1
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
2
|
Zhou L, Li S, Ren J, Wang D, Yu R, Zhao Y, Zhang Q, Xiao X. Circulating exosomal circRNA-miRNA-mRNA network in a familial partial lipodystrophy type 3 family with a novel PPARG frameshift mutation c.418dup. Am J Physiol Endocrinol Metab 2024; 327:E357-E370. [PMID: 39017680 DOI: 10.1152/ajpendo.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruiqi Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuxing Zhao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Liu Q, Long R, Lin C, Bi X, Liang Z, Deng YZ. Phosphatidylethanolamines link ferroptosis and autophagy during appressorium formation of rice blast fungus. MOLECULAR PLANT PATHOLOGY 2024; 25:e13489. [PMID: 38956897 PMCID: PMC11219472 DOI: 10.1111/mpp.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A cell death pathway, ferroptosis, occurs in conidial cells and is critical for formation and function of the infection structure, the appressorium, in the rice blast fungus Magnaporthe oryzae. In this study, we identified an orthologous lysophosphatidic acid acyltransferase (Lpaat) acting at upstream of phosphatidylethanolamines (PEs) biosynthesis and which is required for such fungal ferroptosis and pathogenicity. Two PE species, DOPE and SLPE, that depend on Lpaat function for production were sufficient for induction of lipid peroxidation and the consequent ferroptosis, thus positively regulating fungal pathogenicity. On the other hand, both DOPE and SLPE positively regulated autophagy. Loss of the LPAAT gene led to a decrease in the lipidated form of the autophagy protein Atg8, which is probably responsible for the autophagy defect of the lpaatΔ mutant. GFP-Lpaat was mostly localized on the membrane of lipid droplets (LDs) that were stained by the fluorescent dye monodansylpentane (MDH), suggesting that LDs serve as a source of lipids for membrane PE biosynthesis and probably as a membrane source of autophagosome. Overall, our results reveal novel intracellular membrane-bound organelle dynamics based on Lpaat-mediated lipid metabolism, providing a temporal and spatial link of ferroptosis and autophagy.
Collapse
Affiliation(s)
- Qiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Ruhui Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Xinping Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
4
|
Zhou H, Fick K, Patel V, Hilton LR, Kim HW, Bagi Z, Weintraub NL, Chen W. AGPAT3 deficiency impairs adipocyte differentiation and leads to a lean phenotype in mice. Am J Physiol Endocrinol Metab 2024; 327:E69-E80. [PMID: 38717361 PMCID: PMC11390115 DOI: 10.1152/ajpendo.00012.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Kendra Fick
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Vijay Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Lisa Renee Hilton
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Ha Won Kim
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
5
|
Akinci G, Alyaarubi S, Patni N, Alhashmi N, Al-Shidhani A, Prodam F, Gagne N, Babalola F, Al Senani A, Muniraj K, Elsayed SM, Beghini M, Saydam BO, Allawati M, Vaishnav MS, Can E, Simsir IY, Sorkina E, Dursun F, Kamrath C, Cavdar U, Chakraborty PP, Dogan OA, Al Hosin A, Al Maimani A, Comunoglu N, Hamed A, Huseinbegovic T, Scherer T, Curtis J, Brown RJ, Topaloglu H, Simha V, Wabitsch M, Tuysuz B, Oral EA, Akinci B, Garg A. Metabolic and other morbid complications in congenital generalized lipodystrophy type 4. Am J Med Genet A 2024; 194:e63533. [PMID: 38234231 PMCID: PMC11060913 DOI: 10.1002/ajmg.a.63533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Morbidity and mortality rates in patients with autosomal recessive, congenital generalized lipodystrophy type 4 (CGL4), an ultra-rare disorder, remain unclear. We report on 30 females and 16 males from 10 countries with biallelic null variants in CAVIN1 gene (mean age, 12 years; range, 2 months to 41 years). Hypertriglyceridemia was seen in 79% (34/43), hepatic steatosis in 82% (27/33) but diabetes mellitus in only 21% (8/44). Myopathy with elevated serum creatine kinase levels (346-3325 IU/L) affected all of them (38/38). 39% had scoliosis (10/26) and 57% had atlantoaxial instability (8/14). Cardiac arrhythmias were detected in 57% (20/35) and 46% had ventricular tachycardia (16/35). Congenital pyloric stenosis was diagnosed in 39% (18/46), 9 had esophageal dysmotility and 19 had intestinal dysmotility. Four patients suffered from intestinal perforations. Seven patients died at mean age of 17 years (range: 2 months to 39 years). The cause of death in four patients was cardiac arrhythmia and sudden death, while others died of prematurity, gastrointestinal perforation, and infected foot ulcers leading to sepsis. Our study highlights high prevalence of myopathy, metabolic abnormalities, cardiac, and gastrointestinal problems in patients with CGL4. CGL4 patients are at high risk of early death mainly caused by cardiac arrhythmias.
Collapse
Affiliation(s)
- Gulcin Akinci
- Department of Pediatric Neurology, University of Health Sciences, Izmir Faculty of Medicine, Behcet Uz Children’s Hospital, Izmir, Turkey
| | | | - Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nadia Alhashmi
- Clinical and Biochemical Genetics Department, Child Health Department, Royal Hospital, Muscat, Oman
| | | | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nancy Gagne
- Department of Pediatrics, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Funmbi Babalola
- The Hospital for Sick Children, Department of Pediatrics, Toronto, ON, Canada
| | - Aisha Al Senani
- National Diabetes and Endocrine Center, Royal Hospital, Muscat, Oman
| | - Kavitha Muniraj
- Samatvam Diabetes Endocrinology and Medical Center, Bangalore, India
| | - Solaf M. Elsayed
- Medical Genetics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marianna Beghini
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria
| | | | | | - Madhumati S Vaishnav
- Samatvam Diabetes Endocrinology and Medical Center, Bangalore, India
- Indian Institute of Science, Center for Nano Science and Engineering, Bangalore, India
| | - Ender Can
- Division of Pediatric Neurology, Gaziantep Children’s Hospital, Gaziantep, Turkey
| | | | - Ekaterina Sorkina
- Endocrinology Research Centre, Moscow, Russia
- Clinical Research Facility, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Fatma Dursun
- Department of Pediatric Endocrinology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Clemens Kamrath
- Centre of Child and Adolescent Medicine, Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen, Germany
| | - Umit Cavdar
- Division of Endocrinology, Katip Celebi University, Izmir, Turkey
| | - Partha P. Chakraborty
- Department of Endocrinology and Metabolism, Medical College Hospital, Kolkata, India
| | - Ozlem Akgun Dogan
- Department of Pediatric Genetics, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | | | | | - Nil Comunoglu
- Department of Pathology, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Ahmed Hamed
- Child Health Department, Royal Hospital, Muscat, Oman
| | - Tea Huseinbegovic
- Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Jacqueline Curtis
- The Hospital for Sick Children, Department of Pediatrics, Toronto, ON, Canada
| | - Rebecca J. Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haluk Topaloglu
- Department of Pediatric Neurology, Yeditepe University, Istanbul, Turkey
