1
|
Kramárek M, Souček P, Réblová K, Grodecká L, Freiberger T. Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs. Nucleic Acids Res 2024; 52:5959-5974. [PMID: 38426935 PMCID: PMC11162779 DOI: 10.1093/nar/gkae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.
Collapse
Affiliation(s)
- Michal Kramárek
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, University Hospital and Masaryk University, Brno, Czech Republic
| | - Lucie Kajan Grodecká
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Han Y, Han J, Li Z, Chen S, Liu J, Zhou R, Zhao S, Li D, Liu Z, Zhao Y, Hao J, Chai G. Identification and characterization of a novel intronic splicing mutation in CSF1R-related leukoencephalopathy. CNS Neurosci Ther 2024; 30:e14815. [PMID: 38922778 PMCID: PMC11194178 DOI: 10.1111/cns.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Colony stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rapidly progressing neurodegenerative disease caused by CSF1R gene mutations. This study aimed to identify and investigate the effect of a novel intronic mutation (c.1754-3C>G) of CSF1R on splicing. METHODS A novel intronic mutation was identified using whole-exome sequencing. To investigate the impact of this mutation, we employed various bioinformatics tools to analyze the transcription of the CSF1R gene and the three-dimensional structure of its encoded protein. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the findings. RESULTS A novel mutation (c.1754-3C>G) in CSF1R was identified, which results in exon 13 skipping due to the disruption of the 3' splice site consensus sequence NYAG/G. This exon skipping event was further validated in the peripheral blood of the mutation carrier through RT-PCR and Sanger sequencing. Protein structure prediction indicated a disruption in the tyrosine kinase domain, with the truncated protein showing significant structural alterations. CONCLUSIONS Our findings underscore the importance of intronic mis-splicing mutations in the diagnosis and management of CSF1R-related leukoencephalopathy.
Collapse
Affiliation(s)
- Yilai Han
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Jinming Han
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Zhen Li
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Siqi Chen
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Ju Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Ruxing Zhou
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Shufang Zhao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Dawei Li
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Zheng Liu
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Yinan Zhao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
| | - Junwei Hao
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Key Laboratory for Neurodegenerative Diseases of Ministry of EducationBeijingChina
| | - Guoliang Chai
- Department of NeurologyXuanwu Hospital Capital Medical University, National Center for Neurological DisordersBeijingChina
- Beijing Municipal Geriatric Medical Research CenterBeijingChina
- Chinese Institutes for Medical ResearchBeijingChina
| |
Collapse
|
3
|
Osterhoudt K, Bagno O, Katzman S, Zahler AM. Spliceosomal helicases DDX41/SACY-1 and PRP22/MOG-5 both contribute to proofreading against proximal 3' splice site usage. RNA (NEW YORK, N.Y.) 2024; 30:404-417. [PMID: 38282418 PMCID: PMC10946429 DOI: 10.1261/rna.079888.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
RNA helicases drive necessary rearrangements and ensure fidelity during the pre-mRNA splicing cycle. DEAD-box helicase DDX41 has been linked to human disease and has recently been shown to interact with DEAH-box helicase PRP22 in the spliceosomal C* complex, yet its function in splicing remains unknown. Depletion of DDX41 homolog SACY-1 from somatic cells has been previously shown to lead to changes in alternative 3' splice site (3'ss) usage. Here, we show by transcriptomic analysis of published and novel data sets that SACY-1 perturbation causes a previously unreported pattern in alternative 3' splicing in introns with pairs of 3' splice sites ≤18 nt away from each other. We find that both SACY-1 depletion and the allele sacy-1(G533R) lead to a striking unidirectional increase in the usage of the proximal (upstream) 3'ss. We previously discovered a similar alternative splicing pattern between germline tissue and somatic tissue, in which there is a unidirectional increase in proximal 3'ss usage in the germline for ∼200 events; many of the somatic SACY-1 alternative 3' splicing events overlap with these developmentally regulated events. We generated targeted mutant alleles of the Caenorhabditis elegans homolog of PRP22, mog-5, in the region of MOG-5 that is predicted to interact with SACY-1 based on the human C* structure. These viable alleles, and a mimic of the myelodysplastic syndrome-associated allele DDX41(R525H), all promote the usage of proximal alternative adjacent 3' splice sites. We show that PRP22/MOG-5 and DDX41/SACY-1 have overlapping roles in proofreading the 3'ss.
Collapse
Affiliation(s)
- Kenneth Osterhoudt
- Department of Molecular Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Orazio Bagno
- Department of Molecular Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| | - Sol Katzman
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Alan M Zahler
- Department of Molecular Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
4
|
Anderson R, Das MR, Chang Y, Farenhem K, Schmitz CO, Jain A. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. Mol Cell 2024; 84:702-714.e10. [PMID: 38295802 PMCID: PMC10923110 DOI: 10.1016/j.molcel.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Expansions of CAG trinucleotide repeats cause several rare neurodegenerative diseases. The disease-causing repeats are translated in multiple reading frames and without an identifiable initiation codon. The molecular mechanism of this repeat-associated non-AUG (RAN) translation is not known. We find that expanded CAG repeats create new splice acceptor sites. Splicing of proximal donors to the repeats produces unexpected repeat-containing transcripts. Upon splicing, depending on the sequences surrounding the donor, CAG repeats may become embedded in AUG-initiated open reading frames. Canonical AUG-initiated translation of these aberrant RNAs may account for proteins that have been attributed to RAN translation. Disruption of the relevant splice donors or the in-frame AUG initiation codons is sufficient to abrogate RAN translation. Our findings provide a molecular explanation for the abnormal translation products observed in CAG trinucleotide repeat expansion disorders and add to the repertoire of mechanisms by which repeat expansion mutations disrupt cellular functions.
Collapse
Affiliation(s)
- Rachel Anderson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Michael R Das
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Yeonji Chang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kelsey Farenhem
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Cameron O Schmitz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Durydivka O, Gazdarica M, Vecerkova K, Radenkovic S, Blahos J. Multiple Sgip1 splice variants inhibit cannabinoid receptor 1 internalization. Gene 2024; 892:147851. [PMID: 37783296 DOI: 10.1016/j.gene.2023.147851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Alternative splicing can often result in the expression of distinct protein isoforms from a single gene, with specific composition and properties. SH3-containing GRB2-like protein 3-interacting protein 1 (Sgip1) is a brain-enriched protein that regulates clathrin-mediated endocytosis and interferes with the internalization of cannabinoid receptor 1. Several research groups have studied the physiological importance of Sgip1, and four Sgip1 protein isoforms have been described to date, while the NCBI Gene database predicts the expression of 20 splice variants from the Sgip1 gene in mice. In this work, we cloned 15 Sgip1 splice variants from the mouse brain, including 11 novel splice variants. The cloned splice variants differed in exon composition within two Sgip1 regions: the membrane phospholipid-binding domain and the proline-rich region. All the Sgip1 splice isoforms had similar stability and comparable ability to inhibit the internalization of cannabinoid receptor 1. None of the isoforms influenced the internalization of the µ-opioid receptor. We confirm the expression of Sgip1 splice variants described in previous studies or predicted in silico. Our data provide a basis for further studies exploring the significance of Sgip1 splicing, and we suggest a new classification of Sgip1 splice variants to unify their nomenclature.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Vecerkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Silvia Radenkovic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
6
|
Anderson R, Das M, Chang Y, Farenhem K, Jain A. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562581. [PMID: 37904984 PMCID: PMC10614865 DOI: 10.1101/2023.10.16.562581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Expansions of CAG trinucleotide repeats cause several rare neurodegenerative diseases. The disease-causing repeats are translated in multiple reading frames, without an identifiable initiation codon. The molecular mechanism of this repeat-associated non-AUG (RAN) translation is not known. We find that expanded CAG repeats create new splice acceptor sites. Splicing of proximal donors to the repeats produces unexpected repeat-containing transcripts. Upon splicing, depending on the sequences surrounding the donor, CAG repeats may become embedded in AUG-initiated open reading frames. Canonical AUG-initiated translation of these aberrant RNAs accounts for proteins that are attributed to RAN translation. Disruption of the relevant splice donors or the in-frame AUG initiation codons is sufficient to abrogate RAN translation. Our findings provide a molecular explanation for the abnormal translation products observed in CAG trinucleotide repeat expansion disorders and add to the repertoire of mechanisms by which repeat expansion mutations disrupt cellular functions.
Collapse
Affiliation(s)
- Rachel Anderson
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Michael Das
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Yeonji Chang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kelsey Farenhem
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Gao R, Lu Y, Wu N, Liu H, Jin X. Comprehensive study of serine/arginine-rich (SR) gene family in rice: characterization, evolution and expression analysis. PeerJ 2023; 11:e16193. [PMID: 37849832 PMCID: PMC10578304 DOI: 10.7717/peerj.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
As important regulators of alternative splicing (AS) events, serine/arginine (SR)-rich proteins play indispensable roles in the growth and development of organisms. Until now, the study of SR genes has been lacking in plants. In the current study, we performed genome-wide analysis on the SR gene family in rice. A total of 24 OsSR genes were phylogenetically classified into seven groups, corresponding to seven subfamilies. The OsSR genes' structures, distribution of conserved domains, and protein tertiary structure of OsSR were conserved within each subfamily. The synteny analysis revealed that segmental duplication events were critical for the expansion of OsSR gene family. Moreover, interspecific synteny revealed the distribution of orthologous SR gene pairs between rice and Arabidopsis, sorghum, wheat, and maize. Among all OsSR genes, 14 genes exhibited NAGNAG acceptors, and only four OsSR genes had AS events on the NAGNAG acceptors. Furthermore, the distinct tissue-specific expression patterns of OsSR genes showed that these genes may function in different developmental stages in rice. The AS patterns on the same OsSR gene were variable among the root, stem, leaf, and grains at different filling stages, and some isoforms could only be detected in one or a few of tested tissues. Meanwhile, our results showed that the expression of some OsSR genes changed dramatically under ABA, GA, salt, drought, cold or heat treatment, which were related to the wide distribution of corresponding cis-elements in their promoter regions, suggesting their specific roles in stress and hormone response. This research facilitates our understanding of SR gene family in rice and provides clues for further exploration of the function of OsSR genes.
