1
|
Stitzer MC, Seetharam AS, Scheben A, Hsu SK, Schulz AJ, AuBuchon-Elder TM, El-Walid M, Ferebee TH, Hale CO, La T, Liu ZY, McMorrow SJ, Minx P, Phillips AR, Syring ML, Wrightsman T, Zhai J, Pasquet R, McAllister CA, Malcomber ST, Traiperm P, Layton DJ, Zhong J, Costich DE, Dawe RK, Fengler K, Harris C, Irelan Z, Llaca V, Parakkal P, Zastrow-Hayes G, Woodhouse MR, Cannon EK, Portwood JL, Andorf CM, Albert PS, Birchler JA, Siepel A, Ross-Ibarra J, Romay MC, Kellogg EA, Buckler ES, Hufford MB. Extensive genome evolution distinguishes maize within a stable tribe of grasses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633974. [PMID: 39896679 PMCID: PMC11785232 DOI: 10.1101/2025.01.22.633974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Over the last 20 million years, the Andropogoneae tribe of grasses has evolved to dominate 17% of global land area. Domestication of these grasses in the last 10,000 years has yielded our most productive crops, including maize, sugarcane, and sorghum. The majority of Andropogoneae species, including maize, show a history of polyploidy - a condition that, while offering the evolutionary advantage of multiple gene copies, poses challenges to basic cellular processes, gene expression, and epigenetic regulation. Genomic studies of polyploidy have been limited by sparse sampling of taxa in groups with multiple polyploidy events. Here, we present 33 genome assemblies from 27 species, including chromosome-scale assemblies of maize relatives Zea and Tripsacum . In maize, the after-effects of polyploidy have been widely studied, showing reduced chromosome number, biased fractionation of duplicate genes, and transposable element (TE) expansions. While we observe these patterns within the genus Zea , 12 other polyploidy events deviate significantly. Those tetraploids and hexaploids retain elevated chromosome number, maintain nearly complete complements of duplicate genes, and have only stochastic TE amplifications. These genomes reveal variable outcomes of polyploidy, challenging simple predictions and providing a foundation for understanding its evolutionary implications in an ecologically and economically important clade.
Collapse
|
2
|
Nanda K, Singh M, Yadav T, Tiwari VK, Singh V, Singh VP, Sawant SV, Singh SP. Genome-wide identification and expression analysis of ferric reductase oxidase (FRO) genes in Gossypium spp. reveal their crucial role in iron homeostasis under abiotic and biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109281. [PMID: 39561681 DOI: 10.1016/j.plaphy.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Ferric Reductase Oxidase (FRO) genes are pivotal in iron uptake and homeostasis in plants, yet they are not studied in cotton. Here, we identify and analyze 65 FRO homologs (21 GhFRO, 21 GbFRO, 11 GaFRO, 12 GrFRO) across four Gossypium species (G. hirsutum, G. barbadense, G. arboreum, G. raimondii). FRO exhibit conserved ferric reductase activity and conserved domain structures; Ferric_reduct (PF01794), FAD_binding_8 (PF08022), and NAD_binding_6 (PF08030) across species. Physicochemical properties and subcellular localization analysis provided insights into FRO proteins' functional characteristics, mainly localized to the plasma membrane. Phylogenetic analysis delineates 11 groups, indicating both conserved and divergent evolutionary patterns. Gene structure analysis unveils varying exon-intron compositions. Chromosomal localization shows distribution across A and D genomes, suggesting evolutionary dynamics. Synteny analysis reveals paralogous and orthologous gene pairs subjected to purifying selection. The cis-regulatory elements analysis implicates diverse regulatory mechanisms. Expression profiling highlights dynamic regulation across developmental stages, abiotic and biotic stress conditions. GhFRO interacts with Ca++-dependent protein kinases-10/28-like (CDPKs10/28-like) and metal transporter Natural resistance-associated macrophage protein 6 (Nramp6) to regulate metal ion transport and iron homeostasis. The three-dimensional protein structure prediction suggests potential ligand-binding sites in FRO proteins. Moreover, qRT-PCR analysis of selected eight GhFROs in leaves treated with stress elicitors, MeJA, SA, NaCl, and PEG for 1h, 2h, 4h, and 6h revealed significant downregulation. Overall, this comprehensive study provides insights into FRO gene diversity, evolution, structure, regulation, and function in cotton, with implications for understanding plant iron homeostasis and stress responses.
Collapse
Affiliation(s)
- Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Maninder Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Tikshana Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vipin Kumar Tiwari
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Varsha Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Samir V Sawant
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
3
|
Li Z, Gilbert C, Peng H, Pollet N. Discovery of numerous novel Helitron-like elements in eukaryote genomes using HELIANO. Nucleic Acids Res 2024; 52:e79. [PMID: 39119924 PMCID: PMC11417382 DOI: 10.1093/nar/gkae679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Helitron-like elements (HLEs) are widespread eukaryotic DNA transposons employing a rolling-circle transposition mechanism. Despite their prevalence in fungi, animals, and plant genomes, identifying Helitrons remains a formidable challenge. We introduce HELIANO, a software for annotating and classifying autonomous and non-autonomous HLE sequences from whole genomes. HELIANO overcomes several limitations of existing tools in speed and accuracy, demonstrated through benchmarking and its application to the complex genomes of frogs (Xenopus tropicalis and Xenopus laevis) and rice (Oryza sativa), where it uncovered numerous previously unidentified HLEs. In an extensive analysis of 404 eukaryote genomes, we found HLEs widely distributed across phyla, with exceptions in specific taxa. HELIANO's application led to the discovery of numerous new HLEs in land plants and identified 20 protein domains captured by certain autonomous HLE families. A comprehensive phylogenetic analysis further classified HLEs into two primary clades, HLE1 and HLE2, and revealed nine subgroups, some of which are enriched within specific taxa. The future use of HELIANO promises to improve the global analysis of HLEs across genomes, significantly advancing our understanding of this fascinating transposon superfamily.
Collapse
Affiliation(s)
- Zhen Li
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Haoran Peng
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Tayeh N, Hofer JMI, Aubert G, Jacquin F, Turner L, Kreplak J, Paajanen P, Le Signor C, Dalmais M, Pflieger S, Geffroy V, Ellis N, Burstin J. afila, the origin and nature of a major innovation in the history of pea breeding. THE NEW PHYTOLOGIST 2024; 243:1247-1261. [PMID: 38837425 DOI: 10.1111/nph.19800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 06/07/2024]
Abstract
The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.
Collapse
Affiliation(s)
- Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Julie M I Hofer
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Françoise Jacquin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Lynda Turner
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Jonathan Kreplak
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Pirita Paajanen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Christine Le Signor
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
| | - Stéphanie Pflieger
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, 91190, France
| | - Noel Ellis
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Judith Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, F-21000, France
| |
Collapse
|
5
|
Cannon EK, Portwood JL, Hayford RK, Haley OC, Gardiner JM, Andorf CM, Woodhouse MR. Enhanced pan-genomic resources at the maize genetics and genomics database. Genetics 2024; 227:iyae036. [PMID: 38577974 DOI: 10.1093/genetics/iyae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/13/2024] [Indexed: 04/06/2024] Open
Abstract
Pan-genomes, encompassing the entirety of genetic sequences found in a collection of genomes within a clade, are more useful than single reference genomes for studying species diversity. This is especially true for a species like Zea mays, which has a particularly diverse and complex genome. Presenting pan-genome data, analyses, and visualization is challenging, especially for a diverse species, but more so when pan-genomic data is linked to extensive gene model and gene data, including classical gene information, markers, insertions, expression and proteomic data, and protein structures as is the case at MaizeGDB. Here, we describe MaizeGDB's expansion to include the genic subset of the Zea pan-genome in a pan-gene data center featuring the maize genomes hosted at MaizeGDB, and the outgroup teosinte Zea genomes from the Pan-Andropoganeae project. The new data center offers a variety of browsing and visualization tools, including sequence alignment visualization, gene trees and other tools, to explore pan-genes in Zea that were calculated by the pipeline Pandagma. Combined, these data will help maize researchers study the complexity and diversity of Zea, and to use the comparative functions to validate pan-gene relationships for a selected gene model.
