1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Paliwal P, Thakur S, Sharma S. Bright and enlarged fetal kidneys: One phenotype different genotypes, and counseling dilemmas. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:1370-1374. [PMID: 39234693 DOI: 10.1002/jcu.23797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION In the present study we describe atypical cases with bright and enlarged fetal kidneys identified on fetal ultrasound with different genetic etiologies. METHODS Exome sequencing was undertaken after prenatal counseling and after the initial diagnosis of enlarged fetal kidneys was made on ultrasound for four cases and the results were then correlated. RESULTS In the present study we identified underlying variants in ACE, ETFA, PKD1, and MKS1 gene where the atypical presentation of fetal kidneys was noted either as a part of spectrum of syndrome or alone. CONCLUSIONS In the era of exome sequencing, targeted gene sequencing is getting replaced and for better. However not all answers are direct, and sometimes the variant categorization is dependent on the acumen and agreement of all those involved in the process. It includes those involved the diagnostic as well those catering to the patients. It is very important to be updated on the relevance of multiple gene in causing similar phenotypes particularly in the prenatal context were coming up with a timely diagnosis is very important for any sort of intervention.
Collapse
Affiliation(s)
| | - Seema Thakur
- Fortis Hospitals, The Genetic clinic, New Delhi, India
| | | |
Collapse
|
3
|
Stanworth M, Zhang SD. Elucidating the roles of SOD3 correlated genes and reactive oxygen species in rare human diseases using a bioinformatic-ontology approach. PLoS One 2024; 19:e0313139. [PMID: 39480826 PMCID: PMC11527182 DOI: 10.1371/journal.pone.0313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Superoxide Dismutase 3 (SOD3) scavenges extracellular superoxide giving a hydrogen peroxide metabolite. Both Reactive Oxygen Species diffuse through aquaporins causing oxidative stress and biomolecular damage. SOD3 is differentially expressed in cancer and this research utilises Gene Expression Omnibus data series GSE2109 with 2,158 cancer samples. Genome-wide expression correlation analysis was conducted with SOD3 as the seed gene. Categorical SOD3 Pearson Correlation gene lists incrementing in correlation strength by 0.01 from ρ≥|0.34| to ρ≥|0.41| were extracted from the data. Positively and negatively SOD3 correlated genes were separated for each list and checked for significance against disease overlapping genes in the ClinVar and Orphanet databases via Enrichr. Disease causal genes were added to the relevant gene list and checked against Gene Ontology, Phenotype Ontology, and Elsevier Pathways via Enrichr before the significant ontologies containing causal and non-overlapping genes were reviewed with a literature search for possible disease and oxidative stress associations. 12 significant individually discriminated disorders were identified: Autosomal Dominant Cutis Laxa (p = 6.05x10-7), Renal Tubular Dysgenesis of Genetic Origin (p = 6.05x10-7), Lethal Arteriopathy Syndrome due to Fibulin-4 Deficiency (p = 6.54x10-9), EMILIN-1-related Connective Tissue Disease (p = 6.54x10-9), Holt-Oram Syndrome (p = 7.72x10-10), Multisystemic Smooth Muscle Dysfunction Syndrome (p = 9.95x10-15), Distal Hereditary Motor Neuropathy type 2 (p = 4.48x10-7), Congenital Glaucoma (p = 5.24x210-9), Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome (p = 3.77x10-16), Classical-like Ehlers-Danlos Syndrome type 1 (p = 3.77x10-16), Retinoblastoma (p = 1.9x10-8), and Lynch Syndrome (p = 5.04x10-9). 35 novel (21 unique) genes across 12 disorders were identified: ADNP, AOC3, CDC42EP2, CHTOP, CNN1, DES, FOXF1, FXR1, HLTF, KCNMB1, MTF2, MYH11, PLN, PNPLA2, REST, SGCA, SORBS1, SYNPO2, TAGLN, WAPL, and ZMYM4. These genes are proffered as potential biomarkers or therapeutic targets for the corresponding rare diseases discussed.
Collapse
Affiliation(s)
- Mark Stanworth
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Hospital, Derry, Londonderry, Northern Ireland
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Hospital, Derry, Londonderry, Northern Ireland
| |
Collapse
|
4
|
Schary N, Edemir B, Todorov VT. A Possible Link between Cell Plasticity and Renin Expression in the Collecting Duct: A Narrative Review. Int J Mol Sci 2024; 25:9549. [PMID: 39273497 PMCID: PMC11395489 DOI: 10.3390/ijms25179549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid-base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings.
Collapse
Affiliation(s)
- Nicole Schary
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
| | - Bayram Edemir
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Department of Internal Medicine IV, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Vladimir T. Todorov
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health—School of Medicine, Witten/Herdecke University, 58453 Witten, Germany;
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
5
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
6
|
Wopperer FJ, Olinger E, Wiesener A, Broeker KAE, Knaup KX, Schaefer JT, Galiano M, Schneider K, Schiffer M, Büttner-Herold M, Reis A, Schmieder R, Pasutto F, Hilgers KF, Poglitsch M, Ziegler C, Shoemaker R, Sayer JA, Wiesener MS. Progressive Kidney Failure by Angiotensinogen Inactivation in the Germline. Hypertension 2024; 81:1857-1868. [PMID: 39005223 DOI: 10.1161/hypertensionaha.124.22806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Autosomal recessive renal tubular dysgenesis is a rare, usually fatal inherited disorder of the renin-angiotensis system (RAS). Herein, we report an adolescent individual experiencing an unknown chronic kidney disease and aim to provide novel insights into disease mechanisms. METHODS Exome sequencing for a gene panel associated with renal disease was performed. The RAS was assessed by comprehensive biochemical analysis in blood. Renin expression was determined in primary tubular cells by quantitative polymerase chain reaction and in situ hybridization on kidney biopsy samples. Allele frequencies of heterozygous and biallelic deleterious variants were determined by analysis of the Genomics England 100,000 Genomes Project. RESULTS The patient was delivered prematurely after oligohydramnios was detected during pregnancy. Postnatally, he recovered from third-degree acute kidney injury but developed chronic kidney disease stage G3b over time. Exome sequencing revealed a previously reported pathogenic homozygous missense variant, p.(Arg375Gln), in the AGT (angiotensinogen) gene. Blood AGT concentrations were low, but plasma renin concentration and gene expression in kidney biopsy, vascular, and tubular cells revealed strong upregulation of renin. Angiotensin II and aldosterone in blood were not abnormally elevated. CONCLUSIONS Renal tubular dysgenesis may present as chronic kidney disease with a variable phenotype, necessitating broad genetic analysis for diagnosis. Functional analysis of the RAS in a patient with AGT mutation revealed novel insights regarding compensatory upregulation of renin in vascular and tubular cells of the kidney and in plasma in response to depletion of AGT substrate as a source of Ang II (similarly observed with hepatic AGT silencing for the treatment of hypertension).
Collapse
Affiliation(s)
- Florian J Wopperer
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Eric Olinger
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Brussels, Belgium (E.O.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (E.O., J.A.S.)
| | - Antje Wiesener
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | - Karl X Knaup
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Jan T Schaefer
- Department of Pediatrics and Adolescent Medicine (J.T.S., M.G.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Matthias Galiano
- Department of Pediatrics and Adolescent Medicine (J.T.S., M.G.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Karen Schneider
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology (M.B.-H.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - André Reis
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Roland Schmieder
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Francesca Pasutto
- Institute of Human Genetics (A.W., A.R., F.P.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | | | - Robin Shoemaker
- Department of Pediatrics, University of Kentucky, Lexington (R. Shoemaker)
| | - John A Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (E.O., J.A.S.)
| | - Michael S Wiesener
- Department of Nephrology and Hypertension (F.J.W., K.X.K., K.S., M.S., R. Schmieder, K.F.H., M.S.W.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| |
Collapse
|
7
|
Vivante A. Genetics of Chronic Kidney Disease. N Engl J Med 2024; 391:627-639. [PMID: 39141855 DOI: 10.1056/nejmra2308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Asaf Vivante
- From the Department of Pediatrics and the Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, and the Nephro-Genetics Clinic and Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel Hashomer, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - all in Israel
| |
Collapse
|
8
|
Karpman D, Lindström ML, Möller M, Ivarsson S, Kristoffersson AC, Bekassy Z, Fogo AB, Elfving M. Hypoaldosteronism due to a novel SEC61A1 variant successfully treated with fludrocortisone. Clin Kidney J 2024; 17:sfae213. [PMID: 39135939 PMCID: PMC11317836 DOI: 10.1093/ckj/sfae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 08/15/2024] Open
Abstract
Background Genetic variants in SEC61A1 are associated with autosomal dominant tubulointerstitial kidney disease. SEC61A1 is a translocon in the endoplasmic reticulum membrane and variants affect biosynthesis of renin and uromodulin. Methods A patient is described that presented at 1 year of age with failure-to-thrive, kidney failure (glomerular filtration rate, GFR, 18 ml/min/1.73m2), hyperkalemia and acidosis. Genetic evaluation was performed by whole genome sequencing. Results The patient has a novel de novo heterozygous SEC61A1 variant, Phe458Val. Plasma renin was low or normal, aldosterone was low or undetectable and uromodulin was low. Kidney biopsy at 2 years exhibited subtle changes suggestive of tubular dysgenesis without tubulocystic or glomerulocystic lesions and with renin staining of the juxtaglomerular cells. The patient experienced extreme fatigue due to severe hypotension attributed to hypoaldosteronism and at 8 years of age fludrocortisone treatment was initiated with marked improvement in her well-being. Blood pressure and potassium normalized. Biopsy at 9 years showed extensive glomerulosclerosis and mild tubulointerstitial fibrosis, as well as tubular mitochondrial abnormalities, without specific diagnostic changes. Her GFR improved to 54 ml/min/1.73m2. Conclusions As the renin-angiotensin system promotes aldosterone release, and the patient had repeatedly undetectable aldosterone levels, the SEC61A1 variant presumably contributed to severe hypotension. Treatment with a mineralocorticoid had a beneficial effect and corrected the electrolyte and acid-base disorder. We suggest that the increased blood pressure hemodynamically improved the patient's kidney function.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Martin L Lindström
- Department of Pathology, Skåne University Hospital and Regional Laboratories, Malmö, Sweden
| | - Mattias Möller
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics and Pathology, Region Skåne, Lund, Sweden
| | - Sofie Ivarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics and Pathology, Region Skåne, Lund, Sweden
| | | | - Zivile Bekassy
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Elfving
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Anand A, Hildebrandt CC, Shenoy V, Sutherland RW. Novel CHRNA3 variants identified in a patient with bladder dysfunction, dysautonomia, and gastrointestinal dysmotility. Am J Med Genet A 2024; 194:e63526. [PMID: 38192228 DOI: 10.1002/ajmg.a.63526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are estimated to be responsible for 20%-50% of congenital anomalies and are also a leading etiology of early-onset renal disease. Primary CAKUT are caused by genetic factors that impair proper in-utero genitourinary tract development and secondary CAKUT result from the influence of environmental factors. The CHRNA3 gene, which encodes the Alpha-3 subunit of the nicotinic acetylcholine receptor, is hypothesized to be associated with Megacystis-microcolon-intestinal hyperperistalsis syndrome. More recently, pathogenic variants in CHRNA3 have been identified in individuals with CAKUT as well as individuals with panautonomic failure. Here we present a patient with neurogenic bladder, vesicoureteral reflux, mydriasis, and gastrointestinal dysmotility found to have novel compound heterozygous variants in CHRNA3. These findings support the consideration of CHRNA3 disruption in the differential for CAKUT with dysautonomia and gastrointestinal dysmotility.