| | - Vinaya Simha
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Center Ulm, Ulm, Germany
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Istanbul University, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Elif A. Oral
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Baris Akinci
- DEPARK, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Agarwal AK, Garg A. Phospholipid biosynthetic pathways and lipodystrophies: a novel syndrome due to PLAAT3 deficiency. Nat Rev Endocrinol 2024; 20:128-129. [PMID: 38191657 DOI: 10.1038/s41574-023-00950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Anil K Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
8
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Horton JD, Garg A. Adipose-specific overexpression of human AGPAT2 in mice causes increased adiposity and mild hepatic dysfunction. iScience 2024; 27:108653. [PMID: 38274405 PMCID: PMC10809107 DOI: 10.1016/j.isci.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human AGPAT2 specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice. Unexpectedly, overexpression of hAGPAT2 did not change the pattern of phospholipid or TAG concentration of the AT depots. Although there is an increase in liver weight, plasma aspartate aminotransferase, and plasma insulin at various time points of the study, it did not result in significant liver dysfunction. Despite increased adiposity in the Tg-AT-hAGPAT2;mAgpat2+/+ mice, there was no significant increase in TAG concentration of AT. Therefore, this study suggests a role of AGPAT2 in the generation of AT, but not for adipocyte TAG synthesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Peng K, Chen X, Pei K, Wang X, Ma X, Liang C, Dong Q, Liu Z, Han M, Liu G, Yang H, Zheng M, Liu G, Gao M. Lipodystrophic gene Agpat2 deficiency aggravates hyperlipidemia and atherosclerosis in Ldlr -/- mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166850. [PMID: 37591406 DOI: 10.1016/j.bbadis.2023.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
AIMS Dysfunction of adipose tissue increases the risk of cardiovascular disease. It was well established that obesity aggravates atherosclerosis, but the effect of adipose tissue loss on atherosclerosis has been less studied. AGPAT2 is the first causative gene of congenital generalized lipodystrophy (CGL), but the role of AGPAT2 on atherosclerosis has not been reported. Hypertriglyceridemia is one of the clinical manifestations of CGL patients, but it is usually absent in CGL mouse model on a normal diet. This study will investigate the effect of Agpat2 on hyperlipidemia and atherosclerosis. METHODS AND RESULTS In this study, Agpat2 knockout (Agpat2-/-) mice were generated using CRISPR/Cas system, which showed severe loss of adipose tissue and fatty liver, consistent with previous reports. Agpat2-/- mice were then crossed with hypercholesterolemic and atherosclerotic prone LDL receptor knockout (Ldlr-/-) mice to obtain double knockout mouse model (Agpat2-/-Ldlr-/-). Plasma lipid profile, insulin resistance, fatty liver, and atherosclerotic lesions were observed after 12 weeks of the atherogenic high-fat diet (HFD) feeding. We found that compared with Ldlr-/- mice, Agpat2-/-Ldlr-/- mice showed significantly higher plasma total cholesterol and triglycerides after HFD feeding. Agpat2-/-Ldlr-/- mice also developed hyperglycemia and hyperinsulinemia, with increased pancreatic islet area. The liver weight of Agpat2-/-Ldlr-/- mice was about 4 times higher than that of Ldlr-/- mice. The liver lipid deposition was severe and Sirius red staining showed liver fibrosis. In addition, in Agpat2-/-Ldlr-/- mice, the area of atherosclerotic lesions in aortic arch and aortic root was significantly increased. CONCLUSIONS Our results show that Agpat2 deficiency led to more severe hyperlipidemia, liver fibrosis and aggravation of atherosclerosis in Ldlr-/- mice. This study provided additional insights into the role of adipose tissue in hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Kenan Peng
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Laboratory Department of Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xin Chen
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Kexin Pei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xindi Ma
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chenxi Liang
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qianqian Dong
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ziwei Liu
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China.
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
10
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
11
|
Valentine WJ, Shimizu T, Shindou H. Lysophospholipid acyltransferases orchestrate the compositional diversity of phospholipids. Biochimie 2023; 215:24-33. [PMID: 37611890 DOI: 10.1016/j.biochi.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.
Collapse
Affiliation(s)
- William J Valentine
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Institute of Microbial Chemistry, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Tiwari M, Mcilroy GD. From scarcity to solutions: Therapeutic strategies to restore adipose tissue functionality in rare disorders of lipodystrophy. Diabet Med 2023; 40:e15214. [PMID: 37638531 DOI: 10.1111/dme.15214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
AIMS Lipodystrophy is a rare disorder characterised by abnormal or deficient adipose tissue formation and distribution. It poses significant challenges to affected individuals, including the development of severe metabolic complications like diabetes and fatty liver disease. These conditions are often chronic, debilitating and life-threatening, with limited treatment options and a lack of specialised expertise. This review aims to raise awareness of lipodystrophy disorders and highlights therapeutic strategies to restore adipose tissue functionality. METHODS Extensive research has been conducted, including both historical and recent advances. We have examined and summarised the literature to provide an overview of potential strategies to restore adipose tissue functionality and treat/reverse metabolic complications in lipodystrophy disorders. RESULTS A wealth of basic and clinical research has investigated various therapeutic approaches for lipodystrophy. These include ground-breaking methods such as adipose tissue transplantation, innovative leptin replacement therapy, targeted inhibition of lipolysis and cutting-edge gene and cell therapies. Each approach shows great potential in addressing the complex challenges posed by lipodystrophy. CONCLUSIONS Lipodystrophy disorders require urgent attention and innovative treatments. Through rigorous basic and clinical research, several promising therapeutic strategies have emerged that could restore adipose tissue functionality and reverse the severe metabolic complications associated with this condition. However, further research and collaboration between academics, clinicians, patient advocacy groups and pharmaceutical companies will be crucial in transforming these scientific breakthroughs into effective and viable treatment options for individuals and families affected by lipodystrophy. Fostering such interdisciplinary partnerships could pave the way for a brighter future for those battling this debilitating disorder.
