signaling and cell death pathways. Consequently, severe immunodeficiency is a hallmark of many LUBAC deficient patients. Remarkably, all HOIL-1L deficient patients exhibit accumulation of PBs in different organs especially skeletal and cardiac muscle resulting in myopathy and cardiomyopathy with heart failure. This emphasizes LUBAC's important role in glycogen metabolism. To date, neither a glycogen metabolism-related LUBAC substrate nor the molecular mechanism are known. Hence, current reviews on LUBAC's involvement in glycogen metabolism are lacking. Here, we aim to fill this gap by describing LUBAC's involvement in PB disease. We present a comprehensive review of LUBAC structure, its role in M1-linked and other types of atypical ubiquitination, PB pathology in human patients and findings in new mouse models to study the disease. We conclude the review with recent drug developments and near-future gene-based therapeutic approaches to treat LUBAC related PB disease.
Collapse
|
46
|
Menchetti M, Antinori L, Serra GD, Bertolini G, Rosati M. Clinical features, imaging characteristics, genetic investigation and histopathologic findings in a Chihuahua dog with Lafora disease. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marika Menchetti
- Neurology and Neurosurgery Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Lucia Antinori
- Neurology and Neurosurgery Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Giulia Dalla Serra
- Dagnostic and Interventional Radiology Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Giovanna Bertolini
- Dagnostic and Interventional Radiology Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Marco Rosati
- Section of Clinical & Comparative Neuropathology Ludwig‐Maximilians‐Universität Munchen Germany
| |
Collapse
|
47
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Canine Lafora Disease: An Unstable Repeat Expansion Disorder. Life (Basel) 2021; 11:life11070689. [PMID: 34357061 PMCID: PMC8304204 DOI: 10.3390/life11070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Canine Lafora disease is a recessively inherited, rapidly progressing neurodegenerative disease caused by the accumulation of abnormally constructed insoluble glycogen Lafora bodies in the brain and other tissues due to the loss of NHL repeat containing E3 ubiquitin protein ligase 1 (NHLRC1). Dogs have a dodecamer repeat sequence within the NHLRC1 gene, which is prone to unstable (dynamic) expansion and loss of function. Progressive signs of Lafora disease include hypnic jerks, reflex and spontaneous myoclonus, seizures, vision loss, ataxia and decreased cognitive function. We studied five dogs (one Chihuahua, two French Bulldogs, one Griffon Bruxellois, one mixed breed) with clinical signs associated with canine Lafora disease. Identification of polyglucosan bodies (Lafora bodies) in myocytes supported diagnosis in the French Bulldogs; muscle areas close to the myotendinous junction and the myofascial union segment had the highest yield of inclusions. Postmortem examination of one of the French Bulldogs revealed brain Lafora bodies. Genetic testing for the known canine NHLRC1 mutation confirmed the presence of a homozygous mutation associated with canine Lafora disease. Our results show that Lafora disease extends beyond previous known breeds to the French Bulldog, Griffon Bruxellois and even mixed-breed dogs, emphasizing the likely species-wide nature of this genetic problem. It also establishes these breeds as animal models for the devastating human disease. Genetic testing should be used when designing breeding strategies to determine the frequency of the NHLRC1 mutation in affected breeds. Lafora diseases should be suspected in any older dog presenting with myoclonus, hypnic jerks or photoconvulsions.
Collapse
|
50
|
Fine AL, Wong‐Kisiel LC, Sheth RD. Genetics of Epilepsy. EPILEPSY 2021:37-62. [DOI: 10.1002/9781119431893.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|