Collapse
Affiliation(s)
- Asha Anand
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Clara C Hildebrandt
- UNC School of Medicine, Chapel Hill, North Carolina, USA
- UNC Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Vivek Shenoy
- UNC School of Medicine, Chapel Hill, North Carolina, USA
- UNC Department of Pediatrics, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Richard W Sutherland
- UNC School of Medicine, Chapel Hill, North Carolina, USA
- UNC Department of Urology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Du X, Wang C, Liu J, Yu M, Ju H, Xue S, Li Y, Liu J, Dai R, Chen J, Zhai Y, Rao J, Wang X, Sun Y, Sun L, Wu X, Xu H, Shen Q. GEN1 as a risk factor for human congenital anomalies of the kidney and urinary tract. Hum Genomics 2024; 18:41. [PMID: 38654324 PMCID: PMC11041010 DOI: 10.1186/s40246-024-00606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) are prevalent birth defects. Although pathogenic CAKUT genes are known, they are insufficient to reveal the causes for all patients. Our previous studies indicated GEN1 as a pathogenic gene of CAKUT in mice, and this study further investigated the correlation between GEN1 and human CAKUT. METHODS In this study, DNA from 910 individuals with CAKUT was collected; 26 GEN1 rare variants were identified, and two GEN1 (missense) variants in a non-CAKUT group were found. Mainly due to the stability results of the predicted mutant on the website, in vitro, 10 variants (eight CAKUT, two non-CAKUT) were selected to verify mutant protein stability. In addition, mainly based on the division of the mutation site located in the functional region of the GEN1 protein, 8 variants (six CAKUT, two non-CAKUT) were selected to verify enzymatic hydrolysis, and the splice variant GEN1 (c.1071 + 3(IVS10) A > G) was selected to verify shear ability. Based on the results of in vitro experiments and higher frequency, three sites with the most significant functional change were selected to build mouse models. RESULTS Protein stability changed in six variants in the CAKUT group. Based on electrophoretic mobility shift assay of eight variants (six CAKUT, two non-CAKUT), the enzymatic hydrolysis and DNA-binding abilities of mutant proteins were impaired in the CAKUT group. The most serious functional damage was observed in the Gen1 variant that produced a truncated protein. A mini-gene splicing assay showed that the variant GEN1 (c.1071 + 3(IVS10) A > G) in the CAKUT group significantly affected splicing function. An abnormal exon10 was detected in the mini-gene splicing assay. Point-mutant mouse strains were constructed (Gen1: c.1068 + 3 A > G, p.R400X, and p.T105R) based on the variant frequency in the CAKUT group and functional impairment in vitro study and CAKUT phenotypes were replicated in each. CONCLUSION Overall, our findings indicated GEN1 as a risk factor for human CAKUT.
Collapse
Affiliation(s)
- Xuanjin Du
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Chunyan Wang
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jialu Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Haixin Ju
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yaxin Li
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jiaojiao Liu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Rufeng Dai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yihui Zhai
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Xiang Wang
- Department of Urology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Yubo Sun
- Department of Urology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Lei Sun
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, 200433, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, 200433, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China.
- National Key Laboratory of Kidney Diseases, 201102, Shanghai, China.
| | - Qian Shen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, 201102, Shanghai, China.
| |
Collapse
|
11
|
Al-Maraghi A, Aamer W, Ziab M, Aliyev E, Elbashir N, Hussein S, Palaniswamy S, Anand D, Love DR, Charles A, A S Akil A, Fakhro KA. A loss-of-function AGTR1 variant in a critically-ill infant with renal tubular dysgenesis: case presentation and literature review. BMC Nephrol 2024; 25:139. [PMID: 38649831 PMCID: PMC11034062 DOI: 10.1186/s12882-024-03569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Renal tubular dysgenesis (RTD) is a severe disorder with poor prognosis significantly impacting the proximal tubules of the kidney while maintaining an anatomically normal gross structure. The genetic origin of RTD, involving variants in the ACE, REN, AGT, and AGTR1 genes, affects various enzymes or receptors within the Renin angiotensin system (RAS). This condition manifests prenatally with oligohydramninos and postnatally with persistent anuria, severe refractory hypotension, and defects in skull ossification. CASE PRESENTATION In this report, we describe a case of a female patient who, despite receiving multi vasopressor treatment, experienced persistent hypotension, ultimately resulting in early death at five days of age. While there was a history of parental consanguinity, no reported family history of renal disease existed. Blood samples from the parents and the remaining DNA sample of the patient underwent Whole Genome Sequencing (WGS). The genetic analysis revealed a rare homozygous loss of function variant (NM_000685.5; c.415C > T; p.Arg139*) in the Angiotensin II Receptor Type 1 (AGTR1) gene. CONCLUSION This case highlights the consequence of loss-of-function variants in AGTR1 gene leading to RTD, which is characterized by high mortality rate at birth or during the neonatal period. Furthermore, we provide a comprehensive review of previously reported variants in the AGTR1 gene, which is the least encountered genetic cause of RTD, along with their associated clinical features.
Collapse
Affiliation(s)
- Aljazi Al-Maraghi
- Laboratory of Genomic Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Waleed Aamer
- Laboratory of Genomic Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Mubarak Ziab
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Laboratory of Genomic Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Najwa Elbashir
- Laboratory of Genomic Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sura Hussein
- Laboratory of Genomic Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | | | - Dhullipala Anand
- Neonatology Division, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Donald R Love
- Genetic Pathology, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Adrian Charles
- Anatomical Pathology, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ammira A S Akil
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid A Fakhro
- Laboratory of Genomic Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Department of Human Genetics-Precision Medicine in Diabetes Prevention, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
12
|
Kulshreshtha A, Bhatnagar S. Structural effect of the H992D/H418D mutation of angiotensin-converting enzyme in the Indian population: implications for health and disease. J Biomol Struct Dyn 2024:1-18. [PMID: 38411559 DOI: 10.1080/07391102.2024.2321246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
The Non synonymous SNPs (nsSNPs) of the renin-angiotensin-system (RAS) pathway, unique to the Indian population were investigated in view of its importance as an endocrine system. nsSNPs of the RAS pathway genes were mined from the IndiGenome database. Damaging nsSNPs were predicted using SIFT, PredictSNP, SNP and GO, Snap2 and Protein Variation Effect Analyzer. Loss of function was predicted based on protein stability change using I mutant, PremPS and CONSURF. The structural impact of the nsSNPs was predicted using HOPE and Missense3d followed by modeling, refinement, and energy minimization. Molecular Dynamics studies were carried out using Gromacsv2021.1. 23 Indian nsSNPs of the RAS pathway genes were selected for structural analysis and 8 were predicted to be damaging. Further sequence analysis showed that HEMGH zinc binding motif changes to HEMGD in somatic ACE-C domain (sACE-C) H992D and Testis ACE (tACE) H418D resulted in loss of zinc coordination, which is essential for enzymatic activity in this metalloprotease. There was a loss of internal interactions around the zinc coordination residues in the protein structural network. This was also confirmed by Principal Component Analysis, Free Energy Landscape and residue contact maps. Both mutations lead to broadening of the AngI binding cavity. The H992D mutation in sACE-C is likely to be favorable for cardiovascular health, but may lead to renal abnormalities with secondary impact on the heart. H418D in tACE is potentially associated with male infertility.
Collapse
Affiliation(s)
- Akanksha Kulshreshtha
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
13
|
Tan HJ, Jian WY, Lv C, Guo DW, Liao ZC, Xu H, Xiao Y, Schiller M, Zhuo JL, Yue SJ, Yao RJ, Deng HW, Xiao HM. Prenatal diagnosis and treatment for fetal angiotensin converting enzyme deficiency. Prenat Diagn 2024; 44:167-171. [PMID: 37749763 PMCID: PMC12037230 DOI: 10.1002/pd.6443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To elucidate an etiology in a case with persistent oligohydramnios by prenatal diagnosis and actively treat the case to achieve good prognosis. METHODS We performed whole exome sequencing (WES) of DNA from the fetus and parents. Serial amnioinfusions were conducted until birth. Pressors were required to maintain normal blood pressure. The infant angiotensin-converting enzyme (ACE) activity, angiotensin II (Ang II, a downstream product of ACE), and compensatory enzymes (CEs) activities were measured. Compensatory enzyme activities in plasma from age-matched healthy controls were also detected. RESULTS We identified a fetus with a severe ACE mutation prenatally. The infant was born prematurely without pulmonary dysplasia. Hypotension and anuria resolved spontaneously. He had almost no ACE activity, but his Ang II level and CE activity exceeded the upper limit of the normal range and the upper limit of the 95% confidence interval of controls, respectively. His renal function also largely recovered. CONCLUSION Fetuses with ACE mutations can be diagnosed prenatally through WES. Serial amnioinfusion permits the continuation of pregnancy in fetal ACE deficiency. Compensatory enzymes for defective ACE appeared postnatally. Renal function may be spared by preterm delivery; furthermore, for postnatal vasopressor therapy to begin, improving renal perfusion pressure before nephrogenesis has been completed.
