1
|
Niazi SK, Mariam Z. Artificial intelligence in drug development: reshaping the therapeutic landscape. Ther Adv Drug Saf 2025; 16:20420986251321704. [PMID: 40008227 PMCID: PMC11851753 DOI: 10.1177/20420986251321704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Artificial intelligence (AI) is transforming medication research and development, giving clinicians new treatment options. Over the past 30 years, machine learning, deep learning, and neural networks have revolutionized drug design, target identification, and clinical trial predictions. AI has boosted pharmaceutical R&D (research and development) by identifying new therapeutic targets, improving chemical designs, and predicting complicated protein structures. Furthermore, generative AI is accelerating the development and re-engineering of medicinal molecules to cater to both common and rare diseases. Although, to date, no AI-generated medicinal drug has been FDA-approved, HLX-0201 for fragile X syndrome and new molecules for idiopathic pulmonary fibrosis have entered clinical trials. However, AI models are generally considered "black boxes," making their conclusions challenging to understand and limiting the potential due to a lack of model transparency and algorithmic bias. Despite these obstacles, AI-driven drug discovery has substantially reduced development times and costs, expediting the process and financial risks of bringing new medicines to market. In the future, AI is expected to continue to impact pharmaceutical innovation positively, making life-saving drug discoveries faster, more efficient, and more widespread.
Collapse
Affiliation(s)
- Sarfaraz K. Niazi
- College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
2
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 PMCID: PMC11641023 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
|
3
|
Perez ÉS, Duran BOS, Zanella BTT, Dal-Pai-Silva M. Review: Understanding fish muscle biology in the indeterminate growth species pacu (Piaractus mesopotamicus). Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111502. [PMID: 37572733 DOI: 10.1016/j.cbpa.2023.111502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The muscle phenotype of fish is regulated by numerous factors that, although widely explored, still need to be fully understood. In this context, several studies aimed to unravel how internal and external stimuli affect the muscle growth of these vertebrates. The pacu (Piaractus mesopotamicus) is a species of indeterminate muscular growth that quickly reaches high body weight. For this reason, it adds great importance to the productive sector, along with other round fish. In this context, we aimed to compile studies on fish biology and skeletal muscle growth, focusing on studies by our research group that used pacu as an experimental model along with other species. Based on these studies, new muscle phenotype regulators were identified and explored in vivo, in vitro, and in silico studies, which strongly contribute to advances in understanding muscle growth mechanisms with future applications in the productive sector.
Collapse
Affiliation(s)
- Érika Stefani Perez
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil.
| | - Bruna Tereza Thomazini Zanella
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
4
|
He T, Fan Y, Wang Y, Liu M, Zhu AJ. Dissection of the microRNA Network Regulating Hedgehog Signaling in Drosophila. Front Cell Dev Biol 2022; 10:866491. [PMID: 35573695 PMCID: PMC9096565 DOI: 10.3389/fcell.2022.866491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling plays a critical role in embryogenesis and adult tissue homeostasis. Aberrant Hh signaling often leads to various forms of developmental anomalies and cancer. Since altered microRNA (miRNA) expression is associated with developmental defects and tumorigenesis, it is not surprising that several miRNAs have been found to regulate Hh signaling. However, these miRNAs are mainly identified through small-scale in vivo screening or in vitro assays. As miRNAs preferentially reduce target gene expression via the 3' untranslated region, we analyzed the effect of reduced expression of core components of the Hh signaling cascade on downstream signaling activity, and generated a transgenic Drosophila toolbox of in vivo miRNA sensors for core components of Hh signaling, including hh, patched (ptc), smoothened (smo), costal 2 (cos2), fused (fu), Suppressor of fused (Su(fu)), and cubitus interruptus (ci). With these tools in hand, we performed a genome-wide in vivo miRNA overexpression screen in the developing Drosophila wing imaginal disc. Of the twelve miRNAs identified, seven were not previously reported in the in vivo Hh regulatory network. Moreover, these miRNAs may act as general regulators of Hh signaling, as their overexpression disrupts Hh signaling-mediated cyst stem cell maintenance during spermatogenesis. To identify direct targets of these newly discovered miRNAs, we used the miRNA sensor toolbox to show that miR-10 and miR-958 directly target fu and smo, respectively, while the other five miRNAs act through yet-to-be-identified targets other than the seven core components of Hh signaling described above. Importantly, through loss-of-function analysis, we found that endogenous miR-10 and miR-958 target fu and smo, respectively, whereas deletion of the other five miRNAs leads to altered expression of Hh signaling components, suggesting that these seven newly discovered miRNAs regulate Hh signaling in vivo. Given the powerful effects of these miRNAs on Hh signaling, we believe that identifying their bona fide targets of the other five miRNAs will help reveal important new players in the Hh regulatory network.
Collapse
Affiliation(s)
- Tao He
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Fan
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
5
|
MicroRNA-dependent regulation of targeted mRNAs for improved muscle texture in crisp grass carp fed with broad bean. Food Res Int 2022; 155:111071. [DOI: 10.1016/j.foodres.2022.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
|
6
|
Khanal S, Zancanela BS, Peter JO, Flynt AS. The Small RNA Universe of Capitella teleta. Front Mol Biosci 2022; 9:802814. [PMID: 35281272 PMCID: PMC8915122 DOI: 10.3389/fmolb.2022.802814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
RNAi is an evolutionarily fluid mechanism with dramatically different activities across animal phyla. One major group where there has been little investigation is annelid worms. Here, the small RNAs of the polychaete developmental model Capitella teleta are profiled across development. As is seen with nearly all animals, nearly 200 microRNAs were found with 58 high-confidence novel species. Greater miRNA diversity was associated with later stages consistent with differentiation of tissues. Outside miRNA, a distinct composition of other small RNA pathways was found. Unlike many invertebrates, an endogenous siRNA pathway was not observed, indicating pathway loss relative to basal planarians. No processively generated siRNA-class RNAs could be found arising from dsRNA precursors. This has a significant impact on RNAi technology development for this group of animals. Unlike the apparent absence of siRNAs, a significant population of piRNAs was observed. For many piRNAs, phasing and ping-pong biogenesis pathways were identified. Interestingly, piRNAs were found to be highly expressed during early development, suggesting a potential role in regulation in metamorphosis. Critically, the configuration of RNAi factors in C. teleta is found in other annelids and mollusks, suggesting that similar biology is likely to be present in the wider clade. This study is the first in providing comprehensive analysis of small RNAs in annelids.
Collapse
|
7
|
Di Schiavi E, Vistoli G, Moretti RM, Corrado I, Zuccarini G, Gervasoni S, Casati L, Bottai D, Merlo GR, Maggi R. Anosmin-1-Like Effect of UMODL1/Olfactorin on the Chemomigration of Mouse GnRH Neurons and Zebrafish Olfactory Axons Development. Front Cell Dev Biol 2022; 10:836179. [PMID: 35223856 PMCID: PMC8874799 DOI: 10.3389/fcell.2022.836179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The impairment of development/migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons is the main cause of Kallmann's syndrome (KS), an inherited disorder characterized by hypogonadism, anosmia, and other developmental defects. Olfactorin is an extracellular matrix protein encoded by the UMODL1 (uromodulin-like 1) gene expressed in the mouse olfactory region along the migratory route of GnRH neurons. It shares a combination of WAP and FNIII repeats, expressed in complementary domains, with anosmin-1, the product of the ANOS1 gene, identified as the causative of KS. In the present study, we have investigated the effects of olfactorin in vitro and in vivo models. The results show that olfactorin exerts an anosmin-1-like strong chemoattractant effect on mouse-immortalized GnRH neurons (GN11 cells) through the activation of the FGFR and MAPK pathways. In silico analysis of olfactorin and anosmin-1 reveals a satisfactory similarity at the N-terminal region for the overall arrangement of corresponding WAP and FNIII domains and marked similarities between WAP domains’ binding modes of interaction with the resolved FGFR1–FGF2 complex. Finally, in vivo experiments show that the down-modulation of the zebrafish z-umodl1 gene (orthologous of UMODL1) in both GnRH3:GFP and omp2k:gap-CFPrw034 transgenic zebrafish strains leads to a clear disorganization and altered fasciculation of the neurites of GnRH3:GFP neurons crossing at the anterior commissure and a significant increase in olfactory CFP + fibers with altered trajectory. Thus, our study shows olfactorin as an additional factor involved in the development of olfactory and GnRH systems and proposes UMODL1 as a gene worthy of diagnostic investigation in KS.