Collapse
Affiliation(s)
- Ethalinda K Cannon
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Rita K Hayford
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Olivia C Haley
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
6
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
7
|
Barro-Trastoy D, Köhler C. Helitrons: genomic parasites that generate developmental novelties. Trends Genet 2024; 40:437-448. [PMID: 38429198 DOI: 10.1016/j.tig.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Helitrons, classified as DNA transposons, employ rolling-circle intermediates for transposition. Distinguishing themselves from other DNA transposons, they leave the original template element unaltered during transposition, which has led to their characterization as 'peel-and-paste elements'. Helitrons possess the ability to capture and mobilize host genome fragments, with enormous consequences for host genomes. This review discusses the current understanding of Helitrons, exploring their origins, transposition mechanism, and the extensive repercussions of their activity on genome structure and function. We also explore the evolutionary conflicts stemming from Helitron-transposed gene fragments and elucidate their domestication for regulating responses to environmental challenges. Looking ahead, further research in this evolving field promises to bring interesting discoveries on the role of Helitrons in shaping genomic landscapes.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden.
| |
Collapse
|
8
|
Oggenfuss U, Badet T, Croll D. A systematic screen for co-option of transposable elements across the fungal kingdom. Mob DNA 2024; 15:2. [PMID: 38245743 PMCID: PMC10799480 DOI: 10.1186/s13100-024-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly recognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phylogenetic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains along with other conventional protein functional domains. We detected more than 13,000 predicted proteins containing potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Saccharomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates systematic investigations of candidate fusion proteins.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Microbiology and Immunology, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Ma H, Wang M, Zhang YE, Tan S. The power of "controllers": Transposon-mediated duplicated genes evolve towards neofunctionalization. J Genet Genomics 2023; 50:462-472. [PMID: 37068629 DOI: 10.1016/j.jgg.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or "controllers" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.
Collapse
Affiliation(s)
- Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
10
|
Li C, Cong C, Liu F, Yu Q, Zhan Y, Zhu L, Li Y. Abundance of Transgene Transcript Variants Associated with Somatically Active Transgenic Helitrons from Multiple T-DNA Integration Sites in Maize. Int J Mol Sci 2023; 24:ijms24076574. [PMID: 37047545 PMCID: PMC10095026 DOI: 10.3390/ijms24076574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Helitrons, a novel type of mysterious DNA transposons discovered computationally prior to bench work confirmation, are components ubiquitous in most sequenced genomes of various eukaryotes, including plants, animals, and fungi. There is a paucity of empirical evidence to elucidate the mechanism of Helitrons transposition in plants. Here, by constructing several artificial defective Helitron (dHel) reporter systems, we aim to identify the autonomous Helitrons (aHel) in maize genetically and to demonstrate the transposition and repair mechanisms of Helitrons upon the dHel-GFP excision in maize. When crossing with various inbred lines, several transgenic lines produced progeny of segregated, purple-blotched kernels, resulting from a leaky expression of the C1 gene driven by the dHel-interrupted promoter. Transcription analysis indicated that the insertion of different dHels into the C1 promoter or exon would lead to multiple distinct mRNA transcripts corresponding to transgenes in the host genome. Simple excision products and circular intermediates of dHel-GFP transposition have been detected from the leaf tissue of the seedlings in F1 hybrids of transgenic lines with corresponding c1 tester, although they failed to be detected in all primary transgenic lines. These results revealed the transposition and repair mechanism of Helitrons in maize. It is strongly suggested that this reporter system can detect the genetic activity of autonomic Helitron at the molecular level. Sequence features of dHel itself, together with the flanking regions, impact the excision activity of dHel and the regulation of the dHel on the transcription level of the host gene.
Collapse
Affiliation(s)
- Chuxi Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunsheng Cong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyuan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yubin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
11
|
Jaegle B, Pisupati R, Soto-Jiménez LM, Burns R, Rabanal FA, Nordborg M. Extensive sequence duplication in Arabidopsis revealed by pseudo-heterozygosity. Genome Biol 2023; 24:44. [PMID: 36895055 PMCID: PMC9999624 DOI: 10.1186/s13059-023-02875-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND It is apparent that genomes harbor much structural variation that is largely undetected for technical reasons. Such variation can cause artifacts when short-read sequencing data are mapped to a reference genome. Spurious SNPs may result from mapping of reads to unrecognized duplicated regions. Calling SNP using the raw reads of the 1001 Arabidopsis Genomes Project we identified 3.3 million (44%) heterozygous SNPs. Given that Arabidopsis thaliana (A. thaliana) is highly selfing, and that extensively heterozygous individuals have been removed, we hypothesize that these SNPs reflected cryptic copy number variation. RESULTS The heterozygosity we observe consists of particular SNPs being heterozygous across individuals in a manner that strongly suggests it reflects shared segregating duplications rather than random tracts of residual heterozygosity due to occasional outcrossing. Focusing on such pseudo-heterozygosity in annotated genes, we use genome-wide association to map the position of the duplicates. We identify 2500 putatively duplicated genes and validate them using de novo genome assemblies from six lines. Specific examples included an annotated gene and nearby transposon that transpose together. We also demonstrate that cryptic structural variation produces highly inaccurate estimates of DNA methylation polymorphism. CONCLUSIONS Our study confirms that most heterozygous SNP calls in A. thaliana are artifacts and suggest that great caution is needed when analyzing SNP data from short-read sequencing. The finding that 10% of annotated genes exhibit copy-number variation, and the realization that neither gene- nor transposon-annotation necessarily tells us what is actually mobile in the genome suggests that future analyses based on independently assembled genomes will be very informative.
Collapse
Affiliation(s)
- Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Rahul Pisupati
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | - Robin Burns
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
12
|
Ventimiglia M, Marturano G, Vangelisti A, Usai G, Simoni S, Cavallini A, Giordani T, Natali L, Zuccolo A, Mascagni F. Genome-wide identification and characterization of exapted transposable elements in the large genome of sunflower (Helianthus annuus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:734-748. [PMID: 36573648 DOI: 10.1111/tpj.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20 016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs that resulted were specific to the sunflower, while few ETEs presented orthologues in the genome of all analyzed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.
Collapse
Affiliation(s)
- Maria Ventimiglia
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Marturano
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Zuccolo
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
13
|
Shi J, Tian Z, Lai J, Huang X. Plant pan-genomics and its applications. MOLECULAR PLANT 2023; 16:168-186. [PMID: 36523157 DOI: 10.1016/j.molp.2022.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Plant genomes are so highly diverse that a substantial proportion of genomic sequences are not shared among individuals. The variable DNA sequences, along with the conserved core sequences, compose the more sophisticated pan-genome that represents the collection of all non-redundant DNA in a species. With rapid progress in genome sequencing technologies, pan-genome research in plants is now accelerating. Here we review recent advances in plant pan-genomics, including major driving forces of structural variations that constitute the variable sequences, methodological innovations for representing the pan-genome, and major successes in constructing plant pan-genomes. We also summarize recent efforts toward decoding the remaining dark matter in telomere-to-telomere or gapless plant genomes. These new genome resources, which have remarkable advantages over numerous previously assembled less-than-perfect genomes, are expected to become new references for genetic studies and plant breeding.