Collapse
Affiliation(s)
- Hang-Jing Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Centers of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Yan Jian
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Lv
- Department of Reproductive Medicine Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - De-Wei Guo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Chang Liao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Martin Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Jia-Long Zhuo
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University, New Orleans, Louisiana, USA
| | - Shao-Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruo-Jin Yao
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Wen Deng
- Deming Department of Medicine, Center of Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Hong-Mei Xiao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Centers of System Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Kömhoff M, Gracchi V, Dijkman H, Beck BB, Monnens L. Hyporeninemic hypoaldosteronism in RMND1-related mitochondrial disease. Pediatr Nephrol 2024; 39:125-129. [PMID: 37450011 PMCID: PMC10673983 DOI: 10.1007/s00467-023-06079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND RMND1 is a nuclear gene needed for proper function of mitochondria. A pathogenic gene will cause multiple oxidative phosphorylation defects. A renal phenotype consisting of hyponatremia, hyperkalemia, and acidosis is frequently reported, previously considered to be due to aldosterone insensitivity. METHODS Clinical features and pathophysiology of three patients will be reported. DNA of these patients was subjected to exome screening. RESULTS In the first family, one pathogenic heterozygous and one highly probable heterozygous mutation were detected. In the second family, a homozygous pathogenic mutation was present. The electrolyte disbalance was not due to aldosterone insensitivity but to low plasma aldosterone concentration, a consequence of low plasma renin activity. This disbalance can be treated. In all three patients, the kidney function declined. In the first family, both children suffered from an unexplained arterial thrombosis with dire consequences. CONCLUSIONS Hyporeninemic hypoaldosteronism is the mechanism causing the electrolyte disbalance reported in patients with RMND1 mutations, and can be treated.
Collapse
Affiliation(s)
- Martin Kömhoff
- University Children's Hospital, Philipps University, Marburg, Germany
| | - Valentina Gracchi
- Department of Pediatrics, UMCG, University Groningen, Groningen, the Netherlands
| | - Henry Dijkman
- Department of Pathology, Radboud University Centre, Nijmegen, the Netherlands
| | - Bodo B Beck
- Department of Human Genetics, Cologne, Germany
| | - Leo Monnens
- Department of Physiology, Radboud University Centre, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Pode-Shakked N, Slack M, Sundaram N, Schreiber R, McCracken KW, Dekel B, Helmrath M, Kopan R. RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis. Nat Commun 2023; 14:8159. [PMID: 38071212 PMCID: PMC10710424 DOI: 10.1038/s41467-023-43795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Autosomal Recessive Renal Tubular Dysgenesis (AR-RTD) is a fatal genetic disorder characterized by complete absence or severe depletion of proximal tubules (PT) in patients harboring pathogenic variants in genes involved in the Renin-Angiotensin-Aldosterone System. To uncover the pathomechanism of AR-RTD, differentiation of ACE-/- and AGTR1-/- induced pluripotent stem cells (iPSCs) and AR-RTD patient-derived iPSCs into kidney organoids is leveraged. Comprehensive marker analyses show that both mutant and control organoids generate indistinguishable PT in vitro under normoxic (21% O2) or hypoxic (2% O2) conditions. Fully differentiated (d24) AGTR1-/- and control organoids transplanted under the kidney capsule of immunodeficient mice engraft and mature well, as do renal vesicle stage (d14) control organoids. By contrast, d14 AGTR1-/- organoids fail to engraft due to insufficient pro-angiogenic VEGF-A expression. Notably, growth under hypoxic conditions induces VEGF-A expression and rescues engraftment of AGTR1-/- organoids at d14, as does ectopic expression of VEGF-A. We propose that PT dysgenesis in AR-RTD is primarily a non-autonomous consequence of delayed angiogenesis, starving PT at a critical time in their development.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Megan Slack
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ruth Schreiber
- Department of Pediatrics, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Kyle W McCracken
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Benjamin Dekel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Stem Cell Research Institute and division of pediatric nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
16
|
Shi X, Ding H, Li C, Liu L, Yu L, Zhu J, Wu J. Clinical utility of chromosomal microarray analysis and whole exome sequencing in foetuses with oligohydramnios. Ann Med 2023; 55:2215539. [PMID: 37243546 DOI: 10.1080/07853890.2023.2215539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/30/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023] Open
Abstract
OBJECTIVES To evaluate the clinical utility of chromosomal microarray analysis (CMA) and whole exome sequencing (WES) in foetuses with oligohydramnios. METHODS In this retrospective study, 126 fetuses with oligohydramnios at our centre from 2018 to 2021 were reviewed. The results of CMA and WES were analysed. RESULTS One hundred and twenty-four cases underwent CMA and 32 cases underwent WES. The detection rate of pathogenic/likely pathogenic (P/LP) copy number variant (CNV) by CMA was 1.6% (2/124). WES revealed P/LP variants in 21.8% (7/32) of the foetuses. Six (85.7%, 6/7) foetuses showed an autosomal recessive inheritance pattern. Three (42.9%, 3/7) variants were involved in the renin-angiotensin-aldosterone system (RAAS), which are the known genetic causes of autosomal recessive renal tubular dysgenesis (ARRTD). CONCLUSION CMA has low diagnostic utility for oligohydramnios, while WES offers obvious advantages in improving the detection rate. WES should be recommended for fetuses with oligohydramnios.
Collapse
Affiliation(s)
- Xiaomei Shi
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chen Li
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Liu
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - LiHua Yu
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Juan Zhu
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Wu
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
17
|
Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 2023; 19:709-720. [PMID: 37524861 DOI: 10.1038/s41581-023-00742-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
18
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
19
|
Leggatt GP, Seaby EG, Veighey K, Gast C, Gilbert RD, Ennis S. A Role for Genetic Modifiers in Tubulointerstitial Kidney Diseases. Genes (Basel) 2023; 14:1582. [PMID: 37628633 PMCID: PMC10454709 DOI: 10.3390/genes14081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
With the increased availability of genomic sequencing technologies, the molecular bases for kidney diseases such as nephronophthisis and mitochondrially inherited and autosomal-dominant tubulointerstitial kidney diseases (ADTKD) has become increasingly apparent. These tubulointerstitial kidney diseases (TKD) are monogenic diseases of the tubulointerstitium and result in interstitial fibrosis and tubular atrophy (IF/TA). However, monogenic inheritance alone does not adequately explain the highly variable onset of kidney failure and extra-renal manifestations. Phenotypes vary considerably between individuals harbouring the same pathogenic variant in the same putative monogenic gene, even within families sharing common environmental factors. While the extreme end of the disease spectrum may have dramatic syndromic manifestations typically diagnosed in childhood, many patients present a more subtle phenotype with little to differentiate them from many other common forms of non-proteinuric chronic kidney disease (CKD). This review summarises the expanding repertoire of genes underpinning TKD and their known phenotypic manifestations. Furthermore, we collate the growing evidence for a role of modifier genes and discuss the extent to which these data bridge the historical gap between apparently rare monogenic TKD and polygenic non-proteinuric CKD (excluding polycystic kidney disease).
Collapse
Affiliation(s)
- Gary P. Leggatt
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Eleanor G. Seaby
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| | - Kristin Veighey
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Renal Department, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Christine Gast
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Wessex Kidney Centre, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth PO6 3LY, UK
| | - Rodney D. Gilbert
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
- Department of Paediatric Nephrology, Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Sarah Ennis
- Human Genetics & Genomic Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.G.S.); (K.V.); (C.G.); (R.D.G.); (S.E.)