Collapse
Affiliation(s)
- Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences DISFEB, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Corrado
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Giulia Zuccarini
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Daniele Bottai
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Giorgio Roberto Merlo
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Roberto Maggi
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Roberto Maggi,
| |
Collapse
|
8
|
Wang J, Li H, Lv Z, Luo X, Deng W, Zou T, Zhang Y, Sang W, Wang X. The miR-214-3p/c-Ski axis modulates endothelial-mesenchymal transition in human coronary artery endothelial cells in vitro and in mice model in vivo. Hum Cell 2022; 35:486-497. [PMID: 34978047 DOI: 10.1007/s13577-021-00653-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023]
Abstract
Cardiovascular disease (CVD) is a leading non-communicable disease with a high fatality rate worldwide. Hypertension, a common cardiovascular condition, is a significant risk factor for the development of heart failure because the activation of the renin-angiotensin system (RAS) is considered to be the major promoting reason behind myocardial fibrosis (MF). In this study, Angiotensin II (Ang II) stimulation-induced endothelial to mesenchymal transition (End-MT) in HCAECs, including the decrease of CD31 level, the increase of α-SMA, collagen I, slug, snail, and TGF-β1 levels, and the promotion of Smad2/3 phosphorylation. Meanwhile, the c-Ski level was reduced in Ang II-stimulated HCAECs. In HCAECs, Ang II-induced changes could be partially attenuated by c-Ski overexpression. miR-214-3p directly targeted c-Ski and inhibited c-Ski expression. Moreover, miR-214-3p inhibition reduced Ang II-caused End-MT in HCAECs. miR-214-3p overexpression further enhanced Ang II-induced End-MT, while c-Ski overexpression could markedly reverse the effects of miR-214-3p overexpression. In the Ang II-induced mouse cardiac hypertrophic model, Ang II-caused increase of cellular cross-sectional area and cardiac fibrosis were partially ameliorated by LV-c-Ski; when mice were co-treated with LV-c-Ski and agomir-214-3p, the beneficial effects of LV-c-Ski were reversed. In conclusion, the miR-214-3p/c-Ski axis modulated Ang II-induced End-MT in HCAECs and cardiac hypertrophy and fibrosis in the mice model.
Collapse
Affiliation(s)
- Juan Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Hongjian Li
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Zhongying Lv
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaomei Luo
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Zou
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yue Zhang
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Wanyue Sang
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xuehua Wang
- Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| |
Collapse
|
9
|
MicroRNA-214 in Health and Disease. Cells 2021; 10:cells10123274. [PMID: 34943783 PMCID: PMC8699121 DOI: 10.3390/cells10123274] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.
Collapse
|
10
|
Cardona E, Guyomar C, Desvignes T, Montfort J, Guendouz S, Postlethwait JH, Skiba-Cassy S, Bobe J. Circulating miRNA repertoire as a biomarker of metabolic and reproductive states in rainbow trout. BMC Biol 2021; 19:235. [PMID: 34781956 PMCID: PMC8594080 DOI: 10.1186/s12915-021-01163-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish. Results The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. Conclusions Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01163-5.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Cervin Guyomar
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,GenPhySE, University of Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Thomas Desvignes
- Institute of Neurosciences, University of Oregon, Eugene, OR, 97403, USA
| | - Jérôme Montfort
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France
| | - Samia Guendouz
- Institute of Functional Genomics, MGX, UMR 5203 CNRS - U1191 INSERM, F-34094, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
11
|
Corso D, Chemello F, Alessio E, Urso I, Ferrarese G, Bazzega M, Romualdi C, Lanfranchi G, Sales G, Cagnin S. MyoData: An expression knowledgebase at single cell/nucleus level for the discovery of coding-noncoding RNA functional interactions in skeletal muscle. Comput Struct Biotechnol J 2021; 19:4142-4155. [PMID: 34527188 PMCID: PMC8342900 DOI: 10.1016/j.csbj.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression through non-coding RNAs at single myofiber and nucleus resolution. Reinterpretation of KEGG pathways with microRNA and long non-coding RNA activities. miR-149, -214, and let-7e alter mitochondrial shape. The long non-coding RNA Pvt1 is a sponge for miR-27a. miR-208b regulates Sox6; miR-214 regulates both Sox6 and Slc16a3.
Non-coding RNAs represent the largest part of transcribed mammalian genomes and prevalently exert regulatory functions. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can modulate the activity of each other. Skeletal muscle is the most abundant tissue in mammals. It is composed of different cell types with myofibers that represent the smallest complete contractile system. Considering that lncRNAs and miRNAs are more cell type-specific than coding RNAs, to understand their function it is imperative to evaluate their expression and action within single myofibers. In this database, we collected gene expression data for coding and non-coding genes in single myofibers and used them to produce interaction networks based on expression correlations. Since biological pathways are more informative than networks based on gene expression correlation, to understand how altered genes participate in the studied phenotype, we integrated KEGG pathways with miRNAs and lncRNAs. The database also integrates single nucleus gene expression data on skeletal muscle in different patho-physiological conditions. We demonstrated that these networks can serve as a framework from which to dissect new miRNA and lncRNA functions to experimentally validate. Some interactions included in the database have been previously experimentally validated using high throughput methods. These can be the basis for further functional studies. Using database information, we demonstrate the involvement of miR-149, -214 and let-7e in mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a via sponging; and the regulatory activity of miR-214 on Sox6 and Slc16a3. The MyoData is available at https://myodata.bio.unipd.it.
Collapse
Affiliation(s)
- Davide Corso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Francesco Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Enrico Alessio
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Ilenia Urso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Giulia Ferrarese
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Martina Bazzega
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
12
|
Ng DCH, Ho UY, Grounds MD. Cilia, Centrosomes and Skeletal Muscle. Int J Mol Sci 2021; 22:9605. [PMID: 34502512 PMCID: PMC8431768 DOI: 10.3390/ijms22179605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing important roles for cilia in human health. Whilst primary cilia have long been recognised to be present in striated muscle, their role in muscle is not well understood. However, recent studies indicate important contributions, particularly in skeletal muscle, that have to date remained underappreciated. Here, we explore recent revelations that the sensory and signalling functions of cilia on muscle progenitors regulate cell cycle progression, trigger differentiation and maintain a commitment to myogenesis. Cilia disassembly is initiated during myoblast fusion. However, the remnants of primary cilia persist in multi-nucleated myotubes, and we discuss their potential role in late-stage differentiation and myofiber formation. Reciprocal interactions between cilia and the extracellular matrix (ECM) microenvironment described for other tissues may also inform on parallel interactions in skeletal muscle. We also discuss emerging evidence that cilia on fibroblasts/fibro-adipogenic progenitors and myofibroblasts may influence cell fate in both a cell autonomous and non-autonomous manner with critical consequences for skeletal muscle ageing and repair in response to injury and disease. This review addresses the enigmatic but emerging role of primary cilia in satellite cells in myoblasts and myofibers during myogenesis, as well as the wider tissue microenvironment required for skeletal muscle formation and homeostasis.
Collapse
Affiliation(s)
- Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Uda Y. Ho
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| | - Miranda D. Grounds
- School of Human Sciences, Faculty of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Ojima K, Muroya S, Wada H, Ogawa K, Oe M, Takimoto K, Nishimura T. Immature adipocyte-derived exosomes inhibit expression of muscle differentiation markers. FEBS Open Bio 2021; 11:768-781. [PMID: 33527775 PMCID: PMC7931241 DOI: 10.1002/2211-5463.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Exosomes are released from a variety of cells to communicate with recipient cells. Exosomes contain microRNAs (miRNAs), which are noncoding RNAs that suppress target genes. Our previous proteomic study (FEBS Open Bio 2016, 6, 816–826) demonstrated that 3T3‐L1 adipocytes secrete exosome components as well as growth factors, inspiring us to investigate what type of miRNA is involved in adipocyte‐secreted exosomes and what functions they carry out in recipient cells. Here, we profiled miRNAs in 3T3‐L1 adipocyte‐secreted exosomes and revealed suppression of muscle differentiation by adipocyte‐derived exosomes. Through our microarray analysis, we detected over 300 exosomal miRNAs during adipocyte differentiation. Exosomal miRNAs present during adipocyte differentiation included not only pro‐adipogenic miRNAs but also miRNAs associated with muscular dystrophy. Gene ontology analysis predicted that the target genes of miRNAs are associated primarily with transcriptional regulation. To further investigate whether adipocyte‐secreted exosomes regulate the expression levels of genes involved in muscle differentiation, we treated cultured myoblasts with adipocyte‐derived exosome fractions. Intriguingly, the expression levels of myogenic regulatory factors, Myog and Myf6, and other muscle differentiation markers, myosin heavy‐chain 3 and insulin‐like growth factor 2, were significantly downregulated in myoblasts treated with adipocyte‐derived exosomes. Immature adipocyte‐derived exosomes exhibited a stronger suppressive effect than mature adipocyte‐derived exosomes. Our results suggest that adipocytes suppress the expression levels of muscle differentiation‐associated genes in myoblasts via adipocyte‐secreted exosomes containing miRNAs.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Hiromu Wada
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Kotaro Ogawa
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Mika Oe
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Koichi Takimoto
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Comparative miRNA signatures among Sahiwal and Frieswal cattle breeds during summer stress. 3 Biotech 2021; 11:79. [PMID: 33505834 DOI: 10.1007/s13205-020-02608-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022] Open
Abstract
MicroRNAs (miRNAs) are known to take part in different biological mechanisms, including biotic as well as abiotic cellular stresses. The present investigation was aimed to identify comparative expression profile of differentially expressed miRNAs among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) cattle breeds during summer stress. Stress responses in animals were characterized by recording various physiological parameters, biochemical assays and expression profiling of heat shock protein 70 (Hsp70) during elevated environmental temperature. Ion Torrent-based deep sequencing as well as CLC-genomic analysis identified 322 and 420 Bos taurus annotated miRNAs among Sahiwal and Frieswal, respectively. A total 69 common miRNAs were identified to be differentially expressed during summer among the breeds. Out of the 69, a total 14 differentially expressed miRNAs viz. bta-mir 6536-2, bta-mir-2898, bta-mir-let-7b, bta-mir-425, bta-mir-2332, bta-mir-2478, bta-mir-150, bta-mir142, bta-mir-16a, bta-mir-2311, bta-mir-1839, bta-mir-1248-1, bta-mir-103-2 and bta-mir-181b were randomly selected for qRT-PCR-based validation. bta-mir-2898, bta-mir-6536-1, bta-mir-let-7b, bta-mir-2478, bta-mir-150, bta-mir-16a, bta-mir-2311, bta-mir-1032-b and bta-mir-181-b were significantly (p < 0.01) upregulated during summer among Frieswal in comparison to Sahiwal while, bta-mir 6536-2, bta-mir-2332, bta-mir142, bta-mir-1839 and bta-mir-1248-1 was significantly (p < 0.01) expressed at higher level in Sahiwal in contrast to Frieswal correlation coefficient analysis revealed that bta-mir(s)-150, 16a and 181b are negatively correlated (p < 0.05) with Hsp70 expression. Thus, this study identified that miRNA expression during summer stress can vary between the breeds which may reflect their differential post-transcriptional regulation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02608-4.