Collapse
Affiliation(s)
- Junpeng Shi
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
14
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Consonni G, Castorina G, Varotto S. The Italian Research on the Molecular Characterization of Maize Kernel Development. Int J Mol Sci 2022; 23:11383. [PMID: 36232684 PMCID: PMC9570349 DOI: 10.3390/ijms231911383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The study of the genetic control of maize seed development and seed-related pathways has been one of the most important themes approached by the Italian scientific community. Maize has always attracted the interest of the Italian community of agricultural genetics since its beginning, as some of its founders based their research projects on and developed their "schools" by adopting maize as a reference species. Some of them spent periods in the United States, where maize was already becoming a model system, to receive their training. In this manuscript we illustrate the research work carried out in Italy by different groups that studied maize kernels and underline their contributions in elucidating fundamental aspects of caryopsis development through the characterization of maize mutants. Since the 1980s, most of the research projects aimed at the comprehension of the genetic control of seed development and the regulation of storage products' biosyntheses and accumulation, and have been based on forward genetics approaches. We also document that for some decades, Italian groups, mainly based in Northern Italy, have contributed to improve the knowledge of maize genomics, and were both fundamental for further international studies focused on the correct differentiation and patterning of maize kernel compartments and strongly contributed to recent advances in maize research.
Collapse
Affiliation(s)
- Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giulia Castorina
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
16
|
Wang D, Yu C, Zhang J, Peterson T. Excision and reinsertion of Ac macrotransposons in maize. Genetics 2022; 221:iyac067. [PMID: 35471241 PMCID: PMC9339288 DOI: 10.1093/genetics/iyac067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic Macrotransposons (MTns) can be formed by 2 nearby elements flanking a segment of host DNA. The maize Ac transposon can form Ac::MTns, but little is known about Ac::MTn transposition activities. Here, we studied 3 Ac::MTns at the maize p1 locus, each of which is composed of a segment of maize p1 genomic DNA (up to 15 kb) bounded by a fractured Ac element (fAc, 2039 bp), and a full-length Ac element in direct orientation. The resulting Ac::MTns are of 16, 16.5, and 22 kb total length. From these 3 Ac::MTns, we identified 10 independent cases of macrotransposition, and observed similar features of transposition between Ac::MTn and standard Ac/Ds, including characteristic excision footprints and insertion target site duplications. Nine out of the 10 Ac::MTn reinsertion targets were genetically linked to the donor sites, another similarity with Ac/Ds standard transposition. We also identified a MTn-like structure in the maize B73 reference genome and 5 NAM founder lines. The MTn in diverse lines is flanked by target site duplications, confirming the historic occurrence of MTn transposition during genome evolution. Our results show that Ac::MTns are capable of mobilizing segments of DNA long enough to include a typical full-length plant gene and in theory could erode gene colinearity in syntenic regions during plant genome evolution.
Collapse
Affiliation(s)
- Dafang Wang
- Division of Math and Sciences, Delta State University, Cleveland, MS 38733-0001, USA
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jianbo Zhang
- Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Thomas Peterson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011-3260, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011-3260, USA
| |
Collapse
|
17
|
Levy AA, Feldman M. Evolution and origin of bread wheat. THE PLANT CELL 2022; 34:2549-2567. [PMID: 35512194 PMCID: PMC9252504 DOI: 10.1093/plcell/koac130] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum, genome BBAADD) is a young hexaploid species formed only 8,500-9,000 years ago through hybridization between a domesticated free-threshing tetraploid progenitor, genome BBAA, and Aegilops tauschii, the diploid donor of the D subgenome. Very soon after its formation, it spread globally from its cradle in the fertile crescent into new habitats and climates, to become a staple food of humanity. This extraordinary global expansion was probably enabled by allopolyploidy that accelerated genetic novelty through the acquisition of new traits, new intergenomic interactions, and buffering of mutations, and by the attractiveness of bread wheat's large, tasty, and nutritious grain with high baking quality. New genome sequences suggest that the elusive donor of the B subgenome is a distinct (unknown or extinct) species rather than a mosaic genome. We discuss the origin of the diploid and tetraploid progenitors of bread wheat and the conflicting genetic and archaeological evidence on where it was formed and which species was its free-threshing tetraploid progenitor. Wheat experienced many environmental changes throughout its evolution, therefore, while it might adapt to current climatic changes, efforts are needed to better use and conserve the vast gene pool of wheat biodiversity on which our food security depends.
Collapse
Affiliation(s)
- Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Moshe Feldman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
18
|
Hill MJ, Penning BW, McCann MC, Carpita NC. COMPILE: a GWAS computational pipeline for gene discovery in complex genomes. BMC PLANT BIOLOGY 2022; 22:315. [PMID: 35778686 PMCID: PMC9250234 DOI: 10.1186/s12870-022-03668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Genome-Wide Association Studies (GWAS) are used to identify genes and alleles that contribute to quantitative traits in large and genetically diverse populations. However, traits with complex genetic architectures create an enormous computational load for discovery of candidate genes with acceptable statistical certainty. We developed a streamlined computational pipeline for GWAS (COMPILE) to accelerate identification and annotation of candidate maize genes associated with a quantitative trait, and then matches maize genes to their closest rice and Arabidopsis homologs by sequence similarity. RESULTS COMPILE executed GWAS using a Mixed Linear Model that incorporated, without compression, recent advancements in population structure control, then linked significant Quantitative Trait Loci (QTL) to candidate genes and RNA regulatory elements contained in any genome. COMPILE was validated using published data to identify QTL associated with the traits of α-tocopherol biosynthesis and flowering time, and identified published candidate genes as well as additional genes and non-coding RNAs. We then applied COMPILE to 274 genotypes of the maize Goodman Association Panel to identify candidate loci contributing to resistance of maize stems to penetration by larvae of the European Corn Borer (Ostrinia nubilalis). Candidate genes included those that encode a gene of unknown function, WRKY and MYB-like transcriptional factors, receptor-kinase signaling, riboflavin synthesis, nucleotide-sugar interconversion, and prolyl hydroxylation. Expression of the gene of unknown function has been associated with pathogen stress in maize and in rice homologs closest in sequence identity. CONCLUSIONS The relative speed of data analysis using COMPILE allowed comparison of population size and compression. Limitations in population size and diversity are major constraints for a trait and are not overcome by increasing marker density. COMPILE is customizable and is readily adaptable for application to species with robust genomic and proteome databases.
Collapse
Affiliation(s)
- Matthew J Hill
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA
- Present address: Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bryan W Penning
- USDA-ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
- Present address: Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Nicholas C Carpita
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, 47907, USA.
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA.
- Present address: Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| |
Collapse
|
19
|
Zhou Y, Zhang C, Zhang L, Ye Q, Liu N, Wang M, Long G, Fan W, Long M, Wing RA. Gene fusion as an important mechanism to generate new genes in the genus Oryza. Genome Biol 2022; 23:130. [PMID: 35706016 PMCID: PMC9199173 DOI: 10.1186/s13059-022-02696-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Events of gene fusion have been reported in several organisms. However, the general role of gene fusion as part of new gene origination remains unknown. RESULTS We conduct genome-wide interrogations of four Oryza genomes by designing and implementing novel pipelines to detect fusion genes. Based on the phylogeny of ten plant species, we detect 310 fusion genes across four Oryza species. The estimated rate of origination of fusion genes in the Oryza genus is as high as 63 fusion genes per species per million years, which is fixed at 16 fusion genes per species per million years and much higher than that in flies. By RNA sequencing analysis, we find more than 44% of the fusion genes are expressed and 90% of gene pairs show strong signals of purifying selection. Further analysis of CRISPR/Cas9 knockout lines indicates that newly formed fusion genes regulate phenotype traits including seed germination, shoot length and root length, suggesting the functional significance of these genes. CONCLUSIONS We detect new fusion genes that may drive phenotype evolution in Oryza. This study provides novel insights into the genome evolution of Oryza.
Collapse
Affiliation(s)
- Yanli Zhou
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Chengjun Zhang
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China.