| |
Collapse
|
20
|
Jorge S, Kidd K, Vylet’al P, Nogueira E, Martin L, Howard K, Barešová V, Hodaňová K, Hnízda A, Moldovan O, Silveira C, Coutinho AM, Lopes JA, Bleyer AJ, Kmoch S, Živná M. Bi-allelic REN Mutations and Undetectable Plasma Renin Activity in a Patient With Progressive CKD. Kidney Int Rep 2023; 8:1112-1116. [PMID: 37180515 PMCID: PMC10166736 DOI: 10.1016/j.ekir.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sofia Jorge
- Department of Nephrology and Renal Transplant, Hospital de Santa Maria, CHULN, EPE, Lisbon, Portugal
| | - Kendrah Kidd
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Petr Vylet’al
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Estela Nogueira
- Department of Nephrology and Renal Transplant, Hospital de Santa Maria, CHULN, EPE, Lisbon, Portugal
| | - Lauren Martin
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Katrice Howard
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Veronika Barešová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Aleš Hnízda
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Oana Moldovan
- Genetic Department of Hospital de Santa Maria, CHULN, EPE, Lisbon, Portugal
| | - Catarina Silveira
- GenoMed - Diagnósticos de Medicina Molecular, S.A., Lisbon, Portugal
| | | | - José António Lopes
- Department of Nephrology and Renal Transplant, Hospital de Santa Maria, CHULN, EPE, Lisbon, Portugal
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| |
Collapse
|
21
|
Hureaux M, Heidet L, Vargas-Poussou R, Dorval G. [Major advances in pediatric nephro-genetics]. Med Sci (Paris) 2023; 39:234-245. [PMID: 36943120 DOI: 10.1051/medsci/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The rise of genetics in the last decades has allowed major advances in the understanding of the mechanisms leading to inherited kidney diseases. From the first positional cloning studies to the advent of high-throughput sequencing (NGS), genome analysis technologies have become increasingly efficient, with an extraordinary level of resolution. Moreover, sequencing prices have decreased from one million dollars for the sequencing of James Watson's genome in 2008, to a few hundred dollars for the sequencing of a genome today. Thus, molecular diagnosis has a central place in the diagnosis of these patients and influences the therapeutic management in many situations. However, although NGS is a powerful tool for the identification of variants involved in diseases, it also exposes to the risk of over-interpretation of certain variants, leading to erroneous diagnoses, requiring the use of specialists. In this review, we first propose a brief retrospective of the essential steps that led to the current knowledge and the development of NGS for the study of hereditary nephropathies in children. This review is then an opportunity to present the main hereditary nephropathies and the underlying molecular mechanisms. Among them, we emphasize ciliopathies, congenital anomalies of the kidney and urinary tract, podocytopathies and tubulopathies.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Inserm U970, Paris CardioVascular Research Center, université Paris Cité, faculté de médecine, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France
| | - Laurence Heidet
- Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Service de néphrologie pédiatrique, AP-HP, université Paris Cité, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Rosa Vargas-Poussou
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Guillaume Dorval
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Inserm U1163, Laboratoire des maladies rénales héréditaires, institut Imagine, université Paris Cité, France
| |
Collapse
|
22
|
Lucas C, Sauter KS, Steigert M, Mallet D, Wilmouth J, Olabe J, Plotton I, Morel Y, Aeberli D, Wagner F, Clevers H, Pandey AV, Val P, Roucher-Boulez F, Flück CE. Loss of LGR4/GPR48 causes severe neonatal salt wasting due to disrupted WNT signaling altering adrenal zonation. J Clin Invest 2023; 133:164915. [PMID: 36538378 PMCID: PMC9927937 DOI: 10.1172/jci164915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Disorders of isolated mineralocorticoid deficiency, which cause potentially life-threatening salt-wasting crisis early in life, have been associated with gene variants of aldosterone biosynthesis or resistance; however, in some patients no such variants are found. WNT/β-catenin signaling is crucial for differentiation and maintenance of the aldosterone-producing adrenal zona glomerulosa (zG). Herein, we describe a highly consanguineous family with multiple perinatal deaths and infants presenting at birth with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Whole exome sequencing revealed a homozygous splice variant in the R-SPONDIN receptor LGR4 gene (c.618-1G>C) regulating WNT signaling. The resulting transcripts affected protein function and stability and resulted in loss of Wnt/β-catenin signaling in vitro. The impact of LGR4 inactivation was analyzed by adrenal cortex-specific ablation of Lgr4, using Lgr4fl/fl mice mated with Sf1:Cre mice. Inactivation of Lgr4 within the adrenal cortex in the mouse model caused decreased WNT signaling, aberrant zonation with deficient zG, and reduced aldosterone production. Thus, human LGR4 mutations establish a direct link between LGR4 inactivation and decreased canonical WNT signaling, which results in abnormal zG differentiation and endocrine function. Therefore, variants in WNT signaling and its regulators should systematically be considered in familial hyperreninemic hypoaldosteronism.
Collapse
Affiliation(s)
- Cécily Lucas
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Michael Steigert
- Department of Pediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Delphine Mallet
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - James Wilmouth
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Julie Olabe
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Ingrid Plotton
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Yves Morel
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Daniel Aeberli
- Department of Rheumatology and Clinical Immunology/Allergology and
| | - Franca Wagner
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, Netherlands
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Pierre Val
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Florence Roucher-Boulez
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Kagan M, Pleniceanu O, Vivante A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2022; 37:2231-2243. [PMID: 35122119 DOI: 10.1007/s00467-021-05420-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
During the past decades, remarkable progress has been made in our understanding of the molecular basis of kidney diseases, as well as in the ability to pinpoint disease-causing genetic changes. Congenital anomalies of the kidney and urinary tract (CAKUT) are remarkably diverse, and may be either isolated to the kidney or involve other systems, and are notorious in their variable genotype-phenotype correlations. Genetic conditions underlying CAKUT are individually rare, but collectively contribute to disease etiology in ~ 16% of children with CAKUT. In this review, we will discuss basic concepts of kidney development and genetics, common causes of monogenic CAKUT, and the approach to diagnosing and managing a patient with suspected monogenic CAKUT. Altogether, the concepts presented herein represent an introduction to the emergence of nephrogenetics, a fast-growing multi-disciplinary field that is focused on deciphering the causes and manifestations of genetic kidney diseases as well as providing the framework for managing patients with genetic forms of CAKUT.
Collapse
Affiliation(s)
- Maayan Kagan
- Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Kidney Research Lab, The Institute of Nephrology and Hypertension, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Asaf Vivante
- Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Talpiot Medical Leadership Program, Tel HaShomer, Ramat Gan, Israel.
| |
Collapse
|
24
|
Econimo L, Schaeffer C, Zeni L, Cortinovis R, Alberici F, Rampoldi L, Scolari F, Izzi C. Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD): an emerging cause of genetic chronic kidney disease. Kidney Int Rep 2022; 7:2332-2344. [DOI: 10.1016/j.ekir.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022] Open
|
25
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
26
|
Vincent KM, Alrajhi A, Lazier J, Bonin B, Lawrence S, Weiler G, Armour CM. Expanding the clinical spectrum of autosomal-recessive renal tubular dysgenesis: Two siblings with neonatal survival and review of the literature. Mol Genet Genomic Med 2022; 10:e1920. [PMID: 35286024 PMCID: PMC9034669 DOI: 10.1002/mgg3.1920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 01/23/2023] Open
Abstract
Background Autosomal‐recessive renal tubular dysgenesis (AR‐RTD) is a rare genetic disorder caused by defects in the renin‐angiotensin system that manifests as fetal anuria leading to oligohydramnios and Potter sequence. Although the most common outcome is neonatal death from renal failure, pulmonary hypoplasia, and/or refractory arterial hypotension; several cases have been reported that describe survival past the neonatal period. Methods Herein, we report the first family with biallelic ACE variants and more than one affected child surviving past the neonatal period, as well as provide a review of the previously reported 18 cases with better outcomes. Results While both siblings with identical compound heterozygous ACE variants have received different treatments, neither required renal replacement therapy. We show that both vasopressin and fludrocortisone in the neonatal period may provide survival advantages, though outcomes may also be dependent on the type of gene variant, as well as other factors. Conclusion While AR‐RTD is most often a lethal disease in the neonatal period, it is not universally so. A better understanding of the factors affecting survival will help to guide prognostication and medical decision‐making.
Collapse
Affiliation(s)
- Krista M Vincent
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Afrah Alrajhi
- University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, Ottawa General Hospital, Ottawa, Ontario, Canada
| | - Joanna Lazier
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Brigitte Bonin
- University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, Ottawa General Hospital, Ottawa, Ontario, Canada
| | - Sarah Lawrence
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Gabrielle Weiler
- University of Ottawa, Ottawa, Ontario, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Christine M Armour
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Prenatal Screening Ontario (PSO), Better Outcomes Registry & Network (BORN) Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Bleyer AJ, Wolf MT, Kidd KO, Zivna M, Kmoch S. Autosomal dominant tubulointerstitial kidney disease: more than just HNF1β. Pediatr Nephrol 2022; 37:933-946. [PMID: 34021396 PMCID: PMC8722360 DOI: 10.1007/s00467-021-05118-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) refers to a group of disorders with a bland urinary sediment, slowly progressive chronic kidney disease (CKD), and autosomal dominant inheritance. Due to advances in genetic diagnosis, ADTKD is becoming increasingly recognized as a cause of CKD in both children and adults. ADTKD-REN presents in childhood with mild hypotension, CKD, hyperkalemia, acidosis, and anemia. ADTKD-UMOD is associated with gout and CKD that may present in adolescence and slowly progresses to kidney failure. HNF1β mutations often present in childhood with anatomic abnormalities such as multicystic or dysplastic kidneys, as well as CKD and a number of other extra-kidney manifestations. ADTKD-MUC1 is less common in childhood, and progressive CKD is its sole clinical manifestation, usually beginning in the late teenage years. This review describes the pathophysiology, genetics, clinical characteristics, diagnosis, and treatment of the different forms of ADTKD, with an emphasis on diagnosis. We also present data on kidney function in children with ADTKD from the Wake Forest Rare Inherited Kidney Disease Registry.