Collapse
|
15
|
Luo H, Lv W, Tong Q, Jin J, Xu Z, Zuo B. Functional Non-coding RNA During Embryonic Myogenesis and Postnatal Muscle Development and Disease. Front Cell Dev Biol 2021; 9:628339. [PMID: 33585483 PMCID: PMC7876409 DOI: 10.3389/fcell.2021.628339] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue that plays a crucial role in mammalian metabolism and motion maintenance. Myogenesis is a complex biological process that includes embryonic and postnatal development, which is regulated by specific signaling pathways and transcription factors. Various non-coding RNAs (ncRNAs) account for the majority of total RNA in cells and have an important regulatory role in myogenesis. In this review, we introduced the research progress in miRNAs, circRNAs, and lncRNAs related to embryonic and postnatal muscle development. We mainly focused on ncRNAs that regulate myoblast proliferation, differentiation, and postnatal muscle development through multiple mechanisms. Finally, challenges and future perspectives related to the identification and verification of functional ncRNAs are discussed. The identification and elucidation of ncRNAs related to myogenesis will enrich the myogenic regulatory network, and the effective application of ncRNAs will enhance the function of skeletal muscle.
Collapse
Affiliation(s)
- Hongmei Luo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei Lv
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qian Tong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jianjun Jin
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zaiyan Xu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
16
|
Bantounas I, Lopes FM, Rooney KM, Woolf AS, Kimber SJ. The miR-199a/214 Cluster Controls Nephrogenesis and Vascularization in a Human Embryonic Stem Cell Model. Stem Cell Reports 2021; 16:134-148. [PMID: 33306987 PMCID: PMC7897558 DOI: 10.1016/j.stemcr.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are gene expression regulators and they have been implicated in acquired kidney diseases and in renal development, mostly through animal studies. We hypothesized that the miR-199a/214 cluster regulates human kidney development. We detected its expression in human embryonic kidneys by in situ hybridization. To mechanistically study the cluster, we used 2D and 3D human embryonic stem cell (hESC) models of kidney development. After confirming expression in each model, we inhibited the miRNAs using lentivirally transduced miRNA sponges. This reduced the WT1+ metanephric mesenchyme domain in 2D cultures. Sponges did not prevent the formation of 3D kidney-like organoids. These organoids, however, contained dysmorphic glomeruli, downregulated WT1, aberrant proximal tubules, and increased interstitial capillaries. Thus, the miR-199a/214 cluster fine-tunes differentiation of both metanephric mesenchymal-derived nephrons and kidney endothelia. While clinical implications require further study, it is noted that patients with heterozygous deletions encompassing this miRNA locus can have malformed kidneys.
Collapse
Affiliation(s)
- Ioannis Bantounas
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK.
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Kirsty M Rooney
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
17
|
Koganti P, Yao J, Cleveland BM. Molecular Mechanisms Regulating Muscle Plasticity in Fish. Animals (Basel) 2020; 11:ani11010061. [PMID: 33396941 PMCID: PMC7824542 DOI: 10.3390/ani11010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Growth rates in fish are largely dependent on genetic and environmental factors, of which the latter can be highly variable throughout development. For this reason, muscle growth in fish is particularly dynamic as muscle structure and function can be altered by environmental conditions, a concept referred to as muscle plasticity. Myogenic regulatory factors (MRFs) like Myogenin, MyoD, and Pax7 control the myogenic mechanisms regulating quiescent muscle cell maintenance, proliferation, and differentiation, critical processes central for muscle plasticity. This review focuses on recent advancements in molecular mechanisms involving microRNAs (miRNAs) and DNA methylation that regulate the expression and activity of MRFs in fish. Findings provide overwhelming support that these mechanisms are significant regulators of muscle plasticity, particularly in response to environmental factors like temperature and nutritional challenges. Genetic variation in DNA methylation and miRNA expression also correlate with variation in body weight and growth, suggesting that genetic markers related to these mechanisms may be useful for genomic selection strategies. Collectively, this knowledge improves the understanding of mechanisms regulating muscle plasticity and can contribute to the development of husbandry and breeding strategies that improve growth performance and the ability of the fish to respond to environmental challenges.
Collapse
Affiliation(s)
- Prasanthi Koganti
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506-6108, USA; (P.K.); (J.Y.)
| | - Beth M. Cleveland
- USDA ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
- Correspondence: ; Tel.: +1-304-724-8340 (ext. 2133)
| |
Collapse
|
18
|
Deb R, Sengar GS. Expression pattern of bta-mir-2898 miRNA and their correlation with heat shock proteins during summer heat stress among native vs crossbred cattle. J Therm Biol 2020; 94:102771. [DOI: 10.1016/j.jtherbio.2020.102771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
|
19
|
Duan Y, Wu Y, Yin X, Li T, Chen F, Wu P, Zhang S, Wang J, Zhang G. MicroRNA-214 Inhibits Chicken Myoblasts Proliferation, Promotes Their Differentiation, and Targets the TRMT61A Gene. Genes (Basel) 2020; 11:genes11121400. [PMID: 33255823 PMCID: PMC7760887 DOI: 10.3390/genes11121400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
The proliferation and differentiation of myoblasts is an important process of skeletal muscle development. In this process, microRNAs (miRNAs) play an important role in the proliferation and differentiation of chicken primary myoblasts (CPMs). Our previous study found that miR-214 and the tRNA methyltransferase 61A (TRMT61A) gene were differentially expressed in different stages of proliferation and differentiation. Therefore, this study aimed to explore the effect of miR-214 on the proliferation and differentiation of CPMs and the functional relationship between miR-214 and TRMT61A. In this study, we detected the effect of miR-214 on the proliferation of CPMs by qPCR, flow cytometry, CCK-8, and EdU after the overexpression and interference of miR-214. qPCR, Western blotting, and indirect immunofluorescence were used to detect the effect of miR-214 on the differentiation of the CPMs. The expression patterns of miR-214 and TRMT61A were observed at different time points of differentiation induced by the CPMs. The results show that miR-214 inhibited the proliferation of the CPMs and promoted the differentiation of the CPMs. The Dual-Luciferase Reporter assay and the expression pattern of miR-214 and TRMT61A suggested that they had a negative regulatory target relationship. This study revealed the function and regulatory mechanism of miR-214 in the proliferation and differentiation of CPMs.
Collapse
|
20
|
He S, Yang F, Yang M, An W, Maguire EM, Chen Q, Xiao R, Wu W, Zhang L, Wang W, Xiao Q. miR-214-3p-Sufu-GLI1 is a novel regulatory axis controlling inflammatory smooth muscle cell differentiation from stem cells and neointimal hyperplasia. Stem Cell Res Ther 2020; 11:465. [PMID: 33143723 PMCID: PMC7640405 DOI: 10.1186/s13287-020-01989-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Inflammatory smooth muscle cells (iSMCs) generated from adventitial stem/progenitor cells (AdSPCs) have been recognised as a new player in cardiovascular disease, and microRNA-214-3p (miR-214-3p) has been implicated in mature vascular SMC functions and neointimal hyperplasia. Here, we attempted to elucidate the functional involvements of miR-214-3p in iSMC differentiation from AdSPCs and unravel the therapeutic potential of miR-214-3p signalling in AdSPCs for injury-induced neointimal hyperplasia. Methods The role of miR-214-3p in iSMC differentiation from AdSPCs was evaluated by multiple biochemistry assays. The target of miR-214-3p was identified through binding site mutation and reporter activity analysis. A murine model of injury-induced arterial remodelling and stem cell transplantation was conducted to study the therapeutic potential of miR-214-3p. RT-qPCR analysis was performed to examine the gene expression in healthy and diseased human arteries. Results miR-214-3p prevented iSMC differentiation/generation from AdSPCs by restoring sonic hedgehog-glioma-associated oncogene 1 (Shh-GLI1) signalling. Suppressor of fused (Sufu) was identified as a functional target of miR-214-3p during iSMC generation from AdSPCs. Mechanistic studies revealed that miR-214-3p over-expression or Sufu inhibition can promote nuclear accumulation of GLI1 protein in AdSPCs, and the consensus sequence (GACCACCCA) for GLI1 binding within smooth muscle alpha-actin (SMαA) and serum response factor (SRF) gene promoters is required for their respective regulation by miR-214-3p and Sufu. Additionally, Sufu upregulates multiple inflammatory gene expression (IFNγ, IL-6, MCP-1 and S100A4) in iSMCs. In vivo, transfection of miR-214-3p into the injured vessels resulted in the decreased expression level of Sufu, reduced iSMC generation and inhibited neointimal hyperplasia. Importantly, perivascular transplantation of AdSPCs increased neointimal hyperplasia, whereas transplantation of AdSPCs over-expressing miR-214-3p prevented this. Finally, decreased expression of miR-214-3p but increased expression of Sufu was observed in diseased human arteries. Conclusions We present a previously unexplored role for miR-214-3p in iSMC differentiation and neointima iSMC hyperplasia and provide new insights into the therapeutic effects of miR-214-3p in vascular disease. Supplementary information Supplementary information accompanies this paper at 10.1186/s13287-020-01989-w.
