1
|
Fraser SD, Harvey RJ. The emerging role of glycine receptor α2 subunit defects in neurodevelopmental disorders. Front Mol Neurosci 2025; 18:1550863. [PMID: 40007572 PMCID: PMC11850347 DOI: 10.3389/fnmol.2025.1550863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Rare neurodevelopmental disorders (NDDs) are one of the most significant unmet challenges in healthcare due to their lifelong nature, high management costs, and recurrence within families. This review will focus on newly-emerging genetic forms of NDDs resulting from variants in the glycine receptor (GlyR) α2 subunit gene. Studies using Glra2 knockout mice have convincingly demonstrated that GlyR α2 is essential for cortical interneuron migration and progenitor homeostasis. Genetic inactivation of GlyR α2 impairs the capacity of apical progenitors to generate basal progenitors, resulting in an overall reduction of projection neurons in the cerebral cortex. As a result, microcephaly is observed in newborn Glra2 knockout mice, as well as defects in neuronal morphology, increased susceptibility to seizures, and defects in novel object recognition, motor memory consolidation, righting reflexes, novelty-induced locomotion in the open field test, and motivational reward tasks. Consistent with these findings, we and others have identified missense variants and microdeletions in the human GlyR α2 subunit gene (GLRA2) in individuals with autism spectrum disorder (ASD), developmental delay (DD) and/or intellectual disability (ID), often accompanied by microcephaly, language delay and epilepsy. In this review, we highlight the critical role of the GlyR α2 subunit revealed by knockout mice and our current understanding of GlyR α2 pathomechanisms in human NDDs. Finally, we will consider the current gaps in our knowledge, which include: (i) Limited functional validation for GlyR α2 missense variants associated with human NDDs; (ii) The lack of gain-of-function GlyR α2 mouse models; (iii) Our limited knowledge of GlyR α2 interacting proteins. We also highlight potential future developments in the field, including routes to personalized medicines for individuals with GlyR α2 mutations.
Collapse
Affiliation(s)
- Sean D. Fraser
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Robert J. Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| |
Collapse
|
2
|
Ceder MM, Magnusson KA, Weman HM, Henriksson K, Andréasson L, Lindström T, Wiggins O, Lagerström MC. The mRNA expression profile of glycine receptor subunits alpha 1, alpha 2, alpha 4 and beta in female and male mice. Mol Cell Neurosci 2024; 131:103976. [PMID: 39580061 DOI: 10.1016/j.mcn.2024.103976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/25/2024] Open
Abstract
Glycine receptors are ligand-gated chloride-selective channels that control excitability in the central nervous system (CNS). Herein, we have investigated the mRNA expression of the glycine receptor alpha 1 (Glra1), alpha 2 (Glra2), alpha 4 (Glra4) and the beta (Glrb) subunits, in adult female and male mice. Single-cell RNA sequencing data re-analysis of the Zeisel et al. (2018) dataset indicated widespread expression of Glra1, Glra2 and Glrb in the CNS, while only a few cells in the cortex, striatum, thalamus, midbrain and the spinal cord expressed Glra4. Highest occurrence of Glra1, Glra2 and Glrb were found in the brainstem. Moreover, Glra1 and Glrb were revealed to have the highest occurrences in the spinal cord of the investigated subunits. However, both Glra2 and Glrb had a more widespread expression in the CNS compared with Glra1 and Glra4. Bulk quantitative real-time-PCR (qRT-PCR) analysis revealed Glra1 expression in the hypothalamus, thalamus, brainstem and the spinal cord, and widespread, but low, Glra2 and Glrb expression in the CNS. Moreover, Glrb could be detected in a few visceral organs. Additionally, females and males were found to express Glra1, Glra2 and Glrb differently in certain brain areas such as the brainstem. Expression levels of Glra4 were too low to be detected using qRT-PCR. Lastly, RNAscope spatially validated the expression of Glra1, Glra2 and Glrb in the areas indicated by the single-cell and bulk analyses, and further revealed that Glra4 can be detected in the cortex, amygdala, hypothalamus, thalamus, brainstem, especially the cochlear nucleus, and in the spinal cord.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hannah M Weman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Andréasson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Teresa Lindström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oskar Wiggins
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Winklehner M, Wickel J, Gelpi E, Brämer D, Rauschenberger V, Günther A, Bauer J, Serra AS, Jauk P, Villmann C, Höftberger R, Geis C. Progressive Encephalomyelitis With Rigidity and Myoclonus With Glycine Receptor and GAD65 Antibodies: Case Report and Potential Mechanisms. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200298. [PMID: 39213470 PMCID: PMC11368231 DOI: 10.1212/nxi.0000000000200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a severe form of stiff-person spectrum disorder that can be associated with antibodies against surface antigens (glycine receptor (GlyR), dipeptidyl-peptidase-like-protein-6) and intracellular antigens (glutamate decarboxylase (GAD65), amphiphysin). METHODS We report clinico-pathologic findings of a PERM patient with coexisting GlyR and GAD65 antibodies. RESULTS A 75-year-old man presented with myoclonus and pain of the legs, subsequently developed severe motor symptoms, hyperekplexia, a pronounced startle reflex, hallucinations, dysautonomia, and died 10 months after onset despite extensive immunotherapy, symptomatic treatment, and continuous intensive care support. Immunotherapy comprised corticosteroids, IVIG, plasmapheresis, immunoadsorption, cyclophosphamide, and bortezomib. Intensive care treatment and permanent isoflurane sedation was required for more than 20 weeks. CNS tissue revealed neuronal loss, astrogliosis and microgliosis, representing a pallido-nigro-dentato-bulbar-spinal degeneration pattern, specifically along GlyR and GAD expression sites. Neurons showed pSTAT1, MHC class I, and GRP78 upregulation. Inflammation was moderate and characterized by CD8+ T cells and single CD20+/CD79a+ B/plasma cells. Focal tau-positive thread-like deposits were detected in gliotic brainstem areas. In the spinal cord, GlyR, glycine transporter-2, and GAD67 expression were strongly reduced. DISCUSSION A possible potentiating effect of pathogenic GlyR antibodies together with T cells directed against neurons may have led to the severe and progressive clinical course.
Collapse
Affiliation(s)
- Michael Winklehner
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Jonathan Wickel
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Ellen Gelpi
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Dirk Brämer
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Vera Rauschenberger
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Albrecht Günther
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Jan Bauer
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Anika Simonovska Serra
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Philipp Jauk
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Carmen Villmann
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Romana Höftberger
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| | - Christian Geis
- From the Division of Neuropathology and Neurochemistry (M.W., E.G., R.H.), Department of Neurology, Medical University of Vienna; Department of Neurology (M.W.), Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria; Section of Translational Neuroimmunology (J.W., D.B., A.G., C.G.), Department of Neurology, Jena University Hospital, Germany; Comprehensive Center for Clinical Neurosciences and Mental Health (E.G., R.H.), Medical University of Vienna, Austria; Institute of Clinical Neurobiology (V.R., C.V.), University Hospital, Julius-Maximilians-University of Würzburg, Germany; Department of Neuroimmunology (J.B.), Center for Brain Research; and Center for Medical Physics and Biomedical Engineering (A.S.S., P.J.), Medical University of Vienna, Austria
| |
Collapse
|
4
|
Ma K, Zhang C, Zhang H, An C, Li G, Cheng L, Li M, Ren M, Bai Y, Liu Z, Ji S, Liu X, Gao J, Zhang Z, Wu X, Chen X. High-Salt Diet Accelerates Neuron Loss and Anxiety in APP/PS1 Mice Through Serpina3n. Int J Mol Sci 2024; 25:11731. [PMID: 39519278 PMCID: PMC11546851 DOI: 10.3390/ijms252111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
High salt (HS) consumption is an independent risk factor for neurodegenerative diseases such as dementia, stroke, and cerebral small vessel disease related to cognitive decline. Recently, Alzheimer's disease-like pathology changes have been reported as consequences of a HS diet in wild-type (wt) mice. However, it has not been revealed how HS diets accelerate the progress of Alzheimer's disease (AD) in APP/PS1 mice. Here, we fed APP/PS1 mice a HS diet or normal diet (ND) for six months; the effects of the HS/ND on wt mice were also observed. The results of our behavior test reveal that the HS diet exacerbates anxiety, β-amyloid overload, neuron loss, and synapse damage in the hippocampi of APP/PS1 mice; this was not observed in HS-treated wt mice. RNA sequencing shows that nearly all serpin family members were increased in the hippocampus of HS-treated APP/PS1 mice. Gene function analysis showed that a HS diet induces neurodegeneration, including axon dysfunction and neuro-ligand-based dysfunction, and regulates serine protein inhibitor activities. The mRNA and protein levels of Serpina3n were dramatically increased. Upregulated Serpina3n may be the key for β-amyloid aggregation and neuronal loss in the hippocampus of HS-treated APP/PS1 mice. Serpina3n inhibition attenuated the anxiety and increased the number of neurons in the hippocampal CA1(cornu ammonis) region of APP/PS1 mice. Our study provides novel insights into the mechanisms by which excessive HS diet deteriorates anxiety in AD mice. Therefore, decreasing daily dietary salt consumption constitutes a pivotal public health intervention for mitigating the progression of neuropathology, especially for old patients and those with neurodegenerative disease.