Collapse
Affiliation(s)
- Rui Gao
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yingying Lu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Nan Wu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaoli Jin
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Dybkov O, Preußner M, El Ayoubi L, Feng VY, Harnisch C, Merz K, Leupold P, Yudichev P, Agafonov DE, Will CL, Girard C, Dienemann C, Urlaub H, Kastner B, Heyd F, Lührmann R. Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins. SCIENCE ADVANCES 2023; 9:eadf1785. [PMID: 36867703 PMCID: PMC9984181 DOI: 10.1126/sciadv.adf1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Alternative precursor messenger RNA splicing is instrumental in expanding the proteome of higher eukaryotes, and changes in 3' splice site (3'ss) usage contribute to human disease. We demonstrate by small interfering RNA-mediated knockdowns, followed by RNA sequencing, that many proteins first recruited to human C* spliceosomes, which catalyze step 2 of splicing, regulate alternative splicing, including the selection of alternatively spliced NAGNAG 3'ss. Cryo-electron microscopy and protein cross-linking reveal the molecular architecture of these proteins in C* spliceosomes, providing mechanistic and structural insights into how they influence 3'ss usage. They further elucidate the path of the 3' region of the intron, allowing a structure-based model for how the C* spliceosome potentially scans for the proximal 3'ss. By combining biochemical and structural approaches with genome-wide functional analyses, our studies reveal widespread regulation of alternative 3'ss usage after step 1 of splicing and the likely mechanisms whereby C* proteins influence NAGNAG 3'ss choices.
Collapse
Affiliation(s)
- Olexandr Dybkov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Marco Preußner
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Leyla El Ayoubi
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Vivi-Yun Feng
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Caroline Harnisch
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Kilian Merz
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Paula Leupold
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Peter Yudichev
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Dmitry E. Agafonov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cindy L. Will
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cyrille Girard
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany
| | - Berthold Kastner
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Florian Heyd
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
9
|
Parker MT, Soanes BK, Kusakina J, Larrieu A, Knop K, Joy N, Breidenbach F, Sherwood AV, Barton GJ, Fica SM, Davies BH, Simpson GG. m 6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site. eLife 2022; 11:e78808. [PMID: 36409063 PMCID: PMC9803359 DOI: 10.7554/elife.78808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Alternative splicing of messenger RNAs is associated with the evolution of developmentally complex eukaryotes. Splicing is mediated by the spliceosome, and docking of the pre-mRNA 5' splice site into the spliceosome active site depends upon pairing with the conserved ACAGA sequence of U6 snRNA. In some species, including humans, the central adenosine of the ACAGA box is modified by N6 methylation, but the role of this m6A modification is poorly understood. Here, we show that m6A modified U6 snRNA determines the accuracy and efficiency of splicing. We reveal that the conserved methyltransferase, FIONA1, is required for Arabidopsis U6 snRNA m6A modification. Arabidopsis fio1 mutants show disrupted patterns of splicing that can be explained by the sequence composition of 5' splice sites and cooperative roles for U5 and U6 snRNA in splice site selection. U6 snRNA m6A influences 3' splice site usage. We generalise these findings to reveal two major classes of 5' splice site in diverse eukaryotes, which display anti-correlated interaction potential with U5 snRNA loop 1 and the U6 snRNA ACAGA box. We conclude that U6 snRNA m6A modification contributes to the selection of degenerate 5' splice sites crucial to alternative splicing.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Jelena Kusakina
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Antoine Larrieu
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Katarzyna Knop
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Nisha Joy
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Friedrich Breidenbach
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld UniversityBielefeldGermany
| | - Anna V Sherwood
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | | | - Sebastian M Fica
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Brendan H Davies
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Cell & Molecular Sciences, James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
10
|
Gazzaz N, Frost FG, Alderman E, Richmond PA, Dalmann J, Lin S, Salman A, Del Bel KL, Lehman A, Turvey SE, Boerkoel CF, Cherukuri PF. Can tandem alternative splicing and evasion of premature termination codon surveillance contribute to attenuated Peutz-Jeghers syndrome? Am J Med Genet A 2022; 188:3089-3095. [PMID: 35946377 DOI: 10.1002/ajmg.a.62942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 01/31/2023]
Abstract
Alternative use of short distance tandem sites such as NAGNn AG are a common mechanism of alternative splicing; however, single nucleotide variants are rarely reported as likely to generate or to disrupt tandem splice sites. We identify a pathogenic intron 5 STK11 variant (NM_000455.4:c.[735-6A>G];[=]) segregating with the mucocutaneous features but not the hamartomatous polyps of Peutz-Jeghers syndrome in two individuals. By RNAseq analysis of peripheral blood mRNA, this variant was shown to generate a novel and preferentially used tandem proximal splice acceptor (AAGTGAAG). The variant transcript (NM_000455.4:c.734_734 + 1insTGAAG), which encodes a frameshift (p.[Tyr246Glufs*43]) constituted 36%-43% of STK11 transcripts suggesting partial escape from nonsense mediated mRNA decay and translation of a truncated protein. A review of the ClinVar database identified other similar variants. We suggest that nucleotide changes creating or disrupting tandem alternative splice sites are a pertinent disease mechanism and require contextualization for clinical reporting. Additionally, we hypothesize that some pathogenic STK11 variants cause an attenuated phenotype.
Collapse
Affiliation(s)
- Nour Gazzaz
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Graeme Frost
- National Institutes of Health Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Alderman
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Phillip A Richmond
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Dalmann
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Susan Lin
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Areesha Salman
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Kate L Del Bel
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- The Rare Disease Discovery Hub, BC Children's Hospital Research Institute, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Praveen F Cherukuri
- Imagenetics, Sanford Health and Research Center and Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
11
|
Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce M. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Res 2022; 50:5513-5527. [PMID: 35639749 PMCID: PMC9177961 DOI: 10.1093/nar/gkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient splicing requires a balance between high-fidelity splice-site (SS) selection and speed. In Saccharomyces cerevisiae, Pre-mRNA processing factor 8 (Prp8) helps to balance precise SS selection and rapid, efficient intron excision and exon joining. argonaute1-52 (ago1-52) and incurvata13 (icu13) are hypomorphic alleles of the Arabidopsis thaliana genes ARGONAUTE1 (AGO1) and AUXIN RESISTANT6 (AXR6) that harbor point mutations creating a novel 3'SS and 5'SS, respectively. The spliceosome recognizes these novel SSs, as well as the intact genuine SSs, producing a mixture of wild-type and aberrant mature mRNAs. Here, we characterized five novel mutant alleles of PRP8 (one of the two Arabidopsis co-orthologs of yeast Prp8), naming these alleles morphology of ago1-52 suppressed5 (mas5). In the mas5-1 background, the spliceosome preferentially recognizes the intact genuine 3'SS of ago1-52 and 5'SS of icu13. Since point mutations that damage genuine SSs make the spliceosome prone to recognizing cryptic SSs, we also tested alleles of four genes carrying damaged genuine SSs, finding that mas5-1 did not suppress their missplicing. The mas5-1 and mas5-3 mutations represent a novel class of missplicing suppressors that increase splicing fidelity by hampering the use of novel SSs, but do not alter general pre-mRNA splicing.
Collapse
Affiliation(s)
- Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
12
|
Splicing mutations in the CFTR gene as therapeutic targets. Gene Ther 2022; 29:399-406. [PMID: 35650428 PMCID: PMC9385490 DOI: 10.1038/s41434-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
The marketing approval, about ten years ago, of the first disease modulator for patients with cystic fibrosis harboring specific CFTR genotypes (~5% of all patients) brought new hope for their treatment. To date, several therapeutic strategies have been approved and the number of CFTR mutations targeted by therapeutic agents is increasing. Although these drugs do not reverse the existing disease, they help to increase the median life expectancy. However, on the basis of their CFTR genotype, ~10% of patients presently do not qualify for any of the currently available CFTR modulator therapies, particularly patients with splicing mutations (~12% of the reported CFTR mutations). Efforts are currently made to develop therapeutic agents that target disease-causing CFTR variants that affect splicing. This highlights the need to fully identify them by scanning non-coding regions and systematically determine their functional consequences. In this review, we present some examples of CFTR alterations that affect splicing events and the different therapeutic options that are currently developed and tested for splice switching.
Collapse
|
13
|
Pervasive occurrence of splice-site-creating mutations and their possible involvement in genetic disorders. NPJ Genom Med 2022; 7:22. [PMID: 35304488 PMCID: PMC8933504 DOI: 10.1038/s41525-022-00294-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/15/2022] [Indexed: 01/06/2023] Open
Abstract
The search for causative mutations in human genetic disorders has mainly focused on mutations that disrupt coding regions or splice sites. Recently, however, it has been reported that mutations creating splice sites can also cause a range of genetic disorders. In this study, we identified 5656 candidate splice-site-creating mutations (SCMs), of which 3942 are likely to be pathogenic, in 4054 genes responsible for genetic disorders. Reanalysis of exome data obtained from ciliopathy patients led us to identify 38 SCMs as candidate causative mutations. We estimate that, by focusing on SCMs, the increase in diagnosis rate is approximately 5.9–8.5% compared to the number of already known pathogenic variants. This finding suggests that SCMs are mutations worth focusing on in the search for causative mutations of genetic disorders.
Collapse
|
14
|
Duan J, Ye Y, Hu Z, Zhao X, Liao J, Chen L. Identification of a Novel Canonical Splice Site Variant TSC2 c.2967-1G>T That is Not Associated With Tuberous Sclerosis Pathogenesis. Front Genet 2022; 13:904224. [PMID: 35692821 PMCID: PMC9184681 DOI: 10.3389/fgene.2022.904224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous sclerosis, also known as tuberous sclerosis complex (TSC), is an autosomal dominant defect characterized by hamartomas in multiple organ systems. Inactivating variants cause this defect in either the TSC1 gene or the TSC2 gene, leading to hamartin or tuberin protein dysfunction, thus resulting in TSC. The diagnostic criteria for TSC suggest that it can be diagnosed by identifying a heterozygous pathogenic variant of TSC1 or TSC2, even in the absence of clinical signs. In a 4-year-old girl, we identified a splicing variant (NM_000548.4: c.2967-1G>T) that she inherited from her father. Neither the girl (patient) nor her father showed typical features of TSC. This variant is located in a NAGNAG acceptor, which can produce mRNA isoforms that differ by a three-nucleotide indel. Reverse transcription polymerase chain reaction analysis of the patient and both parents' blood RNA samples suggested two different splicing patterns, and these two splicing patterns differed in the presence or absence of the first codon of exon 27, thus providing two splicing products designated as isoforms A and B, respectively. Furthermore, the proportions of these two patterns varied between the patient and either parent. A minigene assay further confirmed that the c.2967-1G>T variant led to the absence of isoform A (including the first codon of exon 27). The finding of our study demonstrates this variant, c.2967-1G>T, disrupts the balance of an alternative splice event which involves the use of two tandem alternatives acceptors and is not associated with typical symptoms of tuberous sclerosis. Our finding is of importance for genetic counseling and suggests that we need to be vigilant to avoid misdiagnosis when we encounter such a site.