Collapse
Affiliation(s)
- Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Feng Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qishan Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Rui Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wei Wu
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,Department of Cardiology, and Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Wen Wang
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK. .,Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong, 511436, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
21
|
Abo-Al-Ela HG, Burgos-Aceves MA. Exploring the role of microRNAs in axolotl regeneration. J Cell Physiol 2020; 236:839-850. [PMID: 32638401 DOI: 10.1002/jcp.29920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/30/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The axolotl, Ambystoma mexicanum, is used extensively for research in developmental biology, particularly for its ability to regenerate and restore lost organs, including in the nervous system, to full functionality. Regeneration in mammals typically depends on the healing process and scar formation with limited replacement of lost tissue. Other organisms, such as spiny mice (Acomys cahirinus), salamanders, and zebrafish, are able to regenerate some damaged body components. Blastema is a tissue that is formed after tissue injury in such organisms and is composed of progenitor cells or dedifferentiated cells that differentiate into various cell types during regeneration. Thus, identifying the molecules responsible for initiation of blastema formation is an important aspect for understanding regeneration. Introns, a major source of noncoding RNAs (ncRNAs), have characteristic sizes in the axolotl, particularly in genes associated with development. These ncRNAs, particularly microRNAs (miRNAs), exhibit dynamic regulation during regeneration. These miRNAs play an essential role in timing and control of gene expression to order and organize processes necessary for blastema creation. Master keys or molecules that underlie the remarkable regenerative abilities of the axolotl remain to be fully explored and exploited. Further and ongoing research on regeneration promises new knowledge that may allow improved repair and renewal of human tissues.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Mario A Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Fisciano, Salerno, Italy
| |
Collapse
|
22
|
Messina A, Pulli K, Santini S, Acierno J, Känsäkoski J, Cassatella D, Xu C, Casoni F, Malone SA, Ternier G, Conte D, Sidis Y, Tommiska J, Vaaralahti K, Dwyer A, Gothilf Y, Merlo GR, Santoni F, Niederländer NJ, Giacobini P, Raivio T, Pitteloud N. Neuron-Derived Neurotrophic Factor Is Mutated in Congenital Hypogonadotropic Hypogonadism. Am J Hum Genet 2020; 106:58-70. [PMID: 31883645 DOI: 10.1016/j.ajhg.2019.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.
Collapse
Affiliation(s)
- Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sara Santini
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Johanna Känsäkoski
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Daniele Cassatella
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Cheng Xu
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Filippo Casoni
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France; Division of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy, Milan 20132, Italy; Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Samuel A Malone
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Gaetan Ternier
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Daniele Conte
- Department of Molecular Biotechnology and Health Science, University of Torino, 10126 Torino, Italy
| | - Yisrael Sidis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Johanna Tommiska
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew Dwyer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv 69978, Israel
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Science, University of Torino, 10126 Torino, Italy
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Paolo Giacobini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Unité 1172 Lille, 59045 Lille, France
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, 1011 Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.
| |
Collapse
|
23
|
Chauhan NB. MicroRNA silencing: A promising therapy for Alzheimer's disease. THE NEUROSCIENCE CHRONICLES 2020; 1:11-15. [PMID: 35991586 PMCID: PMC9389881 DOI: 10.46439/neuroscience.1.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a global health crisis currently afflicting ~6 million Americans (and ~40 million people worldwide). By the middle of the century, these numbers will stagger by ~16 million Americans (and ~152 million people worldwide) suffering from AD, if breakthrough disease-modifying treatments are not discovered. Currently, there are no treatments to prevent, halt or cure the disease. Multiple independent studies on brain gene expression patterns have indicated that in AD about 1/3rd of the genes are upregulated while the rest 2/3rd of the genes are downregulated. In that regard, AD therapeutics focused on antagomiR-mediated silencing of"upregulated"microRNAs (miRs) may be more feasible since upregulated miRs in AD continue to increase with the disease progression, as opposed to agomiR-mediated overexpression of down-regulated miRs with unpredictable reduced presence and relative short-life of 1-3h under pathological conditions in AD brain. Studies reported thus far indicate that most of the upregulated pathogenic genes in AD are regulated by pro-inflammatory microRNAs (miRs). Given the precedence of chronic neuroinflammation in triggering AD-like neurodegeneration and multifactorial nature of AD, silencing inflammation-specific micro-RNAs using antisense-microRNAs may be an effective adjuvant therapeutic strategy to prevent, halt or cure AD.
Collapse
Affiliation(s)
- Neelima B. Chauhan
- Department of Pharmaceutical Sciences, School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, United States
| |
Collapse
|
24
|
Inhibition of miR-214-3p Aids in Preventing Epithelial Ovarian Cancer Malignancy by Increasing the Expression of LHX6. Cancers (Basel) 2019; 11:cancers11121917. [PMID: 31810245 PMCID: PMC6966693 DOI: 10.3390/cancers11121917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
In human epithelial ovarian cancer (EOC), various miRNAs can function as either oncogenes or tumor suppressor genes. We investigated miRNAs known to be involved in EOC progression and analyzed their expression in tissues and serum-derived exosomes from benign serous cystadenoma, borderline serous tumor, low-grade serous ovarian cancer, and high-grade serous ovarian cancer patients (HGSO). The HGSO group was divided based on the platinum-free interval, which is defined as the duration from the completion of platinum-based chemotherapy to recurrence. We also analyzed the mRNA levels of target genes that candidate miRNAs might regulate in patient tissues. miR-214-3p was highly expressed in tissues and exosomes derived from EOC with high malignancy and also found to regulate the expression of LIM homeobox domain 6 (LHX6) mRNA. Serum exosomal levels of miR-214-3p were significantly increased in platinum-resistant HGSO (25.2-fold, p < 0.001) compared to the exosomal expression of benign tumor patients. On transfection of miR-214-3p inhibitor in EOC cells, cell proliferation was inhibited while apoptotic cell death was increased. Collectively, we suggest that miR-214-3p in serum exosomes can be a potential biomarker for the diagnosis and prognosis of ovarian tumor, and its inhibition can be a supportive treatment for EOC.
Collapse
|
25
|
MicroRNA-29a Exhibited Pro-Angiogenic and Anti-Fibrotic Features to Intensify Human Umbilical Cord Mesenchymal Stem Cells-Renovated Perfusion Recovery and Preventing against Fibrosis from Skeletal Muscle Ischemic Injury. Int J Mol Sci 2019; 20:ijms20235859. [PMID: 31766662 PMCID: PMC6928887 DOI: 10.3390/ijms20235859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to elucidate whether microRNA-29a (miR-29a) and/or together with transplantation of mesenchymal stem cells isolated from umbilical cord Wharton’s jelly (uMSCs) could aid in skeletal muscle healing and putative molecular mechanisms. We established a skeletal muscle ischemic injury model by injection of a myotoxin bupivacaine (BPVC) into gastrocnemius muscle of C57BL/6 mice. Throughout the angiogenic and fibrotic phases of muscle healing, miR-29a was considerably downregulated in BPVC-injured gastrocnemius muscle. Overexpressed miR-29a efficaciously promoted human umbilical vein endothelial cells proliferation and capillary-like tube formation in vitro, crucial steps for neoangiogenesis, whereas knockdown of miR-29a notably suppressed those endothelial functions. Remarkably, overexpressed miR-29a profitably elicited limbic flow perfusion and estimated by Laser Dopple. MicroRNA-29a motivated perfusion recovery through abolishing the tissue inhibitor of metalloproteinase (TIMP)-2, led great numbers of pro-angiogenic matrix metalloproteinases (MMPs) to be liberated from bondage of TIMP, thus reinforced vascular development. Furthermore, engrafted uMSCs also illustrated comparable effect to restore the flow perfusion and augmented vascular endothelial growth factors-A, -B, and -C expression. Notably, the combination of miR29a and the uMSCs treatments revealed the utmost renovation of limbic flow perfusion. Amplified miR-29a also adequately diminished the collagen deposition and suppressed broad-wide miR-29a targeted extracellular matrix components expression. Consistently, miR-29a administration intensified the relevance of uMSCs to abridge BPVC-aggravated fibrosis. Our data support that miR-29a is a promising pro-angiogenic and anti-fibrotic microRNA which delivers numerous advantages to endorse angiogenesis, perfusion recovery, and protect against fibrosis post injury. Amalgamation of nucleic acid-based strategy (miR-29a) together with the stem cell-based strategy (uMSCs) may be an innovative and eminent strategy to accelerate the healing process post skeletal muscle injury.