Collapse
Affiliation(s)
- Kaige Ma
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chenglin Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Hanyue Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chanyuan An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Ge Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Lixue Cheng
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Mai Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Minghe Ren
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Yudan Bai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zichang Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Shengfeng Ji
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Xiyue Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Jinman Gao
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Zhichao Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Xiaolin Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
5
|
Hawkins NA, Speakes N, Kearney JA. Fine mapping and candidate gene analysis of Dravet syndrome modifier loci on mouse chromosomes 7 and 8. Mamm Genome 2024; 35:334-345. [PMID: 38862622 PMCID: PMC11329421 DOI: 10.1007/s00335-024-10046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Dravet syndrome is a developmental and epileptic encephalopathy (DEE) characterized by intractable seizures, comorbidities related to developmental, cognitive, and motor delays, and a high mortality burden due to sudden unexpected death in epilepsy (SUDEP). Most Dravet syndrome cases are attributed to SCN1A haploinsufficiency, with genetic modifiers and environmental factors influencing disease severity. Mouse models with heterozygous deletion of Scn1a recapitulate key features of Dravet syndrome, including seizures and premature mortality; however, severity varies depending on genetic background. Here, we refined two Dravet survival modifier (Dsm) loci, Dsm2 on chromosome 7 and Dsm3 on chromosome 8, using interval-specific congenic (ISC) mapping. Dsm2 was complex and encompassed at least two separate loci, while Dsm3 was refined to a single locus. Candidate modifier genes within these refined loci were prioritized based on brain expression, strain-dependent differences, and biological relevance to seizures or epilepsy. High priority candidate genes for Dsm2 include Nav2, Ptpn5, Ldha, Dbx1, Prmt3 and Slc6a5, while Dsm3 has a single high priority candidate, Psd3. This study underscores the complex genetic architecture underlying Dravet syndrome and provides insights into potential modifier genes that could influence disease severity and serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior St., Searle 8-510, Chicago, IL, 60611, USA
| | - Nathan Speakes
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior St., Searle 8-510, Chicago, IL, 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, 320 East Superior St., Searle 8-510, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Felipe R, Sarmiento-Jiménez J, Camafeita E, Vázquez J, López-Corcuera B. Role of palmitoylation on the neuronal glycine transporter GlyT2. J Neurochem 2024; 168:2056-2072. [PMID: 39032066 DOI: 10.1111/jnc.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
The neuronal glycine transporter GlyT2 removes glycine from the synaptic cleft through active Na+, Cl-, and glycine cotransport contributing to the termination of the glycinergic signal as well as supplying substrate to the presynaptic terminal for the maintenance of the neurotransmitter content in synaptic vesicles. Patients with mutations in the human GlyT2 gene (SLC6A5), develop hyperekplexia or startle disease (OMIM 149400), characterized by hypertonia and exaggerated startle responses to trivial stimuli that may have lethal consequences in the neonates as a result of apnea episodes. Post-translational modifications in cysteine residues of GlyT2 are an aspect of structural interest we analyzed. Our study is compatible with a reversible and short-lived S-acylation in spinal cord membranes, detectable by biochemical and proteomics methods (acyl-Rac binding and IP-ABE) confirmed with positive and negative controls (palmitoylated and non-palmitoylated proteins). According to a short-lived modification, direct labeling using click chemistry was faint but mostly consistent. We have analyzed the physiological properties of a GlyT2 mutant lacking the cysteines with high prediction of palmitoylation and the mutant is less prone to be included in lipid rafts, an effect also observed upon treatment with the palmitoylation inhibitor 2-bromopalmitate. This work demonstrates there are determinants of lipid raft inclusion associated with the GlyT2 mutated cysteines, which are presumably modified by palmitoylation.
Collapse
Affiliation(s)
- R Felipe
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - J Sarmiento-Jiménez
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - E Camafeita
- Centro Nacional de Investigaciones Cardiovasculares. (ISCIII), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - J Vázquez
- Centro Nacional de Investigaciones Cardiovasculares. (ISCIII), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - B López-Corcuera
- Departamento de Biología Molecular, Instituto de Biología Molecular (IUBM), Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
7
|
Aglave NR, Sontakke RA, Bokade C, Jhunjhunwala K. Hyperekplexia: Unveiling a Rare Neurological Condition With a Treatable Solution. Cureus 2024; 16:e61770. [PMID: 38975479 PMCID: PMC11226931 DOI: 10.7759/cureus.61770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Hyperekplexia (HPX) is a rare hereditary disorder characterized by an exaggerated startle reflex and neonatal hypertonia. It exhibits both autosomal dominant and autosomal recessive inheritance patterns, depending on the gene involved. It could be a fatal neurogenetic disorder, but it is treatable. We reported a nine-month-old female child with mild gross motor delay, an exaggerated startle reflex, and multiple episodes of transient hypertonia. Neurological and electrophysiological investigations and clinical presentation suggested the diagnosis of hereditary HPX. The child showed a good response to oral clonazepam, with a reduced frequency of such episodes and attainment of age-specific milestones.
Collapse
Affiliation(s)
- Nisha R Aglave
- Pediatrics, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Rachana A Sontakke
- Pediatrics, Narendra Kumar Prasadrao (NKP) Salve Institute of Medical Sciences and Research Center and Lata Mangeshkar Hospital, Nagpur, IND
| | - Chandrakant Bokade
- Pediatrics, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| | - Kush Jhunjhunwala
- Pediatrics, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Nagpur, IND
| |
Collapse
|
8
|
Hawkins NA, Speakes N, Kearney JA. Fine Mapping and Candidate Gene Analysis of Dravet Syndrome Modifier Loci on Mouse Chromosomes 7 and 8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589561. [PMID: 38659879 PMCID: PMC11042286 DOI: 10.1101/2024.04.15.589561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Dravet syndrome is a developmental and epileptic encephalopathy (DEE) characterized by intractable seizures, comorbidities related to developmental, cognitive, and motor delays, and a high mortality burden due to sudden unexpected death in epilepsy (SUDEP). Most Dravet syndrome cases are attributed to SCN1A haploinsufficiency, with genetic modifiers and environmental factors influencing disease severity. Mouse models with heterozygous deletion of Scn1a recapitulate key features of Dravet syndrome, including seizures and premature mortality; however, severity varies depending on genetic background. Here, we refined two Dravet survival modifier (Dsm) loci, Dsm2 on chromosome 7 and Dsm3 on chromosome 8, using interval-specific congenic (ISC) mapping. Dsm2 was complex and encompassed at least two separate loci, while Dsm3 was refined to a single locus. Candidate modifier genes within these refined loci were prioritized based on brain expression, strain-dependent differences, and biological relevance to seizures or epilepsy. High priority candidate genes for Dsm2 include Nav2, Ptpn5, Ldha, Dbx1, Prmt3 and Slc6a5, while Dsm3 has a single high priority candidate, Psd3. This study underscores the complex genetic architecture underlying Dravet syndrome and provides insights into potential modifier genes that could influence disease severity and serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Nicole A. Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Nathan Speakes
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| | - Jennifer A. Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 60611
| |
Collapse
|
9
|
Wei Y, Li R, Meng Y, Hu T, Zhao J, Gao Y, Bai Q, Li N, Zhao Y. Transport mechanism and pharmacology of the human GlyT1. Cell 2024; 187:1719-1732.e14. [PMID: 38513663 DOI: 10.1016/j.cell.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.
Collapse
Affiliation(s)
- Yiqing Wei
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjie Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Meng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuo Hu
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yiwei Gao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinru Bai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yan Zhao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| |
Collapse
|
10
|
Wiessler AL, Hasenmüller AS, Fuhl I, Mille C, Cortes Campo O, Reinhard N, Schenk J, Heinze KG, Schaefer N, Specht CG, Villmann C. Role of the Glycine Receptor β Subunit in Synaptic Localization and Pathogenicity in Severe Startle Disease. J Neurosci 2024; 44:e0837232023. [PMID: 37963764 PMCID: PMC10860499 DOI: 10.1523/jneurosci.0837-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Startle disease is due to the disruption of recurrent inhibition in the spinal cord. Most common causes are genetic variants in genes (GLRA1, GLRB) encoding inhibitory glycine receptor (GlyR) subunits. The adult GlyR is a heteropentameric complex composed of α1 and β subunits that localizes at postsynaptic sites and replaces embryonically expressed GlyRα2 homomers. The human GlyR variants of GLRA1 and GLRB, dominant and recessive, have been intensively studied in vitro. However, the role of unaffected GlyRβ, essential for synaptic GlyR localization, in the presence of mutated GlyRα1 in vivo is not fully understood. Here, we used knock-in mice expressing endogenous mEos4b-tagged GlyRβ that were crossed with mouse Glra1 startle disease mutants. We explored the role of GlyRβ under disease conditions in mice carrying a missense mutation (shaky) or resulting from the loss of GlyRα1 (oscillator). Interestingly, synaptic targeting of GlyRβ was largely unaffected in both mouse mutants. While synaptic morphology appears unaltered in shaky animals, synapses were notably smaller in homozygous oscillator animals. Hence, GlyRβ enables transport of functionally impaired GlyRα1 missense variants to synaptic sites in shaky animals, which has an impact on the efficacy of possible compensatory mechanisms. The observed enhanced GlyRα2 expression in oscillator animals points to a compensation by other GlyRα subunits. However, trafficking of GlyRα2β complexes to synaptic sites remains functionally insufficient, and homozygous oscillator mice still die at 3 weeks after birth. Thus, both functional and structural deficits can affect glycinergic neurotransmission in severe startle disease, eliciting different compensatory mechanisms in vivo.
Collapse
Affiliation(s)
- Anna-Lena Wiessler
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Ann-Sofie Hasenmüller
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Isabell Fuhl
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Clémence Mille
- Institut National de la Santé et de la Recherche Médicale (Inserm U1195), Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Orlando Cortes Campo
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Nicola Reinhard
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Joachim Schenk
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, 97080 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-University of Würzburg, 97080 Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| | - Christian G Specht
- Institut National de la Santé et de la Recherche Médicale (Inserm U1195), Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
11
|
Schaefer N, Harvey RJ, Villmann C. Startle Disease: New Molecular Insights into an Old Neurological Disorder. Neuroscientist 2023; 29:767-781. [PMID: 35754344 PMCID: PMC10623600 DOI: 10.1177/10738584221104724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Startle disease (SD) is characterized by enhanced startle responses, generalized muscle stiffness, unexpected falling, and fatal apnea episodes due to disturbed feedback inhibition in the spinal cord and brainstem of affected individuals. Mutations within the glycine receptor (GlyR) subunit and glycine transporter 2 (GlyT2) genes have been identified in individuals with SD. Impaired inhibitory neurotransmission in SD is due to pre- and/or postsynaptic GlyR or presynaptic GlyT2 dysfunctions. Previous research has focused on mutated GlyRs and GlyT2 that impair ion channel/transporter function or trafficking. With insights provided by recently solved cryo-electron microscopy and X-ray structures of GlyRs, a detailed picture of structural transitions important for receptor gating has emerged, allowing a deeper understanding of SD at the molecular level. Moreover, studies on novel SD mutations have demonstrated a higher complexity of SD, with identification of additional clinical signs and symptoms and interaction partners representing key players for fine-tuning synaptic processes. Although our knowledge has steadily improved during the last years, changes in synaptic localization and GlyR or GlyT2 homeostasis under disease conditions are not yet completely understood. Combined proteomics, interactomics, and high-resolution microscopy techniques are required to reveal alterations in receptor dynamics at the synaptic level under disease conditions.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Drehmann P, Milanos S, Schaefer N, Kasaragod VB, Herterich S, Holzbach-Eberle U, Harvey RJ, Villmann C. Dual Role of Dysfunctional Asc-1 Transporter in Distinct Human Pathologies, Human Startle Disease, and Developmental Delay. eNeuro 2023; 10:ENEURO.0263-23.2023. [PMID: 37903619 PMCID: PMC10668224 DOI: 10.1523/eneuro.0263-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023] Open
Abstract
Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5 Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5' and 3' untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1G307R from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1G307R did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay.