Collapse
|
15
|
Qu Z, Sakaguchi N, Kikutake C, Suyama M. Genome-wide identification of exon extension/shrinkage events induced by splice-site-creating mutations. RNA Biol 2022; 19:1143-1152. [PMID: 36329613 PMCID: PMC9639565 DOI: 10.1080/15476286.2022.2139111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations that affect phenotypes have been identified primarily as those that directly alter amino acid sequences or disrupt splice sites. However, some mutations not located in functionally important sites can also affect phenotypes, such as splice-site-creating mutations (SCMs). To investigate how frequent exon extension/shrinkage events induced by SCMs occur in normal individuals, we used personal genome sequencing data and transcriptome data of the corresponding individuals and identified 371 exon extension/shrinkage events in normal individuals. This number was about three times higher than the number of pseudo-exon activation events identified in the previous study. The average numbers of exon extension and exon shrinkage events in each sample were 3.3 and 11.2, respectively. We also evaluated the impact of exon extension/shrinkage events on the resulting transcripts and their protein products and found that 40.2% of the identified events may have possible functional impacts by either generating premature termination codons in transcripts or affecting protein domains. Our results indicated that a certain fraction of SCMs identified in this study can be pathogenic mutations by creating novel splice sites.
Collapse
Affiliation(s)
- Zhuo Qu
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Narumi Sakaguchi
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan,CONTACT Mikita Suyama Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka812-8582, Japan
| |
Collapse
|
16
|
Hujová P, Souček P, Radová L, Kramárek M, Kováčová T, Freiberger T. Nucleotides in both donor and acceptor splice sites are responsible for choice in NAGNAG tandem splice sites. Cell Mol Life Sci 2021; 78:6979-6993. [PMID: 34596691 PMCID: PMC11072513 DOI: 10.1007/s00018-021-03943-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022]
Abstract
Among alternative splicing events in the human transcriptome, tandem NAGNAG acceptor splice sites represent an appreciable proportion. Both proximal and distal NAG can be used to produce two splicing isoforms differing by three nucleotides. In some cases, the upstream exon can be alternatively spliced as well, which further increases the number of possible transcripts. In this study, we showed that NAG choice in tandem splice site depends considerably not only on the concerned acceptor, but also on the upstream donor splice site sequence. Using an extensive set of experiments with systematically modified two-exonic minigene systems of AFAP1L2 or CSTD gene, we recognized the third and fifth intronic upstream donor splice site position and the tandem acceptor splice site region spanning from -10 to +2, including NAGNAG itself, as the main drivers. In addition, competition between different branch points and their composition were also shown to play a significant role in NAG choice. All these nucleotide effects appeared almost additive, which explained the high variability in proximal versus distal NAG usage.
Collapse
Affiliation(s)
- Pavla Hujová
- Centre for Cardiovascular Surgery and Transplantation, 65691, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, 65691, Brno, Czech Republic.
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic.
| | - Lenka Radová
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Michal Kramárek
- Centre for Cardiovascular Surgery and Transplantation, 65691, Brno, Czech Republic
| | - Tatiana Kováčová
- Centre for Cardiovascular Surgery and Transplantation, 65691, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, 65691, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| |
Collapse
|
17
|
Jiang J, Huang LX, Chen F, Sheng CW, Huang QT, Han ZJ, Zhao CQ. Novel alternative splicing of GABA receptor RDL exon 9 from Laodelphax striatellus modulates agonist potency. INSECT SCIENCE 2021; 28:757-768. [PMID: 32293803 DOI: 10.1111/1744-7917.12789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The resistance to dieldrin gene (RDL) encodes the primary subunit of the insect ionotropic γ-aminobutyric acid (GABA) receptor (GABAR), which is the target of phenylpyrazole and isoxazoline insecticides. The splice variants in exons 3 and 6 of RDL, which have been widely explored in many insects, modulate the agonist potency of the homomeric RDL GABAR and potentially play an important role in the development of insects. In the present study, four splice variants of exon 9 were identified in RDL of the small brown planthopper, Laodelphax striatellus (LsRDL), resulting in LsRDL-9a, LsRDL-9a', LsRDL-9b, and LsRDL-9c. LsRDL-9a has one more amino acid (E, glutamic acid) compared with LsRDL-9a', and LsRDL-9b lacked two amino acids and had seven different amino acids compared with LsRDL-9c. Two-electrode voltage-clamp recording on LsRDLs expressed in Xenopus oocytes showed that alternative splicing of exon 9 has significant impact on LsRDL sensitivity to the agonists GABA and β-alanine, whereas no significant difference was observed in the potencies of the non-competitive antagonists (NCAs) ethiprole and fluralaner on the splice variants. Our results suggest that alternative splicing of RDL exon 9 broadens functional capabilities of the GABAR in L. striatellus by influencing the action of GABA.
Collapse
Affiliation(s)
- Jie Jiang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Xin Huang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Wang Sheng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qiu-Tang Huang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhao-Jun Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chun-Qing Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
An extended catalogue of tandem alternative splice sites in human tissue transcriptomes. PLoS Comput Biol 2021; 17:e1008329. [PMID: 33826604 PMCID: PMC8055015 DOI: 10.1371/journal.pcbi.1008329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/19/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tandem alternative splice sites (TASS) is a special class of alternative splicing events that are characterized by a close tandem arrangement of splice sites. Most TASS lack functional characterization and are believed to arise from splicing noise. Based on the RNA-seq data from the Genotype Tissue Expression project, we present an extended catalogue of TASS in healthy human tissues and analyze their tissue-specific expression. The expression of TASS is usually dominated by one major splice site (maSS), while the expression of minor splice sites (miSS) is at least an order of magnitude lower. Among 46k miSS with sufficient read support, 9k (20%) are significantly expressed above the expected noise level, and among them 2.5k are expressed tissue-specifically. We found significant correlations between tissue-specific expression of RNA-binding proteins (RBP), tissue-specific expression of miSS, and miSS response to RBP inactivation by shRNA. In combination with RBP profiling by eCLIP, this allowed prediction of novel cases of tissue-specific splicing regulation including a miSS in QKI mRNA that is likely regulated by PTBP1. The analysis of human primary cell transcriptomes suggested that both tissue-specific and cell-type-specific factors contribute to the regulation of miSS expression. More than 20% of tissue-specific miSS affect structured protein regions and may adjust protein-protein interactions or modify the stability of the protein core. The significantly expressed miSS evolve under the same selection pressure as maSS, while other miSS lack signatures of evolutionary selection and conservation. Using mixture models, we estimated that not more than 15% of maSS and not more than 54% of tissue-specific miSS are noisy, while the proportion of noisy splice sites among non-significantly expressed miSS is above 63%. Pre-mRNA splicing is an important step in the processing of the genomic information during gene expression. During splicing, introns are excised from a gene transcript, and the remaining exons are ligated. Our work concerns one its particular subtype, which involves the so-called tandem alternative splice sites, a group of closely located exon borders that are used alternatively. We analyzed RNA-seq measurements of gene expression provided by the Genotype-Tissue Expression (GTEx) project, the largest to-date collection of such measurements in healthy human tissues, and constructed a detailed catalogue of tandem alternative splice sites. Within this catalogue, we characterized patterns of tissue-specific expression, regulation, impact on protein structure, and evolutionary selection acting on tandem alternative splice sites. In a number of genes, we predicted regulatory mechanisms that could be responsible for choosing one of many tandem alternative splice sites. The results of this study provide an invaluable resource for molecular biologists studying alternative splicing.
Collapse
|
19
|
Martín G, Márquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol 2021; 22:35. [PMID: 33446251 PMCID: PMC7807721 DOI: 10.1186/s13059-020-02258-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. RESULTS We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. CONCLUSIONS Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.
Collapse
Affiliation(s)
- Guiomar Martín
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | - Yamile Márquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain
| | - Paula Duque
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra, Dr. Aiguader, 88, Barcelona, 08003, Spain. .,ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
20
|
Saferali A, Xu Z, Sheynkman GM, Hersh CP, Cho MH, Silverman EK, Laederach A, Vollmers C, Castaldi PJ. Characterization of a COPD-Associated NPNT Functional Splicing Genetic Variant in Human Lung Tissue via Long-Read Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.20.20203927. [PMID: 33173926 PMCID: PMC7654922 DOI: 10.1101/2020.10.20.20203927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. Genome-wide association studies (GWAS) have identified over 80 loci that are associated with COPD and emphysema, however for most of these loci the causal variant and gene are unknown. Here, we utilize lung splice quantitative trait loci (sQTL) data from the Genotype-Tissue Expression project (GTEx) and short read sequencing data from the Lung Tissue Research Consortium (LTRC) to characterize a locus in nephronectin ( NPNT ) associated with COPD case-control status and lung function. We found that the rs34712979 variant is associated with alternative splice junction use in NPNT , specifically for the junction connecting the 2nd and 4th exons (chr4:105898001-105927336) (p=4.02×10 -38 ). This association colocalized with GWAS data for COPD and lung spirometry measures with a posterior probability of 94%, indicating that the same causal genetic variants in NPNT underlie the associations with COPD risk, spirometric measures of lung function, and splicing. Investigation of NPNT short read sequencing revealed that rs34712979 creates a cryptic splice acceptor site which results in the inclusion of a 3 nucleotide exon extension, coding for a serine residue near the N-terminus of the protein. Using Oxford Nanopore Technologies (ONT) long read sequencing we identified 13 NPNT isoforms, 6 of which are predicted to be protein coding. Two of these are full length isoforms which differ only in the 3 nucleotide exon extension whose occurrence differs by genotype. Overall, our data indicate that rs34712979 modulates COPD risk and lung function by creating a novel splice acceptor which results in the inclusion of a 3 nucelotide sequence coding for a serine in the nephronectin protein sequence. Our findings implicate NPNT splicing in contributing to COPD risk, and identify a novel serine insertion in the nephronectin protein that warrants further study.
Collapse
|
21
|
Barth E, Sieber P, Stark H, Schuster S. Robustness during Aging-Molecular Biological and Physiological Aspects. Cells 2020; 9:E1862. [PMID: 32784503 PMCID: PMC7465392 DOI: 10.3390/cells9081862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the process of aging is still an important challenge to enable healthy aging and to prevent age-related diseases. Most studies in age research investigate the decline in organ functionality and gene activity with age. The focus on decline can even be considered a paradigm in that field. However, there are certain aspects that remain surprisingly stable and keep the organism robust. Here, we present and discuss various properties of robust behavior during human and animal aging, including physiological and molecular biological features, such as the hematocrit, body temperature, immunity against infectious diseases and others. We examine, in the context of robustness, the different theories of how aging occurs. We regard the role of aging in the light of evolution.