Collapse
Affiliation(s)
- Mansi Tiwari
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - George D Mcilroy
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
13
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Scherer PE, Horton JD, Garg A. Regulated adipose tissue-specific expression of human AGPAT2 in lipodystrophic Agpat2-null mice results in regeneration of adipose tissue. iScience 2023; 26:107806. [PMID: 37752957 PMCID: PMC10518674 DOI: 10.1016/j.isci.2023.107806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Genetic loss of Agpat2 in humans and mice results in congenital generalized lipodystrophy with near-total loss of adipose tissue and predisposition to develop insulin resistance, diabetes mellitus, hepatic steatosis, and hypertriglyceridemia. The mechanism by which Agpat2 deficiency results in loss of adipose tissue remains unknown. We studied this by re-expressing human AGPAT2 (hAGPAT2) in Agpat2-null mice, regulated by doxycycline. In both sexes of Agpat2-null mice, adipose-tissue-specific re-expression of hAGPAT2 resulted in partial regeneration of both white and brown adipose tissue (but only 30%-50% compared with wild-type mice), which had molecular signatures of adipocytes, including leptin secretion. Furthermore, the stromal vascular fraction cells of regenerated adipose depots differentiated ex vivo only with doxycycline, suggesting the essential role of Agpat2 in adipocyte differentiation. Turning off expression of hAGPAT2 in vivo resulted in total loss of regenerated adipose tissue, clear evidence that Agpat2 is essential for adipocyte differentiation in vivo.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E. Scherer
- Touchstone Center for Diabetes Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. Pathol Res Pract 2023; 249:154743. [PMID: 37549518 DOI: 10.1016/j.prp.2023.154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that originates from mesenchymal cells. It is considered as the eighth most frequent childhood cancer that mainly affects the tibia and femur among the teenagers and young adults. OS can be usually diagnosed by a combination of MRI and surgical biopsy. The intra-arterial cisplatin (CDDP) and Adriamycin is one of the methods of choices for the OS treatment. CDDP induces tumor cell death by disturbing the DNA replication. Although, CDDP has a critical role in improving the clinical complication in OS patients, a high ratio of CDDP resistance is observed among these patients. Prolonged CDDP administrations have also serious side effects in normal tissues and organs. Therefore, the molecular mechanisms of CDDP resistance should be clarified to define the novel therapeutic modalities in OS. Multidrug resistance (MDR) can be caused by various cellular and molecular processes such as drug efflux, detoxification, and signaling pathways. MicroRNAs (miRNAs) are the key regulators of CDDP response by the post transcriptional regulation of target genes involved in MDR. In the present review we have discussed all of the miRNAs associated with CDDP response in OS cells. It was observed that the majority of reported miRNAs increased CDDP sensitivity in OS cells through the regulation of signaling pathways, apoptosis, transporters, and autophagy. This review highlights the miRNAs as reliable non-invasive markers for the prediction of CDDP response in OS patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Jin L, Wang D, Zhang J, Liu P, Wang Y, Lin Y, Liu C, Han Z, Long K, Li D, Jiang Y, Li G, Zhang Y, Bai J, Li X, Li J, Lu L, Kong F, Wang X, Li H, Huang Z, Ma J, Fan X, Shen L, Zhu L, Jiang Y, Tang G, Feng B, Zeng B, Ge L, Li X, Tang Q, Zhang Z, Li M. Dynamic chromatin architecture of the porcine adipose tissues with weight gain and loss. Nat Commun 2023; 14:3457. [PMID: 37308492 PMCID: PMC10258790 DOI: 10.1038/s41467-023-39191-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Using an adult female miniature pig model with diet-induced weight gain/weight loss, we investigated the regulatory mechanisms of three-dimensional (3D) genome architecture in adipose tissues (ATs) associated with obesity. We generated 249 high-resolution in situ Hi-C chromatin contact maps of subcutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin architectural changes under different nutritional treatments. We find that chromatin architecture remodeling underpins transcriptomic divergence in ATs, potentially linked to metabolic risks in obesity development. Analysis of chromatin architecture among subcutaneous ATs of different mammals suggests the presence of transcriptional regulatory divergence that could explain phenotypic, physiological, and functional differences in ATs. Regulatory element conservation analysis in pigs and humans reveals similarities in the regulatory circuitry of genes responsible for the obesity phenotype and identified non-conserved elements in species-specific gene sets that underpin AT specialization. This work provides a data-rich tool for discovering obesity-related regulatory elements in humans and pigs.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key R & D Program of China (2020YFA0509500), the Sichuan Science and Technology Program (2021YFYZ0009 and 2021YFYZ0030)
- the National Key R & D Program of China (2021YFA0805903), the Tackling Project for Agricultural Key Core Technologies of China (NK2022110602), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054), the Ya’an Science and Technology Program (21SXHZ0022)
- the Sichuan Science and Technology Program (2022NSFSC0056)
- the Sichuan Science and Technology Program (2022NSFSC1618)
- the National Key R & D Program of China (2021YFD1300800), the Sichuan Science and Technology Program (2021YFS0008 and 2022YFQ0022)
- the Opening Foundation of Key Laboratory of Pig Industry Sciences (22519C)
- the Sichuan Science and Technology Program (2021YFH0033), the Major Science and Technology Projects of Tibet Autonomous Region (XZ202101ZD0005N)
- the China Agriculture Research System (CARS-35-01A)
- the National Key R & D Program of China (2022YFF1000100), the Sichuan Science and Technology Program (2021ZDZX0008, 2022NZZJ0028 and 2022JDJQ0054)
- the Strategic Priority Research Program of CAS (XDA24020307), the Special Investigation on Science and Technology Basic Resources of the MOST of China (2019FY100102), the Beijing Natural Science Foundation (Z200021)
Collapse
Affiliation(s)
- Long Jin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
- Sars-Fang Centre and MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengliang Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yujie Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Lin
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Can Liu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyin Han
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guisen Li
- Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingyi Bai
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fanli Kong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaolan Fan
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanzhi Jiang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqing Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Ya'an Digital Economy Operation Company, Ya'an, 625014, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Xuewei Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- School of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Farese RV, Walther TC. Glycerolipid Synthesis and Lipid Droplet Formation in the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041246. [PMID: 36096640 PMCID: PMC10153804 DOI: 10.1101/cshperspect.a041246] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
More than 60 years ago, Eugene Kennedy and coworkers elucidated the endoplasmic reticulum (ER)-based pathways of glycerolipid synthesis, including the synthesis of phospholipids and triacylglycerols (TGs). The reactions of the Kennedy pathway were identified by studying the conversion of lipid intermediates and the isolation of biochemical enzymatic activities, but the molecular basis for most of these reactions was unknown. With recent progress in the cell biology, biochemistry, and structural biology in this area, we have a much more mechanistic understanding of this pathway and its reactions. In this review, we provide an overview of molecular aspects of glycerolipid synthesis, focusing on recent insights into the synthesis of TGs. Further, we go beyond the Kennedy pathway to describe the mechanisms for storage of TG in cytosolic lipid droplets and discuss how overwhelming these pathways leads to ER stress and cellular toxicity, as seen in diseases linked to lipid overload and obesity.
Collapse
Affiliation(s)
- Robert V Farese
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Center for Causes and Prevention of Cardiovascular Disease (CAP-CVD), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Center for Causes and Prevention of Cardiovascular Disease (CAP-CVD), Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute Boston, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Li X, Yang Y, Li L, Ren M, Zhou M, Li S. Transcriptome Profiling of Different Developmental Stages on Longissimus Dorsi to Identify Genes Underlying Intramuscular Fat Content in Wannanhua Pigs. Genes (Basel) 2023; 14:genes14040903. [PMID: 37107661 PMCID: PMC10137702 DOI: 10.3390/genes14040903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Intramuscular fat (IMF) is a key index to measure the tenderness and flavor of pork. Wannanhua pig, a famous indigenous pig breed in Anhui Province, is renowned for its high lipid deposition and high genetic divergence, making it an ideal model for investigating the lipid position trait mechanisms in pigs. However, the regulatory mechanisms of lipid deposition and development in pigs remain unclear. Furthermore, the temporal differences in gene regulation are based on muscle growth and IMF deposition. The purpose of this study was to study the expression changes of longissimus dorsi (LD) at different growth stages of WH pigs at the molecular level, to screen the candidate genes and signaling pathways related to IMF during development by transcriptome sequencing technology, and to explore the transcriptional regulation mechanism of IMF deposition-related genes at different development stages. In total, 616, 485, and 1487 genes were differentially expressed between LD60 and LD120, LD120 and LD240, and LD60 and LD240, respectively. Numerous differentially expressed genes (DEGs) associated with lipid metabolism and muscle development were identified, and most of them were involved in IMF deposition and were significantly up-regulated in LD120 and LD240 compared to LD60. STEM (Short Time-series Expression Miner) analysis indicated significant variations in the mRNA expression across distinct muscle development stages. The differential expression of 12 selected DEGs was confirmed by RT-qPCR. The results of this study contribute to our understanding of the molecular mechanism of IMF deposition and provide a new way to accelerate the genetic improvement of pork quality.
