1
|
Yie TA, Loomis CA, Nowatzky J, Khodadadi-Jamayran A, Lin Z, Cammer M, Barnett C, Mezzano V, Alu M, Novick JA, Munger JS, Kugler MC. Hedgehog and Platelet-derived Growth Factor Signaling Intersect during Postnatal Lung Development. Am J Respir Cell Mol Biol 2023; 68:523-536. [PMID: 36693140 PMCID: PMC10174164 DOI: 10.1165/rcmb.2022-0269oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Normal lung development critically depends on HH (Hedgehog) and PDGF (platelet-derived growth factor) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH signaling and PDGF signaling and their impact on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa (platelet-derived growth factor subunit A) and Pdgfra (platelet-derived growth factor receptor alpha) knockouts during secondary alveolar septation. Using a dual signaling reporter, Gli1lZ;PdgfraEGFP, we show that HH and PDGF pathway intermediates are concurrently expressed during alveolar septal myofibroblast accumulation, suggesting pathway convergence in the generation of lung myofibroblasts. Consistent with this hypothesis, HH inhibition reduces Pdgfra expression and diminishes the number of Pdgfra-positive and Pdgfra-lineage cells in postnatal lungs. Bulk RNA sequencing data of Pdgfra-expressing cells from Postnatal Day 8 (P8) lungs show that HH inhibition alters the expression not only of well-established HH targets but also of several putative PDGF target genes. This, together with the presence of Gli-binding sites in PDGF target genes, suggests HH input into PDGF signaling. We identified these HH/PDGF targets in several postnatal lung mesenchymal cell populations, including myofibroblasts, using single-cell transcriptomic analysis. Collectively, our data indicate that HH signaling and PDGF signaling intersect to support myofibroblast/fibroblast function during secondary alveolar septum formation. Moreover, they provide a molecular foundation relevant to perinatal lung diseases associated with impaired alveolarization.
Collapse
Affiliation(s)
- Ting-An Yie
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | | | - Johannes Nowatzky
- Division of Rheumatology, Department of Medicine
- Department of Pathology
| | | | | | | | - Clea Barnett
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | | | | | | | - John S. Munger
- Division of Pulmonary, Critical Care and Sleep Medicine and
- Department of Cell Biology, School of Medicine and Langone Medical Center, New York University, New York, New York
| | | |
Collapse
|
2
|
Damianos A, Kalinichenko VV. Hedgehog and Platelet-derived Growth Factor Collaborate to Guide Fibroblasts during Alveolarization. Am J Respir Cell Mol Biol 2023; 68:472-474. [PMID: 36796088 PMCID: PMC10174160 DOI: 10.1165/rcmb.2023-0031ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Andreas Damianos
- Division of Neonatology and Pulmonary Biology Perinatal Institute, Department of Pediatrics Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Division of Neonatology and Pulmonary Biology Perinatal Institute, Department of Pediatrics and Center of Lung Regenerative Medicine Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Ohio
| |
Collapse
|
3
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Reduced Colonic Mucosal Injury in 2,3,7,8-Tetrachlorodibenzo- p-Dioxin Poly ADP-Ribose Polymerase (TIPARP/PARP7)-Deficient Mice. Int J Mol Sci 2022; 23:ijms23020920. [PMID: 35055106 PMCID: PMC8779828 DOI: 10.3390/ijms23020920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Poly-ADP-ribose polymerases (PARPs) are important regulators of the immune system, including TCDD-inducible poly-ADP-ribose polymerase (TIPARP), also known as poly-ADP-ribose polymerase 7 (PARP7). PARP7 negatively regulates aryl hydrocarbon receptor (AHR) and type I interferon (IFN-I) signaling, both of which have been implicated in intestinal homeostasis and immunity. Since the loss of PARP7 expression increases AHR and IFN-I signaling, we used a murine dextran sulfate sodium (DSS)-induced colitis model to investigate the effect of PARP7 loss on DSS-induced intestinal inflammation. DSS-exposed Parp7−/− mice had less body weight loss, lower disease index scores, and reduced expression of several inflammation genes, including interleukin IL-6, C-x-c motif chemokine ligand 1 (Cxcl1), and lipocalin-2, when compared with wild-type mice. However, no significant difference was observed between genotypes in the colonic expression of the AHR target gene cytochrome P450 1A1 (Cyp1a1). Moreover, no significant differences in microbial composition were observed between the genotypes. Our findings demonstrate that the absence of PARP7 protein results in an impaired immune response to colonic inflammation and suggests that PARP7 may participate in the recruitment of immune cells to the inflammation site, which may be due to its role in IFN-I signaling rather than AHR signaling.
Collapse
|
5
|
Genome-wide DNA Methylation Analysis in Pediatric Acute Myeloid Leukemia. Blood Adv 2022; 6:3207-3219. [PMID: 35008106 PMCID: PMC9198913 DOI: 10.1182/bloodadvances.2021005381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
FLT3-ITD and high PRDM16 expression induced methylation changes at STAT5 and AP-1 binding sites in pediatric AML. Hypomethylated regions in PRDM16-highly expressed AMLs were correlated with enhanced chromatin accessibilities at multiple genomic regions.
We investigated genome-wide DNA methylation patterns in 64 pediatric patients with acute myeloid leukemia (AML). Based on unsupervised clustering with the 567 most variably methylated cytosine guanine dinucleotide (CpG) sites, patients were categorized into 4 clusters associated with genetic alterations. Clusters 1 and 3 were characterized by the presence of known favorable prognostic factors, such as RUNX1-RUNX1T1 fusion and KMT2A rearrangement with low MECOM expression, and biallelic CEBPA mutations (all 8 patients), respectively. Clusters 2 and 4 comprised patients exhibiting molecular features associated with adverse outcomes, namely internal tandem duplication of FLT3 (FLT3-ITD), partial tandem duplication of KMT2A, and high PRDM16 expression. Depending on the methylation values of the 1243 CpG sites that were significantly different between FLT3-ITD+ and FLT3-ITD− AML, patients were categorized into 3 clusters: A, B, and C. The STAT5-binding motif was most frequently found close to the 1243 CpG sites. All 8 patients with FLT3-ITD in cluster A harbored high PRDM16 expression and experienced adverse events, whereas only 1 of 7 patients with FLT3-ITD in the other clusters experienced adverse events. PRDM16 expression levels were also related to DNA methylation patterns, which were drastically changed at the cutoff value of PRDM16/ABL1 = 0.10. The assay for transposase-accessible chromatin sequencing of AMLs supported enhanced chromatin accessibility around genomic regions, such as HOXB cluster genes, SCHIP1, and PRDM16, which were associated with DNA methylation changes in AMLs with FLT3-ITD and high PRDM16 expression. Our results suggest that DNA methylation levels at specific CpG sites are useful to support genetic alterations and gene expression patterns of patients with pediatric AML.
Collapse
|
6
|
Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner. Proc Natl Acad Sci U S A 2021; 118:2106694118. [PMID: 34732574 DOI: 10.1073/pnas.2106694118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
Collapse
|
7
|
Hutin D, Long AS, Sugamori K, Shao P, Singh SK, Rasmussen M, Olafsen NE, Pettersen S, Grimaldi G, Grant DM, Matthews J. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)-Inducible Poly-ADP-Ribose Polymerase (TIPARP/PARP7) Catalytic Mutant Mice (TiparpH532A) Exhibit Increased Sensitivity to TCDD-Induced Hepatotoxicity and Lethality. Toxicol Sci 2021; 183:154-169. [PMID: 34129049 PMCID: PMC8404992 DOI: 10.1093/toxsci/kfab075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-adenosine diphosphate (ADP)-ribose polymerase (TIPARP/PARP7), an aryl hydrocarbon receptor (AHR) target gene and mono-ADP-ribosyltransferase, acts as part of a negative feedback loop to repress AHR signaling. This process is prevented by a single H532A mutation in TIPARP that destroys its catalytic activity. We hypothesized that the loss of TIPARP catalytic activity would increase sensitivity to TCDD-induced toxicity in vivo. To test this, we created a catalytically deficient mouse line (TiparpH532A) by introducing a single H532A mutation in TIPARP. Treatment of mouse embryonic fibroblasts or hepatocytes isolated from TiparpH532A mice confirmed the increased TCDD-induced expression of the AHR target genes Cyp1a1, Cyp1b1, and Tiparp. TiparpH532A mice given a single injection of 10 µg/kg TCDD, a nonlethal dose in Tiparp+/+ mice, did not survive beyond day 10. All Tiparp+/+ mice survived the 30-day treatment. TCDD-treated TiparpH532A mice displayed increased expression of AHR target genes, increased steatohepatitis and hepatotoxicity. Hepatic RNA-sequencing revealed 7-fold more differentially expressed genes in TiparpH532A mice than in Tiparp+/+ mice (4542 vs 647 genes) 6 days after TCDD treatment. Differentially expressed genes included genes involved in xenobiotic metabolism, lipid homeostasis and inflammation. Taken together, these data further support TIPARP as a critical negative regulator of AHR activity and show that loss of its catalytic activity is sufficient to increase sensitivity to TCDD-induced steatohepatitis and lethality. Since TIPARP inhibition has recently emerged as a potential anticancer therapy, the impact on AHR signaling, TCDD and polycyclic aromatic hydrocarbon toxicity will need to be carefully considered under conditions of therapeutic TIPARP inhibition.