Collapse
Affiliation(s)
- Paul Drehmann
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Sinem Milanos
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Neurobiology Division, Medical Reserach Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Sarah Herterich
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Ulrike Holzbach-Eberle
- Center for Pediatrics and Adolescent Medicine, Pediatric Neurology, Social Pediatrics and Epileptology, University Hospital Gießen, 35392 Giessen, Germany
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4558, Australia
- Sunshine Coast Health Institute, Birtinya, QLD 4575, Australia
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
13
|
Flux coupling, not specificity, shapes the transport and phylogeny of SLC6 glycine transporters. Proc Natl Acad Sci U S A 2022; 119:e2205874119. [PMID: 36191186 PMCID: PMC9564218 DOI: 10.1073/pnas.2205874119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATB[Formula: see text] (SLC6A14) is a member of the amino acid transporter branch of the SLC6 family along with GlyT1 (SLC6A9) and GlyT2 (SLC6A5), two glycine-specific transporters coupled to 2:1 and 3:1 Na[Formula: see text]:Cl[Formula: see text], respectively. In contrast, ATB[Formula: see text] exhibits broad substrate specificity for all neutral and cationic amino acids, and its ionic coupling remains unsettled. Using the reversal potential slope method, we demonstrate a 3:1:1 Na[Formula: see text]:Cl[Formula: see text]:Gly stoichiometry for ATB[Formula: see text] that is consistent with its 2.1 e/Gly charge coupling. Like GlyT2, ATB[Formula: see text] behaves as a unidirectional transporter with virtually no glycine efflux at negative potentials after uptake, except by heteroexchange as remarkably shown by leucine activation of NMDARs in Xenopus oocytes coexpressing both membrane proteins. Analysis and computational modeling of the charge movement of ATB[Formula: see text] reveal a higher affinity for sodium in the absence of substrate than GlyT2 and a gating mechanism that locks Na[Formula: see text] into the apo-transporter at depolarized potentials. A 3:1 Na[Formula: see text]:Cl[Formula: see text] stoichiometry justifies the concentrative transport properties of ATB[Formula: see text] and explains its trophic role in tumor growth, while rationalizing its phylogenetic proximity to GlyT2 despite their extreme divergence in specificity.
Collapse
|
14
|
Anne A, Saxena S, Mohan KN. Genome-wide methylation analysis of post-mortem cerebellum samples supports the role of peroxisomes in autism spectrum disorder. Epigenomics 2022; 14:1015-1027. [PMID: 36154275 DOI: 10.2217/epi-2022-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We tested the hypothesis that a subset of patients with autism spectrum disorder (ASD) contains candidate genes with high DNA methylation differences (effective values) that potentially affect one of the two alleles. Materials & methods: Genome-wide DNA methylation comparisons were made on cerebellum samples from 30 patients and 45 controls. Results: 12 genes with high effective values, including GSDMD, MMACHC, SLC6A5 and NKX6-2, implicated in ASD and other neuropsychiatric disorders were identified. Monoallelic promoter methylation and downregulation were observed for SERHL (serine hydrolase-like) and CAT (catalase) genes associated with peroxisome function. Conclusion: These data are consistent with the hypothesis implicating impaired peroxisome function/biogenesis for ASD. A similar approach holds promise for identifying rare epimutations in ASD and other complex disorders.
Collapse
Affiliation(s)
- Anuhya Anne
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Sonal Saxena
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| |
Collapse
|
15
|
Aboheimed GI, AlRasheed MM, Almudimeegh S, Peña-Guerra KA, Cardona-Londoño KJ, Salih MA, Seidahmed MZ, Al-Mohanna F, Colak D, Harvey RJ, Harvey K, Arold ST, Kaya N, Ruiz AJ. Clinical, genetic, and functional characterization of the glycine receptor β-subunit A455P variant in a family affected by hyperekplexia syndrome. J Biol Chem 2022; 298:102018. [PMID: 35526563 PMCID: PMC9241032 DOI: 10.1016/j.jbc.2022.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Hyperekplexia is a rare neurological disorder characterized by exaggerated startle responses affecting newborns with the hallmark characteristics of hypertonia, apnea, and noise or touch-induced nonepileptic seizures. The genetic causes of the disease can vary, and several associated genes and mutations have been reported to affect glycine receptors (GlyRs); however, the mechanistic links between GlyRs and hyperekplexia are not yet understood. Here, we describe a patient with hyperekplexia from a consanguineous family. Extensive genetic screening using exome sequencing coupled with autozygome analysis and iterative filtering supplemented by in silico prediction identified that the patient carries the homozygous missense mutation A455P in GLRB, which encodes the GlyR β-subunit. To unravel the physiological and molecular effects of A455P on GlyRs, we used electrophysiology in a heterologous system as well as immunocytochemistry, confocal microscopy, and cellular biochemistry. We found a reduction in glycine-evoked currents in N2A cells expressing the mutation compared to WT cells. Western blot analysis also revealed a reduced amount of GlyR β protein both in cell lysates and isolated membrane fractions. In line with the above observations, coimmunoprecipitation assays suggested that the GlyR α1-subunit retained coassembly with βA455P to form membrane-bound heteromeric receptors. Finally, structural modeling showed that the A455P mutation affected the interaction between the GlyR β-subunit transmembrane domain 4 and the other helices of the subunit. Taken together, our study identifies and validates a novel loss-of-function mutation in GlyRs whose pathogenicity is likely to cause hyperekplexia in the affected individual.
Collapse
Affiliation(s)
- Ghada I Aboheimed
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia; Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom
| | - Maha M AlRasheed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Karla A Peña-Guerra
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Kelly J Cardona-Londoño
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Z Seidahmed
- Department of Pediatrics, Security Forces Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Kirsten Harvey
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom
| | - Stefan T Arold
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia; Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Namik Kaya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.
| | - Arnaud J Ruiz
- Department of Pharmacology, The School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
16
|
Liu J, Zhang D, Zhang L, Wang Z, Shen J. New Insight on Vitality Differences for the Penaeid Shrimp, Fenneropenaeus chinensis, in Low Salinity Environment Through Transcriptomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.716018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive rainfall changes salinity in shrimp farming ponds in short period and exerts low salinity stress on the outdoor breeding shrimp under global warming. Fenneropenaeus chinensis can have different performance on vitality in low salinity environments. To reveal mechanisms of vitality difference in shrimp living in low saline environments. This study based on the normal and moribund F. chinensis in 10 ppt salinity environment using high-throughput sequencing identifies 1,429 differentially expressed genes (DEGs), 586 of which are upregulated, while 843 of which are downregulated in the normal group (FCN10) as compared to the moribund group (FCM10). Meanwhile, another transcriptomic analysis is conducted on the normal and moribund shrimp from 25 ppt (FCN25 vs. FCM25) salinity environment as the control, in which 1,311 DEGs (upregulated: 327 genes, downregulated: 984 genes) are identified. In this study, intersective pathways, GO (Gene Ontology) categories and DEGs from the two groups of comparative transcriptome are investigated. The two intersective pathways (Metabolism of xenobiotics by cytochrome P450, Pentose, and glucuronate interconversions) significantly enriched by DEGs are related to detoxification. In these two pathways, there is one vitality regulation-related gene (VRRG), the Dhdh (dihydrodiol dehydrogenase), which is upregulated in both the groups of FCN10 and FCN25 as compared to the groups of FCM10 and FCM25, respectively. Similarly, in the 25 top intersective GO categories, four VRRGs are revealed. Three of them are upregulated (Itgbl, kielin/chordin-like protein, Slc2a8, solute carrier family 2, facilitated glucose transporter member 8-like protein and Cyp3a30, cytochrome P450 3A30-like protein); one of them is downregulated (Slc6a9, sodium-dependent nutrient amino acid transporter 1-like protein isoform X2). These GO categories are related to transmembrane transporter activity of substance, enzyme inhibitor activity, monooxygenase activity. RT-qPCR analysis further verifies the VRRGs. The study gives new insight into understanding the vitality differences for F. chinensis, in low salinity environment. The pathways and DEGs in response to low salinity stress in modulating the vitality of F. chinensis that could serve as tools in future genetic studies and molecular breeding.
Collapse
|
17
|
Fischer FP, Kasture AS, Hummel T, Sucic S. Molecular and Clinical Repercussions of GABA Transporter 1 Variants Gone Amiss: Links to Epilepsy and Developmental Spectrum Disorders. Front Mol Biosci 2022; 9:834498. [PMID: 35295842 PMCID: PMC7612498 DOI: 10.3389/fmolb.2022.834498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
The human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) is the first member of the solute carrier 6 (SLC6) protein superfamily. GAT-1 (SLC6A1) is one of the main GABA transporters in the central nervous system. Its principal physiological role is retrieving GABA from the synapse into neurons and astrocytes, thus swiftly terminating neurotransmission. GABA is a key inhibitory neurotransmitter and shifts in GABAergic signaling can lead to pathological conditions, from anxiety and epileptic seizures to schizophrenia. Point mutations in the SLC6A1 gene frequently give rise to epilepsy, intellectual disability or autism spectrum disorders in the afflicted individuals. The mechanistic routes underlying these are still fairly unclear. Some loss-of-function variants impair the folding and intracellular trafficking of the protein (thus retaining the transporter in the endoplasmic reticulum compartment), whereas others, despite managing to reach their bona fide site of action at the cell surface, nonetheless abolish GABA transport activity (plausibly owing to structural/conformational defects). Whatever the molecular culprit(s), the physiological aftermath transpires into the absence of functional transporters, which in turn perturbs GABAergic actions. Dozens of mutations in the kin SLC6 family members are known to exhort protein misfolding. Such events typically elicit severe ailments in people, e.g., infantile parkinsonism-dystonia or X-linked intellectual disability, in the case of dopamine and creatine transporters, respectively. Flaws in protein folding can be rectified by small molecules known as pharmacological and/or chemical chaperones. The search for such apt remedies calls for a systematic investigation and categorization of the numerous disease-linked variants, by biochemical and pharmacological means in vitro (in cell lines and primary neuronal cultures) and in vivo (in animal models). We here give special emphasis to the utilization of the fruit fly Drosophila melanogaster as a versatile model in GAT-1-related studies. Jointly, these approaches can portray indispensable insights into the molecular factors underlying epilepsy, and ultimately pave the way for contriving efficacious therapeutic options for patients harboring pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Ameya S. Kasture
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Eulenburg V, Hülsmann S. Synergistic Control of Transmitter Turnover at Glycinergic Synapses by GlyT1, GlyT2, and ASC-1. Int J Mol Sci 2022; 23:ijms23052561. [PMID: 35269698 PMCID: PMC8909939 DOI: 10.3390/ijms23052561] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
In addition to being involved in protein biosynthesis and metabolism, the amino acid glycine is the most important inhibitory neurotransmitter in caudal regions of the brain. These functions require a tight regulation of glycine concentration not only in the synaptic cleft, but also in various intracellular and extracellular compartments. This is achieved not only by confining the synthesis and degradation of glycine predominantly to the mitochondria, but also by the action of high-affinity large-capacity glycine transporters that mediate the transport of glycine across the membranes of presynaptic terminals or glial cells surrounding the synapses. Although most cells at glycine-dependent synapses express more than one transporter with high affinity for glycine, their synergistic functional interaction is only poorly understood. In this review, we summarize our current knowledge of the two high-affinity transporters for glycine, the sodium-dependent glycine transporters 1 (GlyT1; SLC6A9) and 2 (GlyT2; SLC6A5) and the alanine–serine–cysteine-1 transporter (Asc-1; SLC7A10).