Collapse
Affiliation(s)
- Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Yanan Yang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Lei Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
19
|
Feng T, Tao Y, Yan Y, Lu S, Li Y, Zhang X, Qiang J. Transcriptional Inhibition of AGPAT2 Induces Abnormal Lipid Metabolism and Oxidative Stress in the Liver of Nile Tilapia Oreochromis niloticus. Antioxidants (Basel) 2023; 12:antiox12030700. [PMID: 36978948 PMCID: PMC10045202 DOI: 10.3390/antiox12030700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
The enzyme 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) is an intermediate enzyme in triglyceride synthesis. The aim was to study the regulatory mechanism of AGPAT2 on Nile tilapia, Oreochromis niloticus. In this study, antisense RNA technology was used to knock-down AGPAT2 in Nile tilapia. Compared with the control groups (transfected with ultrapure water or the blank expression vector), the AGPAT2 knock-down group showed a significantly higher weight gain rate, special growth rate, visceral somatic index, and hepatopancreas somatic index; and significantly increased the total cholesterol, triglycerides, glucose, low-density lipoprotein cholesterol, and insulin levels in serum. In addition, the contents of total cholesterol and triglycerides and the abundance of superoxide dismutase, catalase, and glutathione peroxidase in the liver significantly increased, while the malondialdehyde content significantly decreased. The liver cells became severely vacuolated and accumulated lipids in the AGPAT2 knock-down group. Comparative transcriptome analyses (AGPAT2 knock-down vs. control group) revealed 1789 differentially expressed genes (DEGs), including 472 upregulated genes and 1313 downregulated genes in the AGPAT2 knock-down group. Functional analysis showed that the main pathway of differentially expressed genes enrichment was lipid metabolism and oxidative stress, such as steroid biosynthesis, unsaturated fatty acid biosynthesis, the PPAR signaling pathway, and the P53 pathway. We used qRT-PCR to verify the mRNA expression changes of 13 downstream differential genes in related signaling pathways. These findings demonstrate that knock-down of AGPAT2 in tilapia leads to abnormal lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yue Yan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jun Qiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Correspondence:
| |
Collapse
|
20
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Identification of a missense variant in the porcine AGPAT gene family associated with intramuscular fat content through whole-genome sequencing. Anim Genet 2022; 53:782-793. [PMID: 36108237 PMCID: PMC9826064 DOI: 10.1111/age.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
The 1-acylglycerol-3-phosphate O-acyltransferases (AGPATs) are enzymes that catalyze the conversion of lysophosphatidic acid to phosphatidic acid, which is a precursor of triacylglycerol, the main fat reservoir in mammals. We used whole-genome sequencing of 205 pigs to identify 6639 genetic variants in the porcine AGPAT gene family. Of these, 166 common variants in the AGPAT5 gene had significant associations with fat content and composition traits. We preselected a missense single nucleotide polymorphism in exon 6 of AGPAT5 (rs196952262, A>G) for validation of its associations in 1034 pigs from the same Duroc line. The A allele showed a positive additive effect for intramuscular fat content (+1.12% ± 0.21, p < 0.001, for gluteus medius and +0.89% ± 0.33, p < 0.01, for longissimus). We also observed significant associations with fatty acid composition that were, at least in part, independent of the increased intramuscular fat. The A allele resulted in more monounsaturated fatty acids (+0.34% ± 0.15, p < 0.05, for longissimus) and a greater monounsaturated/polyunsaturated fatty acids ratio (+0.11 ± 0.04, p < 0.01, for gluteus medius and +0.13 ± 0.05, p < 0.05, for longissimus). The effect of the AGPAT5 variant on intramuscular fat was more noticeable in fatter pigs, and AGPAT5 interacts with other genes that affect overall fatness such as LEPR. AGPAT5 was the most expressed gene of the AGPAT family in pig skeletal muscle. This variant can be used as a marker in assisted selection for modulating pig fat deposition and fatty acid content.
Collapse
Affiliation(s)
- Eduard Molinero
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Ramona N. Pena
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Joan Estany
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| | - Roger Ros‐Freixedes
- Department of Animal ScienceUniversity of Lleida‐Agrotecnio‐CERCA CenterLleidaCataloniaSpain
| |
Collapse
|
21
|
Garg A, Keng WT, Chen Z, Sathe AA, Xing C, Kailasam PD, Shao Y, Lesner NP, Llamas CB, Agarwal AK, Mishra P. Autosomal recessive progeroid syndrome due to homozygosity for a TOMM7 variant. J Clin Invest 2022; 132:e156864. [PMID: 36282599 PMCID: PMC9711873 DOI: 10.1172/jci156864] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple genetic loci have been reported for progeroid syndromes. However, the molecular defects in some extremely rare forms of progeria have yet to be elucidated. Here, we report a 21-year-old man of Chinese ancestry who has an autosomal recessive form of progeria, characterized by severe dwarfism, mandibular hypoplasia, hyperopia, and partial lipodystrophy. Analyses of exome sequencing data from the entire family revealed only 1 rare homozygous missense variant (c.86C>T; p.Pro29Leu) in TOMM7 in the proband, while the parents and 2 unaffected siblings were heterozygous for the variant. TOMM7, a nuclear gene, encodes a translocase in the outer mitochondrial membrane. The TOMM complex makes up the outer membrane pore, which is responsible for importing many preproteins into the mitochondria. A proteomic comparison of mitochondria from control and proband-derived cultured fibroblasts revealed an increase in abundance of several proteins involved in oxidative phosphorylation, as well as a reduction in abundance of proteins involved in phospholipid metabolism. We also observed elevated basal and maximal oxygen consumption rates in the fibroblasts from the proband as compared with control fibroblasts. We concluded that altered mitochondrial protein import due to biallelic loss-of-function TOMM7 can cause severe growth retardation and progeroid features.
Collapse
Affiliation(s)
- Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Wee-Teik Keng
- Medical Genetics Department, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | | | | | - Chao Xing
- McDermott Center for Human Growth and Development, and
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Yanqiu Shao
- McDermott Center for Human Growth and Development, and
| | | | | | - Anil K. Agarwal
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute
- Department of Pediatrics and
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Saito S, Ishikawa T, Ninagawa S, Okada T, Mori K. A motor neuron disease-associated mutation produces non-glycosylated Seipin that induces ER stress and apoptosis by inactivating SERCA2b. eLife 2022; 11:74805. [PMID: 36444643 PMCID: PMC9708084 DOI: 10.7554/elife.74805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/06/2022] [Indexed: 11/30/2022] Open
Abstract
A causal relationship between endoplasmic reticulum (ER) stress and the development of neurodegenerative diseases remains controversial. Here, we focused on Seipinopathy, a dominant motor neuron disease, based on the finding that its causal gene product, Seipin, is a protein that spans the ER membrane twice. Gain-of-function mutations of Seipin produce non-glycosylated Seipin (ngSeipin), which was previously shown to induce ER stress and apoptosis at both cell and mouse levels albeit with no clarified mechanism. We found that aggregation-prone ngSeipin dominantly inactivated SERCA2b, the major calcium pump in the ER, and decreased the calcium concentration in the ER, leading to ER stress and apoptosis in human colorectal carcinoma-derived cells (HCT116). This inactivation required oligomerization of ngSeipin and direct interaction of the C-terminus of ngSeipin with SERCA2b, and was observed in Seipin-deficient neuroblastoma (SH-SY5Y) cells expressing ngSeipin at an endogenous protein level. Our results thus provide a new direction to the controversy noted above.