Collapse
Affiliation(s)
- David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Alexandra S Long
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Kim Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | | | - Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Ninni Elise Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Solveig Pettersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Giulia Grimaldi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
8
|
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cell Signal 2021; 84:110036. [PMID: 33971280 DOI: 10.1016/j.cellsig.2021.110036] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington 2052, Australia; Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile.
| | - Adriana Córdova-Casanova
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; Fundación Ciencia & Vida, 7780272 Santiago, Chile
| |
Collapse
|
9
|
Jin L, Chen Y, Crossman DK, Datta A, Vu T, Mobley JA, Basu MK, Scarduzio M, Wang H, Chang C, Datta PK. STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells. Nat Commun 2020; 11:5941. [PMID: 33230114 PMCID: PMC7684319 DOI: 10.1038/s41467-020-19698-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is involved in cell fate decisions and embryonic development. However, regulation of these processes is poorly understood. Here, we have identified the serine threonine kinase receptor-associated protein (STRAP) as a putative spliceosome-associated factor. Upon Strap deletion, there are numerous AS events observed in mouse embryoid bodies (EBs) undergoing a neuroectoderm-like state. Global mapping of STRAP-RNA binding in mouse embryos by enhanced-CLIP sequencing (eCLIP-seq) reveals that STRAP preferably targets transcripts for nervous system development and regulates AS through preferred binding positions, as demonstrated for two neuronal-specific genes, Nnat and Mark3. We have found that STRAP involves in the assembly of 17S U2 snRNP proteins. Moreover, in Xenopus, loss of Strap leads to impeded lineage differentiation in embryos, delayed neural tube closure, and altered exon skipping. Collectively, our findings reveal a previously unknown function of STRAP in mediating the splicing networks of lineage commitment, alteration of which may be involved in early embryonic lethality in mice.
Collapse
Affiliation(s)
- Lin Jin
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Arunima Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - Trung Vu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mariangela Scarduzio
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutic, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
10
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
11
|
SIRT7 Deacetylates STRAP to Regulate p53 Activity and Stability. Int J Mol Sci 2020; 21:ijms21114122. [PMID: 32527012 PMCID: PMC7312009 DOI: 10.3390/ijms21114122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) functions as a regulator of both TGF-β and p53 signaling that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP acetylation plays an important role in p53-mediated cell cycle arrest and apoptosis. STRAP is acetylated at lysines 147, 148, and 156 by the acetyltransferases CREB-binding protein (CBP) and that the acetylation is reversed by the deacetylase sirtuin7 (SIRT7). Hypo- or hyperacetylation mutations of STRAP at lysines 147, 148, and 156 (3KR or 3KQ) influence its activation and stabilization of p53. Moreover, following 5-fluorouracil (5-FU) treatment, STRAP is mobilized from the cytoplasm to the nucleus and promotes STRAP acetylation. Our finding on the regulation of STRAP links p53 with SIRT7 influencing p53 activity and stability.
Collapse
|
12
|
Grunewald ME, Shaban MG, Mackin SR, Fehr AR, Perlman S. Murine Coronavirus Infection Activates the Aryl Hydrocarbon Receptor in an Indoleamine 2,3-Dioxygenase-Independent Manner, Contributing to Cytokine Modulation and Proviral TCDD-Inducible-PARP Expression. J Virol 2020; 94:e01743-19. [PMID: 31694960 PMCID: PMC7000979 DOI: 10.1128/jvi.01743-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor/transcription factor that modulates several cellular and immunological processes following activation by pathogen-associated stimuli, though its role during virus infection is largely unknown. Here, we show that AhR is activated in cells infected with mouse hepatitis virus (MHV), a coronavirus (CoV), and contributes to the upregulation of downstream effector TCDD-inducible poly(ADP-ribose) polymerase (TiPARP) during infection. Knockdown of TiPARP reduced viral replication and increased interferon expression, suggesting that TiPARP functions in a proviral manner during MHV infection. We also show that MHV replication induced the expression of other genes known to be downstream of AhR in macrophages and dendritic cells and in livers of infected mice. Further, we found that chemically inhibiting or activating AhR reciprocally modulated the expression levels of cytokines induced by infection, specifically, interleukin 1β (IL-1β), IL-10, and tumor necrosis factor alpha (TNF-α), consistent with a role for AhR activation in the host response to MHV infection. Furthermore, while indoleamine 2,3-dioxygenase (IDO1) drives AhR activation in other settings, MHV infection induced equal expression of downstream genes in wild-type (WT) and IDO1-/- macrophages, suggesting an alternative pathway of AhR activation. In summary, we show that coronaviruses elicit AhR activation by an IDO1-independent pathway, contributing to upregulation of downstream effectors, including the proviral factor TiPARP, and to modulation of cytokine gene expression, and we identify a previously unappreciated role for AhR signaling in CoV pathogenesis.IMPORTANCE Coronaviruses are a family of positive-sense RNA viruses with human and agricultural significance. Characterizing the mechanisms by which coronavirus infection dictates pathogenesis or counters the host immune response would provide targets for the development of therapeutics. Here, we show that the aryl hydrocarbon receptor (AhR) is activated in cells infected with a prototypic coronavirus, mouse hepatitis virus (MHV), resulting in the expression of several effector genes. AhR is important for modulation of the host immune response to MHV and plays a role in the expression of TiPARP, which we show is required for maximal viral replication. Taken together, our findings highlight a previously unidentified role for AhR in regulating coronavirus replication and the immune response to the virus.
Collapse
Affiliation(s)
- Matthew E Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Mohamed G Shaban
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Samantha R Mackin
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Liu Y, Lei P, Row S, Andreadis ST. Cadherin-11 binds to PDGFRβ and enhances cell proliferation and tissue regeneration via the PDGFR-AKT signaling axis. FASEB J 2020; 34:3792-3804. [PMID: 31930567 DOI: 10.1096/fj.201902613r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/11/2022]
Abstract
Intercellular adhesion through homotypic interaction between cadherins regulates multiple cellular processes including cytoskeletal organization, proliferation, and survival. In this paper, we provide evidence that cadherin-11 (CDH11) binds to and promotes cell proliferation both in vitro and in vivo in synergy with the platelet-derived growth factor receptor beta (PDGFRβ). Engagement of CDH11 increased the sensitivity of cells to PDGF-BB by 10- to 100-fold, resulting in rapid and sustained phosphorylation of AKT, ultimately promoting and cell proliferation and tissue regeneration. Indeed, wound healing experiments showed that healing was severely compromised in Cdh11-/- mice, as evidenced by significantly decreased proliferation, AKT phosphorylation, and extracellular matrix (ECM) synthesis of dermal cells. Our results shed light into understanding how intercellular adhesion can promote cell proliferation and may have implications for tissue regeneration and cancer progression.
Collapse
Affiliation(s)
- Yayu Liu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY
| | - Stelios T Andreadis
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY.,Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY
| |
Collapse
|
14
|
Circular RNA TLK1 Aggravates Neuronal Injury and Neurological Deficits after Ischemic Stroke via miR-335-3p/TIPARP. J Neurosci 2019; 39:7369-7393. [PMID: 31311824 DOI: 10.1523/jneurosci.0299-19.2019] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/30/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are expressed at high levels in the brain and are involved in various CNS diseases. However, the potential role of circRNAs in ischemic stroke-associated neuronal injury remains largely unknown. Here, we investigated the important functions of circRNA TLK1 (circTLK1) in this process. The levels of circTLK1 were significantly increased in brain tissues in a mouse model of focal cerebral ischemia and reperfusion. Knockdown of circTLK1 significantly decreased infarct volumes, attenuated neuronal injury, and improved neurological deficits. Furthermore, circTLK1 functioned as an endogenous miR-335-3p sponge to inhibit miR-335-3p activity, resulting in the increase of 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible poly (ADP-ribose) polymerase expression and a subsequent exacerbation of neuronal injury. Clinical studies confirmed increased levels of circTLK1 in the plasma of patients with acute ischemic stroke (59 males and 12 females). Our findings reveal a detrimental role of circTLK1 in ischemic brain injury.SIGNIFICANCE STATEMENT The extent of neuronal injury after brain ischemia is a primary factor determining stroke outcomes. However, the molecular switches that control the death of ischemic neurons are poorly understood. While our previous studies indicated the involvement of circRNAs in ischemic stroke, the potential role of circRNAs in neuronal injury remains largely unknown. The levels of circTLK1 were significantly increased in the brain tissue and plasma isolated from animal models of ischemic stroke and patients. Knockdown of circTLK1 significantly decreased infarct volumes, attenuated neuronal injury, and improved subsequent long-term neurological deficits. To our knowledge, these results provide the first definitive evidence that circTLK1 is detrimental in ischemic stroke.