Collapse
Affiliation(s)
- Anthony J Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Matthias T Wolf
- Pediatric Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-0936, USA
| | - Kendrah O Kidd
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Zivna
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Research Unit of Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
28
|
Sicking M, Živná M, Bhadra P, Barešová V, Tirincsi A, Hadzibeganovic D, Hodaňová K, Vyleťal P, Sovová J, Jedličková I, Jung M, Bell T, Helms V, Bleyer AJ, Kmoch S, Cavalié A, Lang S. Phenylbutyrate rescues the transport defect of the Sec61α mutations V67G and T185A for renin. Life Sci Alliance 2022; 5:e202101150. [PMID: 35064074 PMCID: PMC8807872 DOI: 10.26508/lsa.202101150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/24/2022] Open
Abstract
The human Sec61 complex is a widely distributed and abundant molecular machine. It resides in the membrane of the endoplasmic reticulum to channel two types of cargo: protein substrates and calcium ions. The SEC61A1 gene encodes for the pore-forming Sec61α subunit of the Sec61 complex. Despite their ubiquitous expression, the idiopathic SEC61A1 missense mutations p.V67G and p.T185A trigger a localized disease pattern diagnosed as autosomal dominant tubulointerstitial kidney disease (ADTKD-SEC61A1). Using cellular disease models for ADTKD-SEC61A1, we identified an impaired protein transport of the renal secretory protein renin and a reduced abundance of regulatory calcium transporters, including SERCA2. Treatment with the molecular chaperone phenylbutyrate reversed the defective protein transport of renin and the imbalanced calcium homeostasis. Signal peptide substitution experiments pointed at targeting sequences as the cause for the substrate-specific impairment of protein transport in the presence of the V67G or T185A mutations. Similarly, dominant mutations in the signal peptide of renin also cause ADTKD and point to impaired transport of this renal hormone as important pathogenic feature for ADTKD-SEC61A1 patients as well.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Martina Živná
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pratiti Bhadra
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Veronika Barešová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Vyleťal
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Sovová
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Thomas Bell
- Department of Chemistry, University of Nevada, Reno, NV, USA
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology, Pre-clinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Fuchs MAA, Schrankl J, Leupold C, Wagner C, Kurtz A, Broeker KAE. Intact prostaglandin signaling through EP2 and EP4 receptors in stromal progenitor cells is required for normal development of the renal cortex in mice. Am J Physiol Renal Physiol 2022; 322:F295-F307. [PMID: 35037469 DOI: 10.1152/ajprenal.00414.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Cyclooxygenase (Cox) inhibitors are known to have severe side effects during renal development. These consist of reduced renal function, underdeveloped subcapsular glomeruli, interstitial fibrosis, and thinner cortical tissue. Global genetic deletion of Cox-2 mimics the phenotype observed after application of Cox inhibitors. This study aimed to investigate which cell types express Cox-2 and prostaglandin E2 receptors and what functions are mediated through this pathway during renal development. Expression of EP2 and EP4 mRNA was detected by RNAscope mainly in descendants of FoxD1+ stromal progenitors; EP1 and EP3, on the other hand, were expressed in tubules. Cox-2 mRNA was detected in medullary interstitial cells and macula densa cells. Functional investigations were performed with a cell-specific approach to delete Cox-2, EP2, and EP4 in FoxD1+ stromal progenitor cells. Our data show that Cox-2 expression in macula densa cells is sufficient to drive renal development. Deletion of EP2 or EP4 in FoxD1+ cells had no functional effect on renal development. Codeletion of EP2 and EP4 in FoxD1+ stromal cells, however, led to severe glomerular defects and a strong decline of glomerular filtration rate (1.316 ± 69.7 µL/min/100 g body wt in controls vs. 644.1 ± 64.58 µL/min/100 g body wt in FoxD1+/Cre EP2-/- EP4ff mice), similar to global deletion of Cox-2. Furthermore, EP2/EP4-deficient mice showed a significant increase in collagen production with a strong downregulation of renal renin expression. This study shows the distinct localization of EP receptors in mice. Functionally, we could identify EP2 and EP4 receptors in stromal FoxD1+ progenitor cells as essential receptor subtypes for normal renal development.NEW & NOTEWORTHY Cyclooxygenase-2 (Cox-2) produces prostaglandins that are essential for normal renal development. It is unclear in which cells Cox-2 and the receptors for prostaglandin E2 (EP receptors) are expressed during late nephrogenesis. This study identified the expression sites for EP subtypes and Cox-2 in neonatal mouse kidneys. Furthermore, it shows that stromal progenitor cells may require intact prostaglandin E2 signaling through EP2 and EP4 receptors for normal renal development.
Collapse
MESH Headings
- Animals
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Developmental
- Kidney Cortex/cytology
- Kidney Cortex/enzymology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Organogenesis
- Prostaglandins/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stromal Cells/enzymology
- Mice
Collapse
Affiliation(s)
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christina Leupold
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
30
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
31
|
Seltzsam S, Wang C, Zheng B, Mann N, Connaughton DM, Wu CHW, Schneider S, Schierbaum L, Kause F, Kolvenbach CM, Nakayama M, Dai R, Ottlewski I, Schneider R, Deutsch K, Buerger F, Klämbt V, Mao Y, Onuchic-Whitford AC, Nicolas-Frank C, Yousef K, Pantel D, Lai EW, Salmanullah D, Majmundar AJ, Bauer SB, Rodig NM, Somers MJG, Traum AZ, Stein DR, Daga A, Baum MA, Daouk GH, Tasic V, Awad HS, Eid LA, El Desoky S, Shalaby M, Kari JA, Fathy HM, Soliman NA, Mane SM, Shril S, Ferguson MA, Hildebrandt F. Reverse phenotyping facilitates disease allele calling in exome sequencing of patients with CAKUT. Genet Med 2022; 24:307-318. [PMID: 34906515 PMCID: PMC8876311 DOI: 10.1016/j.gim.2021.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/08/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.
Collapse
Affiliation(s)
- Steve Seltzsam
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Chunyan Wang
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bixia Zheng
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Nina Mann
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dervla M Connaughton
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Chen-Han Wilfred Wu
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sophia Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Luca Schierbaum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Franziska Kause
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Caroline M Kolvenbach
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Makiko Nakayama
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rufeng Dai
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Isabel Ottlewski
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ronen Schneider
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Konstantin Deutsch
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Florian Buerger
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Verena Klämbt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Youying Mao
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ana C Onuchic-Whitford
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Camille Nicolas-Frank
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Kirollos Yousef
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dalia Pantel
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ethan W Lai
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Daanya Salmanullah
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Amar J Majmundar
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Nancy M Rodig
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael J G Somers
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Avram Z Traum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Deborah R Stein
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ankana Daga
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michelle A Baum
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ghaleb H Daouk
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, Skopje, North Macedonia
| | - Hazem S Awad
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Loai A Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Sherif El Desoky
- Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia; Pediatric Nephrology Center of Excellence, Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Mohammed Shalaby
- Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia; Pediatric Nephrology Center of Excellence, Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Jameela A Kari
- Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia; Pediatric Nephrology Center of Excellence, Department of Pediatrics, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Hanan M Fathy
- Pediatric Nephrology Unit, University of Alexandria, Alexandria, Egypt
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael A Ferguson
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
32
|
The neonatal characteristics of congenital defects of the kidney and urinary tract – our experience. GINECOLOGIA.RO 2022. [DOI: 10.26416/gine.38.4.2022.7394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
33
|
Mabillard H, Sayer JA, Olinger E. Clinical and genetic spectra of autosomal dominant tubulointerstitial kidney disease. Nephrol Dial Transplant 2021; 38:271-282. [PMID: 34519781 PMCID: PMC9923703 DOI: 10.1093/ndt/gfab268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/23/2022] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a clinical entity defined by interstitial fibrosis with tubular damage, bland urinalysis and progressive kidney disease. Mutations in UMOD and MUC1 are the most common causes of ADTKD but other rarer (REN, SEC61A1), atypical (DNAJB11) or heterogeneous (HNF1B) subtypes have been described. Raised awareness, as well as the implementation of next-generation sequencing approaches, have led to a sharp increase in reported cases. ADTKD is now believed to be one of the most common monogenic forms of kidney disease and overall it probably accounts for ∼5% of all monogenic causes of chronic kidney disease. Through international efforts and systematic analyses of patient cohorts, critical insights into clinical and genetic spectra of ADTKD, genotype-phenotype correlations as well as innovative diagnostic approaches have been amassed during recent years. In addition, intense research efforts are addressed towards deciphering and rescuing the cellular pathways activated in ADTKD. A better understanding of these diseases and of possible commonalities with more common causes of kidney disease may be relevant to understand and target mechanisms leading to fibrotic kidney disease in general. Here we highlight recent advances in our understanding of the different subtypes of ADTKD with an emphasis on the molecular underpinnings and its clinical presentations.
Collapse
Affiliation(s)
- Holly Mabillard
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Eric Olinger
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Correspondence to: Eric Olinger; E-mail:
| |
Collapse
|
34
|
Kessel F, Steglich A, Hickmann L, Lira-Martinez R, Gerlach M, Sequeira-Lopez ML, Gomez RA, Hugo C, Todorov VT. Patterns of differentiation of renin lineage cells during nephrogenesis. Am J Physiol Renal Physiol 2021; 321:F378-F388. [PMID: 34338032 DOI: 10.1152/ajprenal.00151.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developmentally heterogeneous renin expressing cells serve as progenitors for mural, glomerular and tubular cells during nephrogenesis and are collectively termed renin lineage cells (RLCs). In this study, we quantified different renal vascular and tubular cell types based on specific markers, assessed proliferation, and de-novo differentiation in the RLC population. We used kidney sections of mRenCre-mT/mG mice throughout nephrogenesis. Marker positivity was evaluated in whole digitalized sections. At embryonic day 16, RLCs appeared in the developing kidney, and expression of all stained markers in RLCs was observed. The proliferation rate of RLCs did not differ from the proliferation rate of non-RLCs. The RLCs expanded mainly by de-novo differentiation (neogenesis). The fractions of RLCs originating from the stromal progenitors of the metanephric mesenchyme (renin producing cells, vascular smooth muscle cells, mesangial cells) decreased during nephrogenesis. In contrast, aquaporin 2 positive RLCs in the collecting duct system that embryonically emerges almost exclusively from the ureteric bud, expanded postpartum. The cubilin positive RLC fraction in the proximal tubule, deriving from the cap mesenchyme, remained constant. During nephrogenesis, RLCs were continuously detectable in the vascular and tubular compartments of the kidney. Therein, various patterns of RLC differentiation that depend on the embryonic origin of the cells were identified.