Collapse
|
26
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
27
|
Identification and profiling of microRNAs expressed in oral buccal mucosa squamous cell carcinoma of Chinese hamster. Sci Rep 2019; 9:15616. [PMID: 31666604 PMCID: PMC6821846 DOI: 10.1038/s41598-019-52197-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are known to play essential role in the gene expression regulation in cancer. In our research, next-generation sequencing technology was applied to explore the abnormal miRNA expression of oral squamous cell carcinoma (OSCC) in Chinese hamster. A total of 3 novel miRNAs (Novel-117, Novel-118, and Novel-135) and 11 known miRNAs (crg-miR-130b-3p, crg-miR-142-5p, crg-miR-21-3p, crg-miR-21-5p, crg-miR-542-3p, crg-miR-486-3p, crg-miR-499-5p, crg-miR-504, crg-miR-34c-5p, crg-miR-34b-5p and crg-miR-34c-3p) were identified. We conducted functional analysis, finding that 340 biological processes, 47 cell components, 46 molecular functions were associated with OSCC. Meanwhile the gene expression of Caspase-9, Caspase-3, Bax, and Bcl-2 were determined by qRT-PCR and the protein expression of PTEN and p-AKT by immunohistochemistry. Our research proposed further insights to the profiles of these miRNAs and provided a basis for investigating the regulatory mechanisms involved in oral cancer research.
Collapse
|
28
|
Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Development of the skeletal muscle goes through several complex processes regulated by numerous genetic factors. Although much efforts have been made to understand the mechanisms involved in increased muscle yield, little work is done about the miRNAs and candidate genes that are involved in the skeletal muscle development in poultry. Comprehensive research of candidate genes and single nucleotide related to poultry muscle growth is yet to be experimentally unraveled. However, over a few periods, studies in miRNA have disclosed that they actively participate in muscle formation, differentiation, and determination in poultry. Specifically, miR-1, miR-133, and miR-206 influence tissue development, and they are highly expressed in the skeletal muscles. Candidate genes such as CEBPB, MUSTN1, MSTN, IGF1, FOXO3, mTOR, and NFKB1, have also been identified to express in the poultry skeletal muscles development. However, further researches, analysis, and comprehensive studies should be made on the various miRNAs and gene regulatory factors that influence the skeletal muscle development in poultry. The objective of this review is to summarize recent knowledge in miRNAs and their mode of action as well as transcription and candidate genes identified to regulate poultry skeletal muscle development.
Collapse
|
29
|
Yang Y, Li Z, Yuan H, Ji W, Wang K, Lu T, Yu Y, Zeng Q, Li F, Xia W, Lu S. Reciprocal regulatory mechanism between miR-214-3p and FGFR1 in FGFR1-amplified lung cancer. Oncogenesis 2019; 8:50. [PMID: 31492847 PMCID: PMC6731303 DOI: 10.1038/s41389-019-0151-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/11/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miRNA) and fibroblast growth factor receptor 1 (FGFR1) dysregulation are considered to play an important role in tumor proliferation, invasion, and metastasis. However, the regulatory mechanism between miRNAs and FGFR1 in lung cancer remains unclear and extremely critical. miR-214-3p was sharply decreased and showed a significantly negative correlation with FGFR1 in lung cancer patients (n = 30). Luciferase reporter assay confirmed that miR-214-3p could downregulate FGFR1 by directly targeting 3′-untranslated region (UTR). miR-214-3p inhibited the processes of epithelial–mesenchymal transition and Wnt/MAPK/AKT (Wnt/mitogen-activated protein kinase/AKT) signaling pathway by targeting FGFR1. Moreover, miR-214-3p not only established a negative feedback regulation loop with FGFR1 through ERK (extracellular signal-regulated kinase) but also developed a synergism with FGFR1 inhibitor AZD4547. In conclusion, our study demonstrated the regulatory mechanism between miR-214-3p and FGFR1 in lung cancer. miR-214-3p acts as a vital target in FGFR1-amplified lung cancer by forming a miR-214-3p-FGFR1-Wnt/MAPK/AKT signaling pathway network. Co-targeting miR-214-3p and FGFR1 could provide greater benefits to patients with FGFR1-amplified lung cancer.
Collapse
Affiliation(s)
- Ying Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Hong Yuan
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Kaixuan Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Tingting Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Yongfeng Yu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China
| | - Qingyu Zeng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China
| | - Fan Li
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Huashan Road 1954, 200030, Shanghai, China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, West Huaihai Road 241, 20030, Shanghai, China.
| |
Collapse
|
30
|
Keenan SR, Currie PD. The Developmental Phases of Zebrafish Myogenesis. J Dev Biol 2019; 7:E12. [PMID: 31159511 PMCID: PMC6632013 DOI: 10.3390/jdb7020012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023] Open
Abstract
The development and growth of vertebrate axial muscle have been studied for decades at both the descriptive and molecular level. The zebrafish has provided an attractive model system for investigating both muscle patterning and growth due to its simple axial musculature with spatially separated fibre types, which contrasts to complex muscle groups often deployed in amniotes. In recent years, new findings have reshaped previous concepts that define how final teleost muscle form is established and maintained. Here, we summarise recent findings in zebrafish embryonic myogenesis with a focus on fibre type specification, followed by an examination of the molecular mechanisms that control muscle growth with emphasis on the role of the dermomyotome-like external cell layer. We also consider these data sets in a comparative context to gain insight into the evolution of axial myogenic patterning systems within the vertebrate lineage.
Collapse
Affiliation(s)
- Samuel R Keenan
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
31
|
MicroRNA-214-3p Targeting Ctnnb1 Promotes 3T3-L1 Preadipocyte Differentiation by Interfering with the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2019; 20:ijms20081816. [PMID: 31013762 PMCID: PMC6515133 DOI: 10.3390/ijms20081816] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Differentiation from preadipocytes into mature adipocytes is a complex biological process in which miRNAs play an important role. Previous studies showed that miR-214-3p facilitates adipocyte differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. The detailed function and molecular mechanism of miR-214-3p in adipocyte development is unclear. In this study, the 3T3-L1 cell line was used to analyze the function of miR-214-3p in vitro. Using 5-Ethynyl-2′-deoxyuridine (EdU) staining and the CCK-8 assay, we observed that transfection with the miR-214-3p agomir visibly promoted proliferation of 3T3-L1 preadipocytes by up-regulating the expression of cell cycle-related genes. Interestingly, overexpression of miR-214-3p promoted 3T3-L1 preadipocyte differentiation and up-regulated the expression of key genes for lipogenesis: PPARγ, FABP4, and Adiponectin. Conversely, inhibition of miR-214-3p repressed 3T3-L1 preadipocyte proliferation and differentiation, and down-regulated the expression of cell cycle-related genes and adipogenic markers. Furthermore, we proved that miR-214-3p regulates 3T3-L1 preadipocyte differentiation by directly targeting the 3′-untranslated regions (3′UTR) of Ctnnb1, which is an important transcriptional regulatory factor of the Wnt/β-Catenin pathway. Taken together, the data indicate that miR-214-3p may positively regulate preadipocyte proliferation and enhance differentiation through the Wnt/β-Catenin signaling pathway.
Collapse
|
32
|
Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol 2019; 234:12369-12384. [PMID: 30605237 DOI: 10.1002/jcp.28058] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.
Collapse
Affiliation(s)
- Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zeinab Rostami
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
33
|
Identification and characteristics of muscle growth-related microRNA in the Pacific abalone, Haliotis discus hannai. BMC Genomics 2018; 19:915. [PMID: 30545311 PMCID: PMC6293614 DOI: 10.1186/s12864-018-5347-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Pacific abalone, Haliotis discus hannai, is the most important cultivated abalone in China. Improving abalone muscle growth and increasing the rate of growth are important genetic improvement programs in this industry. MicroRNAs are important small noncoding RNA molecules that regulate post-transcription gene expression. However, no miRNAs have been reported to regulate muscle growth in H. discus hannai. RESULTS we profiled six small RNA libraries for three large abalone individuals (L_HD group) and three small individuals (S_HD group) using RNA sequencing technology. A total of 205 miRNAs, including 200 novel and 5 known miRNAs, were identified. In the L_HD group, 3 miRNAs were up-regulated and 7 were down-regulated compared to the S_HD specimens. Bioinformatics analysis of miRNA target genes revealed that miRNAs participated in the regulation of cellular metabolic processes, the regulation of biological processes, the Wnt signaling pathway, ECM-receptor interaction, and the MAPK signaling pathway, which are associated with regulating growth. Bone morphogenetic protein 7 (BMP7) was verified as a target gene of hdh-miR-1984 by a luciferase reporter assay and we examined the expression pattern in different developmental stages. CONCLUSION This is the first study to demonstrate that miRNAs are related to the muscle growth of H. discus hannai. This information could be used to study the mechanisms of abalone muscle growth. These DE-miRNAs may be useful as molecular markers for functional genomics and breeding research in abalone and closely related species.