Collapse
|
15
|
3-Methylcholanthrene Induces Chylous Ascites in TCDD-Inducible Poly-ADP-Ribose Polymerase ( Tiparp) Knockout Mice. Int J Mol Sci 2019; 20:ijms20092312. [PMID: 31083300 PMCID: PMC6540065 DOI: 10.3390/ijms20092312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022] Open
Abstract
TCDD-inducible poly-ADP-ribose polymerase (TIPARP) is an aryl hydrocarbon receptor (AHR) target gene that functions as part of a negative feedback loop to repress AHR activity. Tiparp−/− mice exhibit increased sensitivity to the toxicological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including lethal wasting syndrome. However, it is not known whether Tiparp−/− mice also exhibit increased sensitivity to other AHR ligands. In this study, we treated male Tiparp−/− or wild type (WT) mice with a single injection of 100 mg/kg 3-methylcholanthrene (3MC). Consistent with TIPARP’s role as a repressor of AHR signaling, 3MC-treated Tiparp−/− mice exhibited increased hepatic Cyp1a1 and Cyp1b1 levels compared with WT mice. No 3MC-treated Tiparp−/− mice survived beyond day 16 and the mice exhibited chylous ascites characterized by an accumulation of fluid in the peritoneal cavity. All WT mice survived the 30-day treatment and showed no signs of fluid accumulation. Treated Tiparp−/− mice also exhibited a transient and mild hepatotoxicity with inflammation. 3MC-treated WT, but not Tiparp−/− mice, developed mild hepatic steatosis. Lipid deposits accumulated on the surface of the liver and other abdominal organs in the 3MC-Tiparp−/− mice. Our study reveals that Tiparp−/− mice have increased sensitivity to 3MC-induced liver toxicity, but unlike with TCDD, lethality is due to chylous ascites rather than wasting syndrome.
Collapse
|
16
|
Methods to Study TCDD-Inducible Poly-ADP-Ribose Polymerase (TIPARP) Mono-ADP-Ribosyltransferase Activity. Methods Mol Biol 2019; 1813:109-124. [PMID: 30097864 DOI: 10.1007/978-1-4939-8588-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
TCDD-inducible poly-ADP-ribose polymerase (TIPARP; also known as PARP7 and ARTD14) is a mono-ADP-ribosyltransferase that has emerged as an important regulator of innate immunity, stem cell pluripotency, and transcription factor regulation. Characterizing TIPARP's catalytic activity and identifying its target proteins are critical to understanding its cellular function. Here we describe methods that we use to characterize TIPARP catalytic activity and its mono-ADP-ribosylation of its target proteins.
Collapse
|
17
|
Contreras O, Cruz-Soca M, Theret M, Soliman H, Tung LW, Groppa E, Rossi FM, Brandan E. The cross-talk between TGF-β and PDGFRα signaling pathways regulates stromal fibro/adipogenic progenitors’ fate. J Cell Sci 2019; 132:jcs.232157. [DOI: 10.1242/jcs.232157] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Fibro/adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration, and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to study a functional cross-talk between TGF-β and PDGFRα signaling pathways in FAPs’ fate. Here, we show that the number of FAPs correlates with TGF-β levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the stromal/fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-β signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts, and in two related mesenchymal/fibroblast cell lines. Moreover, TGF-β promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-β impairs the expression of PDGFRα-dependent immediate early genes in a TGF-BR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-β-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation, and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-β and PDGFRα signaling pathways that is involved in regulating the biology of FAPs/MSCs.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Meilyn Cruz-Soca
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hesham Soliman
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Lin Wei Tung
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. Rossi
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Jin L, Chang C, Pawlik KM, Datta A, Johnson LM, Vu T, Napoli JL, Datta PK. Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis. Stem Cells 2018; 36:1368-1379. [PMID: 29781215 DOI: 10.1002/stem.2854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023]
Abstract
Retinoic acid (RA) signaling is essential for the differentiation of embryonic stem cells (ESCs) and vertebrate development. RA biosynthesis and metabolism are controlled by a series of enzymes, but the molecular regulators of these enzymes remain largely obscure. In this study, we investigated the functional role of the WD-domain protein STRAP (serine threonine kinase receptor-associated protein) in the pluripotency and lineage commitment of murine ESCs. We generated Strap knockout (KO) mouse ESCs and subjected them to spontaneous differentiation. We observed that, despite the unchanged characteristics of ESCs, Strap KO ESCs exhibited defects for lineage differentiation. Signature gene expression analyses revealed that Strap deletion attenuated intracellular RA signaling in embryoid bodies (EBs), and exogenous RA significantly rescued this deficiency. Moreover, loss of Strap selectively induced Cyp26A1 expression in mouse EBs, suggesting a potential role of STRAP in RA signaling. Mechanistically, we identified putative Krüppel-like factor 9 (KLF9) binding motifs to be critical in the enhancement of non-canonical RA-induced transactivation of Cyp26A1. Increased KLF9 expression in the absence of STRAP is partially responsible for Cyp26A1 induction. Interestingly, STRAP knockdown in Xenopus embryos influenced anterior-posterior neural patterning and impaired the body axis and eye development during early Xenopus embryogenesis. Taken together, our study reveals an intrinsic role for STRAP in the regulation of RA signaling and provides new molecular insights for ESC fate determination. Stem Cells 2018;36:1368-1379.
Collapse
Affiliation(s)
- Lin Jin
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin M Pawlik
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arunima Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Larry M Johnson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Trung Vu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham, Alabama, USA
| | - Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 2018; 14:1164-1184. [PMID: 29938598 DOI: 10.1080/15548627.2018.1458173] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and are involved in the regulation of physiological and pathophysiological processes. However, the potential role of circRNAs in stroke remains largely unknown. Here, using a circRNA microarray, we showed that circular RNA Hectd1 (circHectd1) levels were significantly increased in ischemic brain tissues in transient middle cerebral artery occlusion (tMCAO) mouse stroke models and further validated this finding in plasma samples from acute ischemic stroke (AIS) patients. Knockdown of circHectd1 expression significantly decreased infarct areas, attenuated neuronal deficits, and ameliorated astrocyte activation in tMCAO mice. Mechanistically, circHECTD1 functions as an endogenous MIR142 (microRNA 142) sponge to inhibit MIR142 activity, resulting in the inhibition of TIPARP (TCDD inducible poly[ADP-ribose] polymerase) expression with subsequent inhibition of astrocyte activation via macroautophagy/autophagy. Taken together, the results of our study indicate that circHECTD1 and its coupling mechanism are involved in cerebral ischemia, thus providing translational evidence that circHECTD1 can serve as a novel biomarker of and therapeutic target for stroke. ABBREVIATIONS 3-MA: 3-methyladenine; ACTB: actin beta; AIS: acute ischemic stroke; AS: primary mouse astrocytes; BECN1: beclin 1, autophagy related; BMI: body mass index; circHECTD1: circRNA HECTD1; circRNAs: circular RNAs; CBF: cerebral blood flow; Con: control; DAPI: 4',6-diamidino-2-phenylindole; ECA: external carotid artery; FISH: fluorescence in situ hybridization; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; Gdna: genomic DNA; GFAP: glial fibrillary acidic protein; GO: gene ontology; HDL: high-density lipoprotein; IOD: integrated optical density; LDL: low-density lipoprotein; LPA: lipoprotein(a); MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MIR142: microRNA 142; mNSS: modified neurological severity scores; MRI: magnetic resonance imaging; NIHSS: National Institute of Health Stoke Scale; OGD-R: oxygen glucose deprivation-reperfusion; PCR: polymerase chain reaction; PFA: paraformaldehyde; SQSTM1: sequestosome 1; TIPARP: TCDD inducible poly(ADP-ribose) polymerase; tMCAO: transient middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride; UTR: untranslated region; WT: wild type.