Collapse
Affiliation(s)
- Volker Eulenburg
- Department for Anesthesiology and Intensive Care, Faculty of Medicine, University of Leipzig, Liebigstraße 20, D-04103 Leipzig, Germany
- Correspondence: (V.E.); (S.H.)
| | - Swen Hülsmann
- Department for Anesthesiology, University Medical Center, Georg-August University, Humboldtallee 23, D-37073 Göttingen, Germany
- Correspondence: (V.E.); (S.H.)
| |
Collapse
|
19
|
Mir A, Almudhry M, Alghamdi F, Albaradie R, Ibrahim M, Aldurayhim F, Alhedaithy A, Alamr M, Bawazir M, Mohammad S, Abdelhay S, Bashir S, Housawi Y. SLC gene mutations and pediatric neurological disorders: diverse clinical phenotypes in a Saudi Arabian population. Hum Genet 2021; 141:81-99. [PMID: 34797406 DOI: 10.1007/s00439-021-02404-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
The uptake and efflux of solutes across a plasma membrane is controlled by transporters. There are two main superfamilies of transporters, adenosine 5'-triphosphate (ATP) binding cassettes (ABCs) and solute carriers (SLCs). In the brain, SLC transporters are involved in transporting various solutes across the blood-brain barrier, blood-cerebrospinal fluid barrier, astrocytes, neurons, and other brain cell types including oligodendrocytes and microglial cells. SLCs play an important role in maintaining normal brain function. Hence, mutations in the genes that encode SLC transporters can cause a variety of neurological disorders. We identified the following SLC gene variants in 25 patients in our cohort: SLC1A2, SLC2A1, SLC5A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC12A6, SLC13A5, SLC16A1, SLC17A5, SLC19A3, SLC25A12, SLC25A15, SLC27A4, SLC45A1, SLC46A1, and SLC52A3. Eight patients harbored pathogenic or likely pathogenic mutations (SLC5A1, SLC9A6, SLC12A6, SLC16A1, SLC19A3, and SLC52A3), and 12 patients were found to have variants of unknown clinical significance (VOUS); these variants occurred in 11 genes (SLC1A2, SLC2A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC13A5, SLC25A12, SLC27A4, and SLC45A1). Five patients were excluded as they were carriers. In the remaining 20 patients with SLC gene variants, we identified 16 possible distinct neurological disorders. Based on the clinical presentation, we categorized them into genes causing intellectual delay (ID) or autism spectrum disorder (ASD), those causing epilepsy, those causing vitamin-related disorders, and those causing other neurological diseases. Several variants were detected that indicated possible personalized therapies: SLC2A1 led to dystonia or epilepsy, which can be treated with a ketogenic diet; SLC6A3 led to infantile parkinsonism-dystonia 1, which can be treated with levodopa; SLC6A5 led to hyperekplexia 3, for which unnecessary treatment with antiepileptic drugs should be avoided; SLC6A8 led to creatine deficiency syndrome type 1, which can be treated with creatine monohydrate; SLC16A1 led to monocarboxylate transporter 1 deficiency, which causes seizures that should not be treated with a ketogenic diet; SLC19A3 led to biotin-thiamine-responsive basal ganglia disease, which can be treated with biotin and thiamine; and SLC52A3 led to Brown-Vialetto-Van-Laere syndrome 1, which can be treated with riboflavin. The present study examines the prevalence of SLC gene mutations in our cohort of children with epilepsy and other neurological disorders. It highlights the diverse phenotypes associated with mutations in this large family of SLC transporter proteins, and an opportunity for personalized genomics and personalized therapeutics.
Collapse
Affiliation(s)
- Ali Mir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia.
| | - Montaha Almudhry
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fouad Alghamdi
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Raidah Albaradie
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mona Ibrahim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Fatimah Aldurayhim
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Abdullah Alhedaithy
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Mushari Alamr
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Maryam Bawazir
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Sahar Mohammad
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Salma Abdelhay
- Department of Pediatric, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Shahid Bashir
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, Dammam, 31444, Kingdom of Saudi Arabia
| | - Yousef Housawi
- Genetic and Metabolic Department, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
The presynaptic glycine transporter GlyT2 is regulated by the Hedgehog pathway in vitro and in vivo. Commun Biol 2021; 4:1197. [PMID: 34663888 PMCID: PMC8523746 DOI: 10.1038/s42003-021-02718-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
The identity of a glycinergic synapse is maintained presynaptically by the activity of a surface glycine transporter, GlyT2, which recaptures glycine back to presynaptic terminals to preserve vesicular glycine content. GlyT2 loss-of-function mutations cause Hyperekplexia, a rare neurological disease in which loss of glycinergic neurotransmission causes generalized stiffness and strong motor alterations. However, the molecular underpinnings controlling GlyT2 activity remain poorly understood. In this work, we identify the Hedgehog pathway as a robust controller of GlyT2 expression and transport activity. Modulating the activation state of the Hedgehog pathway in vitro in rodent primary spinal cord neurons or in vivo in zebrafish embryos induced a selective control in GlyT2 expression, regulating GlyT2 transport activity. Our results indicate that activation of Hedgehog reduces GlyT2 expression by increasing its ubiquitination and degradation. This work describes a new molecular link between the Hedgehog signaling pathway and presynaptic glycine availability. By modulating the activation state of the Hedgehog pathway, de la Rocha-Muñoz et al demonstrate that Hedgehog signaling controls the expression and transport activity of the neuronal glycine transporter GlyT2. This work begins to reveal a potential link between the Hedgehog signaling pathway and presynaptic glycine availability.
Collapse
|
21
|
Piro I, Eckes AL, Kasaragod VB, Sommer C, Harvey RJ, Schaefer N, Villmann C. Novel Functional Properties of Missense Mutations in the Glycine Receptor β Subunit in Startle Disease. Front Mol Neurosci 2021; 14:745275. [PMID: 34630038 PMCID: PMC8498107 DOI: 10.3389/fnmol.2021.745275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Startle disease is a rare disorder associated with mutations in GLRA1 and GLRB, encoding glycine receptor (GlyR) α1 and β subunits, which enable fast synaptic inhibitory transmission in the spinal cord and brainstem. The GlyR β subunit is important for synaptic localization via interactions with gephyrin and contributes to agonist binding and ion channel conductance. Here, we have studied three GLRB missense mutations, Y252S, S321F, and A455P, identified in startle disease patients. For Y252S in M1 a disrupted stacking interaction with surrounding aromatic residues in M3 and M4 is suggested which is accompanied by an increased EC50 value. By contrast, S321F in M3 might stabilize stacking interactions with aromatic residues in M1 and M4. No significant differences in glycine potency or efficacy were observed for S321F. The A455P variant was not predicted to impact on subunit folding but surprisingly displayed increased maximal currents which were not accompanied by enhanced surface expression, suggesting that A455P is a gain-of-function mutation. All three GlyR β variants are trafficked effectively with the α1 subunit through intracellular compartments and inserted into the cellular membrane. In vivo, the GlyR β subunit is transported together with α1 and the scaffolding protein gephyrin to synaptic sites. The interaction of these proteins was studied using eGFP-gephyrin, forming cytosolic aggregates in non-neuronal cells. eGFP-gephyrin and β subunit co-expression resulted in the recruitment of both wild-type and mutant GlyR β subunits to gephyrin aggregates. However, a significantly lower number of GlyR β aggregates was observed for Y252S, while for mutants S321F and A455P, the area and the perimeter of GlyR β subunit aggregates was increased in comparison to wild-type β. Transfection of hippocampal neurons confirmed differences in GlyR-gephyrin clustering with Y252S and A455P, leading to a significant reduction in GlyR β-positive synapses. Although none of the mutations studied is directly located within the gephyrin-binding motif in the GlyR β M3-M4 loop, we suggest that structural changes within the GlyR β subunit result in differences in GlyR β-gephyrin interactions. Hence, we conclude that loss- or gain-of-function, or alterations in synaptic GlyR clustering may underlie disease pathology in startle disease patients carrying GLRB mutations.
Collapse
Affiliation(s)
- Inken Piro
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anna-Lena Eckes
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vikram Babu Kasaragod
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Zhan FX, Wang SG, Cao L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 2021; 42:4095-4107. [PMID: 34379238 DOI: 10.1007/s10072-021-05493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.
Collapse
Affiliation(s)
- Fei-Xia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Shi-Ge Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
23
|
Ayala-Lopez N, Watts SW. Physiology and Pharmacology of Neurotransmitter Transporters. Compr Physiol 2021; 11:2279-2295. [PMID: 34190339 DOI: 10.1002/cphy.c200035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Regulation of the ability of a neurotransmitter [our focus: serotonin, norepinephrine, dopamine, acetylcholine, glycine, and gamma-aminobutyric acid (GABA)] to reach its receptor targets is regulated in part by controlling the access the neurotransmitter has to receptors. Transporters, located at both the cellular plasma membrane and in subcellular vesicles, carry a myriad of responsibilities that include enabling neurotransmitter release and controlling uptake of neurotransmitter back into a cell or vesicle. Driven largely by electrochemical gradients, these transporters move neurotransmitters. The regulation of the transporters themselves through changes in expression and/or posttranslational modification allows for fine-tuning of this system. Transporters have been best recognized as targets for psychoactive stimulants and remain a mainstay target of primarily central nervous system (CNS) acting drugs for treatment of debilitating diseases such as depression and anxiety. Studies reveal, however, that transporters are found and functional in tissues outside the CNS (gastrointestinal and cardiovascular tissues, for example). The importance of neurotransmitter transporters is underscored with discoveries that dysfunction of transporters can cause life-changing disease. This article provides a high-level review of major classes of both plasma membrane transporters and vesicular transporters. © 2021 American Physiological Society. Compr Physiol 11:2279-2295, 2021.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
24
|
Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021; 11:biom11060864. [PMID: 34200954 PMCID: PMC8230656 DOI: 10.3390/biom11060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
Among the myriad of cellular and molecular processes identified as contributing to pathological pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread interest as a potential class of novel analgesics. The GlyTs are Na+/Cl−-dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a possible mechanism by which to increase spinal extracellular glycine concentrations and enhance GlyR-mediated inhibitory neurotransmission in the dorsal horn. Various inhibitors of both GlyT1 and GlyT2 have demonstrated broad analgesic efficacy in several preclinical models of acute and chronic pain, providing promise for the approach to deliver a first-in-class non-opioid analgesic with a mechanism of action differentiated from current standard of care. This review will highlight the therapeutic potential of GlyT inhibitors as a novel class of analgesics, present recent advances reported for the field, and discuss the key challenges associated with the development of a GlyT inhibitor into a safe and effective agent to treat pain.