Collapse
|
34
|
Upregulated TSG-6 Expression in ADSCs Inhibits the BV2 Microglia-Mediated Inflammatory Response. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7239181. [PMID: 30584538 PMCID: PMC6280241 DOI: 10.1155/2018/7239181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
Objectives The microglial cells are immune surveillance cells in the central nervous system and can be activated during neurological disorders. Adipose-derived stem cells (ADSCs) were reported to inhibit the inflammatory response in microglia by secreting proteins like tumor necrosis factor-inducible gene 6 protein (TSG-6). We aim to explore the mechanisms and the associated microRNAs. Methods ADSCs were cultured and TSG-6 expression was evaluated. ADSCs were cocultured with lipopolysaccharide- (LPS-) induced BV2 microglia and the supernatant was harvested for detecting cytokines. The total RNA was extracted and sequenced by high-throughput sequencing. MicroRNA profiles were compared between two treatment groups of ADSCs. A comprehensive bioinformatics analysis and confirmation experiments were performed to identify the microRNAs targeting at TSG-6. Results We found that ADSCs could secrete TSG-6 to inhibit the proinflammatory cytokines, including interleukin-1 beta and interleukin-6, and tumor necrosis factor alpha (TNFα), produced by LPS-induced microglia-mediated inflammatory response. Bioinformatics analysis showed a total of 35 microRNAs differentially expressed between the two groups of ADSCs, and miR-214-5p was identified as a regulator of TSG-6 mRNA. Conclusion Following a treatment with TNFα, ADSCs can regulate the inflammatory response in LPS-activated BV2 microglia by upregulating TSG-6 expression, which itself is under the negative control of miR-214-5p.
Collapse
|
35
|
Espiritu EB, Crunk AE, Bais A, Hochbaum D, Cervino AS, Phua YL, Butterworth MB, Goto T, Ho J, Hukriede NA, Cirio MC. The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Sci Rep 2018; 8:16029. [PMID: 30375416 PMCID: PMC6207768 DOI: 10.1038/s41598-018-34038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abha Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Hochbaum
- Universidad de Buenos Aires, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Ailen S Cervino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
36
|
Liu Y, Usa K, Wang F, Liu P, Geurts AM, Li J, Williams AM, Regner KR, Kong Y, Liu H, Nie J, Liang M. MicroRNA-214-3p in the Kidney Contributes to the Development of Hypertension. J Am Soc Nephrol 2018; 29:2518-2528. [PMID: 30049682 PMCID: PMC6171279 DOI: 10.1681/asn.2018020117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In spite of extensive study, the mechanisms for salt sensitivity of BP in humans and rodent models remain poorly understood. Several microRNAs (miRNAs) have been associated with hypertension, but few have been shown to contribute to its development. METHODS We examined miRNA expression profiles in human kidney biopsy samples and rat models using small RNA deep sequencing. To inhibit an miRNA specifically in the kidney in conscious, freely moving rats, we placed indwelling catheters to allow both renal interstitial administration of a specific anti-miR and measurement of BP. A rat with heterozygous disruption of the gene encoding endothelial nitric oxide synthase (eNOS) was developed. We used bioinformatic analysis to evaluate the relationship between 283 BP-associated human single-nucleotide polymorphisms (SNPs) and 1870 human miRNA precursors, as well as other molecular and cellular methods. RESULTS Compared with salt-insensitive SS.13BN26 rats, Dahl salt-sensitive (SS) rats showed an upregulation of miR-214-3p, encoded by a gene in the SS.13BN26 congenic region. Kidney-specific inhibition of miR-214-3p significantly attenuated salt-induced hypertension and albuminuria in SS rats. miR-214-3p directly targeted eNOS. The effect of miR-214-3p inhibition on hypertension and albuminuria was abrogated in SS rats with heterozygous loss of eNOS. Human kidney biopsy specimens from patients with hypertension or hypertensive nephrosclerosis showed upregulation of miR-214-3p; the gene encoding miR-214-3p was one of several differentially expressed miRNA genes located in proximity to human BP-associated SNPs. CONCLUSIONS Renal miR-214-3p plays a functional and potentially genetic role in the development of hypertension, which might be mediated in part by targeting eNOS.
Collapse
Affiliation(s)
- Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology
| | - Feng Wang
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology
- Cancer Center
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology
- Human and Molecular Genetics Center, and
| | - Junhui Li
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | | | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yiwei Kong
- Center of Systems Molecular Medicine, Department of Physiology
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; and
| | - Han Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology,
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| |
Collapse
|
37
|
Li X, He X, Wang H, Li M, Huang S, Chen G, Jing Y, Wang S, Chen Y, Liao W, Liao Y, Bin J. Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc Res 2018; 114:1642-1655. [PMID: 29584819 PMCID: PMC6148334 DOI: 10.1093/cvr/cvy075] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/23/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Aims Long noncoding RNAs (lncRNAs) are critical regulators of cardiovascular lineage commitment and heart wall development, but their roles in regulating endogenous cardiac regeneration are unclear. The present study investigated the role of human-derived lncRNA in regulating endogenous cardiac regeneration as well as the underlying mechanisms. Methods and results We compared RNA sequencing data from human foetal and adult hearts and identified a novel lncRNA that was upregulated in adult hearts (Genesymbol NONHSAG000971/NONHSAT002258 or ENST00000497710.5), which was a splice variant of the AZIN2 gene (AZIN2-sv). We used quantitative PCR to confirm the increased expression of AZIN2-sv in adult rat hearts. Coexpression network analysis indicated that AZIN2-sv could regulate proliferation. Loss- and gain-of-function approaches demonstrated that AZIN2-sv negatively regulated endogenous cardiomyocyte proliferation in vitro and in vivo. Knockdown of AZIN2-sv attenuated ventricular remodelling and improved cardiac function after myocardial infarction. Phosphatase and tensin homolog (PTEN) was identified as a target of AZIN2-sv, their direct binding increased PTEN stability. Furthermore, AZIN2-sv acted as a microRNA-214 sponge to release PTEN, which blocked activation of the PI3 kinase/Akt pathway to inhibit cardiomyocyte proliferation. Conclusions The newly discovered AZIN2-sv suppressed endogenous cardiac regeneration by targeting the PTEN/Akt pathway. Thus, AZIN2-sv may be a novel therapeutic target for preventing and treating heart failure.
Collapse
Affiliation(s)
- Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - He Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Yuanwen Jing
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Shifei Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| |
Collapse
|
38
|
Sengar GS, Deb R, Singh U, Junghare V, Hazra S, Raja TV, Alex R, Kumar A, Alyethodi RR, Kant R, Jakshara S, Joshi CG. Identification of differentially expressed microRNAs in Sahiwal (Bos indicus) breed of cattle during thermal stress. Cell Stress Chaperones 2018; 23:1019-1032. [PMID: 29777484 PMCID: PMC6111087 DOI: 10.1007/s12192-018-0911-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 10/16/2022] Open
Abstract
microRNAs (miRNAs) are a class of small non-coding RNAs that play key roles in post transcriptional gene regulation that influence various fundamental cellular processes, including the cellular responses during environmental stresses. However, perusal of literatures revealed few reports on the differential expression of miRNA during thermal stress in Indian native (Bos indicus) cattle breeds. The present investigation aimed to identify differentially expressed miRNAs during thermal stress in Sahiwal (Bos indicus) dairy cattle breed of India, adapted with tropical climate over a long period of time. Stress responses of the animals were characterized by determining various physiological as well as biochemical parameters and differential expression profile of major heat shock protein genes. Ion Torrent deep sequencing and CLC-genomic analysis identified a set of differentially expressed miRNAs during summer and winter seasons. Most of the identified differentially expressed miRNAs were found to target heat shock responsive genes especially members of heat shock protein (HSP) family. Real-time quantification-based analysis of selected miRNAs revealed that bta-mir-1248, bta-mir-2332, bta-mir-2478, and bta-mir-1839 were significantly (p < 0.01) over expressed while bta-mir-16a, bta-let-7b, bta-mir-142, and bta-mir-425 were significantly (p < 0.01) under expressed during summer in comparison to winter. The present study enlists differentially expressed miRNAs at different environmental temperatures in Sahiwal (Bos indicus) that may be importance for further understanding the role of miRNAs on thermo-regulatory mechanisms.
Collapse
Affiliation(s)
- Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, -250 001, Meerut, Uttar Pradesh, India
- Sam Higginbottom University of Agriculture Technology & Science, Allahabad, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, -250 001, Meerut, Uttar Pradesh, India.