Collapse
Affiliation(s)
- Bing Han
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yuan Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Yanhong Zhang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Ying Bai
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Xufeng Chen
- b Department of Emergency , Jiangsu Province Hospital and The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , China
| | - Rongrong Huang
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Fangfang Wu
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Shuo Leng
- c Department of Radiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Jie Chao
- d Department of Physiology , School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - John H Zhang
- e Department of Physiology and Pharmacology , School of Medicine, Loma Linda University , Loma Linda , California , USA
| | - Gang Hu
- f Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- a Department of Pharmacology , School of Medicine, Southeast University , Nanjing , Jiangsu , China.,g Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
20
|
Dual Roles of Serine-Threonine Kinase Receptor-Associated Protein (STRAP) in Redox-Sensitive Signaling Pathways Related to Cancer Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5241524. [PMID: 29849900 PMCID: PMC5933018 DOI: 10.1155/2018/5241524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) is a transforming growth factor β (TGF-β) receptor-interacting protein that has been implicated in both cell proliferation and cell death in response to various stresses. However, the precise roles of STRAP in these cellular processes are still unclear. The mechanisms by which STRAP controls both cell proliferation and cell death are now beginning to be unraveled. In addition to its biological roles, this review also focuses on the dual functions of STRAP in cancers displaying redox dysregulation, where it can behave as a tumor suppressor or an oncogene (i.e., it can either inhibit or promote tumor formation), depending on the cellular context. Further studies are needed to define the functions of STRAP and the redox-sensitive intracellular signaling pathways that enhance either cell proliferation or cell death in human cancer tissues, which may help in the development of effective treatments for cancer.
Collapse
|
21
|
Elsaid MF, Chalhoub N, Ben-Omran T, Kamel H, Al Mureikhi M, Ibrahim K, Elizabeth Ross M, Abdel Aleem AK. Homozygous nonsense mutation in SCHIP1/IQCJ-SCHIP1 causes a neurodevelopmental brain malformation syndrome. Clin Genet 2017; 93:387-391. [PMID: 28787085 DOI: 10.1111/cge.13122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
We report a consanguineous Arab family with 3 affected siblings who display a disorder of global developmental delay, learning difficulties, facial dysmorphism, hearing impairments, and cataract. The clinical phenotype was associated with characteristic brain magnetic resonance imaging (MRI) features of axonal guidance defects involving anterior commissure agenesis as well as scattered areas of polymicrogyria-cobblestone complex. Whole genome sequencing revealed a novel nonsense mutation (159609921C>T) that segregated in the family consistent in an autosomal recessive pattern. This mutation located in the C-terminal region shared by the Schwanomin-Interacting Protein1 (SCHIP1) isoforms including the IQCJ-SCHIP1. The in vitro expression of SCHIP1 and IQCJ-SCHIP1 truncated mutant isoforms (NM_001197109.1; p.R209* and NM_001197114.1; p.R501*, respectively) were markedly reduced as compared to their full-length versions suggesting protein stability/folding impairment. The pathogenic nature of this mutation is supported by a previously reported mouse knockout of Schip1 isoforms, which phenocopied the human axon guidance abnormality. This is the first report of a SCHIP1/IQCJ-SCHIP1 point mutation in humans associated with a neurological-developmental phenotype.
Collapse
Affiliation(s)
- M F Elsaid
- Department of Neuropediatrics, Hamad Medical Corporation, Doha, Qatar
| | - N Chalhoub
- Neurogenetics Lab, Weill Cornell Medicine, Doha, Qatar
| | - T Ben-Omran
- Department of Clinical and Metabolic Genetics, Hamad Medical Corporation, Doha, Qatar
| | - H Kamel
- Department of Radiology, Hamad Medical Corporation, Doha, Qatar
| | - M Al Mureikhi
- Department of Clinical and Metabolic Genetics, Hamad Medical Corporation, Doha, Qatar
| | - K Ibrahim
- Department of Neuropediatrics, Hamad Medical Corporation, Doha, Qatar
| | - M Elizabeth Ross
- BMRI Center for Neurogenetics and Department of Neurology, Weill Cornell Medicine, NY, New York
| | - A K Abdel Aleem
- Neurogenetics Lab, Weill Cornell Medicine, Doha, Qatar.,BMRI Center for Neurogenetics and Department of Neurology, Weill Cornell Medicine, NY, New York
| |
Collapse
|
22
|
Gonzalez D, Contreras O, Rebolledo DL, Espinoza JP, van Zundert B, Brandan E. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS One 2017; 12:e0177649. [PMID: 28520806 PMCID: PMC5433732 DOI: 10.1371/journal.pone.0177649] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motoneurons degenerate leading to muscle wasting, paralysis and eventually death from respiratory failure. Several studies indicate that skeletal muscle contributes to disease progression; however the molecular mechanisms remain elusive. Fibrosis is a common feature in skeletal muscle under chronic damage conditions such as those caused by muscular dystrophies or denervation. However, the exact mechanisms of fibrosis induction and the cellular bases of this pathological response are unknown. We show that extracellular matrix (ECM) components are augmented in skeletal muscles of symptomatic hSOD1G93A mice, a widely used murine model of ALS. These mice also show increased TGF-β1 mRNA levels, total Smad3 protein levels and p-Smad3 positive nuclei. Furthermore, platelet-derived growth factor receptor-α (PDGFRα), Tcf4 and α-smooth muscle actin (α-SMA) levels are augmented in the skeletal muscle of symptomatic hSOD1G93A mice. Additionally, the fibro/adipogenic progenitors (FAPs), which are the main producers of ECM constituents, are also increased in these pathogenic conditions. Therefore, FAPs and ECM components are more abundant in symptomatic stages of the disease than in pre-symptomatic stages. We present evidence that fibrosis observed in skeletal muscle of symptomatic hSOD1G93A mice is accompanied with an induction of TGF-β signaling, and also that FAPs might be involved in triggering a fibrotic response. Co-localization of p-Smad3 positive cells together with PDGFRα was observed in the interstitial cells of skeletal muscles from symptomatic hSOD1G93A mice. Finally, the targeting of pro-fibrotic factors such as TGF-β, CTGF/CCN2 and platelet-derived growth factor (PDGF) signaling pathway might be a suitable therapeutic approach to improve muscle function in several degenerative diseases.
Collapse
Affiliation(s)
- David Gonzalez
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Osvaldo Contreras
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Espinoza
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Brigitte van Zundert
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
23
|
Manojlovic Z, Earwood R, Kato A, Perez D, Cabrera OA, Didier R, Megraw TL, Stefanovic B, Kato Y. La-related protein 6 controls ciliated cell differentiation. Cilia 2017; 6:4. [PMID: 28344782 PMCID: PMC5364628 DOI: 10.1186/s13630-017-0047-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
Background La-related protein 6 (LARP6) is an evolutionally conserved RNA-binding protein. Vertebrate LARP6 binds the 5′ stem-loop found in mRNAs encoding type I collagen to regulate their translation, but other target mRNAs and additional functions for LARP6 are unknown. The aim of this study was to elucidate an additional function of LARP6 and to evaluate the importance of its function during development. Methods To uncover the role of LARP6 in development, we utilized Morpholino Oligos to deplete LARP6 protein in Xenopus embryos. Then, embryonic phenotypes and ciliary structures of LAPR6 morphants were examined. To identify the molecular mechanism underlying ciliogenesis regulated by LARP6, we tested the expression level of cilia-related genes, which play important roles in ciliogenesis, by RT-PCR or whole mount in situ hybridization (WISH). Results We knocked down LARP6 in Xenopus embryos and found neural tube closure defects. LARP6 mutant, which compromises the collagen synthesis, could rescue these defects. Neural tube closure defects are coincident with lack of cilia, antenna-like cellular organelles with motility- or sensory-related functions, in the neural tube. The absence of cilia at the epidermis was also observed in LARP6 morphants, and this defect was due to the absence of basal bodies which are formed from centrioles and required for ciliary assembly. In the process of multi-ciliated cell (MCC) differentiation, mcidas, which activates the transcription of genes required for centriole formation during ciliogenesis, could partially restore MCCs in LARP6 morphants. In addition, LARP6 likely controls the expression of mcidas in a Notch-independent manner. Conclusions La-related protein 6 is involved in ciliated cell differentiation during development by controlling the expression of cilia-related genes including mcidas. This LARP6 function involves a mechanism that is distinct from its established role in binding to collagen mRNAs and regulating their translation. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0047-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA.,Department of Translational Genomics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90089-9601 USA
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Diana Perez
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Oscar A Cabrera
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115W. Call Street, Tallahassee, FL 32306-4300 USA
| |
Collapse
|
24
|
Sharum IB, Granados-Aparici S, Warrander FC, Tournant FP, Fenwick MA. Serine threonine kinase receptor associated protein regulates early follicle development in the mouse ovary. Reproduction 2017; 153:221-231. [DOI: 10.1530/rep-16-0612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
The molecular mechanisms involved in regulating the development of small, gonadotrophin-independent follicles are poorly understood; however, many studies have highlighted an essential role for TGFB ligands. Canonical TGFB signalling is dependent upon intracellular SMAD proteins that regulate transcription. STRAP has been identified in other tissues as an inhibitor of the TGFB–SMAD signalling pathway. Therefore, in this study we aimed to determine the expression and role of STRAP in the context of early follicle development. Using qPCR, Strap, Smad3 and Smad7 revealed similar expression profiles in immature ovaries from mice aged 4–16 days containing different populations of early growing follicles. STRAP and SMAD2/3 proteins co-localised in granulosa cells of small follicles using immunofluorescence. Using an established culture model, neonatal mouse ovary fragments with a high density of small non-growing follicles were used to examine the effects of Strap knockdown using siRNA and STRAP protein inhibition by immuno-neutralisation. Both interventions caused a reduction in the proportion of small, non-growing follicles and an increase in the proportion and size of growing follicles in comparison to untreated controls, suggesting inhibition of STRAP facilitates follicle activation. Recombinant STRAP protein had no effect on small, non-growing follicles, but increased the mean oocyte size of growing follicles in the neonatal ovary model and also promoted the growth of isolated preantral follicles in vitro. Overall findings indicate STRAP is expressed in the mouse ovary and is capable of regulating development of small follicles in a stage-dependent manner.