Collapse
|
25
|
Benito-Muñoz C, Perona A, Felipe R, Pérez-Siles G, Núñez E, Aragón C, López-Corcuera B. Structural Determinants of the Neuronal Glycine Transporter 2 for the Selective Inhibitors ALX1393 and ORG25543. ACS Chem Neurosci 2021; 12:1860-1872. [PMID: 34003005 PMCID: PMC8691691 DOI: 10.1021/acschemneuro.0c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
![]()
The
neuronal glycine transporter GlyT2 modulates inhibitory glycinergic
neurotransmission by controlling the extracellular concentration of
synaptic glycine and the supply of neurotransmitter to the presynaptic
terminal. Spinal cord glycinergic neurons present in the dorsal horn
diminish their activity in pathological pain conditions and behave
as gate keepers of the touch-pain circuitry. The pharmacological blockade
of GlyT2 reduces the progression of the painful signal to rostral
areas of the central nervous system by increasing glycine extracellular
levels, so it has analgesic action. O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-l-serine (ALX1393) and N-[[1-(dimethylamino)cyclopentyl]methyl]-3,5-dimethoxy-4-(phenylmethoxy)benzamide
(ORG25543) are two selective GlyT2 inhibitors with nanomolar affinity
for the transporter and analgesic effects in pain animal models, although
with deficiencies which preclude further clinical development. In
this report, we performed a comparative ligand docking of ALX1393
and ORG25543 on a validated GlyT2 structural model including all ligand
sites constructed by homology with the crystallized dopamine transporter
from Drosophila melanogaster. Molecular dynamics
simulations and energy analysis of the complex and functional analysis
of a series of point mutants permitted to determine the structural
determinants of ALX1393 and ORG25543 discrimination by GlyT2. The
ligands establish simultaneous contacts with residues present in transmembrane
domains 1, 3, 6, and 8 and block the transporter in outward-facing
conformation and hence inhibit glycine transport. In addition, differential
interactions of ALX1393 with the cation bound at Na1 site and ORG25543
with TM10 define the differential sites of the inhibitors and explain
some of their individual features. Structural information about the
interactions with GlyT2 may provide useful tools for new drug discovery.
Collapse
Affiliation(s)
- Cristina Benito-Muñoz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Almudena Perona
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Raquel Felipe
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gonzalo Pérez-Siles
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Núñez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
26
|
Jiménez E, Fornés A, Felipe R, Núñez E, Aragón C, López-Corcuera B. Calcium-Dependent Regulation of the Neuronal Glycine Transporter GlyT2 by M2 Muscarinic Acetylcholine Receptors. Neurochem Res 2021; 47:190-203. [PMID: 33765249 DOI: 10.1007/s11064-021-03298-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating nociceptive signal progression. The cholinergic system acting through muscarinic acetylcholine receptors (mAChRs) also mediates important regulations of nociceptive transmission being the M2 subtype the most abundantly expressed in the spinal cord. Here we studied the effect of M2 mAChRs stimulation on GlyT2 function co-expressed in a heterologous system with negligible levels of muscarinic receptor activity. We found GlyT2 is down-regulated by carbachol in a calcium-dependent manner. Different components involved in cell calcium homeostasis were analysed to establish a role in the mechanism of GlyT2 inhibition. GlyT2 down-regulation by carbachol was increased by thapsigargin and reduced by internal store depletion, although calcium release from endoplasmic reticulum or mitochondria had a minor role on GlyT2 inhibition. Our results are consistent with a GlyT2 sensitivity to intracellular calcium mobilized by M2 mAChRs in the subcortical area of the plasma membrane. A crucial role of the plasma membrane sodium calcium exchanger NCX is proposed.
Collapse
Affiliation(s)
- Esperanza Jiménez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Amparo Fornés
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Novartis Farmacéutica S.A., Basel, Switzerland
| | - Raquel Felipe
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Enrique Núñez
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Carmen Aragón
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain.,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049, Madrid, Spain. .,IdiPAZ-Hospital Universitario La Paz, Madrid, Spain.
| |
Collapse
|
27
|
Brill SE, Maraslioglu A, Kurz C, Kramer F, Fuhr MF, Singh A, Friauf E. Glycinergic Transmission in the Presence and Absence of Functional GlyT2: Lessons From the Auditory Brainstem. Front Synaptic Neurosci 2021; 12:560008. [PMID: 33633558 PMCID: PMC7900164 DOI: 10.3389/fnsyn.2020.560008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Synaptic transmission is controlled by re-uptake systems that reduce transmitter concentrations in the synaptic cleft and recycle the transmitter into presynaptic terminals. The re-uptake systems are thought to ensure cytosolic concentrations in the terminals that are sufficient for reloading empty synaptic vesicles (SVs). Genetic deletion of glycine transporter 2 (GlyT2) results in severely disrupted inhibitory neurotransmission and ultimately to death. Here we investigated the role of GlyT2 at inhibitory glycinergic synapses in the mammalian auditory brainstem. These synapses are tuned for resilience, reliability, and precision, even during sustained high-frequency stimulation when endocytosis and refilling of SVs probably contribute substantially to efficient replenishment of the readily releasable pool (RRP). Such robust synapses are formed between MNTB and LSO neurons (medial nucleus of the trapezoid body, lateral superior olive). By means of patch-clamp recordings, we assessed the synaptic performance in controls, in GlyT2 knockout mice (KOs), and upon acute pharmacological GlyT2 blockade. Via computational modeling, we calculated the reoccupation rate of empty release sites and RRP replenishment kinetics during 60-s challenge and 60-s recovery periods. Control MNTB-LSO inputs maintained high fidelity neurotransmission at 50 Hz for 60 s and recovered very efficiently from synaptic depression. During 'marathon-experiments' (30,600 stimuli in 20 min), RRP replenishment accumulated to 1,260-fold. In contrast, KO inputs featured severe impairments. For example, the input number was reduced to ~1 (vs. ~4 in controls), implying massive functional degeneration of the MNTB-LSO microcircuit and a role of GlyT2 during synapse maturation. Surprisingly, neurotransmission did not collapse completely in KOs as inputs still replenished their small RRP 80-fold upon 50 Hz | 60 s challenge. However, they totally failed to do so for extended periods. Upon acute pharmacological GlyT2 inactivation, synaptic performance remained robust, in stark contrast to KOs. RRP replenishment was 865-fold in marathon-experiments, only ~1/3 lower than in controls. Collectively, our empirical and modeling results demonstrate that GlyT2 re-uptake activity is not the dominant factor in the SV recycling pathway that imparts indefatigability to MNTB-LSO synapses. We postulate that additional glycine sources, possibly the antiporter Asc-1, contribute to RRP replenishment at these high-fidelity brainstem synapses.
Collapse
Affiliation(s)
- Sina E Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Catharina Kurz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Florian Kramer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Martin F Fuhr
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Abhyudai Singh
- Electrical & Computer Engineering, University of Delaware, Newark, DE, United States
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
28
|
Bhat S, El-Kasaby A, Freissmuth M, Sucic S. Functional and Biochemical Consequences of Disease Variants in Neurotransmitter Transporters: A Special Emphasis on Folding and Trafficking Deficits. Pharmacol Ther 2020; 222:107785. [PMID: 33310157 PMCID: PMC7612411 DOI: 10.1016/j.pharmthera.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson’s disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.
Collapse
Affiliation(s)
- Shreyas Bhat
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
29
|
Selina A, John D, Loganathan L, Madhuri V. Case report of a PRDM5 linked brittle cornea syndrome type 2 in association with a novel SLC6A5 mutation. Indian J Ophthalmol 2020; 68:2545-2547. [PMID: 33120686 PMCID: PMC7774228 DOI: 10.4103/ijo.ijo_325_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 3-year-old girl presenting with blue sclera, hyperlaxity and developmental dysplasia of hip was found to have bilateral corneal thinning with astigmatism and keratoconus. By clinical exome sequencing, a frameshift mutation c.713_716 del TTTG p.(Val238Alafs*35) in PRDM5 gene causing brittle cornea syndrome 2 and a novel frameshift mutation c.401dup p.(Ser135Glufs*53) in SLC6A5 gene causing Hyperekplexia 3 were identified. No features of hyperekplexia were identified in proband. The novel homozygous mutation of SLC6A5 gene in the proband was presently asymptomatic but they were apprised of the possibility of developing neurological symptoms in the later years.
Collapse
Affiliation(s)
- Agnes Selina
- Department of Paediatric Orthopaedics, Christian Medical College; Centre for Stem Cell Research, A Unit of in Stem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepa John
- Department of Ophthalmology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Lakshmi Loganathan
- Department of Paediatric Orthopaedics, Christian Medical College; Centre for Stem Cell Research, A Unit of in Stem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College; Centre for Stem Cell Research, A Unit of in Stem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
30
|
Farr CV, El-Kasaby A, Freissmuth M, Sucic S. The Creatine Transporter Unfolded: A Knotty Premise in the Cerebral Creatine Deficiency Syndrome. Front Synaptic Neurosci 2020; 12:588954. [PMID: 33192443 PMCID: PMC7644880 DOI: 10.3389/fnsyn.2020.588954] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Creatine provides cells with high-energy phosphates for the rapid reconstitution of hydrolyzed adenosine triphosphate. The eponymous creatine transporter (CRT1/SLC6A8) belongs to a family of solute carrier 6 (SLC6) proteins. The key role of CRT1 is to translocate creatine across tissue barriers and into target cells, such as neurons and myocytes. Individuals harboring mutations in the coding sequence of the human CRT1 gene develop creatine transporter deficiency (CTD), one of the pivotal underlying causes of cerebral creatine deficiency syndrome. CTD encompasses an array of clinical manifestations, including severe intellectual disability, epilepsy, autism, development delay, and motor dysfunction. CTD is characterized by the absence of cerebral creatine, which implies an indispensable role for CRT1 in supplying the brain cells with creatine. CTD-associated variants dramatically reduce or abolish creatine transport activity by CRT1. Many of these are point mutations that are known to trigger folding defects, leading to the retention of encoded CRT1 proteins in the endoplasmic reticulum and precluding their delivery to the cell surface. Misfolding of several related SLC6 transporters also gives rise to detrimental pathologic conditions in people; e.g., mutations in the dopamine transporter induce infantile parkinsonism/dystonia, while mutations in the GABA transporter 1 cause treatment-resistant epilepsy. In some cases, folding defects are amenable to rescue by small molecules, known as pharmacological and chemical chaperones, which restore the cell surface expression and transport activity of the previously non-functional proteins. Insights from the recent molecular, animal and human case studies of CTD add toward our understanding of this complex disorder and reveal the wide-ranging effects elicited upon CRT1 dysfunction. This grants novel therapeutic prospects for the treatment of patients afflicted with CTD, e.g., modifying the creatine molecule to facilitate CRT1-independent entry into brain cells, or correcting folding-deficient and loss-of-function CTD variants using pharmacochaperones and/or allosteric modulators. The latter justifies a search for additional compounds with a capacity to correct mutation-specific defects.