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Li Zhang
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA
- Chinese Institute for Brain Research, (CIBR), Beijing, 102206, China
| | - Qiannan Ye
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Ningyawen Liu
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Muhua Wang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wei Fan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- Center for Desert Agriculture, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
20
|
Song JM, Zhang Y, Zhou ZW, Lu S, Ma W, Lu C, Chen LL, Guo L. Oil plant genomes: current state of the science. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2859-2874. [PMID: 35560205 DOI: 10.1093/jxb/erab472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/22/2021] [Indexed: 05/25/2023]
Abstract
Vegetable oils are an indispensable nutritional component of the human diet as well as important raw materials for a variety of industrial applications such as pharmaceuticals, cosmetics, oleochemicals, and biofuels. Oil plant genomes are highly diverse, and their genetic variation leads to a diversity in oil biosynthesis and accumulation along with agronomic traits. This review discusses plant oil biosynthetic pathways, current state of genome assembly, polyploidy and asymmetric evolution of genomes of oil plants and their wild relatives, and research progress of pan-genomics in oil plants. The availability of complete high-resolution genomes and pan-genomes has enabled the identification of structural variations in the genomes that are associated with the diversity of agronomic and environment fitness traits. These and future genomes also provide powerful tools to understand crop evolution and to harvest the rich natural variations to improve oil crops for enhanced productivity, oil quality, and adaptability to changing environments.
Collapse
Affiliation(s)
- Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhi-Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
21
|
Sun X, Li X, Lu Y, Wang S, Zhang X, Zhang K, Su X, Liu M, Feng D, Luo S, Gu A, Fu Y, Chen X, Xuan S, Wang Y, Xu D, Chen S, Ma W, Shen S, Cheng F, Zhao J. Construction of a high-density mutant population of Chinese cabbage facilitates the genetic dissection of agronomic traits. MOLECULAR PLANT 2022; 15:913-924. [PMID: 35150930 DOI: 10.1016/j.molp.2022.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is an economically important vegetable crop throughout the world, especially in Asia. High-quality genome sequences are available for Chinese cabbage, but gene functional studies remain challenging. To promote functional genomic studies of Chinese cabbage, we generated an ethyl methane sulfonate (EMS) mutant population of ∼8000 M2 plants using the double haploid inbred line A03 as the parent. The genome of A03 was sequenced and used as a reference for high-throughput functional characterization of gene mutations at the whole-genome level. A total of 300 M2 to M5 EMS mutants were phenotypically screened and then sequenced, revealing 750 629 SNPs and 46 272 InDel mutations that cover 98.27% of all predicted genes in the A03 genome. A forward-genetics approach was successfully used to identify two genes with chloroplast-related functions that are responsible for the yellow leaf mutant trait. A reverse-genetics approach was also used to identify associations between mutations in five genes of the glucosinolate biosynthetic pathway and variations in glucosinolate content of the mutant plants. In addition, we built the Chinese cabbage EMS mutation database (CCEMD, www.bioinformaticslab.cn/EMSmutation/home) to increase the usability of this mutant population resource. In summary, we performed large-scale screening of a heading Chinese cabbage EMS mutant collection at the phenotypic and genotypic levels, which will facilitate gene mining of Chinese cabbage and might also be useful for the study of other Brassica crops.
Collapse
Affiliation(s)
- Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Yin Lu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Xiangjie Su
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Daling Feng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Aixia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yu Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Shumin Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 271000, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
22
|
Sicat JPA, Visendi P, Sewe SO, Bouvaine S, Seal SE. Characterization of transposable elements within the Bemisia tabaci species complex. Mob DNA 2022; 13:12. [PMID: 35440097 PMCID: PMC9017028 DOI: 10.1186/s13100-022-00270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. Results This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. Conclusion This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00270-6.
Collapse
Affiliation(s)
- Juan Paolo A Sicat
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK.
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven O Sewe
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| |
Collapse
|
23
|
Belyayev A, Josefiová J, Jandová M, Kalendar R, Mahelka V, Mandák B, Krak K. The structural diversity of CACTA transposons in genomes of Chenopodium (Amaranthaceae, Caryophyllales) species: specific traits and comparison with the similar elements of angiosperms. Mob DNA 2022; 13:8. [PMID: 35379321 PMCID: PMC8978399 DOI: 10.1186/s13100-022-00265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Background CACTA transposable elements (TEs) comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) transposons. Over recent decades, CACTA elements were widely identified in species from the plant, fungi, and animal kingdoms, but sufficiently studied in the genomes of only a few model species although non-model genomes can bring additional and valuable information. It primarily concerned the genomes of species belonging to clades in the base of large taxonomic groups whose genomes, to a certain extent, can preserve relict and/or possesses specific traits. Thus, we sought to investigate the genomes of Chenopodium (Amaranthaceae, Caryophyllales) species to unravel the structural variability of CACTA elements. Caryophyllales is a separate branch of Angiosperms and until recently the diversity of CACTA elements in this clade was unknown. Results Application of the short-read genome assembly algorithm followed by analysis of detected complete CACTA elements allowed for the determination of their structural diversity in the genomes of 22 Chenopodium album aggregate species. This approach yielded knowledge regarding: (i) the coexistence of two CACTA transposons subtypes in single genome; (ii) gaining of additional protein conserved domains within the coding sequence; (iii) the presence of captured gene fragments, including key genes for flower development; and (iv)) identification of captured satDNA arrays. Wide comparative database analysis revealed that identified events are scattered through Angiosperms in different proportions. Conclusions Our study demonstrated that while preserving the basic element structure a wide range of coding and non-coding additions to CACTA transposons occur in the genomes of C. album aggregate species. Ability to relocate additions inside genome in combination with the proposed novel functional features of structural-different CACTA elements can impact evolutionary trajectory of the host genome. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00265-3.
Collapse
|
24
|
Wang X, Yan X, Hu Y, Qin L, Wang D, Jia J, Jiao Y. A recent burst of gene duplications in Triticeae. PLANT COMMUNICATIONS 2022; 3:100268. [PMID: 35529951 PMCID: PMC9073319 DOI: 10.1016/j.xplc.2021.100268] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 06/13/2023]
Abstract
Gene duplication provides raw genetic materials for evolution and potentially novel genes for crop improvement. The two seminal genomic studies of Aegilops tauschii both mentioned the large number of genes independently duplicated in recent years, but the duplication mechanism and the evolutionary significance of these gene duplicates have not yet been investigated. Here, we found that a recent burst of gene duplications (hereafter abbreviated as the RBGD) has probably occurred in all sequenced Triticeae species. Further investigations of the characteristics of the gene duplicates and their flanking sequences suggested that transposable element (TE) activity may have been involved in generating the RBGD. We also characterized the duplication timing, retention pattern, diversification, and expression of the duplicates following the evolution of Triticeae. Multiple subgenome-specific comparisons of the duplicated gene pairs clearly supported extensive differential regulation and related functional diversity among such pairs in the three subgenomes of bread wheat. Moreover, several duplicated genes from the RBGD have evolved into key factors that influence important agronomic traits of wheat. Our results provide insights into a unique source of gene duplicates in Triticeae species, which has increased the gene dosage together with the two polyploidization events in the evolutionary history of wheat.
Collapse
Affiliation(s)
- Xiaoliang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueqing Yan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiheng Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyu Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daowen Wang
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jizeng Jia
- College of Agronomy, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, Henan 450046, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
26
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
27
|
Baril T, Hayward A. Migrators within migrators: exploring transposable element dynamics in the monarch butterfly, Danaus plexippus. Mob DNA 2022; 13:5. [PMID: 35172896 PMCID: PMC8848866 DOI: 10.1186/s13100-022-00263-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lepidoptera (butterflies and moths) are an important model system in ecology and evolution. A high-quality chromosomal genome assembly is available for the monarch butterfly (Danaus plexippus), but it lacks an in-depth transposable element (TE) annotation, presenting an opportunity to explore monarch TE dynamics and the impact of TEs on shaping the monarch genome. RESULTS We find 6.21% of the monarch genome is comprised of TEs, a reduction of 6.85% compared to the original TE annotation performed on the draft genome assembly. Monarch TE content is low compared to two closely related species with available genomes, Danaus chrysippus (33.97% TE) and Danaus melanippus (11.87% TE). The biggest TE contributions to genome size in the monarch are LINEs and Penelope-like elements, and three newly identified families, r2-hero_dPle (LINE), penelope-1_dPle (Penelope-like), and hase2-1_dPle (SINE), collectively contribute 34.92% of total TE content. We find evidence of recent TE activity, with two novel Tc1 families rapidly expanding over recent timescales (tc1-1_dPle, tc1-2_dPle). LINE fragments show signatures of genomic deletions indicating a high rate of TE turnover. We investigate associations between TEs and wing colouration and immune genes and identify a three-fold increase in TE content around immune genes compared to other host genes. CONCLUSIONS We provide a detailed TE annotation and analysis for the monarch genome, revealing a considerably smaller TE contribution to genome content compared to two closely related Danaus species with available genome assemblies. We identify highly successful novel DNA TE families rapidly expanding over recent timescales, and ongoing signatures of both TE expansion and removal highlight the dynamic nature of repeat content in the monarch genome. Our findings also suggest that insect immune genes are promising candidates for future interrogation of TE-mediated host adaptation.