Collapse
|
25
|
|
26
|
Kindt F, Hammer E, Kemnitz S, Blumenthal A, Klemm P, Schlüter R, Quaggin SE, van den Brandt J, Fuellen G, Völker U, Endlich K, Endlich N. A novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes. Br J Pharmacol 2016; 174:163-176. [PMID: 27858997 DOI: 10.1111/bph.13667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Therapeutic options for treating glomerulopathies, the main cause of chronic kidney disease, are limited. Podocyte dedifferentiation is a major event in the pathogenesis of glomerulopathies. The goal of the present study was, therefore, to develop an assay to monitor podocyte differentiation suitable for compound screening. EXPERIMENTAL APPROACH We isolated and cultured glomeruli from transgenic mice, expressing cyan fluorescent protein (CFP) under the control of the promoter of nephrin, a marker of podocyte differentiation. Mean CFP fluorescence intensity per glomerulus (MFG) was determined by summation of all glomerular voxels from confocal z-stacks in the absence and presence of pharmaceutical compounds. KEY RESULTS In untreated cultured glomeruli, MFG remained fairly stable during the first 5 days, when foot processes were already effaced, and the level of many podocyte-specific proteins was only mildly affected, as revealed by proteomics. Between day 6 and 9, MFG decreased to almost zero. The decrease in MFG was paralleled by a decrease in CFP and nephrin expression, as determined by RT-PCR, western blots and proteomics. Puromycin aminonucleoside (PAN), which damages podocytes, concentration-dependently induced a complete loss of MFG. Dexamethasone (25 μM) and pioglitazone (10 μM) markedly attenuated the effect of 0.6 μg·mL-1 PAN on MFG. CONCLUSION AND IMPLICATIONS In summary, we established a novel assay to assess the effect of pharmaceutical compounds on the differentiation of podocytes in situ. Our assay is suitable for compound screening to identify drugs for the treatment of glomerulopathies.
Collapse
Affiliation(s)
- Frances Kindt
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Centre, Rostock, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Kemnitz
- Computational Science Group, Institute of Physics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Antje Blumenthal
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Paul Klemm
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Centre of the Faculty of Mathematics and Natural Sciences, Ernst Moritz Arndt University, Greifswald, Germany
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, IL, USA
| | - Jens van den Brandt
- Central Core and Research Facility of Laboratory Animals, University Medicine Greifswald, Greifswald, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Centre, Rostock, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Rivera-Gonzalez GC, Shook BA, Andrae J, Holtrup B, Bollag K, Betsholtz C, Rodeheffer MS, Horsley V. Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis. Cell Stem Cell 2016; 19:738-751. [PMID: 27746098 DOI: 10.1016/j.stem.2016.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/14/2016] [Accepted: 09/11/2016] [Indexed: 12/15/2022]
Abstract
Tissue growth and maintenance requires stem cell populations that self-renew, proliferate, and differentiate. Maintenance of white adipose tissue (WAT) requires the proliferation and differentiation of adipocyte stem cells (ASCs) to form postmitotic, lipid-filled mature adipocytes. Here we use the dynamic adipogenic program that occurs during hair growth to uncover an unrecognized regulator of ASC self-renewal and proliferation, PDGFA, which activates AKT signaling to drive and maintain the adipogenic program in the skin. Pdgfa expression is reduced in aged ASCs and is required for ASC proliferation and maintenance in the dermis, but not in other WATs. Our molecular and genetic studies uncover PI3K/AKT2 as a direct PDGFA target that is activated in ASCs during WAT hyperplasia and is functionally required for dermal ASC proliferation. Our data therefore reveal active mechanisms that regulate ASC self-renewal in the skin and show that distinct regulatory mechanisms operate in different WAT depots.
Collapse
Affiliation(s)
| | - Brett A Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Brandon Holtrup
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Katherine Bollag
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University, New Haven, CT 06520, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Zhang Y, Stefanovic B. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression. Int J Mol Sci 2016; 17:419. [PMID: 27011170 PMCID: PMC4813270 DOI: 10.3390/ijms17030419] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/15/2023] Open
Abstract
Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60-70 days). However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6), is specifically involved in type I collagen regulation. In the 5'untranslated region (5'UTR) of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL) structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5'SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP), 25 kD FK506 binding protein (FKBP25) and RNA helicase A (RHA), contribute to this process.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
29
|
Li A, Ma S, Smith SM, Lee MK, Fischer A, Borok Z, Bellusci S, Li C, Minoo P. Mesodermal ALK5 controls lung myofibroblast versus lipofibroblast cell fate. BMC Biol 2016; 14:19. [PMID: 26984772 PMCID: PMC4793501 DOI: 10.1186/s12915-016-0242-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022] Open
Abstract
Background Epithelial-mesenchymal cross talk is centerpiece in the development of many branched organs, including the lungs. The embryonic lung mesoderm provides instructional information not only for lung architectural development, but also for patterning, commitment and differentiation of its many highly specialized cell types. The mesoderm also serves as a reservoir of progenitors for generation of differentiated mesenchymal cell types that include αSMA-expressing fibroblasts, lipofibroblasts, endothelial cells and others. Transforming Growth Factor β (TGFβ) is a key signaling pathway in epithelial-mesenchymal cross talk. Using a cre-loxP approach we have elucidated the role of the TGFβ type I receptor tyrosine kinase, ALK5, in epithelial-mesenchymal cross talk during lung morphogenesis. Results Targeted early inactivation of Alk5 in mesodermal progenitors caused abnormal development and maturation of the lung that included reduced physical size of the sub-mesothelial mesoderm, an established source of specific mesodermal progenitors. Abrogation of mesodermal ALK5-mediated signaling also inhibited differentiation of cell populations in the epithelial and endothelial lineages. Importantly, Alk5 mutant lungs contained a reduced number of αSMApos cells and correspondingly increased lipofibroblasts. Elucidation of the underlying mechanisms revealed that through direct and indirect modulation of target signaling pathways and transcription factors, including PDGFRα, PPARγ, PRRX1, and ZFP423, ALK5-mediated TGFβ controls a process that regulates the commitment and differentiation of αSMApos versus lipofibroblast cell populations during lung development. Conclusion ALK5-mediated TGFβ signaling controls an early pathway that regulates the commitment and differentiation of αSMApos versus LIF cell lineages during lung development. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0242-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aimin Li
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Shudong Ma
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Susan M Smith
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Matt K Lee
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Ashley Fischer
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Hastings Center for Pulmonary Research, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Saverio Bellusci
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Excellence Cluster Cardio Pulmonary System, University Justus Liebig Giessen, Giessen, 39352, Germany.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya St 18, Kazan, 420008, Russia
| | - Changgong Li
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Parviz Minoo
- Division of Newborn Medicine, Department of Pediatrics, LAC+USC Medical Center and Childrens Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA. .,Hastings Center for Pulmonary Research, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.
| |
Collapse
|
30
|
Abstract
It is thought that most structural birth defects are caused by a complex combination of genetic and environmental factors that interact to interfere with morphogenetic processes. It is important not only to identify individual genetic and environmental risk factors for particular defects but also to identify which environmental factors interact specifically with which genetic variants that predispose to the same defect. Genomic and epidemiological studies are critical to this end. Development and analysis of model systems will also be essential for this goal, as well as for understanding the mechanisms that underlie specific gene-environment interactions.