Collapse
Affiliation(s)
| | | | | | - Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Crisp SJ, Dixon CL, Jacobson L, Chabrol E, Irani SR, Leite MI, Leschziner G, Slaght SJ, Vincent A, Kullmann DM. Glycine receptor autoantibodies disrupt inhibitory neurotransmission. Brain 2020; 142:3398-3410. [PMID: 31591639 PMCID: PMC6821286 DOI: 10.1093/brain/awz297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Chloride-permeable glycine receptors have an important role in fast inhibitory neurotransmission in the spinal cord and brainstem. Human immunoglobulin G (IgG) autoantibodies to glycine receptors are found in a substantial proportion of patients with progressive encephalomyelitis with rigidity and myoclonus, and less frequently in other variants of stiff person syndrome. Demonstrating a pathogenic role of glycine receptor autoantibodies would help justify the use of immunomodulatory therapies and provide insight into the mechanisms involved. Here, purified IgGs from four patients with progressive encephalomyelitis with rigidity and myoclonus or stiff person syndrome, and glycine receptor autoantibodies, were observed to disrupt profoundly glycinergic neurotransmission. In whole-cell patch clamp recordings from cultured rat spinal motor neurons, glycinergic synaptic currents were almost completely abolished following incubation in patient IgGs. Most human autoantibodies targeting other CNS neurotransmitter receptors, such as N-methyl-d-aspartate (NMDA) receptors, affect whole cell currents only after several hours incubation and this effect has been shown to be the result of antibody-mediated crosslinking and internalization of receptors. By contrast, we observed substantial reductions in glycinergic currents with all four patient IgG preparations with 15 min of exposure to patient IgGs. Moreover, monovalent Fab fragments generated from the purified IgG of three of four patients also profoundly reduced glycinergic currents compared with control Fab-IgG. We conclude that human glycine receptor autoantibodies disrupt glycinergic neurotransmission, and also suggest that the pathogenic mechanisms include direct antagonistic actions on glycine receptors.
Collapse
Affiliation(s)
- Sarah J Crisp
- UCL Institute of Neurology, University College London, London, UK
| | | | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Elodie Chabrol
- UCL Institute of Neurology, University College London, London, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Guy Leschziner
- Department of Neurology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Department of Clinical Neuroscience, King's College London, London, UK
| | - Sean J Slaght
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Angela Vincent
- UCL Institute of Neurology, University College London, London, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
32
|
Mostyn SN, Sarker S, Muthuraman P, Raja A, Shimmon S, Rawling T, Cioffi CL, Vandenberg RJ. Photoswitchable ORG25543 Congener Enables Optical Control of Glycine Transporter 2. ACS Chem Neurosci 2020; 11:1250-1258. [PMID: 32191428 PMCID: PMC7206614 DOI: 10.1021/acschemneuro.9b00655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Glycine
neurotransmission in the dorsal horn of the spinal cord
plays a key role in regulating nociceptive signaling, but in chronic
pain states reduced glycine neurotransmission is associated with the
development of allodynia and hypersensitivity to painful stimuli.
This suggests that restoration of glycine neurotransmission may be
therapeutic for the treatment of chronic pain. Glycine transporter
2 inhibitors have been demonstrated to enhance glycine neurotransmission
and provide relief from allodynia in rodent models of chronic pain.
In recent years, photoswitchable compounds have been developed to
provide the possibility of controlling the activity of target proteins
using light. In this study we have developed a photoswitchable noncompetitive
inhibitor of glycine transporter 2 that has different affinities for
the transporter at 365 nm compared to 470 nm light.
Collapse
Affiliation(s)
- Shannon N. Mostyn
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Subhodeep Sarker
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Parthasarathy Muthuraman
- Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, United States
| | - Arun Raja
- Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, United States
| | - Susan Shimmon
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Christopher L. Cioffi
- Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, United States
| | - Robert J. Vandenberg
- Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
33
|
Zou G, Xia J, Han Q, Liu D, Xiong W. The synthetic cannabinoid dehydroxylcannabidiol restores the function of a major GABA A receptor isoform in a cell model of hyperekplexia. J Biol Chem 2020; 295:138-145. [PMID: 31757808 PMCID: PMC6952599 DOI: 10.1074/jbc.ra119.011221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/21/2019] [Indexed: 11/06/2022] Open
Abstract
The functions of the glycine receptor (GlyR) and GABAA receptor (GABAAR) are both impaired in hyperekplexia, a neurological disorder usually caused by GlyR mutations. Although emerging evidence indicates that cannabinoids can directly restore normal GlyR function, whether they affect GABAAR in hyperekplexia remains unknown. Here we show that dehydroxylcannabidiol (DH-CBD), a synthetic nonpsychoactive cannabinoid, restores the GABA- and glycine-activated currents (IGABA and IGly , respectively) in HEK293 cells coexpressing a major GABAAR isoform (α1β2γ2) and GlyRα1 carrying a human hyperekplexia-associated mutation (GlyRα1R271Q). Using coimmunoprecipitation and FRET assays, we found that DH-CBD disrupts the protein interaction between GABAAR and GlyRα1R271Q Furthermore, a point mutation of GlyRα1, changing Ser-296 to Ala-296, which is critical for cannabinoid binding on GlyR, significantly blocked DH-CBD-induced restoration of IGABA and IGly currents. This S296A substitution also considerably attenuated DH-CBD-induced disruption of the interaction between GlyRα1R271Q and GABAAR. These findings suggest that, because it restores the functions of both GlyRα1 and GABAAR, DH-CBD may represent a potentially valuable candidate drug to manage hyperekplexia.
Collapse
Affiliation(s)
- Guichang Zou
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jing Xia
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qianqian Han
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Dan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xiong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
34
|
Yahyaoui R, Pérez-Frías J. Amino Acid Transport Defects in Human Inherited Metabolic Disorders. Int J Mol Sci 2019; 21:ijms21010119. [PMID: 31878022 PMCID: PMC6981491 DOI: 10.3390/ijms21010119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Amino acid transporters play very important roles in nutrient uptake, neurotransmitter recycling, protein synthesis, gene expression, cell redox balance, cell signaling, and regulation of cell volume. With regard to transporters that are closely connected to metabolism, amino acid transporter-associated diseases are linked to metabolic disorders, particularly when they involve different organs, cell types, or cell compartments. To date, 65 different human solute carrier (SLC) families and more than 400 transporter genes have been identified, including 11 that are known to include amino acid transporters. This review intends to summarize and update all the conditions in which a strong association has been found between an amino acid transporter and an inherited metabolic disorder. Many of these inherited disorders have been identified in recent years. In this work, the physiological functions of amino acid transporters will be described by the inherited diseases that arise from transporter impairment. The pathogenesis, clinical phenotype, laboratory findings, diagnosis, genetics, and treatment of these disorders are also briefly described. Appropriate clinical and diagnostic characterization of the underlying molecular defect may give patients the opportunity to avail themselves of appropriate therapeutic options in the future.
Collapse
Affiliation(s)
- Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, 29011 Málaga, Spain
- Grupo Endocrinología y Nutrición, Diabetes y Obesidad, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain
- Correspondence:
| | - Javier Pérez-Frías
- Grupo Multidisciplinar de Investigación Pediátrica, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
35
|
Dafsari HS, Kawalia A, Sprute R, Karakaya M, Malenica A, Herkenrath P, Nürnberg P, Motameny S, Thiele H, Cirak S. Novel mutations in SLC6A5 with benign course in hyperekplexia. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004465. [PMID: 31604777 PMCID: PMC6913151 DOI: 10.1101/mcs.a004465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023] Open
Abstract
Infants suffering from life-threatening apnea, stridor, cyanosis, and increased muscle tone may often be misdiagnosed with infantile seizures and inappropriately treated because of lack and delay in genetic diagnosis. Here, we report a patient with increased muscle tone after birth and hypertonic attacks with life-threatening apnea but no epileptiform patterns in EEG recordings. We identified novel compound heterozygous variants in SLC6A5 (NM_004211.4:c.[1429T > C];[1430delC]) by trio whole-exome sequencing, containing a base deletion inherited by the asymptomatic mother leading to a frameshift (c.1430delC, p.Ser477PhefsTer9) and a de novo base exchange leading to an amino acid change (c.1429T > C, p.Ser477Pro). To date, there are four known disease-associated genes for primary hyperekplexia, all of which are involved in the functioning of glycinergic synapses. SLC6A5 encodes the sodium- and chloride-dependent glycine transporter 2 (GlyT2), which recaptures glycine, a major inhibitory transmitter in the brainstem and spinal cord. The diagnosis altered the patient's medical care to his benefit because SLC6A5 mutations with rather benign courses of hyperekplexia may be spared of needless pharmacotherapy. Symptoms eventually decreased in frequency until about once in 2 mo at 2 yr age. We present the first report of halting hyperekplexia episodes by maternal soothing in multiple instances. We highlight the importance of clarifying the genetic diagnosis by rapid next-generation sequencing techniques in this group of infantile apneic attacks with hyperekplexia due to the broad differential diagnoses.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Amit Kawalia
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Rosanne Sprute
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Mert Karakaya
- Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany.,Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Anna Malenica
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Peter Herkenrath
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany.,Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| |
Collapse
|
36
|
van der Veen S, Zutt R, Klein C, Marras C, Berkovic SF, Caviness JN, Shibasaki H, de Koning TJ, Tijssen MA. Nomenclature of Genetically Determined Myoclonus Syndromes: Recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord 2019; 34:1602-1613. [PMID: 31584223 PMCID: PMC6899848 DOI: 10.1002/mds.27828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Genetically determined myoclonus disorders are a result of a large number of genes. They have wide clinical variation and no systematic nomenclature. With next-generation sequencing, genetic diagnostics require stringent criteria to associate genes and phenotype. To improve (future) classification and recognition of genetically determined movement disorders, the Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders (2012) advocates and renews the naming system of locus symbols. Here, we propose a nomenclature for myoclonus syndromes and related disorders with myoclonic jerks (hyperekplexia and myoclonic epileptic encephalopathies) to guide clinicians in their diagnostic approach to patients with these disorders. Sixty-seven genes were included in the nomenclature. They were divided into 3 subgroups: prominent myoclonus syndromes, 35 genes; prominent myoclonus syndromes combined with another prominent movement disorder, 9 genes; disorders that present usually with other phenotypes but can manifest as a prominent myoclonus syndrome, 23 genes. An additional movement disorder is seen in nearly all myoclonus syndromes: ataxia (n = 41), ataxia and dystonia (n = 6), and dystonia (n = 5). However, no additional movement disorders were seen in related disorders. Cognitive decline and epilepsy are present in the vast majority. The anatomical origin of myoclonus is known in 64% of genetic disorders: cortical (n = 34), noncortical areas (n = 8), and both (n = 1). Cortical myoclonus is commonly seen in association with ataxia, and noncortical myoclonus is often seen with myoclonus-dystonia. This new nomenclature of myoclonus will guide diagnostic testing and phenotype classification. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sterre van der Veen
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
| | - Rodi Zutt
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
- Department of NeurologyHaga Teaching HospitalThe HagueThe Netherlands
| | | | - Connie Marras
- Edmond J. Safra Program in Parkinson's DiseaseToronto Western Hospital, University of TorontoTorontoOntarioCanada
| | - Samuel F. Berkovic
- Epilepsy Research Center, Department of MedicineUniversity of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | | | | | - Tom J. de Koning
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
- Department of GeneticsUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
| | - Marina A.J. Tijssen
- Department of NeurologyUniversity Groningen, University Medical Center GroningenGroningenNetherlands
| |
Collapse
|
37
|
de la Rocha-Muñoz A, Núñez E, Arribas-González E, López-Corcuera B, Aragón C, de Juan-Sanz J. E3 ubiquitin ligases LNX1 and LNX2 are major regulators of the presynaptic glycine transporter GlyT2. Sci Rep 2019; 9:14944. [PMID: 31628376 PMCID: PMC6802383 DOI: 10.1038/s41598-019-51301-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
The neuronal glycine transporter GlyT2 is an essential regulator of glycinergic neurotransmission that recaptures glycine in presynaptic terminals to facilitate transmitter packaging in synaptic vesicles. Alterations in GlyT2 expression or activity result in lower cytosolic glycine levels, emptying glycinergic synaptic vesicles and impairing neurotransmission. Lack of glycinergic neurotransmission caused by GlyT2 loss-of-function mutations results in Hyperekplexia, a rare neurological disease characterized by generalized stiffness and motor alterations that may cause sudden infant death. Although the importance of GlyT2 in pathology is known, how this transporter is regulated at the molecular level is poorly understood, limiting current therapeutic strategies. Guided by an unbiased screening, we discovered that E3 ubiquitin ligase Ligand of Numb proteins X1/2 (LNX1/2) modulate the ubiquitination status of GlyT2. The N-terminal RING-finger domain of LNX1/2 ubiquitinates a cytoplasmic C-terminal lysine cluster in GlyT2 (K751, K773, K787 and K791), and this process regulates the expression levels and transport activity of GlyT2. The genetic deletion of endogenous LNX2 in spinal cord primary neurons causes an increase in GlyT2 expression and we find that LNX2 is required for PKC-mediated control of GlyT2 transport. This work identifies, to our knowledge, the first E3 ubiquitin-ligases acting on GlyT2, revealing a novel molecular mechanism that controls presynaptic glycine availability. Providing a better understanding of the molecular regulation of GlyT2 may help future investigations into the molecular basis of human disease states caused by dysfunctional glycinergic neurotransmission, such as hyperekplexia and chronic pain.