Collapse
Affiliation(s)
- Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Genetic or acquired lipodystrophies are characterized by selective loss of body fat along with predisposition towards metabolic complications of insulin resistance, such as diabetes mellitus, hypertriglyceridemia, hepatic steatosis, polycystic ovarian syndrome, and acanthosis nigricans. In this review, we discuss the various subtypes and when to suspect and how to diagnose lipodystrophy. RECENT FINDINGS The four major subtypes are autosomal recessive, congenital generalized lipodystrophy (CGL); acquired generalized lipodystrophy (AGL), mostly an autoimmune disorder; autosomal dominant or recessive familial partial lipodystrophy (FPLD); and acquired partial lipodystrophy (APL), an autoimmune disorder. Diagnosis of lipodystrophy is mainly based upon physical examination findings of loss of body fat and can be supported by body composition analysis by skinfold measurements, dual-energy x-ray absorptiometry, and whole-body magnetic resonance imaging. Confirmatory genetic testing is helpful in the proband and at-risk family members with suspected genetic lipodystrophies. The treatment is directed towards the specific comorbidities and metabolic complications, and there is no treatment to reverse body fat loss. Metreleptin should be considered as the first-line therapy for metabolic complications in patients with generalized lipodystrophy and for prevention of comorbidities in children. Metformin and insulin therapy are the best options for treating hyperglycemia and fibrates and/or fish oil for hypertriglyceridemia. Lipodystrophy should be suspected in lean and muscular subjects presenting with diabetes mellitus, hypertriglyceridemia, non-alcoholic fatty liver disease, polycystic ovarian syndrome, or amenorrhea. Diabetologists should be aware of lipodystrophies and consider genetic varieties as an important subtype of monogenic diabetes.
Collapse
Affiliation(s)
- Nivedita Patni
- Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine and the Center for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8537, USA.
| |
Collapse
|
24
|
Moyamoya disease emerging as an immune-related angiopathy. Trends Mol Med 2022; 28:939-950. [DOI: 10.1016/j.molmed.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
25
|
Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH). Nat Commun 2022; 13:4549. [PMID: 35927268 PMCID: PMC9352699 DOI: 10.1038/s41467-022-32163-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Ectopic lipid accumulation and inflammation are the essential signs of NASH. However, the molecular mechanisms of ectopic lipid accumulation and inflammation during NASH progression are not fully understood. Here we reported that hepatic Wilms' tumor 1-associating protein (WTAP) is a key integrative regulator of ectopic lipid accumulation and inflammation during NASH progression. Hepatic deletion of Wtap leads to NASH due to the increased lipolysis in white adipose tissue, enhanced hepatic free fatty acids uptake and induced inflammation, all of which are mediated by IGFBP1, CD36 and cytochemokines such as CCL2, respectively. WTAP binds to specific DNA motifs which are enriched in the promoters and suppresses gene expression (e.g., Igfbp1, Cd36 and Ccl2) with the involvement of HDAC1. In NASH, WTAP is tranlocated from nucleus to cytosol, which is related to CDK9-mediated phosphorylation. These data uncover a mechanism by which hepatic WTAP regulates ectopic lipid accumulation and inflammation during NASH progression. Ectopic lipid accumulation and inflammation are the essential signs of NASH. Here, the authors show that hepatic WTAP is a key integrative repressor of ectopic lipid accumulation and inflammation during NASH progression, and hepatic deletion of Wtap promotes both of them, leading to NASH
Collapse
|
26
|
Shi LJ, Tang X, He J, Shi W. Genetic Evidence for a Causal Relationship between Hyperlipidemia and Type 2 Diabetes in Mice. Int J Mol Sci 2022; 23:ijms23116184. [PMID: 35682864 PMCID: PMC9181284 DOI: 10.3390/ijms23116184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 02/01/2023] Open
Abstract
Dyslipidemia is considered a risk factor for type 2 diabetes (T2D), yet studies with statins and candidate genes suggest that circulating lipids may protect against T2D development. Apoe-null (Apoe-/-) mouse strains develop spontaneous dyslipidemia and exhibit a wide variation in susceptibility to diet-induced T2D. We thus used Apoe-/- mice to elucidate phenotypic and genetic relationships of circulating lipids with T2D. A male F2 cohort was generated from an intercross between LP/J and BALB/cJ Apoe-/- mice and fed 12 weeks of a Western diet. Fasting, non-fasting plasma glucose, and lipid levels were measured and genotyping was performed using miniMUGA arrays. We uncovered a major QTL near 60 Mb on chromosome 15, Nhdlq18, which affected non-HDL cholesterol and triglyceride levels under both fasting and non-fasting states. This QTL was coincident with Bglu20, a QTL that modulates fasting and non-fasting glucose levels. The plasma levels of non-HDL cholesterol and triglycerides were closely correlated with the plasma glucose levels in F2 mice. Bglu20 disappeared after adjustment for non-HDL cholesterol or triglycerides. These results demonstrate a causative role for dyslipidemia in T2D development in mice.
Collapse
Affiliation(s)
- Lisa J. Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (J.H.)
| | - Xiwei Tang
- Department of Statistics, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (J.H.)
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; (L.J.S.); (J.H.)
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: ; Tel.: +434-243-9420; Fax: +434-982-5680
| |
Collapse
|
27
|
Iqbal J, Jiang HL, Wu HX, Li L, Zhou YH, Hu N, Xiao F, Wang T, Xu SN, Zhou HD. Hereditary severe insulin resistance syndrome: Pathogenesis, pathophysiology, and clinical management. Genes Dis 2022. [PMID: 37492723 PMCID: PMC10363564 DOI: 10.1016/j.gendis.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Severe insulin resistance has been linked to some of the most globally prevalent disorders, such as diabetes mellitus, nonalcoholic fatty liver disease, polycystic ovarian syndrome, and hypertension. Hereditary severe insulin resistance syndrome (H-SIRS) is a rare disorder classified into four principal categories: primary insulin receptor defects, lipodystrophies, complex syndromes, and obesity-related H-SIRS. Genes such as INSR, AKT2, TBC1D4, AGPAT2, BSCL2, CAV1, PTRF, LMNA, PPARG, PLIN1, CIDEC, LIPE, PCYT1A, MC4R, LEP, POMC, SH2B1, RECQL2, RECQL3, ALMS1, PCNT, ZMPSTE24, PIK3R1, and POLD1 have been linked to H-SIRS. Its clinical features include insulin resistance, hyperglycemia, hyperandrogenism, severe dyslipidemia, fatty liver, abnormal topography of adipose tissue, and low serum leptin and adiponectin levels. Diagnosis of H-SIRS is based on the presence of typical clinical features associated with the various H-SIRS forms and the identification of mutations in H-SIRS-linked genes by genetic testing. Diet therapy, insulin sensitization, exogenous insulin therapy, and leptin replacement therapy have widely been adopted to manage H-SIRS. The rarity of H-SIRS, its highly variable clinical presentation, refusal to be tested for genetic mutations by patients' family members who are not severely sick, unavailability of genetic testing, and testing expenses contribute to the delayed or underdiagnoses of H-SIRS. Early diagnosis facilitates early management of the condition, which results in improved glycemic control and delayed onset of diabetes and other complications related to severe insulin resistance. The use of updated genetic sequencing technologies is recommended, and long-term studies are required for genotype-phenotype differentiation and formulation of diagnostic and treatment protocols.
Collapse
|
28
|
Stone SJ. Mechanisms of intestinal triacylglycerol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159151. [PMID: 35296424 DOI: 10.1016/j.bbalip.2022.159151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Triacylglycerols are a major source of stored energy that are obtained either from the diet or can be synthesized to some extent by most tissues. Alterations in pathways of triacylglycerol metabolism can result in their excessive accumulation leading to obesity, insulin resistance, cardiovascular disease and nonalcoholic fatty liver disease. Most tissues in mammals synthesize triacylglycerols via the glycerol 3-phosphate pathway. However, in the small intestine the monoacylglycerol acyltransferase pathway is the predominant pathway for triacylglycerol biosynthesis where it participates in the absorption of dietary triacylglycerol. In this review, the enzymes that are part of both the glycerol 3-phosphate and monoacylglycerol acyltransferase pathways and their contributions to intestinal triacylglycerol metabolism are reviewed. The potential of some of the enzymes involved in triacylglycerol synthesis in the small intestine as possible therapeutic targets for treating metabolic disorders associated with elevated triacylglycerol is briefly discussed.