Collapse
|
31
|
Jin L, Datta PK. Oncogenic STRAP functions as a novel negative regulator of E-cadherin and p21(Cip1) by modulating the transcription factor Sp1. Cell Cycle 2015; 13:3909-20. [PMID: 25483064 DOI: 10.4161/15384101.2014.973310] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously reported the identification of a novel WD-domain protein, STRAP that plays a role in maintenance of mesenchymal morphology by regulating E-cadherin and that enhances tumorigenicity partly by downregulating CDK inhibitor p21(Cip1). However, the functional mechanism of regulation of E-cadherin and p21(Cip1) by STRAP is unknown. Here, we have employed STRAP knock out and knockdown cell models (mouse embryonic fibroblast, human cancer cell lines) to show how STRAP downregulates E-cadherin and p21(Cip1) by abrogating the binding of Sp1 to its consensus binding sites. Moreover, ChIP assays suggest that STRAP recruits HDAC1 to Sp1 binding sites in p21(Cip1) promoter. Interestingly, loss of STRAP can stabilize Sp1 by repressing its ubiquitination in G1 phase, resulting in an enhanced expression of p21(Cip1) by >4.5-fold and cell cycle arrest. Using Bioinformatics and Microarray analyses, we have observed that 87% mouse genes downregulated by STRAP have conserved Sp1 binding sites. In NSCLC, the expression levels of STRAP inversely correlated with that of Sp1 (60%). These results suggest a novel mechanism of regulation of E-cadherin and p21(Cip1) by STRAP by modulating Sp1-dependent transcription, and higher expression of STRAP in lung cancer may contribute to downregulation of E-cadherin and p21(Cip1) and to tumor progression.
Collapse
Key Words
- CDK2, cyclin-dependent kinase 2
- CDK4, cyclin-dependent kinase 4
- HDAC1, histone deacetylase 1
- HDAC2, histone deacetylase 2
- HDAC3, histone deacetylase 3
- HNF4, hepatocyte nuclear factor 4
- MEF, mouse embryonic fibroblast
- NF-YA, nuclear transcription factor Y subunit alpha
- PARP, poly (ADP-ribose) polymerase
- RNase, A ribonuclease A
- RhoA, Ras homolog gene family, member A
- STRAP
- STRAP, serine threonine kinase receptor-associated protein
- SWI/SNF, SWItch/Sucrose nonfermentable
- Sp/KLF, specificity protein/Krüppel-like factor
- Sp1
- Sp1, specificity protein 1
- TSA, trichostatin A
- TSS, transcription start site
- TβR I, II, TGF-β receptor I, II
- cell cycle
- p300/CBP, p300/ CREB-binding protein
- transcription factor
- ubiquitination
Collapse
Affiliation(s)
- Lin Jin
- a Division of Hematology and Oncology; Department of Medicine; UAB Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA
| | | |
Collapse
|
32
|
Klingler E, Martin PM, Garcia M, Moreau-Fauvarque C, Falk J, Chareyre F, Giovannini M, Chédotal A, Girault JA, Goutebroze L. The cytoskeleton-associated protein SCHIP1 is involved in axon guidance, and is required for piriform cortex and anterior commissure development. Development 2015; 142:2026-36. [DOI: 10.1242/dev.119248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/10/2015] [Indexed: 01/14/2023]
Abstract
ABSTRACT
SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.
Collapse
Affiliation(s)
- Esther Klingler
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Pierre-Marie Martin
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Marta Garcia
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Caroline Moreau-Fauvarque
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut de la Vision, INSERM, UMR-S 968, Paris F-75012, France
- CNRS, UMR 7210, Paris F-75012, France
| | - Julien Falk
- Université Claude Bernard Lyon 1, CNRS, UMR 5534, CGphiMC, Lyon F-69622, France
| | - Fabrice Chareyre
- House Research Institute, Center for Neural Tumor Research, Los Angeles, CA 90095-1624, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90027, USA
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut de la Vision, INSERM, UMR-S 968, Paris F-75012, France
- CNRS, UMR 7210, Paris F-75012, France
| | - Jean-Antoine Girault
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| | - Laurence Goutebroze
- INSERM, UMR-S 839, Paris F-75005, France
- Sorbonne Universités, UPMC Univ Paris 06, Paris F-75005, France
- Institut du Fer à Moulin, Paris F-75005, France
| |
Collapse
|
33
|
Ahmed S, Bott D, Gomez A, Tamblyn L, Rasheed A, Cho T, MacPherson L, Sugamori KS, Yang Y, Grant DM, Cummins CL, Matthews J. Loss of the Mono-ADP-ribosyltransferase, Tiparp, Increases Sensitivity to Dioxin-induced Steatohepatitis and Lethality. J Biol Chem 2015; 290:16824-40. [PMID: 25975270 DOI: 10.1074/jbc.m115.660100] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp(-/-) mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp(+/+) mice survived the 30-day treatment. Dioxin-treated Tiparp(-/-) mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin.
Collapse
Affiliation(s)
| | - Debbie Bott
- From the Department of Pharmacology and Toxicology
| | - Alvin Gomez
- From the Department of Pharmacology and Toxicology
| | | | - Adil Rasheed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tiffany Cho
- From the Department of Pharmacology and Toxicology
| | | | | | - Yang Yang
- From the Department of Pharmacology and Toxicology
| | - Denis M Grant
- From the Department of Pharmacology and Toxicology, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Carolyn L Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
34
|
Perisic L, Rodriguez PQ, Hultenby K, Sun Y, Lal M, Betsholtz C, Uhlén M, Wernerson A, Hedin U, Pikkarainen T, Tryggvason K, Patrakka J. Schip1 is a novel podocyte foot process protein that mediates actin cytoskeleton rearrangements and forms a complex with Nherf2 and ezrin. PLoS One 2015; 10:e0122067. [PMID: 25807495 PMCID: PMC4373682 DOI: 10.1371/journal.pone.0122067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/18/2015] [Indexed: 01/28/2023] Open
Abstract
Background Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. Results By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 inactivation in zebrafish by morpholino knock-down results in foot process disorganization and podocyte loss leading to proteinuria. In cultured podocytes Schip1 localizes to cortical actin-rich regions of lamellipodia, where it forms a complex with Nherf2 and ezrin, proteins known to participate in actin remodeling stimulated by PDGFβ signaling. Mechanistically, overexpression of Schip1 in vitro causes accumulation of cortical F-actin with dissolution of transversal stress fibers and promotes cell migration in response to PDGF-BB stimulation. Upon actin disassembly by latrunculin A treatment, Schip1 remains associated with the residual F-actin-containing structures, suggesting a functional connection with actin cytoskeleton possibly via its interaction partners. A similar assay with cytochalasin D points to stabilization of cortical actin cytoskeleton in Schip1 overexpressing cells by attenuation of actin depolymerisation. Conclusions Schip1 is a novel glomerular protein predominantly expressed in podocytes, necessary for the zebrafish pronephros development and function. Schip1 associates with the cortical actin cytoskeleton network and modulates its dynamics in response to PDGF signaling via interaction with the Nherf2/ezrin complex. Its implication in proteinuric diseases remains to be further investigated.
Collapse
Affiliation(s)
- Ljubica Perisic
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Patricia Q. Rodriguez
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kjell Hultenby
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ying Sun
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mark Lal
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Christer Betsholtz
- Vascular Biology Division, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Timo Pikkarainen
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Jaakko Patrakka
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
35
|
MacPherson L, Ahmed S, Tamblyn L, Krutmann J, Förster I, Weighardt H, Matthews J. Aryl hydrocarbon receptor repressor and TiPARP (ARTD14) use similar, but also distinct mechanisms to repress aryl hydrocarbon receptor signaling. Int J Mol Sci 2014; 15:7939-57. [PMID: 24806346 PMCID: PMC4057711 DOI: 10.3390/ijms15057939] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR repressor (AHRR) is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose) polymerase (TiPARP; ARTD14) also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1) in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs) and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.
Collapse
Affiliation(s)
- Laura MacPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shaimaa Ahmed
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straβe 31, 53115 Bonn, Germany.
| | - Heike Weighardt
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany.