Collapse
Affiliation(s)
- Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| |
Collapse
|
28
|
Liu B, Dong P, Zhang X, Feng Z, Wen Z, Shi L, Xia Y, Chen C, Shen Z, Lian C, Chen Y. Identification and characterization of eight metallothionein genes involved in heavy metal tolerance from the ectomycorrhizal fungus Laccaria bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14430-14442. [PMID: 34617232 DOI: 10.1007/s11356-021-16776-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification. The increasing numbers of available genomic sequences of ectomycorrhizal (ECM) fungi enable deeper insights into the characteristics of MT genes in these fungi that form the most important symbiosis with the host trees in forest ecosystems. The aim of this study was to establish a comprehensive, genome-wide inventory of MT genes from the ECM fungus Laccaria bicolor. Eight MT genes in L. bicolor were cloned, and the expression patterns of their transcripts at various developmental stages based on expressed sequence tag (EST) counts were analyzed. The expression levels of four MTs were significantly increased during symbiosis stages. Quantitative real-time PCR (qRT-PCR) analysis revealed that transcripts of LbMT1 were dominant in free-living mycelia and strongly induced by excessive copper (Cu), cadmium (Cd), and hydrogen peroxide (H2O2). To determine whether these eight MTs functioned as metal chelators, we expressed them in the Cu- and Cd-sensitive yeast mutants, cup1∆ and yap1∆, respectively. All LbMT proteins provided similar levels of Cu(II) or Cd(II) tolerance, but did not affect by H2O2. Our findings provide novel data on the evolution and diversification of fungal MT gene duplicates, a valuable resource for understanding the vast array of biological processes in which these proteins are involved.
Collapse
Affiliation(s)
- Binhao Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinzhe Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihang Feng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhugui Wen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
- Asian Natural Environmental Science Center, The University of Tokyo, 1-1-8 Midoricho, Nishitokyo, Tokyo, 188-0002, Japan.
| |
Collapse
|
29
|
Wang Z, Zhao G, Yang Q, Gao L, Liu C, Ru Z, Wang D, Jia J, Cui D. Helitron and CACTA DNA transposons actively reshape the common bread wheat - AK58 genome. Genomics 2022; 114:110288. [DOI: 10.1016/j.ygeno.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
30
|
Kirov I, Merkulov P, Dudnikov M, Polkhovskaya E, Komakhin RA, Konstantinov Z, Gvaramiya S, Ermolaev A, Kudryavtseva N, Gilyok M, Divashuk MG, Karlov GI, Soloviev A. Transposons Hidden in Arabidopsis thaliana Genome Assembly Gaps and Mobilization of Non-Autonomous LTR Retrotransposons Unravelled by Nanotei Pipeline. PLANTS (BASEL, SWITZERLAND) 2021; 10:2681. [PMID: 34961152 PMCID: PMC8704663 DOI: 10.3390/plants10122681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/12/2023]
Abstract
Long-read data is a great tool to discover new active transposable elements (TEs). However, no ready-to-use tools were available to gather this information from low coverage ONT datasets. Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural variants, including individual TE transpositions. We exploited this pipeline to identify TE insertion in the Arabidopsis thaliana genome. Using nanotei, we identified tens of TE copies, including ones for the well-characterized ONSEN retrotransposon family that were hidden in genome assembly gaps. The results demonstrate that some TEs are inaccessible for analysis with the current A. thaliana (TAIR10.1) genome assembly. We further explored the mobilome of the ddm1 mutant with elevated TE activity. Nanotei captured all TEs previously known to be active in ddm1 and also identified transposition of non-autonomous TEs. Of them, one non-autonomous TE derived from (AT5TE33540) belongs to TR-GAG retrotransposons with a single open reading frame (ORF) encoding the GAG protein. These results provide the first direct evidence that TR-GAGs and other non-autonomous LTR retrotransposons can transpose in the plant genome, albeit in the absence of most of the encoded proteins. In summary, nanotei is a useful tool to detect active TEs and their insertions in plant genomes using low-coverage data from Nanopore genome sequencing.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Zakhar Konstantinov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Sofya Gvaramiya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Aleksey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Natalya Kudryavtseva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Marina Gilyok
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| |
Collapse
|
31
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
32
|
Zhang J, Han Z, Lu Y, Zhao Y, Wang Y, Zhang J, Ma H, Han YZ. Genome-wide identification, structural and gene expression analysis of the nitrate transporters (NRTs) family in potato (Solanum tuberosum L.). PLoS One 2021; 16:e0257383. [PMID: 34673820 PMCID: PMC8530285 DOI: 10.1371/journal.pone.0257383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N2) is the most important source of mineral N for plant growth, which was mainly transported by nitrate transporters (NRTs). However, little is known about the NRT gene family in potato. In this study, StNRT gene family members were identified in potato. In addition, we performed StNRT subfamily classification, gene structure and distribution analysis, and conserved domain prediction using various bioinformatics tools. Totally, 39 StNRT gene members were identified in potato genome, including 33, 4 and 2 member belong to NRT1, NRT2, and NRT3, respectively. These 39 StNRT genes were randomly distributed on all chromosomes. The collinearity results show that StNRT members in potato are closely related to Solanum lycopersicum and Solanum melongena. For the expression, different members of StNRT play different roles in leaves and roots. Especially under sufficient nitrogen conditions, different members have a clear distribution in different tissues. These results provide valuable information for identifying the members of the StNRT family in potato and could provide functional characterization of StNRT genes in further research.
Collapse
Affiliation(s)
- Jingying Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Zhijun Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yue Lu
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yanfei Zhao
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yaping Wang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Jiayue Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Haoran Ma
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yu Zhu Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
- * E-mail:
| |
Collapse
|
33
|
The large bat Helitron DNA transposase forms a compact monomeric assembly that buries and protects its covalently bound 5'-transposon end. Mol Cell 2021; 81:4271-4286.e4. [PMID: 34403695 DOI: 10.1016/j.molcel.2021.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
Helitrons are widespread eukaryotic DNA transposons that have significantly contributed to genome variability and evolution, in part because of their distinctive, replicative rolling-circle mechanism, which often mobilizes adjacent genes. Although most eukaryotic transposases form oligomers and use RNase H-like domains to break and rejoin double-stranded DNA (dsDNA), Helitron transposases contain a single-stranded DNA (ssDNA)-specific HUH endonuclease domain. Here, we report the cryo-electron microscopy structure of a Helitron transposase bound to the 5'-transposon end, providing insight into its multidomain architecture and function. The monomeric transposase forms a tightly packed assembly that buries the covalently attached cleaved end, protecting it until the second end becomes available. The structure reveals unexpected architectural similarity to TraI, a bacterial relaxase that also catalyzes ssDNA movement. The HUH active site suggests how two juxtaposed tyrosines, a feature of many replication initiators that use HUH nucleases, couple the conformational shift of an α-helix to control strand cleavage and ligation reactions.