Collapse
Affiliation(s)
- Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
29
|
Nunn ER, Shinde AB, Zaganjor E. Weighing in on Adipogenesis. Front Physiol 2022; 13:821278. [PMID: 35283790 PMCID: PMC8914022 DOI: 10.3389/fphys.2022.821278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health concern worldwide because of its contribution to metabolic syndrome, type II diabetes, insulin resistance (IR), and numerous cancers. In obesity, white adipose tissue (WAT) expands through two mechanisms: increase in adipocyte cell number by precursor cell differentiation through the process of adipogenesis (hyperplasia) and increase in existing mature adipocyte cell size (hypertrophy). While hypertrophy is associated with the negative effects of obesity on metabolic health, such as inflammation and lipotoxicity, adipogenesis prevents obesity-mediated metabolic decline. Moreover, in metabolically healthy obesity adipogenesis is increased. Thus, it is vital to understand the mechanistic basis for adipose expansion to inform novel therapeutic approaches to mitigate the dysfunction of this tissue and associated diseases. In this mini-review, we summarize recent studies on the regulation of adipogenesis and provide a perspective on targeting adipogenesis as a potential therapeutic avenue for metabolic disorders.
Collapse
|
30
|
Valentine WJ, Mostafa SA, Tokuoka SM, Hamano F, Inagaki NF, Nordin JZ, Motohashi N, Kita Y, Aoki Y, Shimizu T, Shindou H. Lipidomic Analyses Reveal Specific Alterations of Phosphatidylcholine in Dystrophic Mdx Muscle. Front Physiol 2022; 12:698166. [PMID: 35095541 PMCID: PMC8791236 DOI: 10.3389/fphys.2021.698166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), lack of dystrophin increases the permeability of myofiber plasma membranes to ions and larger macromolecules, disrupting calcium signaling and leading to progressive muscle wasting. Although the biological origin and meaning are unclear, alterations of phosphatidylcholine (PC) are reported in affected skeletal muscles of patients with DMD that may include higher levels of fatty acid (FA) 18:1 chains and lower levels of FA 18:2 chains, possibly reflected in relatively high levels of PC 34:1 (with 16:0_18:1 chain sets) and low levels of PC 34:2 (with 16:0_18:2 chain sets). Similar PC alterations have been reported to occur in the mdx mouse model of DMD. However, altered ratios of PC 34:1 to PC 34:2 have been variably reported, and we also observed that PC 34:2 levels were nearly equally elevated as PC 34:1 in the affected mdx muscles. We hypothesized that experimental factors that often varied between studies; including muscle types sampled, mouse ages, and mouse diets; may strongly impact the PC alterations detected in dystrophic muscle of mdx mice, especially the PC 34:1 to PC 34:2 ratios. In order to test our hypothesis, we performed comprehensive lipidomic analyses of PC and phosphatidylethanolamine (PE) in several muscles (extensor digitorum longus, gastrocnemius, and soleus) and determined the mdx-specific alterations. The alterations in PC 34:1 and PC 34:2 were closely monitored from the neonate period to the adult, and also in mice raised on several diets that varied in their fats. PC 34:1 was naturally high in neonate’s muscle and decreased until age ∼3-weeks (disease onset age), and thereafter remained low in WT muscles but was higher in regenerated mdx muscles. Among the muscle types, soleus showed a distinctive phospholipid pattern with early and diminished mdx alterations. Diet was a major factor to impact PC 34:1/PC 34:2 ratios because mdx-specific alterations of PC 34:2 but not PC 34:1 were strictly dependent on diet. Our study identifies high PC 34:1 as a consistent biochemical feature of regenerated mdx-muscle and indicates nutritional approaches are also effective to modify the phospholipid compositions.
Collapse
Affiliation(s)
- William J. Valentine
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- *Correspondence: William J. Valentine,
| | - Sherif A. Mostafa
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Fumie Hamano
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Natsuko F. Inagaki
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
| | - Joel Z. Nordin
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
- Department of Laboratory Medicine, Centre for Biomolecular and Cellular Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Norio Motohashi
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | - Yoshihiro Kita
- Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center for Neurology and Psychiatry (NCNP), National Institute of Neuroscience, Kodaira, Tokyo, Japan
- Yoshitsugu Aoki,
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Hideo Shindou,
| |
Collapse
|
31
|
Magré J, Prieur X. Seipin Deficiency as a Model of Severe Adipocyte Dysfunction: Lessons from Rodent Models and Teaching for Human Disease. Int J Mol Sci 2022; 23:740. [PMID: 35054926 PMCID: PMC8775404 DOI: 10.3390/ijms23020740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity prevalence is increasing worldwide, leading to cardiometabolic morbidities. Adipocyte dysfunction, impairing white adipose tissue (WAT) expandability and metabolic flexibility, is central in the development of obesity-related metabolic complications. Rare syndromes of lipodystrophy characterized by an extreme paucity of functional adipose tissue should be considered as primary adipocyte dysfunction diseases. Berardinelli-Seip congenital lipodystrophy (BSCL) is the most severe form with a near absence of WAT associated with cardiometabolic complications such as insulin resistance, liver steatosis, dyslipidemia, and cardiomyopathy. Twenty years ago, mutations in the BSCL2 gene have been identified as the cause of BSCL in human. BSCL2 encodes seipin, an endoplasmic reticulum (ER) anchored protein whose function was unknown back then. Studies of seipin knockout mice or rats demonstrated how seipin deficiency leads to severe lipodystrophy and to cardiometabolic complications. At the cellular levels, seipin is organized in multimers that are particularly enriched at ER/lipid droplet and ER/mitochondria contact sites. Seipin deficiency impairs both adipocyte differentiation and mature adipocyte maintenance. Experiments using adipose tissue transplantation in seipin knockout mice and tissue-specific deletion of seipin have provided a large body of evidence that liver steatosis, cardiomyopathy, and renal injury, classical diabetic complications, are all consequences of lipodystrophy. Rare adipocyte dysfunctions such as in BSCL are the key paradigm to unravel the pathways that control adipocyte homeostasis. The knowledge gathered through the study of these pathologies may bring new strategies to maintain and improve adipose tissue expandability.