Collapse
Affiliation(s)
- A de la Rocha-Muñoz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Núñez
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - E Arribas-González
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, 28002, Madrid, Spain
| | - B López-Corcuera
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - C Aragón
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.
| | - J de Juan-Sanz
- Sorbonne Université and Institut du Cerveau et de la Moelle Epinière (ICM) - Hôpital Pitié-Salpêtrière, Inserm, CNRS, Paris, France.
| |
Collapse
|
38
|
Harvey RJ. Hijacking of GABAA Receptors by Mutant Glycine Receptors. Trends Mol Med 2019; 25:823-825. [DOI: 10.1016/j.molmed.2019.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/24/2022]
|
39
|
Kitzenmaier A, Schaefer N, Kasaragod VB, Polster T, Hantschmann R, Schindelin H, Villmann C. The P429L loss of function mutation of the human glycine transporter 2 associated with hyperekplexia. Eur J Neurosci 2019; 50:3906-3920. [DOI: 10.1111/ejn.14533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Alexandra Kitzenmaier
- Institute for Clinical Neurobiology Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Vikram Babu Kasaragod
- Rudolf Virchow Centre for Experimental Biomedicine Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Tilman Polster
- Pediatric Epileptology Mara Hospital Bethel Epilepsy Centre Bielefeld Germany
| | - Ralph Hantschmann
- Center for Developmental Pediatrics and Pediatric Neurology Hagen Germany
| | - Hermann Schindelin
- Rudolf Virchow Centre for Experimental Biomedicine Julius‐Maximilians‐University of Würzburg Würzburg Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology Julius‐Maximilians‐University of Würzburg Würzburg Germany
| |
Collapse
|
40
|
Vuilleumier PH, Fritsche R, Schliessbach J, Schmitt B, Arendt-Nielsen L, Zeilhofer HU, Curatolo M. Mutations affecting glycinergic neurotransmission in hyperekplexia increase pain sensitivity. Brain 2019; 141:63-71. [PMID: 29149236 DOI: 10.1093/brain/awx289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/19/2017] [Indexed: 11/14/2022] Open
Abstract
See Dickenson (doi:10.1093/brain/awx334) for a scientific commentary on this article.Inhibitory interneurons in the spinal cord use glycine and GABA for fast inhibitory neurotransmission. While there is abundant research on these inhibitory pain pathways in animal models, their relevance in humans remains unclear, largely due to the limited possibility to manipulate selectively these pathways in humans. Hyperekplexia is a rare human disease that is caused by loss-of-function mutations in genes encoding for glycine receptors and glycine transporters. In the present study, we tested whether hyperekplexia patients display altered pain perception or central pain modulation compared with healthy subjects. Seven patients with genetically and clinically confirmed hyperekplexia were compared to 14 healthy age- and sex-matched controls. The following quantitative sensory tests were performed: pressure pain detection threshold (primary outcome), ice water tolerance, single and repeated electrical pain detection thresholds, nociceptive withdrawal reflex threshold, and conditioned pain modulation. Statistical analysis was performed using linear mixed models. Hyperekplexia patients displayed lower pain thresholds than healthy controls for all of the quantitative sensory tests [mean (standard deviation)]: pressure pain detection threshold [273 (170) versus 475 (115) kPa, P = 0.003], ice water tolerance [49.2 (36.5) versus 85.7 (35.0) s, P = 0.015], electrical single pain detection threshold [5.42 (2.64) versus 7.47 (2.62) mA, P = 0.012], electrical repeated pain detection threshold [3.76 (1.41) versus 5.8 (1.73) mA, P = 0.003], and nociceptive withdrawal reflex [7.42 (3.63) versus 14.1 (6.9) mA, P = 0.015]. Conditioned pain modulation was significantly reduced in hyperekplexia [increase to baseline: 53.2 (63.7) versus 105 (57) kPa, P = 0.030]. Our data demonstrate increased pain sensitivity and impaired central pain modulation in hyperekplexia patients, supporting the importance of glycinergic neurotransmission for central pain modulation in humans.
Collapse
Affiliation(s)
- Pascal Henri Vuilleumier
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Switzerland
| | - Raphael Fritsche
- Department of Ophthalmology, Canton Hospital of Lucerne, Switzerland
| | - Jürg Schliessbach
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Switzerland
| | - Bernhard Schmitt
- Department of Child Neurology, Children's Hospital, University of Zurich, Switzerland
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, School of Medicine, University of Aalborg, Denmark
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Michele Curatolo
- Center for Sensory-Motor Interaction, School of Medicine, University of Aalborg, Denmark.,Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, USA
| |
Collapse
|
41
|
Murphy SC, Recio A, de la Fuente C, Guo LT, Shelton GD, Clark LA. A glycine transporter SLC6A5 frameshift mutation causes startle disease in Spanish greyhounds. Hum Genet 2019; 138:509-513. [PMID: 30847549 DOI: 10.1007/s00439-019-01986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/19/2019] [Indexed: 11/29/2022]
Abstract
Startle disease, or hyperekplexia, is a glycinergic disorder characterized by hypertonia and apnea that is triggered by noise and/or touch. Mutations in five genes have been associated with startle disease in humans, dogs, cattle, and mice. We identified a novel recessive startle disease in a family of Spanish greyhounds. Whole genome resequencing of an affected dog revealed a homozygous two base pair deletion in the ninth exon of SLC6A5, encoding the presynaptic glycine transporter. The deletion is predicted to cause a frameshift, p.S460FfsX47, leading to a premature stop codon that truncates over a third of the protein. Family members were genotyped for the deletion, and findings were consistent with an autosomal recessive inheritance pattern. The pathogenic variant was absent from 34 unrelated greyhounds, 659 domestic dogs of pure and mixed breeds, and 54 wild canids, suggesting it occurred recently and may be private to the family. The findings of this study can be used to inform future breeding decisions and prevent dissemination of the deleterious allele in greyhounds.
Collapse
Affiliation(s)
- Sarah C Murphy
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Alfredo Recio
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Clinica Veterinaria Levante, San Javier, Murcia, Spain
| | - Cristian de la Fuente
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
42
|
Alfallaj R, Alfadhel M. Glycine Transporter 1 Encephalopathy From Biochemical Pathway to Clinical Disease: Review. Child Neurol Open 2019; 6:2329048X19831486. [PMID: 30815509 PMCID: PMC6383083 DOI: 10.1177/2329048x19831486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/22/2023] Open
Abstract
Glycine transporter 1 encephalopathy (OMIM# 617301; glycine encephalopathy with normal
serum glycine, GLYT1 transporter dysfunction, and nonketotic hyperglycinemia) is caused by
mutations in the SLC6A9 gene. To date, 6 cases have been reported in the
literature, characterized as having neonatal onset, respiratory failure that required
mechanical ventilation, severe hypotonia at birth that progressed to limb hypertonicity,
and startle-like responses provoked by sudden loud noises and tactile stimulation.
Additional characteristics included dysmorphic features, musculoskeletal abnormalities,
and abnormal antenatal findings. Initial diagnosis include elevated levels of glycine in
cerebrospinal fluid and an elevated cerebrospinal fluid to plasma glycine ratio. Abnormal
magnetic resonance imaging findings included white matter abnormalities, thin corpus
callosum, dilatation of the lateral and third ventricles, caudate atrophy, and tiny cysts.
Patients reported so far showed normal electroencephalogram results. Treatment was
supportive and appeared severe as 50% of the patients died between 2 days and 7 months of
age, while surviving children had global developmental delay. In this report, we reviewed
the published cases having glycine transporter 1 encephalopathy and retrospectively
characterizing the disease phenotypes, affected biochemical pathways, neuroradiological
abnormalities, diagnosis, genetic issues, and treatment; additionally, key discussion
points are also presented.