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, -250 001, Meerut, Uttar Pradesh, India
| | - Vivek Junghare
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Saugata Hazra
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
- Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, -250 001, Meerut, Uttar Pradesh, India
| | - Rani Alex
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, -250 001, Meerut, Uttar Pradesh, India
| | - Ashish Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, -250 001, Meerut, Uttar Pradesh, India
| | - R R Alyethodi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, -250 001, Meerut, Uttar Pradesh, India
| | - Rajiv Kant
- Sam Higginbottom University of Agriculture Technology & Science, Allahabad, India
| | - Subhash Jakshara
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| | - C G Joshi
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| |
Collapse
|
39
|
Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol 2018; 234:231-245. [PMID: 30076721 DOI: 10.1002/jcp.26856] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
MiR-214 belongs to a family of microRNA (small, highly conserved noncoding RNA molecules) precursors that play a pivotal role in biological functions, such as cellular function, tissue development, tissue homeostasis, and pathogenesis of diseases. Recently, miR-214 emerged as a critical regulator of musculoskeletal metabolism. Specifically, miR-214 can mediate skeletal muscle myogenesis and vascular smooth muscle cell proliferation, migration, and differentiation. MiR-214 also modulates osteoblast function by targeting specific molecular pathways and the expression of various osteoblast-related genes; promotes osteoclast activity by targeting phosphatase and tensin homolog (Pten); and mediates osteoclast-osteoblast intercellular crosstalk via an exosomal miRNA paracrine mechanism. Importantly, dysregulation in miR-214 expression is associated with pathological bone conditions such as osteoporosis, osteosarcoma, multiple myeloma, and osteolytic bone metastasis of breast cancer. This review discusses the cellular targets of miR-214 in bone, the molecular mechanisms governing the activities of miR-214 in the musculoskeletal system, and the putative role of miR-214 in skeletal diseases. Understanding the biology of miR-214 could potentially lead to the development of miR-214 as a possible biomarker and a therapeutic target for musculoskeletal diseases.
Collapse
Affiliation(s)
- Youqiang Sun
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Vincent Kuek
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yuhao Liu
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Yuan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China
| | - Leilei Chen
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Shao
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Ge J, Zhu J, Xia B, Cao H, Peng Y, Li X, Yu T, Chu G, Yang G, Shi X. miR-423-5p inhibits myoblast proliferation and differentiation by targeting Sufu. J Cell Biochem 2018; 119:7610-7620. [PMID: 29923621 DOI: 10.1002/jcb.27103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/07/2018] [Indexed: 01/22/2023]
Abstract
Myoblast proliferation and terminal differentiation are the key steps of myogenesis. MicroRNAs are a class of small noncoding RNAs that play important roles in gene expression regulation. They negatively regulate gene expression by causing messenger RNA translational repression or target messenger RNA degradation. Here, we found that microRNA-423-5p (miR-423-5p) is highly expressed in both slow and fast muscles. Our gain-of-function study indicated that miR-423-5p actually plays a negative role in regulating myoblast proliferation and differentiation. We also found that miR-423-5p is able to inhibit the expression of suppressor of fused homolog to inactivate the expression of the marker genes in myoblast proliferation and differentiation. Taken together, our findings indicated miR-423-5p as a potential inhibitor of myogenesis by targeting suppressor of fused homolog in myoblast, and it also contributes to a better understanding of the microRNAs-target gene regulatory network in different types of porcine muscle types and may benefit the practice of improving the meat quality in animal husbandry.
Collapse
Affiliation(s)
- Jing Ge
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Zhu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Xia
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Peng
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xine Shi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
Kent OA, Steenbergen C, Das S. In Vivo Nanovector Delivery of a Heart-specific MicroRNA-sponge. J Vis Exp 2018. [PMID: 29985373 DOI: 10.3791/57845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miRNA) is small non-coding RNA which inhibits post-transcriptional messenger RNA (mRNA) expression. Human diseases, such as cancer and cardiovascular disease, have been shown to activate tissue and/or cell-specific miRNA expression associated with disease progression. The inhibition of miRNA expression offers the potential for a therapeutic intervention. However, traditional approaches to inhibit miRNAs, employing antagomir oligonucleotides, affect specific miRNA functions upon global delivery. Herein, we present a protocol for the in vivo cardio-specific inhibition of the miR-181 family in a rat model. A miRNA-sponge construct is designed to include 10 repeated anti-miR-181 binding sequences. The cardio-specific α-MHC promoter is cloned into the pEGFP backbone to drive the cardio-specific miR-181 miRNA-sponge expression. To create a stable cell line expressing the miR-181-sponge, myoblast H9c2 cells are transfected with the α-MHC-EGFP-miR-181-sponge construct and sorted by fluorescence-activated cell sorting (FACs) into GFP positive H9c2 cells which are cultured with neomycin (G418). Following stable growth in neomycin, monoclonal cell populations are established by additional FACs and single cell cloning. The resulting myoblast H9c2-miR-181-sponge-GFP cells exhibit a loss of function of miR-181 family members as assessed through the increased expression of miR-181 target proteins and compared to H9c2 cells expressing a scramble non-functional sponge. In addition, we develop a nanovector for the systemic delivery of the miR-181-sponge construct by complexing positively charged liposomal nanoparticles and negatively charged miR-181-sponge plasmids. In vivo imaging of GFP reveals that multiple tail vein injections of a nanovector over a three-week period are able to promote a significant expression of the miR-181-sponge in a cardio-specific manner. Importantly, a loss of miR-181 function is observed in the heart tissue but not in the kidney or the liver. The miRNA-sponge is a powerful method to inhibit tissue-specific miRNA expression. Driving the miRNA-sponge expression from a tissue-specific promoter provides specificity for the miRNA inhibition, which can be confined to a targeted organ or tissue. Furthermore, combining nanovector and miRNA-sponge technologies permits an effective delivery and tissue-specific miRNA inhibition in vivo.
Collapse
Affiliation(s)
- Oliver A Kent
- Princess Margaret Cancer Centre, University of Toronto
| | | | - Samarjit Das
- Department of Pathology, Department of Cardiology, Johns Hopkins University;
| |
Collapse
|
42
|
Porseryd T, Reyhanian Caspillo N, Volkova K, Elabbas L, Källman T, Dinnétz P, Olsson PE, Porsch-Hällström I. Testis transcriptome alterations in zebrafish (Danio rerio) with reduced fertility due to developmental exposure to 17α-ethinyl estradiol. Gen Comp Endocrinol 2018. [PMID: 29526718 DOI: 10.1016/j.ygcen.2018.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
17α-Ethinylestradiol (EE2) is a ubiquitous aquatic contaminant shown to decrease fish fertility at low concentrations, especially in fish exposed during development. The mechanisms of the decreased fertility are not fully understood. In this study, we perform transcriptome analysis by RNA sequencing of testes from zebrafish with previously reported lowered fertility due to exposure to low concentrations of EE2 during development. Fish were exposed to 1.2 and 1.6 ng/L (measured concentration; nominal concentrations 3 and 10 ng/L) of EE2 from fertilization to 80 days of age, followed by 82 days of remediation in clean water. RNA sequencing analysis revealed 249 and 16 genes to be differentially expressed after exposure to 1.2 and 1.6 ng/L, respectively; a larger inter-sample variation was noted in the latter. Expression of 11 genes were altered by both exposures and in the same direction. The coding sequences most affected could be categorized to the putative functions cell signalling, proteolysis, protein metabolic transport and lipid metabolic process. Several homeobox transcription factors involved in development and differentiation showed increased expression in response to EE2 and differential expression of genes related to cell death, differentiation and proliferation was observed. In addition, several genes related to steroid synthesis, testis development and function were differentially expressed. A number of genes associated with spermatogenesis in zebrafish and/or mouse were also found to be differentially expressed. Further, differences in non-coding sequences were observed, among them several differentially expressed miRNA that might contribute to testis gene regulation at post-transcriptional level. This study has generated insights of changes in gene expression that accompany fertility alterations in zebrafish males that persist after developmental exposure to environmental relevant concentrations of EE2 that persist followed by clean water to adulthood. Hopefully, this will generate hypotheses to test in search for mechanistic explanations.
Collapse
Affiliation(s)
- T Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden.
| | - N Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - K Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - L Elabbas
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - T Källman
- National Bioinformatics Infrastructure Sweden, Uppsala University, 75124 Uppsala, Sweden; Science for Life Laboratory and Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - P Dinnétz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - P-E Olsson
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - I Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
43
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
44
|
Fu S, Zhao Y, Li Y, Li G, Chen Y, Li Z, Sun G, Li H, Kang X, Yan F. Characterization of miRNA transcriptome profiles related to breast muscle development and intramuscular fat deposition in chickens. J Cell Biochem 2018; 119:7063-7079. [PMID: 29737555 DOI: 10.1002/jcb.27024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
Abstract
Studies of the miRNA expression profiles associated with the postnatal late development of skeletal muscle and IMF deposition are lacking in chicken. Here, we evaluated the patterns of muscle fiber growth and IMF deposition in breast muscle in the Chinese domestic breed called Gushi chicken, where we constructed four small RNA libraries from breast muscle tissues at 6, 14, 22, and 30 weeks. A total of 388 known miRNAs and 31 novel miRNAs were identified based on four small RNA libraries. Comparative analysis identified 92 significant differentially expressed (SDE) miRNAs based on six combinations. KEGG pathway analysis for the SDE miRNAs showed that metabolic pathways such as glycolysis and biosynthesis of amino acids were significantly enriched before 22 weeks, and pathways such as biosynthesis of unsaturated fatty acids and fatty acid elongation were significantly enriched after 22 weeks. This trend was consistent with the patterns of breast muscle fiber growth and IMF deposition in Gushi chickens. We also constructed miRNA-mRNA interaction networks related to breast muscle development and IMF deposition. The results showed that miRNAs such as gga-miR-1a-3p, and gga-miR-133a-5p may play important roles in breast muscle development, and miRNAs such as gga-miR-103-3p, and gga-miR-138-2-3p may have key roles in IMF deposition. This study determined the dynamic miRNA transcriptome in breast muscle tissue for the first time in Gushi chickens. The results provide a valuable resource for investigating the post-transcriptional regulation mechanisms during postnatal late development of breast muscle and IMF deposition and for evaluating the muscular disease.