Collapse
Affiliation(s)
- Emanuel Barth
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Patricia Sieber
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Stefan Schuster
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| |
Collapse
|
22
|
Whisnant AW, Jürges CS, Hennig T, Wyler E, Prusty B, Rutkowski AJ, L'hernault A, Djakovic L, Göbel M, Döring K, Menegatti J, Antrobus R, Matheson NJ, Künzig FWH, Mastrobuoni G, Bielow C, Kempa S, Liang C, Dandekar T, Zimmer R, Landthaler M, Grässer F, Lehner PJ, Friedel CC, Erhard F, Dölken L. Integrative functional genomics decodes herpes simplex virus 1. Nat Commun 2020; 11:2038. [PMID: 32341360 PMCID: PMC7184758 DOI: 10.1038/s41467-020-15992-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution.
Collapse
Affiliation(s)
- Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Christopher S Jürges
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Bhupesh Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Andrzej J Rutkowski
- Department of Medicine, University of Cambridge, Box 157, Addenbrookes Hospital, Hills Road, CB2 0QQ, Cambridge, UK
| | - Anne L'hernault
- Department of Medicine, University of Cambridge, Box 157, Addenbrookes Hospital, Hills Road, CB2 0QQ, Cambridge, UK
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Margarete Göbel
- Core Unit Systems Medicine, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2/D15, 97080, Würzburg, Germany
| | - Kristina Döring
- Core Unit Systems Medicine, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2/D15, 97080, Würzburg, Germany
| | - Jennifer Menegatti
- Institute of Virology, Building 47, Saarland University Medical School, 66421, Homburg, Saar, Germany
| | - Robin Antrobus
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Florian W H Künzig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Chris Bielow
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, Am Hubland, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, Julius-Maximilians-University Würzburg, 97074, Würzburg, Germany
| | - Ralf Zimmer
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Friedrich Grässer
- Institute of Virology, Building 47, Saarland University Medical School, 66421, Homburg, Saar, Germany
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany.
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Versbacher Straße 7, 97078, Würzburg, Germany.
- Department of Medicine, University of Cambridge, Box 157, Addenbrookes Hospital, Hills Road, CB2 0QQ, Cambridge, UK.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97080, Würzburg, Germany.
| |
Collapse
|
23
|
Liu J, Jiang Y, Liu D, Zhang H, Chen T, Zhang G, Liu H, DU S, Lin Z, Jin Y, Li X. Relationship between cobalt transporter II gene rs9606756 site mutant and serum homocysteine level and recurrent cerebral infarction in young and middle-aged people. Minerva Med 2020; 112:261-268. [PMID: 32207595 DOI: 10.23736/s0026-4806.20.06462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aimed to investigate the effect of cobalt transporter II gene (rs1801198, rs2301957, rs9606756) polymorphism on serum homocysteine level and its correlation with young and middle recurrent cerebral infarction. METHODS A total of 348 young and middle-aged patients with cerebral infarction admitted to The Third Affiliated Hospital of Qiqihar Medical University from January 2017 to March 2018 were enrolled. The patients were divided into recurrent and non-recurrent groups according to follow-up. DNA was extracted from the peripheral blood of patients, and the DNA samples were genotyped by IlluminaBeadArray technology to detect the gene polymorphisms of cobalt transporter II (TCN2) sites (rs1801198, rs2301957, rs9606756), and the homocysteine (hcy) level was determined by cyclic enzymatic method. VitB12 and folate levels were measured by chemiluminescence immunoassay, and holo transcobalamin (holoTC) expression levels were detected by enzyme-linked immunosorbent assay. RESULTS The frequency of alleles of rs9606756 mutation in the recurrent group was higher than that in the non-recurrent group (P<0.05), and the Hcy level in rs9606756 locus genotype AG+GG was significantly higher than the AA genotype in the recurrent group (P=0.031). Pearson correlation analysis showed that Hcy levels were associated with different genotypes of rs9606756 in the recurrent group (r=0.483, P=0.0003). The rs9606756 allele AA in SH-SY5Y cells was replaced with GG by point mutation experiment. The Hcy metabolism levels of wild and mutant cells were detected. The accumulation level of Hcy in the mutant group was significantly increased (P=0.007). The holoTC in the supernatant was significantly reduced in the mutant (P=0.032). CONCLUSIONS The TCN2 gene rs9606756 mutation is closely related to the level of Hcy metabolism in young and middle-aged patients, which may affect the recurrence of cerebral infarction. It is of great significance to further understand the pathogenesis, prevention and treatment of recurrent cerebral infarction in young and middle-aged patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yan Jiang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Deshui Liu
- Institute of Medical Sciences, Qiqihar Medical University, Qiqihar, China
| | - Hao Zhang
- Institute of Medical Sciences, Qiqihar Medical University, Qiqihar, China
| | - Tuantuan Chen
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Guangping Zhang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongbin Liu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shu DU
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zaihong Lin
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yan Jin
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaohua Li
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China -
| |
Collapse
|
24
|
Hatje K, Mühlhausen S, Simm D, Kollmar M. The Protein-Coding Human Genome: Annotating High-Hanging Fruits. Bioessays 2019; 41:e1900066. [PMID: 31544971 DOI: 10.1002/bies.201900066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The major transcript variants of human protein-coding genes are annotated to a certain degree of accuracy combining manual curation, transcript data, and proteomics evidence. However, there is considerable disagreement on the annotation of about 2000 genes-they can be protein-coding, noncoding, or pseudogenes-and on the annotation of most of the predicted alternative transcripts. Pure transcriptome mapping approaches seem to be limited in discriminating functional expression from noise. These limitations have partially been overcome by dedicated algorithms to detect alternative spliced micro-exons and wobble splice variants. Recently, knowledge about splice mechanism and protein structure are incorporated into an algorithm to predict neighboring homologous exons, often spliced in a mutually exclusive manner. Predicted exons are evaluated by transcript data, structural compatibility, and evolutionary conservation, revealing hundreds of novel coding exons and splice mechanism re-assignments. The emerging human pan-genome is necessitating distinctive annotations incorporating differences between individuals and between populations.
Collapse
Affiliation(s)
- Klas Hatje
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstr. 124, 4070, Basel, Switzerland
| | - Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dominic Simm
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
25
|
Ragusa D, Makarov EM, Britten O, Moralli D, Green CM, Tosi S. The RS4;11 cell line as a model for leukaemia with t(4;11)(q21;q23): Revised characterisation of cytogenetic features. Cancer Rep (Hoboken) 2019; 2:e1207. [PMID: 32721124 PMCID: PMC7941496 DOI: 10.1002/cnr2.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Haematological malignancies harbouring rearrangements of the KMT2A gene represent a unique subtype of leukaemia, with biphenotypic clinical manifestations, a rapid and aggressive onset, and a generally poor prognosis. Chromosomal translocations involving KMT2A often cause the formation of oncogenic fusion genes, such as the most common translocation t(4;11)(q21;q23) producing the KMT2A-AFF1 chimera. AIM The aim of this study was to confirm and review the cytogenetic and molecular features of the KMT2A-rearranged RS4;11 cell line and put those in context with other reports of cell lines also harbouring a t(4;11) rearrangement. METHODS AND RESULTS The main chromosomal rearrangements t(4;11)(q21;q23) and i(7q), described when the cell line was first established, were confirmed by fluorescence in situ hybridisation (FISH) and 24-colour karyotyping by M-FISH. Additional cytogenetic abnormalities were investigated by further FISH experiments, including the presence of trisomy 18 as a clonal abnormality and the discovery of one chromosome 8 being an i(8q), which indicates a duplication of the oncogene MYC. A homozygous deletion of 9p21 containing the tumour-suppressor genes CDKN2A and CDKN2B was also revealed by FISH. The production of the fusion transcript KMT2A-AFF1 arising from the der(11)t(4;11) was confirmed by RT-PCR, but sequencing of the amplified fragment revealed the presence of multiple isoforms. Two transcript variants, resulting from alternative splicing, were identified differing in one glutamine residue in the translated protein. CONCLUSION As karyotype evolution is a common issue in cell lines, we highlight the need to monitor cell lines in order to re-confirm their characteristics over time. We also reviewed the literature to provide a comparison of key features of several cell lines harbouring a t(4;11). This would guide scientists in selecting the most suitable research model for this particular type of KMT2A-leukaemia.
Collapse
Affiliation(s)
- Denise Ragusa
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Evgeny M Makarov
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Oliver Britten
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - Daniela Moralli
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Catherine M Green
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sabrina Tosi
- Division of Biosciences, College of Health and Life Sciences, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK.,Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Uxbridge, UK
| |
Collapse
|
26
|
Lorenzini PA, Chew RSE, Tan CW, Yong JY, Zhang F, Zheng J, Roca X. Human PRPF40B regulates hundreds of alternative splicing targets and represses a hypoxia expression signature. RNA (NEW YORK, N.Y.) 2019; 25:905-920. [PMID: 31088860 PMCID: PMC6633195 DOI: 10.1261/rna.069534.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Altered splicing contributes to the pathogenesis of human blood disorders including myelodysplastic syndromes (MDS) and leukemias. Here we characterize the transcriptomic regulation of PRPF40B, which is a splicing factor mutated in a small fraction of MDS patients. We generated a full PRPF40B knockout (KO) in the K562 cell line by CRISPR/Cas9 technology and rescued its levels by transient overexpression of wild-type (WT), P383L or P540S MDS alleles. Using RNA sequencing, we identified hundreds of differentially expressed genes and alternative splicing (AS) events in the KO that are rescued by WT PRPF40B, with a majority also rescued by MDS alleles, pointing to mild effects of these mutations. Among the PRPF40B-regulated AS events, we found a net increase in exon inclusion in the KO, suggesting that this splicing factor primarily acts as a repressor. PRPF40B-regulated splicing events are likely cotranscriptional, affecting exons with A-rich downstream intronic motifs and weak splice sites especially for 5' splice sites, consistent with its PRP40 yeast ortholog being part of the U1 small nuclear ribonucleoprotein. Loss of PRPF40B in K562 induces a KLF1 transcriptional signature, with genes involved in iron metabolism and mainly hypoxia, including related pathways like cholesterol biosynthesis and Akt/MAPK signaling. A cancer database analysis revealed that PRPF40B is lowly expressed in acute myeloid leukemia, whereas its paralog PRPF40A expression is high as opposed to solid tumors. Furthermore, these factors negatively or positively correlated with hypoxia regulator HIF1A, respectively. Our data suggest a PRPF40B role in repressing hypoxia in myeloid cells, and that its low expression might contribute to leukemogenesis.