Collapse
Affiliation(s)
| | - Xavier Prieur
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, L’institut du Thorax, Université de Nantes, F-44000 Nantes, France;
| |
Collapse
|
32
|
Le Lay S, Magré J, Prieur X. Not Enough Fat: Mouse Models of Inherited Lipodystrophy. Front Endocrinol (Lausanne) 2022; 13:785819. [PMID: 35250856 PMCID: PMC8895270 DOI: 10.3389/fendo.2022.785819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Lipodystrophies belong to the heterogenous group of syndromes in which the primary defect is a generalized or partial absence of adipose tissue, which may be congenital or acquired in origin. Lipodystrophy should be considered in patients manifesting the combination of insulin resistance (with or without overt diabetes), dyslipidemia and fatty liver. Lipodystrophies are classified according to the etiology of the disease (genetic or acquired) and to the anatomical distribution of adipose tissue (generalized or partial). The mechanism of adipose tissue loss is specific to each syndrome, depending on the biological function of the mutated gene. Mice models, together with cellular studies have permitted clarification of the mechanisms by which human mutations deeply compromise adipocyte homeostasis. In addition, rodent models have proven to be crucial in deciphering the cardiometabolic consequences of the lack of adipose tissue such as NAFLD, muscle insulin resistance and cardiomyopathy. More precisely, tissue-specific transgenic and knockout mice have brought new tools to distinguish phenotypic traits that are the consequences of lipodystrophy from those that are cell-autonomous. In this review, we discuss the mice models of lipodystrophy including those of inherited human syndromes of generalized and partial lipodystrophy. We present how these models have demonstrated the central role of white adipose tissue in energetic homeostasis in general, including insulin sensitivity and lipid handling in particular. We underscore the differences reported with the human phenotype and discuss the limit of rodent models in recapitulating adipose tissue primary default. Finally, we present how these mice models have highlighted the function of the causative-genes and brought new insights into the pathophysiology of the cardiometabolic complications associated with lipodystrophy.
Collapse
Affiliation(s)
- Soazig Le Lay
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- Univ Angers, SFR ICAT, Angers, France
| | - Jocelyne Magré
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Xavier Prieur
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- *Correspondence: Xavier Prieur,
| |
Collapse
|
33
|
Campos JTADM, Oliveira MSD, Soares LP, Medeiros KAD, Campos LRDS, Lima JG. DNA repair-related genes and adipogenesis: Lessons from congenital lipodystrophies. Genet Mol Biol 2022; 45:e20220086. [DOI: 10.1590/1678-4685-gmb-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
|
34
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
35
|
Mak HY, Ouyang Q, Tumanov S, Xu J, Rong P, Dong F, Lam SM, Wang X, Lukmantara I, Du X, Gao M, Brown AJ, Gong X, Shui G, Stocker R, Huang X, Chen S, Yang H. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway. Nat Commun 2021; 12:6877. [PMID: 34824276 PMCID: PMC8616899 DOI: 10.1038/s41467-021-27279-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
AGPATs (1-acylglycerol-3-phosphate O-acyltransferases) catalyze the acylation of lysophosphatidic acid to form phosphatidic acid (PA), a key step in the glycerol-3-phosphate pathway for the synthesis of phospholipids and triacylglycerols. AGPAT2 is the only AGPAT isoform whose loss-of-function mutations cause a severe form of human congenital generalized lipodystrophy. Paradoxically, AGPAT2 deficiency is known to dramatically increase the level of its product, PA. Here, we find that AGPAT2 deficiency impairs the biogenesis and growth of lipid droplets. We show that AGPAT2 deficiency compromises the stability of CDP-diacylglycerol (DAG) synthases (CDSs) and decreases CDS activity in both cell lines and mouse liver. Moreover, AGPAT2 and CDS1/2 can directly interact and form functional complexes, which promote the metabolism of PA along the CDP-DAG pathway of phospholipid synthesis. Our results provide key insights into the regulation of metabolic flux during lipid synthesis and suggest substrate channelling at a major branch point of the glycerol-3-phosphate pathway.
Collapse
Affiliation(s)
- Hoi Yin Mak
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qian Ouyang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Sergey Tumanov
- Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Jiesi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ping Rong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Feitong Dong
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.,Lipidall Technologies Company Limited, 213022, Changzhou, Jiangsu Province, China
| | - Xiaowei Wang
- Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China
| | - Ivan Lukmantara
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Hebei Medical University, 050017, Shijiazhuang, Hebei, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xin Gong
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Newtown, NSW, 2042, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, 210061, Nanjing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
36
|
van Heerwaarde AA, Klomberg RCW, van Ravenswaaij-Arts CMA, Ploos van Amstel HK, Toekoen A, Jessurun F, Garg A, van der Kaay DCM. Approach to Diagnosing a Pediatric Patient With Severe Insulin Resistance in Low- or Middle-income Countries. J Clin Endocrinol Metab 2021; 106:3621-3633. [PMID: 34318892 PMCID: PMC8864731 DOI: 10.1210/clinem/dgab549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus (DM) in children is most often caused by impaired insulin secretion (type 1 DM). In some children, the underlying mechanism for DM is increased insulin resistance, which can have different underlying causes. While the majority of these children require insulin dosages less than 2.0 U/kg/day to achieve normoglycemia, higher insulin requirements indicate severe insulin resistance. Considering the therapeutic challenges in patients with severe insulin resistance, early diagnosis of the underlying cause is essential in order to consider targeted therapies and to prevent diabetic complications. Although rare, several disorders can attribute to severe insulin resistance in pediatric patients. Most of these disorders are diagnosed through advanced diagnostic tests, which are not commonly available in low- or middle-income countries. Based on a case of DM with severe insulin resistance in a Surinamese adolescent who was later confirmed to have autosomal recessive congenital generalized lipodystrophy, type 1 (Berardinelli-Seip syndrome), we provide a systematic approach to the differential diagnosis and work-up. We show that a thorough review of medical history and physical examination generally provide sufficient information to diagnose a child with insulin-resistant DM correctly, and, therefore, our approach is especially applicable to low- or middle-income countries.
Collapse
Affiliation(s)
- Alise A van Heerwaarde
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Renz C W Klomberg
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Conny M A van Ravenswaaij-Arts
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Aartie Toekoen
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
| | - Fariza Jessurun
- Department of Pediatrics, Academic Pediatric Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Abhimanyu Garg
- Division of Nutrition, and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
- Dr. Abhimanyu Garg, UT Southwestern Medical Center, Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, Dallas, TX 75390, USA.
| | - Daniëlle C M van der Kaay
- Department of Pediatric Endocrinology, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
- Correspondence: Dr. Daniëlle C. M. van der Kaay, Erasmus Medical Center – Sophia Children’s Hospital, Department of Pediatrics; PO 2060; 3000 CB Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Huang YH, Su TC, Wang CH, Wong SL, Chien YH, Wang YT, Hwu WL, Lee NC. RNA-seq of peripheral blood mononuclear cells of congenital generalized lipodystrophy type 2 patients. Sci Data 2021; 8:265. [PMID: 34645804 PMCID: PMC8514467 DOI: 10.1038/s41597-021-01040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Illumina RNA-seq analysis was used to characterize the whole transcriptomes of peripheral blood mononuclear cells (PBMCs) from patients with congenital generalized lipodystrophy. RNA-seq information for seven patients with type 2 congenital generalized lipodystrophy (CGL2; Berardinelli-Seip congenital lipodystrophy, BSCL2) was obtained and compared with similar information for seven age- and sex-matched healthy control subjects. All seven CGL2 patients carried biallelic pathogenic mutations affecting the BSCL2 gene and had clinical symptoms of varying severity. The findings provide the whole-transcriptome signatures of PBMCs of CGL2 patients, allowing further exploration of gene expression patterns/signatures associated with the various clinical symptoms of patients with this disease. Measurement(s) | RNA-Seq • RNA | Technology Type(s) | Illumina HiSeq. 2500 • RNA sequencing | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.15022521
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.,Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Chien Su
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Siew-Lee Wong
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Tai Wang
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
38
|
Tanaka T, Kusakabe T, Ebihara K, Aizawa-Abe M, Aotani D, Yorifuji T, Satoh M, Ogawa Y, Nakao K. Practice guideline for lipodystrophy syndromes-clinically important diseases of the Japan Endocrine Society (JES). Endocr J 2021; 68:1027-1042. [PMID: 34373417 DOI: 10.1507/endocrj.ej21-0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tomohiro Tanaka
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya 467-8601, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi 329-0431, Japan
| | - Megumi Aizawa-Abe
- Tazuke Kofukai, Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya 467-8601, Japan
| | - Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Mari Satoh
- Pediatrics Center, Toho University Omori Medical Center, Tokyo 143-8540, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 821-8582, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
39
|
Jéru I. Genetics of lipodystrophy syndromes. Presse Med 2021; 50:104074. [PMID: 34562561 DOI: 10.1016/j.lpm.2021.104074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Lipodystrophic syndromes (LS) constitute a clinically and genetically heterogeneous group of diseases characterized by a loss of adipose tissue. These syndromes are usually associated with metabolic complications, which are determinant for morbidity and mortality. The classical forms of LS include partial, generalized, and progeroid lipodystrophies. They are usually due to defects in proteins playing a key role in adipogenesis and adipocyte functions. More recently, systemic disorders combining lipodystrophy and multiple organ dysfunction have been described, including autoinflammatory syndromes, mitochondrial disorders, as well as other complex entities. To date, more than thirty genes have been implicated in the monogenic forms of LS, but the majority of them remain genetically-unexplained. The associated pathophysiological mechanisms also remain to be clarified in many instances. Next generation sequencing-based approaches allow simultaneous testing of multiple genes and have become crucial to speed up the identification of new disease-causing genes. The challenge for geneticists is now the interpretation of the amount of available genetic data, generated especially by exome and whole-genome sequencing. International recommendations on the interpretation and classification of variants have been set up and are regularly reassessed. Very close collaboration between geneticists, clinicians, and researchers will be necessary to make rapid progress in understanding the molecular and cellular basis of these diseases, and to promote personalized medicine.