Collapse
Affiliation(s)
- Friederike Kessel
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anne Steglich
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Institute of Physiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ricardo Lira-Martinez
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gerlach
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Core Facility Cellular Imaging (CFCI), University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Maria Luisa Sequeira-Lopez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Christian Hugo
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
35
|
Song R, Yosypiv IV. Sequence variants in the renin-angiotensin system genes are associated with isolated multicystic dysplastic kidney in children. Pediatr Res 2021; 90:205-211. [PMID: 33173183 DOI: 10.1038/s41390-020-01255-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Multicystic dysplastic kidney (MCDK) is a common form of congenital cystic kidney disease in children. The etiology of MCDK remains unclear. Given an important role of the renin-angiotensin system in normal kidney development, we explored whether MCDK in children is associated with variants in the genes encoding renin-angiotensin system components by Sanger sequencing. METHODS The coding regions of renin (REN), angiotensinogen (AGT), ACE, and angiotensin 1 receptor (AGTR1) genes were amplified by PCR. The effect of DNA sequence variants on protein function was predicted with PolyPhen-2 software. RESULTS 3 novel and known AGT variants were found. 1 variant was probably damaging, 1 was possibly damaging and one was benign. Out of 7 REN variants, 4 were probably damaging and 3 were benign. Of 6 ACE variants, 3 were probably damaging and 3-benign. 3 AGTR1 variants were found. 2 variants were possibly damaging, and one was benign. CONCLUSION We report novel associations of sequence variants in REN, AGT, ACE, or AGTR1 genes in children with isolated MCDK in the United States. Our findings suggest a recessive disease model and support the hypothesis of multiple renin-angiotensin system gene involvement in MCDK. IMPACT Discovery of novel gene variants in renin-angiotensin genes in children with MCDK. Novel possibly damaging gene variants discovered. Multiple renin-angiotensin system gene variants are involved in MCDK.
Collapse
Affiliation(s)
- Renfang Song
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
36
|
Lin SY, Chuang GT, Hung CH, Lin WC, Jeng YM, Yen TA, Chang K, Chien YH, Hwu WL, Lee CN, Tsai IJ, Lee NC. Rapid Trio Exome Sequencing for Autosomal Recessive Renal Tubular Dysgenesis in Recurrent Oligohydramnios. Front Genet 2021; 12:606970. [PMID: 34234805 PMCID: PMC8255961 DOI: 10.3389/fgene.2021.606970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Oligohydramnios is not a rare prenatal finding. However, recurrent oligohydramnios is uncommon, and genetic etiology should be taken into consideration. We present two families with recurrent fetal oligohydramnios that did not respond to amnioinfusion. Rapid trio-whole-exome sequencing (WES) revealed mutations in the AGT gene in both families within 1 week. The first family had a compound heterozygous mutation with c.856 + 1G > T and c.857-619_1269 + 243delinsTTGCCTTGC changes. The second family had homozygous c.857-619_1269 + 243delinsTTGCCTTGC mutations. AGT gene mutation may lead to autosomal recessive renal tubular dysgenesis, a rare and lethal disorder that can result in early neonatal death. Both the alleles identified are known alleles associated with pathogenicity. Our findings suggest that trio-WES analysis may help rapidly identify causative etiologies that can inform prompt counseling and decision-making prenatally.
Collapse
Affiliation(s)
- Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Gwo-Tsann Chuang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hui Hung
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-An Yen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Karine Chang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Jung Tsai
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Tseng MH, Huang SM, Konrad M, Huang JL, Shaw SW, Tian YC, Chueh HY, Fan WL, Wu TW, Ding JJ, Chiang MC, Lin SH. Effect of Hydrocortisone on Angiotensinogen ( AGT) Mutation-Causing Autosomal Recessive Renal Tubular Dysgenesis. Cells 2021; 10:cells10040782. [PMID: 33916187 PMCID: PMC8065467 DOI: 10.3390/cells10040782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
We has identified a founder homozygous E3_E4 del: 2870 bp deletion + 9 bp insertion in AGT gene encoding angiotensinogen responsible for autosomal recessive renal tubular dysgenesis (ARRTD) with nearly-fatal outcome. High-dose hydrocortisone therapy successfully rescued one patient with an increased serum Angiotensinogen (AGT), Ang I, and Ang II levels. The pathogenesis of ARRTD caused by this AGT mutation and the potential therapeutic effect of hydrocortisone were examined by in vitro functional studies. The expression of this truncated AGT protein was relatively low with a dose-dependent manner. This truncated mutation diminished the interaction between mutant AGT and renin. The truncated AGT also altered the glucocorticoid receptor (GR)-dependent transactivation, indicating that AGT may affect the development of proximal convoluted tubule by alteration of glucocorticoid-dependent transactivation. In hepatocytes, hydrocortisone increased the AGT level by accentuating the stability of mutant AGT and increasing its binding with renin. Therefore, hydrocortisone may exert the therapeutic effect through the enhanced stability and interaction with renin of truncated AGT in patients carrying this AGT mutation.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan;
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital Münster, 481 Münster, Germany;
| | - Jing-Long Huang
- Division of Pediatric Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Steven W. Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital and Chang Gung University, Taipei 114, Taiwan;
| | - Ya-Chung Tian
- Division of Nephrology, Department of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Ho-Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 900, USA;
| | - Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Ming-Chou Chiang
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87927213; Fax: +886-2-87927134
| |
Collapse
|
38
|
Renin-angiotensin system in mammalian kidney development. Pediatr Nephrol 2021; 36:479-489. [PMID: 32072306 DOI: 10.1007/s00467-020-04496-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
Mutations in the genes of the renin-angiotensin system result in congenital anomalies of the kidney and urinary tract (CAKUT), the main cause of end-stage renal disease in children. The molecular mechanisms that cause CAKUT are unclear in most cases. To improve the care of children with CAKUT, it is critical to determine the underlying mechanisms of CAKUT. In this review, we discuss recent advances that have helped to better understand how disruption of the renin-angiotensin system during kidney development contributes to CAKUT.
Collapse
|
39
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
40
|
Viering DHHM, Bech AP, de Baaij JHF, Steenbergen EJ, Danser AHJ, Wetzels JFM, Bindels RJM, Deinum J. Functional tests to guide management in an adult with loss of function of type-1 angiotensin II receptor. Pediatr Nephrol 2021; 36:2731-2737. [PMID: 33768328 PMCID: PMC8370907 DOI: 10.1007/s00467-021-05018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Genetic loss of function of AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), or AGTR1 (type-1 angiotensin II receptor) leads to renal tubular dysgenesis (RTD). This syndrome is almost invariably lethal. Most surviving patients reach stage 5 chronic kidney disease at a young age. METHODS Here, we report a 28-year-old male with a homozygous truncating mutation in AGTR1 (p.Arg216*), who survived the perinatal period with a mildly impaired kidney function. In contrast to classic RTD, kidney biopsy showed proximal tubules that were mostly normal. During the subsequent three decades, we observed evidence of both tubular dysfunction (hyperkalemia, metabolic acidosis, salt-wasting and a urinary concentrating defect) and glomerular dysfunction (reduced glomerular filtration rate, currently ~30 mL/min/1.73 m2, accompanied by proteinuria). To investigate the recurrent and severe hyperkalemia, we performed a patient-tailored functional test and showed that high doses of fludrocortisone induced renal potassium excretion by 155%. Furthermore, fludrocortisone lowered renal sodium excretion by 39%, which would have a mitigating effect on salt-wasting. In addition, urinary pH decreased in response to fludrocortisone. Opposite effects on urinary potassium and pH occurred with administration of amiloride, further supporting the notion that a collecting duct is present and able to react to fludrocortisone. CONCLUSIONS This report provides living proof that even truncating loss-of-function mutations in AGTR1 are compatible with life and relatively good GFR and provides evidence for the prescription of fludrocortisone to treat hyperkalemia and salt-wasting in such patients.
Collapse
Affiliation(s)
- Daan H. H. M. Viering
- grid.10417.330000 0004 0444 9382Department of Physiology, Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Anneke P. Bech
- grid.415930.aDepartment of Nephrology, Rijnstate, Arnhem, the Netherlands
| | - Jeroen H. F. de Baaij
- grid.10417.330000 0004 0444 9382Department of Physiology, Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Eric J. Steenbergen
- grid.10417.330000 0004 0444 9382Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - A. H. Jan Danser
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Jack F. M. Wetzels
- grid.10417.330000 0004 0444 9382Department of Nephrology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - René J. M. Bindels
- grid.10417.330000 0004 0444 9382Department of Physiology, Radboud University Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Centre, Huispost 463, Geert Grooteplein 8, 6525, GA, Nijmegen, the Netherlands.
| |
Collapse
|
41
|
Demirgan EB, Saygili S, Canpolat N, Sever L, Kilicaslan I, Taylan D, Caliskan S, Ozaltin F. AGTR1-related Renal Tubular Dysgeneses May Not Be Fatal. Kidney Int Rep 2020; 6:846-852. [PMID: 33733001 PMCID: PMC7938057 DOI: 10.1016/j.ekir.2020.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ebru Burcu Demirgan
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Seha Saygili
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nur Canpolat
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Lale Sever
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Isin Kilicaslan
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Doruk Taylan
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Turkey
| | - Salim Caliskan
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Turkey.,Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, Turkey
| |
Collapse
|
42
|
Rotem-Grunbaum B, Landau D. Genetic renal disease classification by hormonal axes. Pediatr Nephrol 2020; 35:2211-2219. [PMID: 31828468 DOI: 10.1007/s00467-019-04437-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
The kidneys, which regulate many homeostatic pathways, are also a major endocrinological target organ. Many genetic renal diseases can be classified according to the affected protein along such endocrinological pathways. In this review, we examine the hypothesis that a more severe phenotype is expected as the affected protein is located more distally along such pathways. Thus, the location of a defect along its endocrinological pathway should be taken into consideration, in addition to the mutation type, when assessing genetic renal disease severity.