Collapse
Affiliation(s)
- Paolo Alberto Lorenzini
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate School (IGS), Nanyang Technological University, 637551 Singapore, Singapore
| | - Resilind Su Ern Chew
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Cheryl Weiqi Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Jing Yen Yong
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Fan Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore, Singapore
| | - Jie Zheng
- School of Computer Science and Engineering, Nanyang Technological University, 637551 Singapore, Singapore
- School of Information Science and Technology, ShanghaiTech University, Pudong District, Shanghai 201210, China
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| |
Collapse
|
27
|
Bogdanova NV, Schürmann P, Valova Y, Dubrowinskaja N, Turmanov N, Yugay T, Essimsiitova Z, Mingazheva E, Prokofyeva D, Bermisheva M, Khusnutdinova E, Dörk T. A Splice Site Variant of CDK12 and Breast Cancer in Three Eurasian Populations. Front Oncol 2019; 9:493. [PMID: 31259151 PMCID: PMC6587039 DOI: 10.3389/fonc.2019.00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022] Open
Abstract
CDK12 is a member of the cyclin-dependent kinase family that acts as regulator of DNA damage response gene expression. A c.1047-2A>G splice site variant of the CDK12 gene was recently reported to strongly associate with hereditary breast and ovarian cancer in patients of Tatar ethnic origin. To gain more insight into the potential risk and the population spread of the c.1047-2A>G variant, we have genotyped three breast cancer case-control series of Tatar, Bashkir and Kazakh ethnicity. We identified c.1047-2A>G in 6/155 cases and 12/362 controls of Tatar ancestry, 0/96 cases and 9/189 controls of Bashkir ancestry, and 1/131 cases and 0/154 controls of Kazakh ancestry (Mantel-Haenszel odds ratio 0.72, 95% CI 0.30-1.70, p = 0.45). Consistent with the absence of a large effect, bioinformatic analyses predicted that c.1047-2A>G modulates alternative splicing of a NAGNAG sequence rather than constituting a loss-of-function allele, and RT-PCR analyses of c.1047-2A>G heterozygous lymphocytes verified the usage of the predicted alternative acceptor site. Our study confirms a high prevalence of CDK12*c.1047-2A>G in the Tatar and Bashkir population but excludes a role as a clinically actionable high-risk breast cancer mutation.
Collapse
Affiliation(s)
- Natalia V Bogdanova
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany.,Radiation Oncology Research Unit, Hannover Medical School, Hanover, Germany
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| | - Yana Valova
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany.,Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Natalia Dubrowinskaja
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany.,Department of Clinical Immunology, Hannover Medical School, Hanover, Germany
| | - Nurzhan Turmanov
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany.,Oncology Clinic of Almaty, Almaty, Kazakhstan
| | | | - Zura Essimsiitova
- Department of Biology and Biotechnology, Kazakh State National University of Al-Farabi, Almaty, Kazakhstan
| | - Elvira Mingazheva
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany.,Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Darya Prokofyeva
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Elza Khusnutdinova
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia.,Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| |
Collapse
|
28
|
Hujová P, Grodecká L, Souček P, Freiberger T. Impact of acceptor splice site NAGTAG motif on exon recognition. Mol Biol Rep 2019; 46:2877-2884. [PMID: 30840204 DOI: 10.1007/s11033-019-04734-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Abstract
Pre-mRNA splicing is an essential step in gene expression, when introns are removed and exons joined by the complex of proteins called spliceosome. Correct splicing requires a precise exon/intron junction definition, which is determined by a consensual donor and acceptor splice site at the 5' and 3' end, respectively. An acceptor splice site (3'ss) consists of highly conserved AG nucleotides in positions E-2 and E-1. These nucleotides can appear in tandem, located 3 bp from each other. Then they are referred to as NAGNAG or tandem 3'ss, which can be alternatively spliced. NAG/TAG 3'ss motif abundance is extremely low and cannot be easily explained by just a nucleotide preference in this position. We tested artificial NAG/TAG motif's potential negative effect on exon recognition using a minigene assay. Introducing the NAG/TAG motif into seven different exons revealed no general negative effect on exon recognition. The only observed effect was the partial use of the newly formed distal 3'ss. We can conclude that this motif's extremely low preference in a natural 3'ss is not a consequence of the NAG/TAG motif's negative effect on exon recognition, but more likely the result of other RNA processing aspects, such as an alternative 3'ss choice, decreased 3'ss strength, or incorporating an amber stop codon.
Collapse
Affiliation(s)
- Pavla Hujová
- Centre for Cardiovascular Surgery and Transplantation, Pekařská 53, 656 91, Brno, Czech Republic.,Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Grodecká
- Centre for Cardiovascular Surgery and Transplantation, Pekařská 53, 656 91, Brno, Czech Republic
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Pekařská 53, 656 91, Brno, Czech Republic.,Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
29
|
Vuillaumier-Barrot S, Schiff M, Mattioli F, Schaefer E, Dupont A, Dancourt J, Dupré T, Couvineau A, de Baulny HO, de Lonlay P, Seta N, Moore S, Chantret I. Wide clinical spectrum in ALG8-CDG: clues from molecular findings suggest an explanation for a milder phenotype in the first-described patient. Pediatr Res 2019; 85:384-389. [PMID: 30420707 DOI: 10.1038/s41390-018-0231-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 10/18/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) includes ALG8 deficiency, a protein N-glycosylation defect with a broad clinical spectrum. If most of the 15 previously reported patients present an early-onset multisystem severe disease and early death, three patients including the cas princeps, present long-term survival and less severe symptoms. METHODS In order to further characterize ALG8-CDG, two new ALG8 patients are described and mRNA analyses of the ALG8-CDG cas princeps were effected. RESULTS One new patient exhibited a hepato-intestinal and neurological phenotype with two novel variants (c.91A > C p.Thr31Pro; c.139dup p.Thr47Asnfs*12). The other new patient, homozygous for a known variant (c.845C > T p.Ala282Val), presented a neurological phenotype with epilepsy, intellectual disability and retinis pigmentosa. The cas princeps ALG8-CDG patient was reported to have two heterozygous frameshift variants predicted to be without activity. We now described a novel ALG8 transcript variant in this patient and the 3D model of the putative encoded protein reveals no major difference with that of the normal ALG8 protein. CONCLUSION The description of the two new ALG8 patients affirms that ALG8-CDG is a severe disease. In the cas princeps, as the originally described frameshift variants are degraded, the novel variant is promoted and could explain a milder phenotype.
Collapse
Affiliation(s)
| | - Manuel Schiff
- APHP, Robert Debré Hospital, Reference Center for Inborn Errors of Metabolism, UMR1141, PROTECT, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francesca Mattioli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67400, Illkirch-Graffenstaden, France
| | - Elise Schaefer
- Service de Génétique Médicale, CHU de Hautepierre, avenue Molière, Institut de Génétique Médicale d'Alsace, 67098, Strasbourg, France
| | - Audrey Dupont
- Intensive Care Unit, CHU Lenval, 57 avenue de la Californie, 06200, Nice, France
| | - Julia Dancourt
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI) and Université Paris 7 Denis Diderot, BP 416, 75018, Paris, France
| | | | - Alain Couvineau
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI) and Université Paris 7 Denis Diderot, BP 416, 75018, Paris, France
| | - Hélène Ogier de Baulny
- APHP, Robert Debré Hospital, Reference Center for Inborn Errors of Metabolism, UMR1141, PROTECT, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pascale de Lonlay
- AP-HP, Necker-Enfants Malades Hospital, Reference Center for Inborn Errors of Metabolism, metabERN, G2M, IMAGINE Institute, University Paris Descartes-Sorbonne Paris Cité, Paris, France
| | | | - Stuart Moore
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI) and Université Paris 7 Denis Diderot, BP 416, 75018, Paris, France
| | - Isabelle Chantret
- INSERM, U1149, Centre de Recherche sur l'Inflammation (CRI) and Université Paris 7 Denis Diderot, BP 416, 75018, Paris, France
| |
Collapse
|
30
|
Lattimore VL, Pearson JF, Currie MJ, Spurdle AB, Robinson BA, Walker LC. Investigation of Experimental Factors That Underlie BRCA1/2 mRNA Isoform Expression Variation: Recommendations for Utilizing Targeted RNA Sequencing to Evaluate Potential Spliceogenic Variants. Front Oncol 2018; 8:140. [PMID: 29774201 PMCID: PMC5943536 DOI: 10.3389/fonc.2018.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
PCR-based RNA splicing assays are commonly used in diagnostic and research settings to assess the potential effects of variants of uncertain clinical significance in BRCA1 and BRCA2. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium completed a multicentre investigation to evaluate differences in assay design and the integrity of published data, raising a number of methodological questions associated with cell culture conditions and PCR-based protocols. We utilized targeted RNA-seq to re-assess BRCA1 and BRCA2 mRNA isoform expression patterns in lymphoblastoid cell lines (LCLs) previously used in the multicentre ENIGMA study. Capture of the targeted cDNA sequences was carried out using 34 BRCA1 and 28 BRCA2 oligonucleotides from the Illumina Truseq Targeted RNA Expression platform. Our results show that targeted RNA-seq analysis of LCLs overcomes many of the methodology limitations associated with PCR-based assays leading us to make the following observations and recommendations: (1) technical replicates (n > 2) of variant carriers to capture methodology induced variability associated with RNA-seq assays, (2) LCLs can undergo multiple freeze/thaw cycles and can be cultured up to 2 weeks without noticeably influencing isoform expression levels, (3) nonsense-mediated decay inhibitors are essential prior to splicing assays for comprehensive mRNA isoform detection, (4) quantitative assessment of exon:exon junction levels across BRCA1 and BRCA2 can help distinguish between normal and aberrant isoform expression patterns. Experimentally derived recommendations from this study will facilitate the application of targeted RNA-seq platforms for the quantitation of BRCA1 and BRCA2 mRNA aberrations associated with sequence variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Vanessa L Lattimore
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand.,Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margaret J Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch Hospital, Christchurch, New Zealand
| | - Logan C Walker
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
31
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis. PLoS One 2017; 12:e0185126. [PMID: 28961258 PMCID: PMC5621691 DOI: 10.1371/journal.pone.0185126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
P53 protein is more frequently mutated in human tumours compared with the other proteins. While the majority of the p53 mutations, especially within its DNA-binding domain, lead to the loss of the wild-type function, there are accumulating data demonstrating that the p53 mutants gain tumour promoting activities; the latter triggers a revitalised interest in functional analysis of the p53 mutants. A systematic screening for p53 mutations in surgical materials from patients with glioma revealed a 378C>G mutation that creates a stop codon at the position of amino acid residue 126. The mutation eliminates the recognition site for the restriction endonuclease Sca I that allowed us to carry out RFLP analysis of DNA extracted from the clinical samples and suggests that this mutation is more frequent than is documented in the p53 databases. Both the ECV-304 and EJ cell lines, that probably originate from the bladder carcinoma T24 cell line, were confirmed to contain the homozygous 378C>G mutation but were shown to produce the p53 protein of expected full-length size detected by Western blotting. We provide evidence that the 378C>G mutation generates an alternative 3’ splice site (ss) which is more often used instead of the authentic upstream 3’ ss, driving the production of mRNA encoding the protein with the single amino acid deletion (p53ΔY126). Using endogenous expression, we demonstrated that the p53ΔY126 protein is nearly as active as the wild type protein in inducing the p21/Waf1 expression and apoptosis.