Collapse
|
34
|
Qiu Y, O’Connor CH, Della Coletta R, Renk JS, Monnahan PJ, Noshay JM, Liang Z, Gilbert A, Anderson SN, McGaugh SE, Springer NM, Hirsch CN. Whole-genome variation of transposable element insertions in a maize diversity panel. G3 (BETHESDA, MD.) 2021; 11:jkab238. [PMID: 34568911 PMCID: PMC8473971 DOI: 10.1093/g3journal/jkab238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 01/09/2023]
Abstract
Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome-wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short-read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 nonredundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e., LTRs, Helitrons, and TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high-frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that potentially represent information that has not been well captured in previous SNP-based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.
Collapse
Affiliation(s)
- Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Christine H O’Connor
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Jonathan S Renk
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Patrick J Monnahan
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Amanda Gilbert
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Sarah N Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
35
|
Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Transposable element landscapes illuminate past evolutionary events in the endangered fern Vandenboschia speciosa. Genome 2021; 65:95-103. [PMID: 34555288 DOI: 10.1139/gen-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vandenboschia speciosa is an endangered tetraploid fern species with a large genome (10.5 Gb). Its geographical distribution is characterized by disjoined tertiary flora refuges, with relict populations that survived past climate crises. Here, we analyzed the transposable elements (TEs) and found that they comprise approximately 76% of the V. speciosa genome, thus being the most abundant type of DNA sequence in this gigantic genome. The V. speciosa genome is composed of 51% and 5.6% of Class I and Class II elements, respectively. LTR retrotransposons were the most abundant TEs in this species (at least 42% of the genome), followed by non-LTR retrotransposons, which constituted at least 8.7% of the genome of this species. We introduce an additional analysis to identify the nature of non-annotated elements (19% of the genome). A BLAST search of the non-annotated contigs against the V. speciosa TE database allowed for the identification of almost half of them, which were most likely diverged sequence variants of the annotated TEs. In general, the TE composition in V. speciosa resembles the TE composition in seed plants. In addition, repeat landscapes revealed three episodes of amplification for all TEs, most likely due to demographic changes associated with past climate crises.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Beatriz Navarro-Domínguez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
36
|
Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J Genet Eng Biotechnol 2021; 19:128. [PMID: 34448979 PMCID: PMC8397809 DOI: 10.1186/s43141-021-00231-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
Background DNA markers improved the productivity and accuracy of classical plant breeding by means of marker-assisted selection (MAS). The enormous number of quantitative trait loci (QTLs) mapping read for different plant species have given a plenitude of molecular marker-gene associations. Main body of the abstract In this review, we have discussed the positive aspects of molecular marker-assisted selection and its precise applications in plant breeding programmes. Molecular marker-assisted selection has considerably shortened the time for new crop varieties to be brought to the market. To explore the information about DNA markers, many reviews have been published in the last few decades; all these reviews were intended by plant breeders to obtain information on molecular genetics. In this review, we intended to be a synopsis of recent developments of DNA markers and their application in plant breeding programmes and devoted to early breeders with little or no knowledge about the DNA markers. The progress made in molecular plant breeding, plant genetics, genomics selection, and editing of genome contributed to the comprehensive understanding of DNA markers and provides several proofs on the genetic diversity available in crop plants and greatly complemented plant breeding devices. Short conclusion MAS has revolutionized the process of plant breeding with acceleration and accuracy, which is continuously empowering plant breeders around the world.
Collapse
Affiliation(s)
- Nazarul Hasan
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| | - Sana Choudhary
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Neha Naaz
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Nidhi Sharma
- Cytogenetic and Plant Breeding Lab, Department of Botany, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | | |
Collapse
|
37
|
Tan S, Ma H, Wang J, Wang M, Wang M, Yin H, Zhang Y, Zhang X, Shen J, Wang D, Banes GL, Zhang Z, Wu J, Huang X, Chen H, Ge S, Chen CL, Zhang YE. DNA transposons mediate duplications via transposition-independent and -dependent mechanisms in metazoans. Nat Commun 2021; 12:4280. [PMID: 34257290 PMCID: PMC8277862 DOI: 10.1038/s41467-021-24585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Despite long being considered as "junk", transposable elements (TEs) are now accepted as catalysts of evolution. One example is Mutator-like elements (MULEs, one type of terminal inverted repeat DNA TEs, or TIR TEs) capturing sequences as Pack-MULEs in plants. However, their origination mechanism remains perplexing, and whether TIR TEs mediate duplication in animals is almost unexplored. Here we identify 370 Pack-TIRs in 100 animal reference genomes and one Pack-TIR (Ssk-FB4) family in fly populations. We find that single-copy Pack-TIRs are mostly generated via transposition-independent gap filling, and multicopy Pack-TIRs are likely generated by transposition after replication fork switching. We show that a proportion of Pack-TIRs are transcribed and often form chimeras with hosts. We also find that Ssk-FB4s represent a young protein family, as supported by proteomics and signatures of positive selection. Thus, TIR TEs catalyze new gene structures and new genes in animals via both transposition-independent and -dependent mechanisms.
Collapse
Affiliation(s)
- Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinbo Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Man Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Yin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinying Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Danyang Wang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
| | - Graham L Banes
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Zhang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xun Huang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hua Chen
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Siqin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Long Chen
- Curie Institute, PSL Research University, CNRS UMR 3244, Paris, France.
- Sorbonne University, Paris, France.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
38
|
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. PLANT PHYSIOLOGY 2021; 186:1412-1423. [PMID: 33909907 PMCID: PMC8260112 DOI: 10.1093/plphys/kiab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
Parasitic plant genomes and transcriptomes reveal numerous genetic innovations, the functional-evolutionary relevance and roles of which open unprecedented research avenues.
Collapse
Affiliation(s)
- Peter Lyko
- Institute for Biology, Humboldt-University of Berlin, Germany
| | - Susann Wicke
- Institute for Biology, Humboldt-University of Berlin, Germany
- Author for communication:
| |
Collapse
|
39
|
Peñaloza C, Gutierrez AP, Eöry L, Wang S, Guo X, Archibald AL, Bean TP, Houston RD. A chromosome-level genome assembly for the Pacific oyster Crassostrea gigas. Gigascience 2021; 10:giab020. [PMID: 33764468 PMCID: PMC7992393 DOI: 10.1093/gigascience/giab020] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Pacific oyster (Crassostrea gigas) is a bivalve mollusc with vital roles in coastal ecosystems and aquaculture globally. While extensive genomic tools are available for C. gigas, highly contiguous reference genomes are required to support both fundamental and applied research. Herein we report the creation and annotation of a chromosome-level assembly for C. gigas. FINDINGS High-coverage long- and short-read sequence data generated on Pacific Biosciences and Illumina platforms were used to generate an initial assembly, which was then scaffolded into 10 pseudo-chromosomes using both Hi-C sequencing and a high-density linkage map. The assembly has a scaffold N50 of 58.4 Mb and a contig N50 of 1.8 Mb, representing a step advance on the previously published C. gigas assembly. Annotation based on Pacific Biosciences Iso-Seq and Illumina RNA-Seq resulted in identification of ∼30,000 putative protein-coding genes. Annotation of putative repeat elements highlighted an enrichment of Helitron rolling-circle transposable elements, suggesting their potential role in shaping the evolution of the C. gigas genome. CONCLUSIONS This new chromosome-level assembly will be an enabling resource for genetics and genomics studies to support fundamental insight into bivalve biology, as well as for selective breeding of C. gigas in aquaculture.
Collapse
Affiliation(s)
- Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Alejandro P Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Lél Eöry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Shan Wang
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
40
|
Yang W, Wang D, Li Y, Zhang Z, Tong S, Li M, Zhang X, Zhang L, Ren L, Ma X, Zhou R, Sanderson BJ, Keefover-Ring K, Yin T, Smart LB, Liu J, DiFazio SP, Olson M, Ma T. A General Model to Explain Repeated Turnovers of Sex Determination in the Salicaceae. Mol Biol Evol 2021; 38:968-980. [PMID: 33027519 PMCID: PMC7947767 DOI: 10.1093/molbev/msaa261] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.