Collapse
Affiliation(s)
- Bar Rotem-Grunbaum
- Department of Pediatrics B, Schneider Children's Medical Center of Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Landau
- Department of Pediatrics B, Schneider Children's Medical Center of Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
43
|
Wilson PC, Love-Gregory L, Corliss M, McNulty S, Heusel JW, Gaut JP. Beyond Panel-Based Testing: Exome Analysis Increases Sensitivity for Diagnosis of Genetic Kidney Disease. KIDNEY360 2020; 1:772-780. [PMID: 35372954 PMCID: PMC8815744 DOI: 10.34067/kid.0001342020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/12/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Next-generation sequencing (NGS) is a useful tool for evaluating patients with suspected genetic kidney disease. Clinical practice relies on the use of targeted gene panels that are ordered based on patient presentation. We compare the diagnostic yield of clinical panel-based testing to exome analysis. METHODS In total, 324 consecutive patients underwent physician-ordered, panel-based NGS testing between December 2014 and October 2018. Gene panels were available for four clinical phenotypes, including atypical hemolytic uremic syndrome (n=224), nephrotic syndrome (n=56), cystic kidney disease (n=26), and Alport syndrome (n=13). Variants were analyzed and clinical reports were signed out by a pathologist or clinical geneticist at the time of testing. Subsequently, all patients underwent retrospective exome analysis to detect additional clinically significant variants in kidney disease genes that were not analyzed as part of the initial clinical gene panel. Resulting variants were classified according to the American College of Medical Genetics and Genomics 2015 guidelines. RESULTS In the initial physician-ordered gene panels, we identified clinically significant pathogenic or likely pathogenic variants in 13% of patients (n=42/324). CFHR3-CFHR1 homozygous deletion was detected in an additional 13 patients with aHUS without a pathogenic or likely pathogenic variant. Diagnostic yield of the initial physician-ordered gene panel was 20% and varied between groups. Retrospective exome analysis identified 18 patients with a previously unknown pathogenic or likely pathogenic variant in a kidney disease gene and eight patients with a high-risk APOL1 genotype. Overall, retrospective exome analysis increased the diagnostic yield of panel-based testing from 20% to 30%. CONCLUSIONS These results highlight the importance of a broad and collaborative approach between the clinical laboratory and their physician clients that employs additional analysis when a targeted panel of kidney disease-causing genes does not return a clinically meaningful result.
Collapse
Affiliation(s)
- Parker C. Wilson
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Latisha Love-Gregory
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Meagan Corliss
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Samantha McNulty
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jonathan W. Heusel
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph P. Gaut
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
44
|
Tseng MH, Huang SM, Huang JL, Fan WL, Konrad M, Shaw SW, Lien R, Chien HP, Ding JJ, Wu TW, Tsai JD, Tian YC, Lee HJ, Cheng PJ, Hsu JF, Lin SH. Autosomal Recessive Renal Tubular Dysgenesis Caused by a Founder Mutation of Angiotensinogen. Kidney Int Rep 2020; 5:2042-2051. [PMID: 33163725 PMCID: PMC7609895 DOI: 10.1016/j.ekir.2020.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Autosomal recessive renal tubular dysgenesis (ARRTD) caused by inactivation mutations in AGT, REN, ACE, and AGTR is a very rare but fatal disorder with an unknown prevalence. Methods We report 6 Taiwanese individuals with ARRTD from 6 unrelated families diagnosed by renal histology. Clinical features, outcome, and prevalence of carrier heterozygosity were examined. Results All patients exhibited antenatal oligohydramnios, postnatal anuria, pulmonary hypoplasia, and profound hypotension refractory to interventions. Angiotensinogen (AGT) protein levels were diminished in the liver, along with reduced serum AGT, angiotensin I (Ang I) and angiotensin II (Ang II) levels. Neonatal demise occurred in all but 1 case. All individuals carried the same homozygous E3_E4 del:2870bp deletion+9bp insertion in AGT, which led to a truncated protein (1-292 amino acid). The allelic frequency of this heterozygous AGT mutation was approximately 1.2% (6/500), suggesting that ARRTD may not be exceedingly rare in Taiwan. This mutation results in skipping of exons encoding the serpin domain of AGT, which is important for renin interaction and the generation of truncated protein. In silico modeling revealed a diminished interaction between mutant AGT and renin. One patient survived after responding to high-dose hydrocortisone therapy, with resolution of profound hypotension, accompanied by an increase in serum AGT, Ang I, and Ang II levels. Conclusion This AGT mutation may lead to the diminished interaction with renin and decreased Ang I and Ang II generation. Hydrocortisone may potentially rescue cases of ARRTD caused by this truncated AGT.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Long Huang
- Division of Pediatric Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital Münster, Münster, Germany
| | - Steven W. Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Reyin Lien
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ping Chien
- Department of Pathology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jhao-Jhuang Ding
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ya-Chung Tian
- Division of Nephrology, Department of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Jen-Fu Hsu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, National Defense Medical Center, Taiwan
- Correspondence: Shih-Hua Lin, Division of Nephrology, Department of Medicine, Tri-Service General Hospital, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
45
|
Min J, Cho MH, Bae SP, Shin SH, Ha IS, Cheong HI, Kang HG. A Premature Baby with Severe Oligohydramnios and Hypotension: a Case Report of Renal Tubular Dysgenesis. J Korean Med Sci 2020; 35:e283. [PMID: 32808512 PMCID: PMC7431287 DOI: 10.3346/jkms.2020.35.e283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/14/2020] [Indexed: 11/20/2022] Open
Abstract
Renal tubular dysgenesis (RTD) is a rare fatal disorder in which there is poor development of proximal tubules, leading to oligohydramnios and the Potter sequences. RTD occurs secondary to renin-angiotensin system (RAS) blockade during the early stages of fetal development or due to autosomal recessive mutation of genes in the RAS pathway. A boy born at 33+1 weeks due to cord prolapse was found to be anuric and hypotensive. Pregnancy was complicated by severe oligohydramnios from gestational age 28+4 weeks. Abdominal sonography revealed diffuse globular enlargement of both kidneys with increased cortical parenchymal echogenicity. Infantogram showed a narrow thoracic cage and skull X-ray showed large fontanelles and wide sutures suggestive of ossification delay. Basal plasma renin activity was markedly elevated and angiotensin-converting enzyme was undetectable. Despite adequate use of medications, peritoneal dialysis, and respiratory support, he did not recover and expired on the 23rd day of life. At first, autosomal recessive polycystic kidney disease was suspected, but severe oligohydramnios along with refractory hypotension, anuria, skull ossification delay and high renin levels made RTD suspicious. ACE gene analysis revealed compound heterozygous pathogenic variations of c.1454.dupC in exon 9 and c.2141dupA in exon 14, confirming RTD. Based on our findings, we propose that, although rare, RTD should be suspected in patients with severe oligohydramnios and refractory hypotension.
Collapse
Affiliation(s)
- Jeesu Min
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Myung Hyun Cho
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
| | - Seong Phil Bae
- Department of Pediatrics, Soonchunhyang University Hospital, Seoul, Korea
| | - Seung Han Shin
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Il Soo Ha
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Wide River Institute of Immunology, Seoul National University, Seoul, Korea.
| |
Collapse
|
46
|
Dilliott AA, Wang J, Brown E, Singh G, Shkrum MJ, Clin M, Rupar CA, Hegele RA, Siu VM. A novel homozygous variant in REN in a family presenting with classic features of disorders involving the renin-angiotensin pathway, without renal tubular dysgenesis. Am J Med Genet A 2020; 182:2284-2290. [PMID: 33043632 DOI: 10.1002/ajmg.a.61780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Autosomal recessively inherited pathogenic variants in genes associated with the renin-angiotensin-aldosterone system (RAAS) result in early onset oligohydramnios and clinical features of the Potter sequence, typically in association with proximal renal tubules dysgenesis. We describe two siblings and a first cousin who had severe oligohydramnios in the second trimester, and presented at birth with loose skin, wide fontanelles and sutures, and pulmonary insufficiency. Two had refractory hypotension during their brief lives and one received palliative care after birth. All were found to have a homozygous nonsense variant, REN: c.891delG; p.Tyr287*, on exome sequencing. Autopsy limited to the genitourinary system in two of the children revealed normal renal tubular histology in both. Immunoblotting confirmed diminished expression of renin within cultured skin fibroblasts. To our knowledge, this is the first identification of an association between biallelic variants in REN and oligohydramnios in the absence of renal tubular dysgenesis. Due to its role in the RAAS, it has previously been proposed that the decreased expression of REN results in hypotension, ischemia, and decreased urine production. We suggest sequencing of genes in the RAAS, including REN, should be considered in cases of severe early onset oligohydramnios, even when renal morphology and histology are normal.
Collapse
Affiliation(s)
- Allison A Dilliott
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Emma Brown
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gagandeep Singh
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J Shkrum
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Charles Anthony Rupar
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Victoria Mok Siu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.,Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
47
|
Živná M, Kidd K, Zaidan M, Vyleťal P, Barešová V, Hodaňová K, Sovová J, Hartmannová H, Votruba M, Trešlová H, Jedličková I, Sikora J, Hůlková H, Robins V, Hnízda A, Živný J, Papagregoriou G, Mesnard L, Beck BB, Wenzel A, Tory K, Häeffner K, Wolf MTF, Bleyer ME, Sayer JA, Ong ACM, Balogh L, Jakubowska A, Łaszkiewicz A, Clissold R, Shaw-Smith C, Munshi R, Haws RM, Izzi C, Capelli I, Santostefano M, Graziano C, Scolari F, Sussman A, Trachtman H, Decramer S, Matignon M, Grimbert P, Shoemaker LR, Stavrou C, Abdelwahed M, Belghith N, Sinclair M, Claes K, Kopel T, Moe S, Deltas C, Knebelmann B, Rampoldi L, Kmoch S, Bleyer AJ. An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes. Kidney Int 2020; 98:1589-1604. [PMID: 32750457 DOI: 10.1016/j.kint.2020.06.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/05/2023]
Abstract
There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum-Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct.