Collapse
|
33
|
Iñiguez LP, Ramírez M, Barbazuk WB, Hernández G. Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max. BMC Genomics 2017; 18:650. [PMID: 28830361 PMCID: PMC5568362 DOI: 10.1186/s12864-017-4054-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/11/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The vast diversification of proteins in eukaryotic cells has been related with multiple transcript isoforms from a single gene that result in alternative splicing (AS) of primary transcripts. Analysis of RNA sequencing data from expressed sequence tags and next generation RNA sequencing has been crucial for AS identification and genome-wide AS studies. For the identification of AS events from the related legume species Phaseolus vulgaris and Glycine max, 157 and 88 publicly available RNA-seq libraries, respectively, were analyzed. RESULTS We identified 85,570 AS events from P. vulgaris in 72% of expressed genes and 134,316 AS events in 70% of expressed genes from G. max. These were categorized in seven AS event types with intron retention being the most abundant followed by alternative acceptor and alternative donor, representing ~75% of all AS events in both plants. Conservation of AS events in homologous genes between the two species was analyzed where an overrepresentation of AS affecting 5'UTR regions was observed for certain types of AS events. The conservation of AS events was experimentally validated for 8 selected genes, through RT-PCR analysis. The different types of AS events also varied by relative position in the genes. The results were consistent in both species. CONCLUSIONS The identification and analysis of AS events are first steps to understand their biological relevance. The results presented here from two related legume species reveal high conservation, over ~15-20 MY of divergence, and may point to the biological relevance of AS.
Collapse
Affiliation(s)
- Luis P. Iñiguez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| | | | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos Mexico
| |
Collapse
|
34
|
Transcriptional Complexity and Distinct Expression Patterns of auts2 Paralogs in Danio rerio. G3-GENES GENOMES GENETICS 2017. [PMID: 28626003 PMCID: PMC5555464 DOI: 10.1534/g3.117.042622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several genes that have been implicated in autism spectrum disorders (ASDs) have multiple transcripts. Therefore, comprehensive transcript annotation is critical for determining the respective gene function. The autism susceptibility candidate 2 (AUTS2) gene is associated with various neurological disorders, including autism and brain malformation. AUTS2 is important for activation of transcription of neural specific genes, neuronal migration, and neurite outgrowth. Here, we present evidence for significant transcriptional complexity in the auts2 gene locus in the zebrafish genome, as well as in genomic loci of auts2 paralogous genes fbrsl1 and fbrs. Several genes that have been implicated in ASDs are large and have multiple transcripts. Neurons are especially enriched with longer transcripts compared to nonneural cell types. The human autism susceptibility candidate 2 (AUTS2) gene is ∼1.2 Mb long and is implicated in a number of neurological disorders including autism, intellectual disability, addiction, and developmental delay. Recent studies show AUTS2 to be important for activation of transcription of neural specific genes, neuronal migration, and neurite outgrowth. However, much remains to be understood regarding the transcriptional complexity and the functional roles of AUTS2 in neurodevelopment. Zebrafish provide an excellent model system for studying both these questions. We undertook genomic identification and characterization of auts2 and its paralogous genes in zebrafish. There are four auts2 family genes in zebrafish: auts2a, auts2b, fbrsl1, and fbrs. The absence of complete annotation of their structures hampers functional studies. We present evidence for transcriptional complexity of these four genes mediated by alternative splicing and alternative promoter usage. Furthermore, the expression of the various paralogs is tightly regulated both spatially and developmentally. Our findings suggest that auts2 paralogs serve distinct functions in the development and functioning of target tissues.
Collapse
|
35
|
Li C, Zheng L, Zhang J, Lv Y, Liu J, Wang X, Palfalvi G, Wang G, Zhang Y. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation. Gene 2017; 619:44-49. [DOI: 10.1016/j.gene.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
|
36
|
Hebbar P, Alkayal F, Nizam R, Melhem M, Elkum N, John SE, Abufarha M, Alsmadi O, Thanaraj TA. The TCN2 variant of rs9606756 [Ile23Val] acts as risk loci for obesity-related traits and mediates by interacting with Apo-A1. Obesity (Silver Spring) 2017; 25:1098-1108. [PMID: 28417558 DOI: 10.1002/oby.21826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/02/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Despite alarming obesity levels in the Arabian Peninsula, its population lacks convincingly identified genetic determinants of obesity. A genome-wide association study was performed for obesity-related anthropometric traits in Arabs and to decipher mechanisms by which the variants mediate traits. METHODS The Illumina HumanOmniExpress BeadChip was used to genotype 1,353 Arab individuals (largely with Class I obesity) from Kuwait. Genome-wide association tests for obesity-related anthropometric traits were performed. Top associations were tested for replication in an independent cohort (1,176 unrelated Arabs). Resultant variants were investigated for interactions with obesity-related plasma biomarkers. Pathway analysis was performed on genes harboring markers in linkage disequilibrium (LD) with identified variants. RESULTS The rs9606756[c.67A>G,p.Ile23Val] variant from TCN2 was associated with waist circumference (WC) at nearly genome-wide significance (P = 8.92E-08). WC was inversely related with Apo-A1 or high-density lipoprotein levels; individuals with the AG genotype exhibited stronger relationship than those with the reference AA genotype. Interaction involving the AG genotype (effect allele = G) significantly contributed to an increase in anthropometric traits (particularly WC). Genes harboring single-nucleotide polymorphisms in LD with rs9606756 mapped onto an interaction network (with TP53 as central element) of established obesity/diabetes-related protein components. CONCLUSIONS The TCN2 variant acts as a risk factor for WC in the Arab population. The variant mediates obesity-related anthropometric traits via interactions with Apo-A1/high-density lipoprotein or TP53.
Collapse
Affiliation(s)
| | | | | | | | - Naser Elkum
- Sidra Medical and Research Center, Research Department Doha, Qatar
| | | | | | | | | |
Collapse
|
37
|
Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, Roy S, Scifo L, Armstrong RN, Shaw J, Yip BH, Killick S, Kušec R, Taylor S, Mills KI, Savage KI, Smith CWJ, Boultwood J. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia 2016; 30:2322-2331. [PMID: 27211273 PMCID: PMC5029572 DOI: 10.1038/leu.2016.149] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS.
Collapse
Affiliation(s)
- H Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - A Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - F G Liberante
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - M Llorian
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - E Repapi
- The Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - V Steeples
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - S Roy
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - L Scifo
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - R N Armstrong
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - J Shaw
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - B H Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - S Killick
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - R Kušec
- Dubrava University hospital and Zagreb School of Medicine, University of Zagreb, Zagreb, Croatia
| | - S Taylor
- The Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - K I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - K I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - C W J Smith
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - J Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
38
|
Blanquart S, Varré JS, Guertin P, Perrin A, Bergeron A, Swenson KM. Assisted transcriptome reconstruction and splicing orthology. BMC Genomics 2016; 17:786. [PMID: 28185551 PMCID: PMC5123294 DOI: 10.1186/s12864-016-3103-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Transcriptome reconstruction, defined as the identification of all protein isoforms that may be expressed by a gene, is a notably difficult computational task. With real data, the best methods based on RNA-seq data identify barely 21 % of the expressed transcripts. While waiting for algorithms and sequencing techniques to improve — as has been strongly suggested in the literature — it is important to evaluate assisted transcriptome prediction; this is the question of how alternative transcription in one species performs as a predictor of protein isoforms in another relatively close species. Most evidence-based gene predictors use transcripts from other species to annotate a genome, but the predictive power of procedures that use exclusively transcripts from external species has never been quantified. The cornerstone of such an evaluation is the correct identification of pairs of transcripts with the same splicing patterns, called splicing orthologs. Results We propose a rigorous procedural definition of splicing orthologs, based on the identification of all ortholog pairs of splicing sites in the nucleotide sequences, and alignments at the protein level. Using our definition, we compared 24 382 human transcripts and 17 909 mouse transcripts from the highly curated CCDS database, and identified 11 122 splicing orthologs. In prediction mode, we show that human transcripts can be used to infer over 62 % of mouse protein isoforms. When restricting the predictions to transcripts known eight years ago, the percentage grows to 74 %. Using CCDS timestamped releases, we also analyze the evolution of the number of splicing orthologs over the last decade. Conclusions Alternative splicing is now recognized to play a major role in the protein diversity of eukaryotic organisms, but definitions of spliced isoform orthologs are still approximate. Here we propose a definition adapted to the subtle variations of conserved alternative splicing sites, and use it to validate numerous accurate orthologous isoform predictions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3103-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jean-Stéphane Varré
- Université de Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, Lille, France
| | - Paul Guertin
- LaCIM, Université du Québec à Montréal, Montréal, Canada.,Département de mathématiques, Collège André-Grasset, Montréal, Canada
| | - Amandine Perrin
- Université de Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, Lille, France.,Institut Pasteur, Microbial Evolutionary Genomics, CNRS, UMR3525, and Hub Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Paris, France
| | - Anne Bergeron
- LaCIM, Université du Québec à Montréal, Montréal, Canada
| | - Krister M Swenson
- LIRMM, CNRS - Université de Montpellier, 161 rue Ada, Montpellier, 34392, France. .,IBC Institut de Biologie Computationnelle, Montpellier, France.
| |
Collapse
|
39
|
Turton KB, Esnault S, Delain LP, Mosher DF. Merging Absolute and Relative Quantitative PCR Data to Quantify STAT3 Splice Variant Transcripts. J Vis Exp 2016. [PMID: 27768061 PMCID: PMC5092172 DOI: 10.3791/54473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human signal transducer and activator of transcription 3 (STAT3) is one of many genes containing a tandem splicing site. Alternative donor splice sites 3 nucleotides apart result in either the inclusion (S) or exclusion (ΔS) of a single residue, Serine-701. Further downstream, splicing at a pair of alternative acceptor splice sites result in transcripts encoding either the 55 terminal residues of the transactivation domain (α) or a truncated transactivation domain with 7 unique residues (β). As outlined in this manuscript, measuring the proportions of STAT3's four spliced transcripts (Sα, Sβ, ΔSα and ΔSβ) was possible using absolute qPCR (quantitative polymerase chain reaction). The protocol therefore distinguishes and measures highly similar splice variants. Absolute qPCR makes use of calibrator plasmids and thus specificity of detection is not compromised for the sake of efficiency. The protocol necessitates primer validation and optimization of cycling parameters. A combination of absolute qPCR and efficiency-dependent relative qPCR of total STAT3 transcripts allowed a description of the fluctuations of STAT3 splice variants' levels in eosinophils treated with cytokines. The protocol also provided evidence of a co-splicing interdependence between the two STAT3 splicing events. The strategy based on a combination of the two qPCR techniques should be readily adaptable to investigation of co-splicing at other tandem splicing sites.