Collapse
Affiliation(s)
- Shouyi Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, P. R. China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Yi Chen
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zheng Zhou, Henan Province, P. R. China
| |
Collapse
|
45
|
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15:338-352. [PMID: 29570036 DOI: 10.1080/15476286.2018.1445959] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. As a consequence of their function towards mRNA, miRNAs are widely associated with the pathogenesis of several human diseases, making miRNAs a target for new therapeutic strategies based on the control of their expression. Indeed, numerous works were published in the past decades showing the potential use of antisense oligonucleotides to target aberrant miRNAs (AMOs) involved in several human pathologies. New classes of chemical-modified-AMOs, including locked nucleic acid oligonucleotides, have recently proved their worth in silencing miRNAs. A correct design of a specific AMOs can help to improve their performance and potency towards the target miRNA by increasing for instance nuclease resistance and target affinity. This review outlines the technologies involved to suppress aberrant miRNAs. From the design strategies used in AMOs to its application in novel miRNA-based therapeutics and detection methodologies.
Collapse
Affiliation(s)
- Joana Filipa Lima
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal.,c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal
| | - Laura Cerqueira
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal
| | - Ceu Figueiredo
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Carla Oliveira
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Nuno Filipe Azevedo
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal
| |
Collapse
|
46
|
Fattahi S, Pilehchian Langroudi M, Akhavan-Niaki H. Hedgehog signaling pathway: Epigenetic regulation and role in disease and cancer development. J Cell Physiol 2018; 233:5726-5735. [PMID: 29380372 DOI: 10.1002/jcp.26506] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
The evolutionarily conserved Hedgehog (Hh) signaling pathway have critical roles in development and homeostasis of tissues. Under physiological conditions, Hh is controlled at different levels via stem cell maintenance and tissue regeneration. Aberrant activation of this signaling pathway may occur in a wide range of human diseases including different types of cancer. In this review we present a concise overview on the key genes composing Hh signaling pathway and provide recent advances on the molecular mechanisms that regulate Hh signaling pathway from extracellular and receptors to the cytoplasmic and nuclear machinery with a highlight on the role of microRNAs. Furthermore, we focus on critical studies demonstrating dysregulation of the Hh pathway in human disease development, and potential therapeutic implications. Finally, we introduce recent therapeutic drugs acting as Shh signaling pathway inhibitors, including those in clinical trials and preclinical studies.
Collapse
Affiliation(s)
- Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
47
|
Cha W, Fan R, Miao Y, Zhou Y, Qin C, Shan X, Wan X, Cui T. MicroRNAs as novel endogenous targets for regulation and therapeutic treatments. MEDCHEMCOMM 2018; 9:396-408. [PMID: 30108932 PMCID: PMC6072415 DOI: 10.1039/c7md00285h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have been identified as key endogenous biomolecules that are able to regulate gene expression at the post-transcriptional level. The abnormal expression or function of miRNAs has been demonstrated to be closely related to the occurrence or development of various human diseases, including cancers. Regulation of these abnormal miRNAs thus holds great promise for therapeutic treatments. In this review, we summarize exogenous molecules that are able to regulate endogenous miRNAs, including small molecule regulators of miRNAs and synthetic oligonucleotides. Strategies for screening small molecule regulators of miRNAs and recently reported small molecules are introduced and summarized. Synthetic oligonucleotides including antisense miRNA oligonucleotides and miRNA mimics, as well as delivery systems for these synthetic oligonucleotides to enter cells, that regulate endogenous miRNAs are also summarized. In addition, we discuss recent applications of these small molecules and synthetic oligonucleotides in therapeutic treatments. Overall, this review aims to provide a brief synopsis of recent achievements of using both small molecule regulators and synthetic oligonucleotides to regulate endogenous miRNAs and achieve therapeutic outcomes. We envision that these regulators of endogenous miRNAs will ultimately contribute to the development of new therapies in the future.
Collapse
Affiliation(s)
- Wenzhang Cha
- Department of General Surgery , Yancheng City No.1 People's Hospital , Yancheng 224001 , China
| | - Rengen Fan
- Department of General Surgery , Yancheng City No.1 People's Hospital , Yancheng 224001 , China
| | - Yufeng Miao
- Department of Medical Oncology , Wuxi Third People's Hospital , Wuxi 214000 , China
| | - Yong Zhou
- Department of General Surgery , Yancheng City No.1 People's Hospital , Yancheng 224001 , China
| | - Chenglin Qin
- Department of General Surgery , Yancheng City No.1 People's Hospital , Yancheng 224001 , China
| | - Xiangxiang Shan
- Department of Geraeology , Yancheng City No.1 People's Hospital , Yancheng 224001 , China .
| | - Xinqiang Wan
- Department of Clinical Medicine , Nantong University Xinglin College , Nantong 226000 , China .
| | - Ting Cui
- Department of Cardiology , The Third People's Hospital of Yancheng , Yancheng 224001 , China .
| |
Collapse
|
48
|
Roberto VP, Gavaia P, Nunes MJ, Rodrigues E, Cancela ML, Tiago DM. Evidences for a New Role of miR-214 in Chondrogenesis. Sci Rep 2018; 8:3704. [PMID: 29487295 PMCID: PMC5829070 DOI: 10.1038/s41598-018-21735-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/08/2018] [Indexed: 12/27/2022] Open
Abstract
miR-214 is known to play a role in mammalian skeletal development through inhibition of osteogenesis and stimulation of osteoclastogenesis, but data regarding other vertebrates, as well as a possible role in chondrogenesis, remain unknown. Here, we show that miR-214 expression is detected in bone and cartilage of zebrafish skeleton, and is downregulated during murine ATDC5 chondrocyte differentiation. Additionally, we observed a conservation of the transcriptional regulation of miR-214 primary transcript Dnm3os in vertebrates, being regulated by Ets1 in ATDC5 chondrogenic cells. Moreover, overexpression of miR-214 in vitro and in vivo mitigated chondrocyte differentiation probably by targeting activating transcription factor 4 (Atf4). Indeed, miR-214 overexpression in vivo hampered cranial cartilage formation of zebrafish and coincided with downregulation of atf4 and of the key chondrogenic players sox9 and col2a1. We show that miR-214 overexpression exerts a negative role in chondrogenesis by impacting on chondrocyte differentiation possibly through conserved mechanisms.
Collapse
Affiliation(s)
- Vânia Palma Roberto
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.,PhD Program in Biomedical Sciences, DCBM, University of Algarve, 8005-139, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Paulo Gavaia
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Maria João Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Elsa Rodrigues
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal. .,Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.
| | - Daniel Martins Tiago
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
49
|
Abstract
Antisense morpholino oligonucleotides have been commonly used in zebrafish to inhibit mRNA function, either by inhibiting pre-mRNA splicing or by blocking translation initiation. Even with the advent of genome editing by CRISP/Cas9 technology, morpholinos provide a useful and rapid tool to knockdown gene expression. This is especially true when dealing with multiple alleles and large gene families where genetic redundancy can complicate knockout of all family members. miRNAs are small noncoding RNAs that are often encoded in gene families and can display extensive genetic redundancy. This redundancy, plus their small size which can limit targeting by CRISPR/Cas9, makes morpholino-based strategies particularly attractive for inhibition of miRNA function. We provide the rationale, background, and methods to inhibit miRNA function with antisense morpholinos during early development and in the adult retina in zebrafish.
Collapse
Affiliation(s)
- Alex Sutton Flynt
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Mahesh Rao
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN, 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN, 37235, USA.
| |
Collapse
|
50
|
Karunakaran DKP, Kanadia R. In Vivo and Explant Electroporation of Morpholinos in the Developing Mouse Retina. Methods Mol Biol 2018; 1565:215-227. [PMID: 28364246 DOI: 10.1007/978-1-4939-6817-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neonatal in vivo electroporations and retinal explant electroporations have been widely employed in understanding the effects of loss or gain of function of protein-coding genes in retinal development. Here, we describe a rapid and efficient delivery of morpholinos to add another tool to perturb gene expression during mouse retinal development.
Collapse
Affiliation(s)
| | - Rahul Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, Storrs, CT, 06269, USA.
| |
Collapse
|