Collapse
Affiliation(s)
- Martina Živná
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kendrah Kidd
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohamad Zaidan
- Service de Néphrologie‒Transplantation, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Petr Vyleťal
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Barešová
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Hodaňová
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Sovová
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Hartmannová
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miroslav Votruba
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Trešlová
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Jedličková
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Sikora
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Hůlková
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Victoria Robins
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Aleš Hnízda
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jan Živný
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gregory Papagregoriou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus
| | - Laurent Mesnard
- Sorbonne Université, Urgences Néphrologiques et Transplantation Rénale, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Tenon, Paris, France
| | - Bodo B Beck
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Human Genetics, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Center for Rare Diseases Cologneies(ZSEK), Cologne, Germany
| | - Andrea Wenzel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Human Genetics, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC) and Center for Rare Diseases Cologneies(ZSEK), Cologne, Germany
| | - Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Semmelweis University, Budapest, Hungary; First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Karsten Häeffner
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Matthias T F Wolf
- Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael E Bleyer
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - John A Sayer
- Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Lídia Balogh
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Anna Jakubowska
- Department of Pediatric Nephrology Medical University Wrocław, Poland
| | - Agnieszka Łaszkiewicz
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rhian Clissold
- Exeter Kidney Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Charles Shaw-Smith
- Exeter Kidney Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, UK
| | - Raj Munshi
- Division of Nephrology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Robert M Haws
- Pediatrics-Nephrology, Marshfield Medical Center, Marshfield, Wisconsin, USA
| | - Claudia Izzi
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and Montichiari Hospital, Brescia, Italy
| | - Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine, Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | | | - Claudio Graziano
- Medical Genetics Unit, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and Montichiari Hospital, Brescia, Italy
| | - Amy Sussman
- Department of Medicine, Division of Nephrology, University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Stephane Decramer
- Pediatric Nephrology, Centre Hospitalier Universitaire de Toulouse (CHU de Toulouse), Toulouse, France; France Rare Renal Disease Reference Centre (SORARE), Toulouse, France; Centre Hospitalier Universitaire de Toulouse (CHU de Toulouse), Toulouse, France
| | - Marie Matignon
- AP-HP (Assistance Publique-Hôpitaux de Paris), Nephrology and Renal Transplantation Department, Institut Francilien de Recherche en Néphrologie et Transplantation (IFRNT), Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Créteil, France; Université Paris-Est-Créteil, (UPEC), DHU (Département Hospitalo-Universitaire) VIC (Virus-Immunité-Cancer), IMRB (Institut Mondor de Recherche Biomédicale), Equipe 21, INSERM U 955, Créteil, France
| | - Philippe Grimbert
- AP-HP (Assistance Publique-Hôpitaux de Paris), Nephrology and Renal Transplantation Department, Institut Francilien de Recherche en Néphrologie et Transplantation (IFRNT), Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Créteil, France; Université Paris-Est-Créteil, (UPEC), DHU (Département Hospitalo-Universitaire) VIC (Virus-Immunité-Cancer), IMRB (Institut Mondor de Recherche Biomédicale), Equipe 21, INSERM U 955, Créteil, France; AP-HP (Assistance Publique-Hôpitaux de Paris), CIC-BT 504, Créteil, France
| | - Lawrence R Shoemaker
- Division of Nephrology, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | | | - Mayssa Abdelwahed
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Neila Belghith
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Medical Genetics Department of Hedi Chaker Hospital, Sfax, Tunisia
| | - Matthew Sinclair
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Kathleen Claes
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium; Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Tal Kopel
- Nephrology Division, University of Montreal Hospital Centre, Hopital Saint-Luc, Montréal, Québec, Canada
| | - Sharon Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus
| | - Bertrand Knebelmann
- Department of Nephrology‒Transplantation, Necker Hospital, APHP, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Département Biologie cellulaire, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stanislav Kmoch
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony J Bleyer
- Research Unit of Rare Diseases, Department of Pediatric and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic; Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
48
|
Cao Y, Kumar S, Namkung Y, Gagnon L, Cho A, Laporte SA. Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation. J Biol Chem 2020; 295:13169-13180. [PMID: 32703898 DOI: 10.1074/jbc.ra120.014330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Indexed: 01/14/2023] Open
Abstract
The angiotensin II (AngII) type 1 receptor (AT1R), a member of the G protein-coupled receptor (GPCR) family, signals through G proteins and β-arrestins, which act as adaptors to regulate AT1R internalization and mitogen-activated protein kinase (MAPK) ERK1/2 activation. β-arrestin-dependent ERK1/2 regulation is the subject of important studies because its spatiotemporal control remains poorly understood for many GPCRs, including AT1R. To study the link between β-arrestin-dependent trafficking and ERK1/2 signaling, we investigated three naturally occurring AT1R variants that show distinct receptor-β-arrestin interactions: A163T, T282M, and C289W. Using bioluminescence resonance energy transfer (BRET)-based and conformational fluorescein arsenical hairpin-BRET sensors coupled with high-resolution fluorescence microscopy, we show that all AT1R variants form complexes with β-arrestin2 at the plasma membrane and efficiently internalize into endosomes upon AngII stimulation. However, mutant receptors imposed distinct conformations in β-arrestin2 and differentially impacted endosomal trafficking and MAPK signaling. Notably, T282M accumulated in endosomes, but its ability to form stable complexes following internalization was reduced, markedly impairing its ability to co-traffic with β-arrestin2. We also found that despite β-arrestin2 overexpression, T282M's and C289W's residency with β-arrestin2 in endosomes was greatly reduced, leading to decreased β-arrestin-dependent ERK1/2 activation, faster recycling of receptors to the plasma membrane, and impaired AngII-mediated proliferation. Our findings reveal that naturally occurring AT1R variants alter the patterns of receptor/β-arrestin2 trafficking and suggest conformationally dependent β-arrestin-mediated MAPK activation as well as endosomal receptor-β-arrestin complex stabilization in the mitogenic response of AT1R.
Collapse
Affiliation(s)
- Yubo Cao
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Sahil Kumar
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Yoon Namkung
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Laurence Gagnon
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Aaron Cho
- Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University Health Center, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
49
|
Al-Hamed MH, Sayer JA, Alsahan N, Tulbah M, Kurdi W, Ambusaidi Q, Ali W, Imtiaz F. Novel loss of function variants in FRAS1 AND FREM2 underlie renal agenesis in consanguineous families. J Nephrol 2020; 34:893-900. [PMID: 32643034 DOI: 10.1007/s40620-020-00795-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Congenital anomalies of the kidney and urinary tract (CAKUT) are a group of abnormalities that affect structure of the kidneys or other structures of the urinary tract. The majority of CAKUT are asymptomatic and are diagnosed prenatally by ultrasound scanning or found incidentally in postnatal life. CAKUT varies in severity and may lead to life-threatening kidney failure and end-stage kidney disease. Renal agenesis, a severe form of CAKUT, is a congenital absence of one or both kidneys. Bilateral renal agenesis belongs to a group of prenatally lethal renal diseases and is often detected on fetal ultrasound scanning during the investigation of oligohydramnios. Approximately 40% of fetuses with bilateral renal agenesis are stillborn or die a few hours postnatally. Mutations in many renal development genes have been shown to be associated with renal agenesis. METHODS Six consanguineous Saudi Arabian families were recruited to study the molecular genetic causes of recurrent miscarriages and lost fetuses due to oligohydramnios, renal agenesis and other congenital anomalies. Whole exome sequencing was employed to underlying detect genetic defects. RESULTS Novel loss of function variants were detected in FRAS1 and FREM2. In FRAS1, a homozygous splice site variant c.9780+2T>C was found in an affected fetus, segregating form each parent. In addition, in three other families both parents were heterozygous for a frameshift variant (c.8981dupT; p.His2995Profs*3) and splice site variants (c.5217+1G>C and c.8098+2T>A), respectively. In FREM2, a homozygous nonsense variant (c.2303C>G; p.Ser768*) was found in an affected fetus, segregating from both parents. In another family, both parents carried a FREM2 heterozygous frameshift variant (c.3969delC; p.Asn1323Lysfs*5). CONCLUSION We describe consanguineous families with clinical features of antenatal oligohydramnios and bilateral renal agenesis, in whom we have identified novel pathogenic variants in FRAS1 and FREM2. These finding highlights the association between mutations in FRAS1 and FREM2 and antenatal/perinatal death.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia. .,Saudi Diagnostics Laboratory, KFSHI, P. O. Box 6802, Riyadh, 12311, Saudi Arabia.
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Nada Alsahan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | | | - Wafaa Ali
- Saudi Diagnostics Laboratory, KFSHI, P. O. Box 6802, Riyadh, 12311, Saudi Arabia
| | - Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia.,Saudi Diagnostics Laboratory, KFSHI, P. O. Box 6802, Riyadh, 12311, Saudi Arabia
| |
Collapse
|
50
|
Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci U S A 2020; 117:15137-15147. [PMID: 32554502 DOI: 10.1073/pnas.2002328117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA modifications play a fundamental role in cellular function. Pseudouridylation, the most abundant RNA modification, is catalyzed by the H/ACA small ribonucleoprotein (snoRNP) complex that shares four core proteins, dyskerin (DKC1), NOP10, NHP2, and GAR1. Mutations in DKC1, NOP10, or NHP2 cause dyskeratosis congenita (DC), a disorder characterized by telomere attrition. Here, we report a phenotype comprising nephrotic syndrome, cataracts, sensorineural deafness, enterocolitis, and early lethality in two pedigrees: males with DKC1 p.Glu206Lys and two children with homozygous NOP10 p.Thr16Met. Females with heterozygous DKC1 p.Glu206Lys developed cataracts and sensorineural deafness, but nephrotic syndrome in only one case of skewed X-inactivation. We found telomere attrition in both pedigrees, but no mucocutaneous abnormalities suggestive of DC. Both mutations fall at the dyskerin-NOP10 binding interface in a region distinct from those implicated in DC, impair the dyskerin-NOP10 interaction, and disrupt the catalytic pseudouridylation site. Accordingly, we found reduced pseudouridine levels in the ribosomal RNA (rRNA) of the patients. Zebrafish dkc1 mutants recapitulate the human phenotype and show reduced 18S pseudouridylation, ribosomal dysregulation, and a cell-cycle defect in the absence of telomere attrition. We therefore propose that this human disorder is the consequence of defective snoRNP pseudouridylation and ribosomal dysfunction.
Collapse
|