Collapse
Affiliation(s)
- Keren B Turton
- Department of Biomolecular Chemistry, University of Wisconsin-Madison;
| | | | | | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison; Department of Medicine, University of Wisconsin-Madison
| |
Collapse
|
40
|
Sharma V, Elghafari A, Hiller M. Coding exon-structure aware realigner (CESAR) utilizes genome alignments for accurate comparative gene annotation. Nucleic Acids Res 2016; 44:e103. [PMID: 27016733 PMCID: PMC4914097 DOI: 10.1093/nar/gkw210] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/04/2016] [Accepted: 03/18/2016] [Indexed: 12/03/2022] Open
Abstract
Identifying coding genes is an essential step in genome annotation. Here, we utilize existing whole genome alignments to detect conserved coding exons and then map gene annotations from one genome to many aligned genomes. We show that genome alignments contain thousands of spurious frameshifts and splice site mutations in exons that are truly conserved. To overcome these limitations, we have developed CESAR (Coding Exon-Structure Aware Realigner) that realigns coding exons, while considering reading frame and splice sites of each exon. CESAR effectively avoids spurious frameshifts in conserved genes and detects 91% of shifted splice sites. This results in the identification of thousands of additional conserved exons and 99% of the exons that lack inactivating mutations match real exons. Finally, to demonstrate the potential of using CESAR for comparative gene annotation, we applied it to 188 788 exons of 19 865 human genes to annotate human genes in 99 other vertebrates. These comparative gene annotations are available as a resource (http://bds.mpi-cbg.de/hillerlab/CESAR/). CESAR (https://github.com/hillerlab/CESAR/) can readily be applied to other alignments to accurately annotate coding genes in many other vertebrate and invertebrate genomes.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Anas Elghafari
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany Technical University, 01069 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| |
Collapse
|
41
|
Szafranski K, Kramer M. It's a bit over, is that ok? The subtle surplus from tandem alternative splicing. RNA Biol 2015; 12:115-22. [PMID: 25826565 DOI: 10.1080/15476286.2015.1017210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tandem alternative splice sites (TASS) form a defined class of alternative splicing and give rise to mRNA insertion/deletion variants with only small size differences. Previous work has confirmed evolutionary conservation of TASS elements while many cases show only low tissue specificity of isoform ratios. We pinpoint stochasticity and noise as important methodological issues for the dissection of TASS isoform patterns. Resolving such uncertainties, a recent report showed regulation in a cell culture system, with shifts of alternative splicing isoform ratios dependent on cell density. This novel type of regulation affects not only multiple TASS isoforms, but also other alternative splicing classes, in a concerted manner. Here, we discuss how specific regulatory network architectures may be realized through the novel regulation type and highlight the role of differential isoform functions as a key step in order to better understand the functional role of TASS.
Collapse
Affiliation(s)
- Karol Szafranski
- a Fritz Lipmann Institute - Leibniz Institute on Aging ; Jena , Germany
| | | |
Collapse
|
42
|
Wang X, Slebos RJC, Chambers MC, Tabb DL, Liebler DC, Zhang B. proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data. Mol Cell Proteomics 2015; 15:1164-75. [PMID: 26657539 PMCID: PMC4813696 DOI: 10.1074/mcp.m115.052860] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 01/13/2023] Open
Abstract
To facilitate genome-based representation and analysis of proteomics data, we developed a new bioinformatics framework, proBAMsuite, in which a central component is the protein BAM (proBAM) file format for organizing peptide spectrum matches (PSMs)1 within the context of the genome. proBAMsuite also includes two R packages, proBAMr and proBAMtools, for generating and analyzing proBAM files, respectively. Applying proBAMsuite to three recently published proteomics datasets, we demonstrated its utility in facilitating efficient genome-based sharing, interpretation, and integration of proteomics data. First, the interpretation of proteomics data is significantly enhanced with the rich genomic annotation information. Second, PSMs can be easily reannotated using user-specified gene annotation schemes and assembled into both protein and gene identifications. Third, using the genome as a common reference, proBAMsuite facilitates seamless proteomics and proteogenomics data integration. Finally, proBAM files can be readily visualized in genome browsers and thus bring proteomics data analysis to a general audience beyond the proteomics community. Results from this study establish proBAMsuite as a useful bioinformatics framework for proteomics and proteogenomics research.
Collapse
Affiliation(s)
| | - Robbert J C Slebos
- §Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232
| | | | - David L Tabb
- From the ‡Department of Biomedical Informatics, §Department of Biochemistry
| | - Daniel C Liebler
- From the ‡Department of Biomedical Informatics, §Department of Biochemistry, ¶Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232
| | - Bing Zhang
- From the ‡Department of Biomedical Informatics, ‖Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232;
| |
Collapse
|
43
|
Piovesan A, Caracausi M, Ricci M, Strippoli P, Vitale L, Pelleri MC. Identification of minimal eukaryotic introns through GeneBase, a user-friendly tool for parsing the NCBI Gene databank. DNA Res 2015; 22:495-503. [PMID: 26581719 PMCID: PMC4675715 DOI: 10.1093/dnares/dsv028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/07/2015] [Indexed: 01/26/2023] Open
Abstract
We have developed GeneBase, a full parser of the National Center for Biotechnology Information (NCBI) Gene database, which generates a fully structured local database with an intuitive user-friendly graphic interface for personal computers. Features of all the annotated eukaryotic genes are accessible through three main software tables, including for each entry details such as the gene summary, the gene exon/intron structure and the specific Gene Ontology attributions. The structuring of the data, the creation of additional calculation fields and the integration with nucleotide sequences allow users to make many types of comparisons and calculations that are useful for data retrieval and analysis. We provide an original example analysis of the existing introns across all the available species, through which the classic biological problem of the ‘minimal intron’ may find a solution using available data. Based on all currently available data, we can define the shortest known eukaryotic GT-AG intron length, setting the physical limit at the 30 base pair intron belonging to the human MST1L gene. This ‘model intron’ will shed light on the minimal requirement elements of recognition used for conventional splicing functioning. Remarkably, this size is indeed consistent with the sum of the splicing consensus sequence lengths.
Collapse
Affiliation(s)
- Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Marco Ricci
- Department of Biological, Geological and Environmental Sciences (BIGeA), University of Bologna, Bologna, BO 40126, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, BO 40126, Italy
| |
Collapse
|
44
|
Yan X, Sablok G, Feng G, Ma J, Zhao H, Sun X. nagnag: Identification and quantification of NAGNAG alternative splicing using RNA-Seq data. FEBS Lett 2015; 589:1766-70. [PMID: 26028313 DOI: 10.1016/j.febslet.2015.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022]
Abstract
Regulation of proteome diversity by alternative splicing has been widely demonstrated in plants and animals. NAGNAG splicing, which was recently defined as a tissue specific event, results in the production of two distinct isoforms that are distinguished by three nucleotides (NAG) as a consequence of the intron proximal or distal to the splice site. Since the NAGNAG mechanism is not well characterized, tools for the identification and quantification of NAGNAG splicing events remain under-developed. Here we report nagnag, an R-based NAGNAG splicing detection tool, which accurately identifies and quantifies NAGNAG splicing events using RNA-Seq. Overall, nagnag produces user-friendly visualization reports and highlights differences between the DNA/RNA/protein across the identified isoforms of the reported gene. The package is available on https://sourceforge.net/projects/nagnag/files/; or http://genome.sdau.edu.cn/research/software/nagnag.html.
Collapse
Affiliation(s)
- Xiaoyan Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhua West Road, Jinan, Shandong 250011, China
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Gang Feng
- Preventive Medicine-Health and Biomedical Informatics, Northwestern University, Chicago, IL 60611, United States
| | - Jiaxin Ma
- Department of Plant Pathology, Nanjing Agricultural University, Weigang Road, Nanjing 210095, China
| | - Hongwei Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Weigang Road, Nanjing 210095, China
| | - Xiaoyong Sun
- Agricultural Big-Data Research Center, College of Information Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
45
|
Ragle JM, Katzman S, Akers TF, Barberan-Soler S, Zahler AM. Coordinated tissue-specific regulation of adjacent alternative 3' splice sites in C. elegans. Genome Res 2015; 25:982-94. [PMID: 25922281 PMCID: PMC4484395 DOI: 10.1101/gr.186783.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/27/2015] [Indexed: 12/30/2022]
Abstract
Adjacent alternative 3′ splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3′ end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3′ splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3′ splice site (furthest from the 5′ end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3′ splice site (closer to the 5′ end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3′ splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3′ splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3′ splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Taylor F Akers
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sergio Barberan-Soler
- Gene Regulation, Stem Cells, and Cancer Program, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Alan M Zahler
- Department of Molecular, Cell, and Developmental Biology and The Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
46
|
Chen J, Hackett CS, Zhang S, Song YK, Bell RJA, Molinaro AM, Quigley DA, Balmain A, Song JS, Costello JF, Gustafson WC, Van Dyke T, Kwok PY, Khan J, Weiss WA. The genetics of splicing in neuroblastoma. Cancer Discov 2015; 5:380-95. [PMID: 25637275 PMCID: PMC4390477 DOI: 10.1158/2159-8290.cd-14-0892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Regulation of mRNA splicing, a critical and tightly regulated cellular function, underlies the majority of proteomic diversity and is frequently disrupted in disease. Using an integrative genomics approach, we combined both genomic data and exon-level transcriptome data in two somatic tissues (cerebella and peripheral ganglia) from a transgenic mouse model of neuroblastoma, a tumor that arises from the peripheral neural crest. Here, we describe splicing quantitative trait loci associated with differential splicing across the genome that we use to identify genes with previously unknown functions within the splicing pathway and to define de novo intronic splicing motifs that influence splicing from hundreds of bases away. Our results show that these splicing motifs represent sites for functional recurrent mutations and highlight novel candidate genes in human cancers, including childhood neuroblastoma. SIGNIFICANCE Somatic mutations with predictable downstream effects are largely relegated to coding regions, which comprise less than 2% of the human genome. Using an unbiased in vivo analysis of a mouse model of neuroblastoma, we have identified intronic splicing motifs that translate into sites for recurrent somatic mutations in human cancers.