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
36
|
Dai L, Xia P, Di W. Sphingosine 1-phosphate: a potential molecular target for ovarian cancer therapy? Cancer Invest 2014; 32:71-80. [PMID: 24499107 DOI: 10.3109/07357907.2013.876646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sphingosine 1-phosphate (S1P) is an important signaling regulator involved in tumor progression in multiple neoplasms. However, the role of S1P in the pathogenesis of ovarian cancer remains unclear. Herein, we summarize recent advances in understanding the impact of S1P signaling in ovarian cancer progression. S1P, aberrantly produced in ovarian cancer patients, is involved in the regulation of key cellular processes that contribute to ovarian cancer initiation and progression. Moreover, agents that block the S1P signaling pathway inhibit ovarian cancer cell growth or induce apoptosis. Hence, current evidence suggests that S1P may become a potential molecular target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , People's Republic of China1
| | | | | |
Collapse
|
37
|
Vukmirovic M, Manojlovic Z, Stefanovic B. Serine-threonine kinase receptor-associated protein (STRAP) regulates translation of type I collagen mRNAs. Mol Cell Biol 2013; 33:3893-906. [PMID: 23918805 PMCID: PMC3811873 DOI: 10.1128/mcb.00195-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022] Open
Abstract
Type I collagen is the most abundant protein in the human body and is composed of two α1(I) and one α2(I) polypeptides which assemble into a triple helix. For the proper assembly of the collagen triple helix, the individual polypeptides must be translated in coordination. Here, we show that serine-threonine kinase receptor-associated protein (STRAP) is tethered to collagen mRNAs by interaction with LARP6. LARP6 is a protein which directly binds the 5' stem-loop (5'SL) present in collagen α1(I) and α2(I) mRNAs, but it interacts with STRAP with its C-terminal domain, which is not involved in binding 5'SL. Being tethered to collagen mRNAs, STRAP prevents unrestricted translation, primarily that of collagen α2(I) mRNAs, by interacting with eukaryotic translation initiation factor 4A (eIF4A). In the absence of STRAP, more collagen α2(I) mRNA can be pulled down with eIF4A, and collagen α2(I) mRNA is unrestrictedly loaded onto the polysomes. This results in an imbalance of synthesis of α1(I) and α2(I) polypeptides, in hypermodifications of α1(I) polypeptide, and in inefficient assembly of the polypeptides into a collagen trimer and their secretion as monomers. These defects can be partially restored by supplementing STRAP. Thus, we discovered STRAP as a novel regulator of the coordinated translation of collagen mRNAs.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | | | | |
Collapse
|
38
|
Aguilar A, Saba JD. Truth and consequences of sphingosine-1-phosphate lyase. Adv Biol Regul 2013; 52:17-30. [PMID: 21946005 DOI: 10.1016/j.advenzreg.2011.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 01/07/2023]
Affiliation(s)
- Ana Aguilar
- Children’s Hospital Oakland Research Institute (CHORI), Center for Cancer Research, 5700 Martin Luther King Jr. Way, Oakland, CA 94609-1673, USA
| | | |
Collapse
|
39
|
Qu J, Bishop JM. Nucleostemin maintains self-renewal of embryonic stem cells and promotes reprogramming of somatic cells to pluripotency. ACTA ACUST UNITED AC 2012; 197:731-45. [PMID: 22689653 PMCID: PMC3373402 DOI: 10.1083/jcb.201103071] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleostemin is a novel cell reprogramming factor that promotes self-renewal and pluripotency through effects on gene expression and cell cycle progression. Nucleostemin (NS) is a nucleolar GTP-binding protein that was first identified in neural stem cells, the functions of which remain poorly understood. Here, we report that NS is required for mouse embryogenesis to reach blastulation, maintenance of embryonic stem cell (ESC) self-renewal, and mammary epithelial cell (MEC) reprogramming to induced pluripotent stem (iPS) cells. Ectopic NS also cooperates with OCT4 and SOX2 to reprogram MECs and mouse embryonic fibroblasts to iPS cells. NS promotes ESC self-renewal by sustaining rapid transit through the G1 phase of the cell cycle. Depletion of NS in ESCs retards transit through G1 and induces gene expression changes and morphological differentiation through a mechanism that involves the MEK/ERK protein kinases and that is active only during a protracted G1. Suppression of cell cycle inhibitors mitigates these effects. Our results implicate NS in the maintenance of ESC self-renewal, demonstrate the importance of rapid transit through G1 for this process, and expand the known classes of reprogramming factors.
Collapse
Affiliation(s)
- Jian Qu
- G.W. Hooper Foundation and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
40
|
Song G, Li Q, Long Y, Hackett PB, Cui Z. Effective Expression-Independent Gene Trapping and Mutagenesis Mediated by Sleeping Beauty Transposon. J Genet Genomics 2012; 39:503-20. [DOI: 10.1016/j.jgg.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/21/2012] [Accepted: 05/28/2012] [Indexed: 01/12/2023]
|
41
|
Yamaguchi T, Morikawa A, Miyoshi H. Comparison of gene-trapping efficiency between retroviral and lentiviral vectors in mouse embryonic stem cells. Biochem Biophys Res Commun 2012; 425:297-303. [PMID: 22842569 DOI: 10.1016/j.bbrc.2012.07.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Gene trapping is a method of inserting DNA into the genome at random, generating insertional mutations throughout the genome. The efficiency of retroviral gene trapping is not sufficient in part because of a strong preference for retroviral integration near transcription start sites. In contrast, lentiviral vectors strongly favor integration in the entire region of highly active genes, suggesting that lentiviral vectors would improve the efficiency of gene trapping. In this study, we constructed both lentiviral and retroviral gene-trap vectors and analyzed integration sites in mouse embryonic stem (ES) cells. The frequency of false-positive gene-trap events was about 12-fold higher for the retroviral vector compared to the lentiviral vector. Within intragenic regions, most of the retroviral vector integration sites were found in the 5' untranslated region, while the lentiviral vector integrated uniformly throughout transcriptional units. The trapping efficiency of unique genes was significantly higher for the lentiviral vector (~83%) than for the retroviral vector (~51%). Our data demonstrate that the lentiviral vector can trap the active genes more efficiently than the retroviral vector and will facilitate efficient generation of gene-trap libraries not only in ES cells but also in a wide variety of cell lines and primary cells.
Collapse
Affiliation(s)
- Tomoyuki Yamaguchi
- Subteam for Manipulation of Cell Fate, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|
42
|
Wallis D, Hill DS, Mendez IA, Abbott LC, Finnell RH, Wellman PJ, Setlow B. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res 2012; 1463:85-92. [PMID: 22575564 DOI: 10.1016/j.brainres.2012.04.053] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 02/05/2023]
Abstract
The LPHN3 gene has been associated with both attention deficit-hyperactivity disorder (ADHD) and addiction, suggesting that it may play a role in the etiology of these disorders. Unfortunately, almost nothing is known about the normal functions of this gene, which has hampered understanding of its potential pathogenic role. To begin to characterize such normal functions, we utilized a gene-trap embryonic stem cell line to generate mice mutant for the Lphn3 gene. We evaluated differential gene expression in whole mouse brain between mutant and wild type male littermates at postnatal day 0 using TaqMan gene expression assays. Most notably, we found changes in dopamine and serotonin receptors and transporters (Dat1, Drd4, 5Htt, 5Ht2a), changes in neurotransmitter metabolism genes (Th, Gad1), as well as changes in neural developmental genes (Nurr, Ncam). When mice were examined at 4-6 weeks of age, null mutants showed increased levels of dopamine and serotonin in the dorsal striatum. Finally, null mutant mice had a hyperactive phenotype in the open field test, independent of sex, and were more sensitive to the locomotor stimulant effects of cocaine. Considered together, these results suggest that Lphn3 plays a role in development and/or regulation of monoamine signaling. Given the central role for monoamines in ADHD and addiction, it seems likely that the influence of LPHN3 genotype on these disorders is mediated through alterations in monoamine signaling.
Collapse
Affiliation(s)
- Deeann Wallis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-3474, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bourquin F, Capitani G, Grütter MG. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci 2012; 20:1492-508. [PMID: 21710479 DOI: 10.1002/pro.679] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sphingolipids are membrane constituents as well as signaling molecules involved in many essential cellular processes. Serine palmitoyltransferase (SPT) and sphingosine-1-phosphate lyase (SPL), both PLP (pyridoxal 5'-phosphate)-dependent enzymes, function as entry and exit gates of the sphingolipid metabolism. SPT catalyzes the condensation of serine and a fatty acid into 3-keto-dihydrosphingosine, whereas SPL degrades sphingosine-1-phosphate (S1P) into phosphoethanolamine and a long-chain aldehyde. The recently solved X-ray structures of prokaryotic homologs of SPT and SPL combined with functional studies provide insight into the structure-function relationship of the two enzymes. Despite carrying out different reactions, the two enzymes reveal striking similarities in the overall fold, topology, and residues crucial for activity. Unlike their eukaryotic counterparts, bacterial SPT and SPL lack a transmembrane helix, making them targets of choice for biochemical characterization because the use of detergents can be avoided. Both human enzymes are linked to severe diseases or disorders and might therefore serve as targets for the development of therapeutics aiming at the modulation of their activity. This review gives an overview of the sphingolipid metabolism and of the available biochemical studies of prokaryotic SPT and SPL, and discusses the major similarities and differences to the corresponding eukaryotic enzymes.