Collapse
Affiliation(s)
- Wenlu Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liwen Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinzhi Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- Department of Biology, West Virginia University, Morgantown, WV
| | - Brian J Sanderson
- Department of Biology, West Virginia University, Morgantown, WV
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin—Madison, Madison, WI
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, China
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, China
| | | | - Matthew Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Detecting Genetic Mobility Using a Transposon-Based Marker System in Gamma-Ray Irradiated Soybean Mutants. PLANTS 2021; 10:plants10020373. [PMID: 33671964 PMCID: PMC7919005 DOI: 10.3390/plants10020373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs)—major components of eukaryotic genomes—have the ability to change location within a genome. Because of their mobility, TEs are important for genome diversification and evolution. Here, a simple rapid method, using the consensus terminal inverted repeat sequences of PONG, miniature inverted-repeat transposable element (MITE)-Tourist (M-t) and MITE-Stowaway (M-s) as target region amplification polymorphism (TE-TRAP) markers, was employed to investigate the mobility of TEs in a gamma-irradiated soybean mutant pool. Among the different TE-TRAP primer combinations, the average polymorphism level and polymorphism information content value were 57.98% and 0.14, respectively. Only the PONG sequence separated the mutant population into three major groups. The inter-mutant population variance, determined using the PONG marker (3.151 and 29%) was greater than that of the M-t (2.209 and 20%) and M-s (2.766 and 18%) markers, whereas the reverse was true for the intra-mutant population variations, with M-t and M-s values, being 15.151 (82%) and 8.895 (80%), respectively, compared with the PONG marker (7.646 and 71%). Thus, the MITE markers revealed more dynamic and active mobility levels than the PONG marker in gamma-ray irradiated soybean mutant lines. The TE-TRAP technique associated with sensitive MITEs is useful for investigating genetic diversity and TE mobilization, providing tools for mutant selection in soybean mutation breeding.
Collapse
|
42
|
Muyle A, Seymour D, Darzentas N, Primetis E, Gaut BS, Bousios A. Gene capture by transposable elements leads to epigenetic conflict in maize. MOLECULAR PLANT 2021; 14:237-252. [PMID: 33171302 DOI: 10.1016/j.molp.2020.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Transposable elements (TEs) regularly capture fragments of genes. When the host silences these TEs, siRNAs homologous to the captured regions may also target the genes. This epigenetic crosstalk establishes an intragenomic conflict: silencing the TEs has the cost of silencing the genes. If genes are important, however, natural selection may maintain function by moderating the silencing response, which may also advantage the TEs. In this study, we examined this model by focusing on Helitrons, Pack-MULEs, and Sirevirus LTR retrotransposons in the maize genome. We documented 1263 TEs containing exon fragments from 1629 donor genes. Consistent with epigenetic conflict, donor genes mapped more siRNAs and were more methylated than genes with no evidence of capture. However, these patterns differed between syntelog versus translocated donor genes. Syntelogs appeared to maintain function, as measured by gene expression, consistent with moderation of silencing for functionally important genes. Epigenetic marks did not spread beyond their captured regions and 24nt crosstalk siRNAs were linked with CHH methylation. Translocated genes, in contrast, bore the signature of silencing. They were highly methylated and less expressed, but also overrepresented among donor genes and located away from chromosomal arms, which suggests a link between capture and gene movement. Splitting genes into potential functional categories based on evolutionary constraint supported the synteny-based findings. TE families captured genes in different ways, but the evidence for their advantage was generally less obvious; nevertheless, TEs with captured fragments were older, mapped fewer siRNAs, and were slightly less methylated than TEs without captured fragments. Collectively, our results argue that TE capture triggers an intragenomic conflict that may not affect the function of important genes but may lead to the pseudogenization of less-constrained genes.
Collapse
Affiliation(s)
- Aline Muyle
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA
| | - Danelle Seymour
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA; Department of Botany and Plant Sciences, UC Riverside, Riverside, CA 92521, USA
| | - Nikos Darzentas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Elias Primetis
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
43
|
Tian H, Yang Y, Yi H, Xu L, He H, Fan Y, Wang L, Ge J, Liu Y, Wang F, Zhao J. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1113-1122. [PMID: 33225500 DOI: 10.1111/tpj.15089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Despite the availability of numerous molecular markers in maize, effective evaluation of all types of germplasm resources, accurate identification of varieties and analysis of a large number of materials in a timely, low-cost manner is challenging. Here, we present Maize6H-60K, a genome-wide single nucleotide polymorphism (SNP) array to facilitate maize genotyping. We first identified 160 million variants by sequencing data of 388 representative inbreds and then tiled 200 000 high-quality variants on a screening array. These variants were further narrowed down to 61 282 using stringent filtering criteria. Among the 60 000 markers, 21 460 SNPs (35%) were within genic regions and 12 835 (21%) were located in coding regions. To assess their effectiveness, 329 inbreds, 221 hybrids, 34 parent-offspring sets and six breeding samples were genotyped. Overall, 48 972 SNPs (80%) were categorized into the highest quality class, that of 'poly high resolution'. A total of 54 658 (89.29%) and 53 091 (86.73%) SNPs had minor allele frequency values ≥ 0.20 in inbreds and hybrids respectively. A linkage disequilibrium (LD) analysis revealed that LD decline was in equilibrium when r2 was between 0.10 and 0.15, which corresponds to a physical distance of 400-600 kb. UPGMA clustering analysis divided the 329 inbred lines into nine groups that were consistent with known pedigrees. A background analysis of breeding materials indicated that the 60 000 markers were suitable for evaluation of breeding populations constructed by materials between or within heterotic groups. The developed Maize6H-60K array should be an important tool in maize genetic studies, variety identification and molecular breeding.
Collapse
Affiliation(s)
- Hongli Tian
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Yang Yang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Hongmei Yi
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Liwen Xu
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Yaming Fan
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Lu Wang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Jianrong Ge
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Yawei Liu
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Fengge Wang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| |
Collapse
|
44
|
Zhang J, Han Z, Lu Y, Zhao Y, Wang Y, Zhang J, Ma H, Han YZ. Genome-wide identification, structural and gene expression analysis of the nitrate transporters (NRTs) family in potato (Solanum tuberosum L.). PLoS One 2021. [PMID: 34673820 DOI: 10.1371/journalpone.0257383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Nitrogen (N2) is the most important source of mineral N for plant growth, which was mainly transported by nitrate transporters (NRTs). However, little is known about the NRT gene family in potato. In this study, StNRT gene family members were identified in potato. In addition, we performed StNRT subfamily classification, gene structure and distribution analysis, and conserved domain prediction using various bioinformatics tools. Totally, 39 StNRT gene members were identified in potato genome, including 33, 4 and 2 member belong to NRT1, NRT2, and NRT3, respectively. These 39 StNRT genes were randomly distributed on all chromosomes. The collinearity results show that StNRT members in potato are closely related to Solanum lycopersicum and Solanum melongena. For the expression, different members of StNRT play different roles in leaves and roots. Especially under sufficient nitrogen conditions, different members have a clear distribution in different tissues. These results provide valuable information for identifying the members of the StNRT family in potato and could provide functional characterization of StNRT genes in further research.