Collapse
Affiliation(s)
- Justin Chen
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California. Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Christopher S Hackett
- Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California
| | - Shile Zhang
- Program in Bioinformatics, Boston University, Boston, Massachusetts. Oncogenomics Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Young K Song
- Oncogenomics Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Robert J A Bell
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Annette M Molinaro
- Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California. Institute for Cancer Research, Oslo, Norway
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Jun S Song
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, Illinois. Department of Physics, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Joseph F Costello
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - W Clay Gustafson
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Terry Van Dyke
- Mouse Cancer Genetics Program, Center for Advanced Preclinical Research, National Cancer Institute, Frederick, Maryland
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California. Department of Dermatology, University of California, San Francisco, San Francisco, California. Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, San Francisco, California. Department of Neurosurgery, University of California, San Francisco, San Francisco, California. Department of Pediatrics, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
47
|
Wang M, Zhang P, Shu Y, Yuan F, Zhang Y, Zhou Y, Jiang M, Zhu Y, Hu L, Kong X, Zhang Z. Alternative splicing at GYNNGY 5' splice sites: more noise, less regulation. Nucleic Acids Res 2014; 42:13969-80. [PMID: 25428370 PMCID: PMC4267661 DOI: 10.1093/nar/gku1253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 12/28/2022] Open
Abstract
Numerous eukaryotic genes are alternatively spliced. Recently, deep transcriptome sequencing has skyrocketed proportion of alternatively spliced genes; over 95% human multi-exon genes are alternatively spliced. One fundamental question is: are all these alternative splicing (AS) events functional? To look into this issue, we studied the most common form of alternative 5' splice sites-GYNNGYs (Y = C/T), where both GYs can function as splice sites. Global analyses suggest that splicing noise (due to stochasticity of splicing process) can cause AS at GYNNGYs, evidenced by higher AS frequency in non-coding than in coding regions, in non-conserved than in conserved genes and in lowly expressed than in highly expressed genes. However, ∼20% AS GYNNGYs in humans and ∼3% in mice exhibit tissue-dependent regulation. Consistent with being functional, regulated GYNNGYs are more conserved than unregulated ones. And regulated GYNNGYs have distinctive sequence features which may confer regulation. Particularly, each regulated GYNNGY comprises two splice sites more resembling each other than unregulated GYNNGYs, and has more conserved downstream flanking intron. Intriguingly, most regulated GYNNGYs may tune gene expression through coupling with nonsense-mediated mRNA decay, rather than encode different proteins. In summary, AS at GYNNGY 5' splice sites is primarily splicing noise, and secondarily a way of regulation.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peiwei Zhang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Shu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fei Yuan
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuchao Zhang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - You Zhou
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yufei Zhu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Landian Hu
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiangyin Kong
- State Key Laboratory of Medical Genomics, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhenguo Zhang
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
48
|
Chen L, Kostadima M, Martens JH, Canu G, Garcia SP, Turro E, Downes K, Macaulay IC, Bielczyk-Maczynska E, Coe S, Farrow S, Poudel P, Burden F, Jansen SB, Astle WJ, Attwood A, Bariana T, de Bono B, Breschi A, Chambers JC, Consortium BRIDGE, Choudry FA, Clarke L, Coupland P, van der Ent M, Erber WN, Jansen JH, Favier R, Fenech ME, Foad N, Freson K, van Geet C, Gomez K, Guigo R, Hampshire D, Kelly AM, Kerstens HH, Kooner JS, Laffan M, Lentaigne C, Labalette C, Martin T, Meacham S, Mumford A, Nürnberg S, Palumbo E, van der Reijden BA, Richardson D, Sammut SJ, Slodkowicz G, Tamuri AU, Vasquez L, Voss K, Watt S, Westbury S, Flicek P, Loos R, Goldman N, Bertone P, Read RJ, Richardson S, Cvejic A, Soranzo N, Ouwehand WH, Stunnenberg HG, Frontini M, Rendon A. Transcriptional diversity during lineage commitment of human blood progenitors. Science 2014; 345:1251033. [PMID: 25258084 PMCID: PMC4254742 DOI: 10.1126/science.1251033] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Lu Chen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Joost H.A. Martens
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Giovanni Canu
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sara P. Garcia
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Iain C. Macaulay
- Sanger Institute-EBI Single-Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ewa Bielczyk-Maczynska
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sophia Coe
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Samantha Farrow
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Pawan Poudel
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Frances Burden
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sjoert B.G. Jansen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - William J. Astle
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Antony Attwood
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Tadbir Bariana
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
- The Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom
| | - Bernard de Bono
- CHIME Institute, University College London, Archway Campus, London, United Kingdom
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - Alessandra Breschi
- Centre for Genomic Regulation and University Pompeu Fabra, Barcelona, Spain
| | - John C. Chambers
- Imperial College Healthcare NHS Trust, DuCane Road, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | | | - Fizzah A. Choudry
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Coupland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Martijn van der Ent
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Wendy N. Erber
- Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Joop H. Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rémi Favier
- Assistance Publique-Hopitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1009, Villejuif, France
| | - Matthew E. Fenech
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Nicola Foad
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathleen Freson
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Chris van Geet
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Keith Gomez
- The Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom
| | - Roderic Guigo
- Centre for Genomic Regulation and University Pompeu Fabra, Barcelona, Spain
| | - Daniel Hampshire
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anne M. Kelly
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Jaspal S. Kooner
- Imperial College Healthcare NHS Trust, DuCane Road, London, United Kingdom
- Ealing Hospital NHS Trust, Southall, Middlesex, United Kingdom
| | - Michael Laffan
- Department of Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom
| | - Claire Lentaigne
- Department of Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, United Kingdom
| | - Charlotte Labalette
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Tiphaine Martin
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Twin Research & Genetic Epidemiology, Genetics & Molecular Medicine Division, St Thomas’ Hospital, King’s College, London, United Kingdom
| | - Stuart Meacham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Sylvia Nürnberg
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Emilio Palumbo
- Centre for Genomic Regulation and University Pompeu Fabra, Barcelona, Spain
| | - Bert A. van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen J. Sammut
- Department of Oncology, Addenbrooke’s Cambridge University Hospital NHS Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cancer Research United Kingdom, Cambridge Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Greg Slodkowicz
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Asif U. Tamuri
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Louella Vasquez
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Katrin Voss
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stephen Watt
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sarah Westbury
- School of Clinical Sciences, University of Bristol, United Kingdom
| | - Paul Flicek
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Remco Loos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Bertone
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Heidelberg, Germany
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sylvia Richardson
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ana Cvejic
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Willem H. Ouwehand
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
49
|
Szafranski K, Fritsch C, Schumann F, Siebel L, Sinha R, Hampe J, Hiller M, Englert C, Huse K, Platzer M. Physiological state co-regulates thousands of mammalian mRNA splicing events at tandem splice sites and alternative exons. Nucleic Acids Res 2014; 42:8895-904. [PMID: 25030907 PMCID: PMC4132704 DOI: 10.1093/nar/gku532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thousands of tandem alternative splice sites (TASS) give rise to mRNA insertion/deletion variants with small size differences. Recent work has concentrated on the question of biological relevance in general, and the physiological regulation of TASS in particular. We have quantitatively studied 11 representative TASS cases in comparison to one mutually exclusive exon case and two cassette exons (CEs) using a panel of human and mouse tissues, as well as cultured cell lines. Tissues show small but significant differences in TASS isoform ratios, with a variance 4- to 20-fold lower than seen for CEs. Remarkably, in cultured cells, all studied alternative splicing (AS) cases showed a cell-density-dependent shift of isoform ratios with similar time series profiles. A respective genome-wide co-regulation of TASS splicing was shown by next-generation mRNA sequencing data. Moreover, data from human and mouse organs indicate that this co-regulation of TASS occurs in vivo, with brain showing the strongest difference to other organs. Together, the results indicate a physiological AS regulation mechanism that functions almost independently from the splice site context and sequence.
Collapse
Affiliation(s)
- Karol Szafranski
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany
| | - Claudia Fritsch
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany Department of General Internal Medicine, Christian-Albrechts-University, Schittenhelmstrasse 12, 24105 Kiel, Germany
| | - Frank Schumann
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany Department of General Internal Medicine, Christian-Albrechts-University, Schittenhelmstrasse 12, 24105 Kiel, Germany
| | - Lisa Siebel
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany
| | - Rileen Sinha
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany
| | - Jochen Hampe
- Medical Department I, University Hospital, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics & Max Planck Institute for the Physics of Complex Systems, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Christoph Englert
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany
| | - Klaus Huse
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany
| | - Matthias Platzer
- Fritz Lipmann Institute-Institute for Age Research, Beutenbergstr. 11, 07745 Jena, Germany
| |
Collapse
|
50
|
Computational evidence of NAGNAG alternative splicing in human large intergenic noncoding RNA. BIOMED RESEARCH INTERNATIONAL 2014; 2014:736798. [PMID: 24995327 PMCID: PMC4068082 DOI: 10.1155/2014/736798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022]
Abstract
NAGNAG alternative splicing plays an essential role in biological processes and represents a highly adaptable system for posttranslational regulation of gene function. NAGNAG alternative splicing impacts a myriad of biological processes. Previous studies of NAGNAG largely focused on messenger RNA. To the best of our knowledge, this is the first study testing the hypothesis that NAGNAG alternative splicing is also operative in large intergenic noncoding RNA (lincRNA). The RNA-seq data sets from recent deep sequencing studies were queried to test our hypothesis. NAGNAG alternative splicing of human lincRNA was identified while querying two independent RNA-seq data sets. Within these datasets, 31 NAGNAG alternative splicing sites were identified in lincRNA. Notably, most exons of lincRNA containing NAGNAG acceptors were longer than those from protein-coding genes. Furthermore, presence of CAG coding appeared to participate in the splice site selection. Finally, expression of the isoforms of NAGNAG lincRNA exhibited tissue specificity. Together, this study improves our understanding of the NAGNAG alternative splicing in lincRNA.
Collapse
|