Collapse
Affiliation(s)
- Rayan Alfallaj
- King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Leung AKC, Leung AAM, Wong AHC, Hon KL. Breath-Holding Spells in Pediatrics: A Narrative Review of the Current Evidence. Curr Pediatr Rev 2019; 15:22-29. [PMID: 30421679 PMCID: PMC6696822 DOI: 10.2174/1573396314666181113094047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Breath-holding spells are common, frightening, but fortunately benign events. Familiarity with this condition is important so that an accurate diagnosis can be made. OBJECTIVE To familiarize physicians with the clinical manifestations, diagnosis, evaluation, and management of children with breath-holding spells. METHODS A PubMed search was completed in Clinical Queries using the key term "breath-holding spells". The search strategy included meta-analyses, randomized controlled trials, clinical trials, observational studies, and reviews. Only papers published in the English literature were included in this review. The information retrieved from the above search was used in the compilation of the present article. RESULTS Breath-holding spells affect 0.1 to 4.6% of otherwise healthy young children. The onset is usually between 6 and 18 months of age. The etiopathogenesis is likely multifactorial and includes autonomic nervous system dysregulation, vagally-mediated cardiac inhibition, delayed myelination of the brain stem, and iron deficiency anemia. Breath-holding spells may be cyanotic or pallid. The former are usually precipitated by anger or frustration while the latter are more often precipitated by pain or fear. In the cyanotic type, the child usually emits a short, loud cry, which leads to a sudden involuntary holding of the breath in forced expiration. The child becomes cyanosed, rigid or limp, followed by a transient loss of consciousness, and a long-awaited inspiration and resolution of the spell. In the pallid type, crying may be minimal or "silent". The apneic period in the pallid type is briefer than that in the cyanotic type prior to the loss of consciousness and posture. The episode in the pallid type then proceeds in the same manner as a cyanotic spell except that the child in the pallid type develops pallor rather than cyanosis. In both types, the entire episode lasts approximately 10 to 60 seconds. The spells usually disappear spontaneously by 5 years of age. CONCLUSION Although breath-holding spells are benign, they can be quite distressing to the parents. Confident reassurance and frank explanation are the cornerstones of treatment. Underlying cause, if present, should be treated. Interventions beyond iron supplementation may be considered for children with severe and frequent breath-holding spells which have a strong impact on the lifestyle of both the child and family.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Amy A M Leung
- Department of Family Medicine, The University of Alberta, Edmonton, Alberta, Canada
| | - Alex H C Wong
- Department of Family Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
44
|
Benito-Muñoz C, Perona A, Abia D, Dos Santos HG, Núñez E, Aragón C, López-Corcuera B. Modification of a Putative Third Sodium Site in the Glycine Transporter GlyT2 Influences the Chloride Dependence of Substrate Transport. Front Mol Neurosci 2018; 11:347. [PMID: 30319354 PMCID: PMC6166138 DOI: 10.3389/fnmol.2018.00347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter removal from glycine-mediated synapses relies on two sodium-driven high-affinity plasma membrane GlyTs that control neurotransmitter availability. Mostly glial GlyT1 is the main regulator of glycine synaptic levels, whereas neuronal GlyT2 promotes the recycling of synaptic glycine and supplies neurotransmitter for presynaptic vesicle refilling. The GlyTs differ in sodium:glycine symport stoichiometry, showing GlyT1 a 2:1 and GlyT2 a 3:1 sodium:glycine coupling. Sodium binds to the GlyTs at two conserved Na+ sites: Na1 and Na2. The location of GlyT2 Na3 site remains unknown, although Glu650 has been involved in the coordination. Here, we have used comparative MD simulations of a GlyT2 model constructed by homology to the crystalized DAT from Drosophila melanogaster by placing the Na3 ion at two different locations. By combination of in silico and experimental data obtained by biochemical and electrophysiological analysis of GlyTs mutants, we provide evidences suggesting the GlyT2 third sodium ion is held by Glu-250 and Glu-650, within a region with robust allosteric properties involved in cation-specific sensitivity. Substitution of Glu650 in GlyT2 by the corresponding methionine in GlyT1 reduced the charge-to-flux ratio to the level of GlyT1 without producing transport uncoupling. Chloride dependence of glycine transport was almost abolished in this GlyT2 mutant but simultaneous substitution of Glu250 and Glu650 by neutral amino acids rescued chloride sensitivity, suggesting that protonation/deprotonation of Glu250 substitutes chloride function. The differential behavior of equivalent GlyT1 mutations sustains a GlyT2-specific allosteric coupling between the putative Na3 site and the chloride site.
Collapse
Affiliation(s)
- Cristina Benito-Muñoz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Almudena Perona
- Smartligs, Parque Científico de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Helena G Dos Santos
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Núñez
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Aragón
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz López-Corcuera
- Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular, "Severo Ochoa" Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
45
|
Hines RM, Maric HM, Hines DJ, Modgil A, Panzanelli P, Nakamura Y, Nathanson AJ, Cross A, Deeb T, Brandon NJ, Davies P, Fritschy JM, Schindelin H, Moss SJ. Developmental seizures and mortality result from reducing GABA A receptor α2-subunit interaction with collybistin. Nat Commun 2018; 9:3130. [PMID: 30087324 PMCID: PMC6081406 DOI: 10.1038/s41467-018-05481-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/05/2018] [Indexed: 01/08/2023] Open
Abstract
Fast inhibitory synaptic transmission is mediated by γ-aminobutyric acid type A receptors (GABAARs) that are enriched at functionally diverse synapses via mechanisms that remain unclear. Using isothermal titration calorimetry and complementary methods we demonstrate an exclusive low micromolar binding of collybistin to the α2-subunit of GABAARs. To explore the biological relevance of collybistin-α2-subunit selectivity, we generate mice with a mutation in the α2-subunit-collybistin binding region (Gabra2-1). The mutation results in loss of a distinct subset of inhibitory synapses and decreased amplitude of inhibitory synaptic currents. Gabra2-1 mice have a striking phenotype characterized by increased susceptibility to seizures and early mortality. Surviving Gabra2-1 mice show anxiety and elevations in electroencephalogram δ power, which are ameliorated by treatment with the α2/α3-selective positive modulator, AZD7325. Taken together, our results demonstrate an α2-subunit selective binding of collybistin, which plays a key role in patterned brain activity, particularly during development.
Collapse
Affiliation(s)
- Rochelle M Hines
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA.
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, 89154, Ne, USA.
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, D-97080, Germany
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, D-97080, Germany
| | - Dustin J Hines
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, 89154, Ne, USA
| | - Amit Modgil
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, 10126, Italy
| | - Yasuko Nakamura
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Alan Cross
- AstraZeneca Neuroscience iMED, Biotech Unit, Boston, 02451, MA, USA
| | - Tarek Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, 02111, MA, USA
| | - Nicholas J Brandon
- AstraZeneca Neuroscience iMED, Biotech Unit, Boston, 02451, MA, USA
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, 02111, MA, USA
| | - Paul Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, 8057, Switzerland
- Center for Neuroscience Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, D-97080, Germany
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, 02111, MA, USA.
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, 02111, MA, USA.
- Department of Neuroscience, Physiology and Pharmacology, University College, London, WC1E 6BT, UK.
| |
Collapse
|
46
|
López-Corcuera B, Arribas-González E, Aragón C. Hyperekplexia-associated mutations in the neuronal glycine transporter 2. Neurochem Int 2018; 123:95-100. [PMID: 29859229 DOI: 10.1016/j.neuint.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
Hyperekplexia or startle disease is a dysfunction of inhibitory glycinergic neurotransmission characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. Although rare, this disorder can have serious consequences, including sudden infant death. One of the most frequent causes of hyperekplexia are mutations in the SLC6A5 gene, encoding the neuronal glycine transporter 2 (GlyT2), a key component of inhibitory glycinergic presynapses involved in synaptic glycine recycling though sodium and chloride-dependent co-transport. Most GlyT2 mutations detected so far are recessive, but two dominant missense mutations have been described. The detailed analysis of these mutations has revealed structural cues on the quaternary structure of GlyT2, and opens the possibility that novel selective pharmacochaperones have potential therapeutic effects in hyperekplexia.
Collapse
Affiliation(s)
- Beatriz López-Corcuera
- Centro de Biología Molecular ''Severo Ochoa'', Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Esther Arribas-González
- Centro de Biología Molecular ''Severo Ochoa'', Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Aragón
- Centro de Biología Molecular ''Severo Ochoa'', Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; IdiPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
47
|
Eulenburg V, Knop G, Sedmak T, Schuster S, Hauf K, Schneider J, Feigenspan A, Joachimsthaler A, Brandstätter JH. GlyT1 determines the glycinergic phenotype of amacrine cells in the mouse retina. Brain Struct Funct 2018; 223:3251-3266. [PMID: 29808289 DOI: 10.1007/s00429-018-1684-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2018] [Indexed: 11/26/2022]
Abstract
The amino acid glycine acts as a neurotransmitter at both inhibitory glycinergic and excitatory glutamatergic synapses predominantly in caudal regions of the central nervous system but also in frontal brain regions and the retina. After its presynaptic release and binding to postsynaptic receptors at caudal glycinergic synapses, two high-affinity glycine transporters GlyT1 and GlyT2 remove glycine from the extracellular space. Glycinergic neurons express GlyT2, which is essential for the presynaptic replenishment of the transmitter, while glial-expressed GlyT1 was shown to control the extracellular glycine concentration. Here we show that GlyT1 expressed by glycinergic amacrine cells of the retina does not only contribute to the control of the extracellular glycine concentration in the retina but is also essential for the maintenance of the glycinergic transmitter phenotype of this cell population. Specifically, loss of GlyT1 from the glycinergic AII amacrine cells impairs AII-mediated glycinergic neurotransmission and alters regulation of the extracellular glycine concentration, without changes in the overall distribution and/or size of glycinergic synapses. Taken together, our results suggest that GlyT1 expressed by amacrine cells in the retina combines functions covered by neuronal GlyT2 and glial GlyT1 at caudal glycinergic synapses.
Collapse
Affiliation(s)
- Volker Eulenburg
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany.
| | - Gabriel Knop
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Sedmak
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Schuster
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Hauf
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| | - Julia Schneider
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Feigenspan
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anneka Joachimsthaler
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Ophthalmology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Johann Helmut Brandstätter
- Department of Biology, Animal Physiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
48
|
|
49
|
Carland JE, Thomas M, Mostyn SN, Subramanian N, O’Mara ML, Ryan RM, Vandenberg RJ. Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2. ACS Chem Neurosci 2018; 9:603-614. [PMID: 29120604 DOI: 10.1021/acschemneuro.7b00407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transporters in the SLC6 family play key roles in regulating neurotransmission and are the targets for a wide range of therapeutics. Important insights into the transport mechanisms and the specificity of drug interactions of SLC6 transporters have been obtained from the crystal structures of a bacterial homologue of the family, LeuTAa, and more recently the Drosophila dopamine transporter and the human serotonin transporter. However, there is disputed evidence that the bacterial leucine transporter, LeuTAa, contains two substrate binding sites that work cooperatively in the mechanism of transport, with the binding of a second substrate being required for the release of the substrate from the primary site. An alternate proposal is that there may be low affinity binding sites that serve to direct the flow of substrates to the primary site. We have used a combination of molecular dynamics simulations of substrate interactions with a homology model of GlyT2, together with radiolabeled amino acid uptake assays and electrophysiological analysis of wild-type and mutant transporters, to provide evidence that substrate selectivity of GlyT2 is determined entirely by the primary substrate binding site and, furthermore, if a secondary site exists then it is a low affinity nonselective amino acid binding site.
Collapse
Affiliation(s)
- Jane E. Carland
- Discipline of Pharmacology, School of Medical Sciences, Molecular Biosciences Building, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Thomas
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Shannon N. Mostyn
- Discipline of Pharmacology, School of Medical Sciences, Molecular Biosciences Building, University of Sydney, Sydney, NSW 2006, Australia
| | - Nandhitha Subramanian
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Renae M. Ryan
- Discipline of Pharmacology, School of Medical Sciences, Molecular Biosciences Building, University of Sydney, Sydney, NSW 2006, Australia
| | - Robert J. Vandenberg
- Discipline of Pharmacology, School of Medical Sciences, Molecular Biosciences Building, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
50
|
Bhat J, Martinez J, Maertens P. Atypical Cyanotic Breath-Holding Spells in an Infant With 16p11.2 Microdeletion Syndrome. Clin Pediatr (Phila) 2018; 57:365-367. [PMID: 28664753 DOI: 10.1177/0009922817717328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|