Collapse
Affiliation(s)
- Florence Bourquin
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
44
|
Targeting angiogenesis in ovarian cancer. Cancer Treat Rev 2011; 38:272-83. [PMID: 21764518 DOI: 10.1016/j.ctrv.2011.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/09/2011] [Accepted: 06/19/2011] [Indexed: 01/06/2023]
Abstract
Results of standard chemotherapy in ovarian cancer are hampered by the development of drug resistance leading to disease recurrence. This prompted interest in the development of therapies targeting critical pathways responsible for tumor progression. Angiogenesis is a key process that enables ovarian cancer growth and metastasis in the peritoneal space. Its regulation relies on signaling mechanisms initiated by the vascular endothelial growth factor, the platelet-derived growth factor, the fibroblast growth factor, angiopoietins, and others. These pathways are not only important to the modulation of the tumor microenvironment and vasculature, but also control cancer cell proliferation and survival. In this review, we discuss preclinical evidence supporting the rationale for inhibiting these pathways and provide an overview for the clinical development of agents targeting them. Clinical trials evaluating such agents alone and in combination with chemotherapy are ongoing. Early clinical results position antiangiogenic therapy at the forefront of change to the standard treatment of difficult to treat ovarian cancer.
Collapse
|
45
|
Rakovich T, Boland C, Bernstein I, Chikwana VM, Iwata-Reuyl D, Kelly VP. Queuosine deficiency in eukaryotes compromises tyrosine production through increased tetrahydrobiopterin oxidation. J Biol Chem 2011; 286:19354-63. [PMID: 21487017 DOI: 10.1074/jbc.m111.219576] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Queuosine is a modified pyrrolopyrimidine nucleoside found in the anticodon loop of transfer RNA acceptors for the amino acids tyrosine, asparagine, aspartic acid, and histidine. Because it is exclusively synthesized by bacteria, higher eukaryotes must salvage queuosine or its nucleobase queuine from food and the gut microflora. Previously, animals made deficient in queuine died within 18 days of withdrawing tyrosine, a nonessential amino acid, from the diet (Marks, T., and Farkas, W. R. (1997) Biochem. Biophys. Res. Commun. 230, 233-237). Here, we show that human HepG2 cells deficient in queuine and mice made deficient in queuosine-modified transfer RNA, by disruption of the tRNA guanine transglycosylase enzyme, are compromised in their ability to produce tyrosine from phenylalanine. This has similarities to the disease phenylketonuria, which arises from mutation in the enzyme phenylalanine hydroxylase or from a decrease in the supply of its cofactor tetrahydrobiopterin (BH4). Immunoblot and kinetic analysis of liver from tRNA guanine transglycosylase-deficient animals indicates normal expression and activity of phenylalanine hydroxylase. By contrast, BH4 levels are significantly decreased in the plasma, and both plasma and urine show a clear elevation in dihydrobiopterin, an oxidation product of BH4, despite normal activity of the salvage enzyme dihydrofolate reductase. Our data suggest that queuosine modification limits BH4 oxidation in vivo and thereby potentially impacts on numerous physiological processes in eukaryotes.
Collapse
Affiliation(s)
- Tatsiana Rakovich
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
46
|
Reiner JE, Datta PK. TGF-beta-dependent and -independent roles of STRAP in cancer. Front Biosci (Landmark Ed) 2011; 16:105-15. [PMID: 21196161 DOI: 10.2741/3678] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The serine-threonine kinase receptor-associated protein (STRAP) was initially identified as a putative inhibitor of the canonical TGF-beta signaling pathway. Because the Smad-dependent TGF-beta pathway negatively regulates cellular growth, early functional studies suggested that STRAP behaves as an oncogene. Indeed, a correlation between STRAP overexpression and various cancers has been identified. With the emergence of new studies on the biological function of STRAP, it is becoming clear that STRAP regulates several distinct cellular processes and modulates multiple signaling pathways. While STRAP itself does not possess enzymatic activity, it appears that STRAP influences biological processes through associations with cellular proteins. In this review, we will describe the TGF-beta-dependent and -independent functions of STRAP and provide a context for the significance of STRAP activity in the development of cancer.
Collapse
Affiliation(s)
- Jennifer Elisabeth Reiner
- Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
47
|
Chavez A, Smith M, Mehta D. New Insights into the Regulation of Vascular Permeability. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:205-48. [DOI: 10.1016/b978-0-12-386037-8.00001-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Zhao Y, Gorshkova IA, Berdyshev E, He D, Fu P, Ma W, Su Y, Usatyuk PV, Pendyala S, Oskouian B, Saba JD, Garcia JGN, Natarajan V. Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. Am J Respir Cell Mol Biol 2010; 45:426-35. [PMID: 21148740 DOI: 10.1165/rcmb.2010-0422oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A defining feature of acute lung injury (ALI) is the increased lung vascular permeability and alveolar flooding, which leads to associated morbidity and mortality. Specific therapies to alleviate the unremitting vascular leak in ALI are not currently clinically available; however, our prior studies indicate a protective role for sphingosine-1-phosphate (S1P) in animal models of ALI with reductions in lung edema. As S1P levels are tightly regulated by synthesis and degradation, we tested the hypothesis that inhibition of S1P lyase (S1PL), the enzyme that irreversibly degrades S1P via cleavage, could ameliorate ALI. Intratracheal instillation of LPS to mice enhanced S1PL expression, decreased S1P levels in lung tissue, and induced lung inflammation and injury. LPS challenge of wild-type mice receiving 2-acetyl-4(5)-[1(R),2(S),3(R),4-tetrahydroxybutyl]-imidazole to inhibit S1PL or S1PL(+/-) mice resulted in increased S1P levels in lung tissue and bronchoalveolar lavage fluids and reduced lung injury and inflammation. Moreover, down-regulation of S1PL expression by short interfering RNA (siRNA) in primary human lung microvascular endothelial cells increased S1P levels, and attenuated LPS-mediated phosphorylation of p38 mitogen-activated protein kinase and I-κB, IL-6 secretion, and endothelial barrier disruption via Rac1 activation. These results identify a novel role for intracellularly generated S1P in protection against ALI and suggest S1PL as a potential therapeutic target.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Seong HA, Manoharan R, Ha H. B-MYB positively regulates serine-threonine kinase receptor-associated protein (STRAP) activity through direct interaction. J Biol Chem 2010; 286:7439-56. [PMID: 21148321 DOI: 10.1074/jbc.m110.184382] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) functions as a regulator of both TGF-β and p53 signaling. However, the regulatory mechanism of STRAP activity is not understood. In this study, we report that B-MYB is a new STRAP-interacting protein, and that an amino-terminal DNA-binding domain and an area (amino acids 373-468) between the acidic and conserved regions of B-MYB mediate the B-MYB·STRAP interaction. Functionally, B-MYB enhances STRAP-mediated inhibition of TGF-β signaling pathways, such as apoptosis and growth inhibition, by modulating complex formation between the TGF-β receptor and SMAD3 or SMAD7. Furthermore, coexpression of B-MYB results in a dose-dependent increase in STRAP-mediated stimulation of p53-induced apoptosis and cell cycle arrest via direct interaction. Confocal microscopy showed that B-MYB prevents the normal translocation of SMAD3 in response to TGF-β1 and stimulates p53 nuclear translocation. These results suggest that B-MYB acts as a positive regulator of STRAP.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | |
Collapse
|
50
|
Wang M, Sun H, Jiang F, Han J, Ye F, Wang T, Su Y, Zou Z. Cloning and characterization of a novel gene with alternative splicing in murine mesenchymal stem cell line C3H/10T1/2 by gene trap screening. BMB Rep 2010; 43:789-94. [PMID: 21189154 DOI: 10.5483/bmbrep.2010.43.12.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel gene, designated mgt-6, containing four splicing variants, was isolated from a gene trap clone library of C3H/10T1/2 cells transfected with retroviral promoterless gene-trap vector, ROSAFARY. The transcript variants were differentially expressed in murine tissues and cell lines and differentially responded to diverse stimuli including TGF-β1 and mitogen-activated protein kinase (MAPK) inhibitors. The mgt-6 gene encoded a protein of 37 or 11 amino acid residuals with cytoplasmic distribution. However, when C3H/10T1/2 cells were treated with 5-azacytidine, the protein translocated into cell nucleus as indicated by fused LacZ or C-terminally tagged EGFP. Our preliminary results suggest that further study on the role of mgt-6 gene in cell transformation and differentiation may be of significance.
Collapse
Affiliation(s)
- Mingke Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|