Collapse
Affiliation(s)
- Jingying Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Zhijun Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yue Lu
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yanfei Zhao
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yaping Wang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Jiayue Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Haoran Ma
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yu Zhu Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| |
Collapse
|
45
|
Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 2020; 58:e23399. [DOI: 10.1002/dvg.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| |
Collapse
|
46
|
Wang D, Cao Z, Wang W, Zhu W, Hao X, Fang Z, Liu S, Wang X, Zhao C, Tang Y. Genome-Wide Characterization of OFP Family Genes in Wheat ( Triticum aestivum L.) Reveals That TaOPF29a-A Promotes Drought Tolerance. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9708324. [PMID: 33224986 PMCID: PMC7666709 DOI: 10.1155/2020/9708324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
OVATE family proteins (OFPs) are plant-specific transcription factors that play important roles in plant development. Although common wheat (Triticum aestivum L.) is a major staple food worldwide, OFPs have not been systematically analyzed in this important crop. Here, we performed a genome-wide survey of OFP genes in wheat and identified 100 genes belonging to 34 homoeologous groups. Arabidopsis thaliana, rice (Oryza sativa), and wheat OFP genes were divided into four subgroups based on their phylogenetic relationships. Structural analysis indicated that only four TaOFPs contain introns. We mapped the TaOFP genes onto the wheat chromosomes and determined that TaOFP17 was duplicated in this crop. A survey of cis-acting elements along the promoter regions of TaOFP genes suggested that subfunctionalization of homoeologous genes might have occurred during evolution. The TaOFPs were highly expressed in wheat, with tissue- or organ-specific expression patterns. In addition, these genes were induced by various hormone and stress treatments. For instance, TaOPF29a-A was highly expressed in roots in response to drought stress. Wheat plants overexpressing TaOPF29a-A had longer roots and higher dry weights than nontransgenic plants under drought conditions, suggesting that this gene improves drought tolerance. Our findings provide a starting point for further functional analysis of this important transcription factor family and highlight the potential of using TaOPF29a-A to genetically engineer drought-tolerant crops.
Collapse
Affiliation(s)
- Dezhou Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhichen Cao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| | - Weiwei Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wengen Zhu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaocong Hao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhaofeng Fang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shan Liu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoyan Wang
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| | - Changping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yimiao Tang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
47
|
Cai X, Wu J, Liang J, Lin R, Zhang K, Cheng F, Wang X. Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3187-3199. [PMID: 32772134 DOI: 10.1007/s00122-020-03664-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Brassica oleracea is an important vegetable crop that has provided ancestor genomes of the two most important Brassica oil crops, Brassica napus and Brassica carinata. The current B. oleracea reference genome (JZS, also named 02-12) displays problems of large mis-assemblies, low sequence continuity, and low assembly integrity, thus limiting genomic analysis. We reported an updated assembly of the B. oleracea reference genome (JZS v2) obtained through single-molecule sequencing and chromosome conformation capture technologies. We assembled an additional 83.16 Mb of genomic sequences, and the updated genome features a contig N50 size of 2.37 Mb, representing an ~ 88-fold improvement. We detected a new round of long terminal repeat retrotransposon (LTR-RT) burst in the new assembly. Comparative analysis with the reported genome sequences of two other genomes of B. oleracea (TO1000 and HDEM) identified extensive gene order and gene structural variation. In addition, we found that the genome-specific amplification of Gypsy-like LTR-RTs occurred around 0-1 million years ago (MYA). In particular, the athila, tat, and Del families were extensively amplified in JZS around 0-1 MYA. Moreover, we identified that the syntenic genes were modified due to the insertion of genome-specific LTR-RTs. These results indicated that the genome-specific LTR-RT dynamics were associated with genome diversification in B. oleracea.
Collapse
Affiliation(s)
- Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, No.12. Zhongguancun South St, Beijing, 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, No.12. Zhongguancun South St, Beijing, 100081, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, No.12. Zhongguancun South St, Beijing, 100081, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, No.12. Zhongguancun South St, Beijing, 100081, China
| | - Kang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, No.12. Zhongguancun South St, Beijing, 100081, China
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, No.12. Zhongguancun South St, Beijing, 100081, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, No.12. Zhongguancun South St, Beijing, 100081, China.
| |
Collapse
|
48
|
Faber-Hammond JJ, Bezault E, Lunt DH, Joyce DA, Renn SCP. The Genomic Substrate for Adaptive Radiation: Copy Number Variation across 12 Tribes of African Cichlid Species. Genome Biol Evol 2020; 11:2856-2874. [PMID: 31504491 DOI: 10.1093/gbe/evz185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The initial sequencing of five cichlid genomes revealed an accumulation of genetic variation, including extensive copy number variation in cichlid lineages particularly those that have undergone dramatic evolutionary radiation. Gene duplication has the potential to generate substantial molecular substrate for the origin of evolutionary novelty. We use array-based comparative heterologous genomic hybridization to identify copy number variation events (CNVEs) for 168 samples representing 53 cichlid species including the 5 species for which full genome sequence is available. We identify an average of 50-100 CNVEs per individual. For those species represented by multiple samples, we identify 150-200 total CNVEs suggesting a substantial amount of intraspecific variation. For these species, only ∼10% of the detected CNVEs are fixed. Hierarchical clustering of species according to CNVE data recapitulates phylogenetic relationships fairly well at both the tribe and radiation level. Although CNVEs are detected on all linkage groups, they tend to cluster in "hotspots" and are likely to contain and be flanked by transposable elements. Furthermore, we show that CNVEs impact functional categories of genes with potential roles in adaptive phenotypes that could reasonably promote divergence and speciation in the cichlid clade. These data contribute to a more complete understanding of the molecular basis for adaptive natural selection, speciation, and evolutionary radiation.
Collapse
Affiliation(s)
| | - Etienne Bezault
- BOREA Research Unit, MNHN, CNRS 7208, Sorbonne Université, IRD 207, UCN, UA, Paris, France
| | - David H Lunt
- Department of Biological and Marine Sciences, University of Hull, Hull Kingston-Upon-Hull, United Kingdom
| | - Domino A Joyce
- Department of Biological and Marine Sciences, University of Hull, Hull Kingston-Upon-Hull, United Kingdom
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland OR 97202
| |
Collapse
|
49
|
Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol Biol Rep 2020; 47:3155-3167. [PMID: 32162128 DOI: 10.1007/s11033-020-05365-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/29/2020] [Indexed: 12/20/2022]
Abstract
Plant molecular breeding is expected to give significant gains in cultivar development through development and utilization of suitable molecular marker systems for genetic diversity analysis, rapid DNA fingerprinting, identification of true hybrids, trait mapping and marker-assisted selection. Transposable elements (TEs) are the most abundant component in a genome and being used as genetic markers in the plant molecular breeding. Here, we review on the high copious transposable element belonging to class-II DNA TEs called "miniature inverted-repeat transposable elements" (MITEs). MITEs are ubiquitous, short and non-autonomous DNA transposable elements which have a tendency to insert into genes and genic regions have paved a way for the development of functional DNA marker systems in plant genomes. This review summarises the characteristics of MITEs, principles and methodologies for development of MITEs based DNA markers, bioinformatics tools and resources for plant MITE discovery and their utilization in crop improvement.
Collapse
|
50
|
Hu CH, Wang PQ, Zhang PP, Nie XM, Li BB, Tai L, Liu WT, Li WQ, Chen KM. NADPH Oxidases: The Vital Performers and Center Hubs during Plant Growth and Signaling. Cells 2020; 9:E437. [PMID: 32069961 PMCID: PMC7072856 DOI: 10.3390/cells9020437] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
NADPH oxidases (NOXs), mostly known as respiratory burst oxidase homologs (RBOHs), are the key producers of reactive oxygen species (ROS) in plants. A lot of literature has addressed ROS signaling in plant development regulation and stress responses as well as on the enzyme's structure, evolution, function, regulation and associated mechanisms, manifesting the role of NOXs/RBOHs as the vital performers and center hubs during plant growth and signaling. This review focuses on recent advances of NOXs/RBOHs on cell growth, hormone interaction, calcium signaling, abiotic stress responses, and immunity. Several primary particles, including Ca2+, CDPKs, BIK1, ROPs/RACs, CERK, FER, ANX, SnRK and SIK1-mediated regulatory mechanisms, are fully summarized to illustrate the signaling behavior of NOXs/RBOHs and their sophisticated and dexterous crosstalks. Diverse expression and activation regulation models endow NOXs/RBOHs powerful and versatile functions in plants to maintain innate immune homeostasis and development integrity. NOXs/RBOHs and their related regulatory items are the ideal targets for crop improvement in both yield and quality during agricultural practices.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, Henan, China
| | - Peng-Qi Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|