Collapse
Affiliation(s)
- Isabelle Jéru
- Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris 75012, France.
| |
Collapse
|
40
|
Shi D, Motamed M, Mejía-Benítez A, Li L, Lin E, Budhram D, Kaur Y, Meyre D. Genetic syndromes with diabetes: A systematic review. Obes Rev 2021; 22:e13303. [PMID: 34268868 DOI: 10.1111/obr.13303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/19/2023]
Abstract
Previous reviews and clinical guidelines have identified 10-20 genetic syndromes associated with diabetes, but no systematic review has been conducted to date. We provide the first comprehensive catalog for syndromes with diabetes mellitus. We conducted a systematic review of MEDLINE, Embase, CENTRAL, PubMed, OMIM, and Orphanet databases for case reports, case series, and observational studies published between 1946 and January 15, 2020, that described diabetes mellitus in adults and children with monogenic or chromosomal syndromes. Our literature search identified 7,122 studies, of which 160 fulfilled inclusion criteria. Our analysis of these studies found 69 distinct diabetes syndromes. Thirty (43.5%) syndromes included diabetes mellitus as a cardinal clinical feature, and 56 (81.2%) were fully genetically elucidated. Sixty-three syndromes (91.3%) were described more than once in independent case reports, of which 59 (93.7%) demonstrated clinical heterogeneity. Syndromes associated with diabetes mellitus are more numerous and diverse than previously anticipated. While knowledge of the syndromes is limited by their low prevalence, future reviews will be needed as more cases are identified. The genetic etiologies of these syndromes are well elucidated and provide potential avenues for future gene identification efforts, aid in diagnosis and management, gene therapy research, and developing personalized medicine treatments.
Collapse
Affiliation(s)
- Daniel Shi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mehras Motamed
- Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Aurora Mejía-Benítez
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Leon Li
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Ethan Lin
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dalton Budhram
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yuvreet Kaur
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy, France.,Faculty of Medicine of Nancy INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure, University of Lorraine, Nancy, France
| |
Collapse
|
41
|
González-Hódar L, McDonald JG, Vale G, Thompson BM, Figueroa AM, Tapia PJ, Robledo F, Agarwal AK, Garg A, Horton JD, Cortés V. Decreased caveolae in AGPAT2 lacking adipocytes is independent of changes in cholesterol or sphingolipid levels: A whole cell and plasma membrane lipidomic analysis of adipogenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166167. [PMID: 33989739 DOI: 10.1016/j.bbadis.2021.166167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adipocytes from lipodystrophic Agpat2-/- mice have impaired adipogenesis and fewer caveolae. Herein, we examined whether these defects are associated with changes in lipid composition or abnormal levels of caveolae-associated proteins. Lipidome changes were quantified in differentiated Agpat2-/- adipocytes to identify lipids with potential adipogenic roles. METHODS Agpat2-/- and wild type brown preadipocytes were differentiated in vitro. Plasma membrane was purified by ultracentrifugation. Number of caveolae and caveolae-associated proteins, as well as sterol, sphingolipid, and phospholipid lipidome were determined across differentiation. RESULTS Differentiated Agpat2-/- adipocytes had decreased caveolae number but conserved insulin signaling. Caveolin-1 and cavin-1 levels were equivalent between Agpat2-/- and wild type adipocytes. No differences in PM cholesterol and sphingolipids abundance were detected between genotypes. Levels of phosphatidylserine at day 10 of differentiation were increased in Agpat2-/- adipocytes. Wild type adipocytes had increased whole cell triglyceride, diacylglycerol, phosphatidylglycerol, phosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, and trihexosyl ceramide, and decreased 24,25-dihydrolanosterol and sitosterol, as a result of adipogenic differentiation. By contrast, adipogenesis did not modify whole cell neutral lipids but increased lysophosphatidylcholine, sphingomyelin, and trihexosyl ceramide levels in Agpat2-/- adipocytes. Unexpectedly, adipogenesis decreased PM levels of main phospholipids in both genotypes. CONCLUSION In Agpat2-/- adipocytes, decreased caveolae is not associated with changes in PM cholesterol nor sphingolipid levels; however, increased PM phosphatidylserine content may be implicated. Abnormal lipid composition is associated with the adipogenic abnormalities of Agpat2 -/- adipocytes but does not prevent insulin signaling.
Collapse
Affiliation(s)
- Lila González-Hódar
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Bonne M Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Pablo J Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile
| | - Anil K Agarwal
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75390, United States
| | - Jay D Horton
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, United States.
| | - Víctor Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, 8331150, Chile.
| |
Collapse
|
42
|
Roifman M, Chung BHY, Reid DM, Teitelbaum R, Martin N, Nield LE, Thompson M, Shannon P, Chitayat D. Heterozygous NOTCH1 deletion associated with variable congenital heart defects. Clin Genet 2021; 99:836-841. [PMID: 33630301 DOI: 10.1111/cge.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 01/03/2023]
Abstract
Pathogenic heterozygous variants in the NOTCH1 gene are known to be associated with both left and right-sided congenital cardiac anomalies with strikingly incomplete penetrance and variable phenotypic expressivity. De novo NOTCH1 whole gene deletion has been reported rarely in the literature and its association with cardiac defects is less well established. Here, we report four cases of NOTCH1 gene deletion from two families associated with a spectrum of congenital heart defects from bicuspid aortic valve to complex cardiac anomalies. This is the first description of a familial NOTCH1 deletion, showing apparently high penetrance, which may be unique to this mechanism of disease. Immunohistochemical staining of cardiac tissue demonstrated reduced levels of NOTCH1 expression in both the left and right ventricular outflow tracts. These cases suggest that haploinsufficiency caused by NOTCH1 gene deletion is associated with both mild and severe cardiac defects, similar to those caused by pathogenic variants in the gene, but with apparently higher, if not complete, penetrance.
Collapse
Affiliation(s)
- Maian Roifman
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brian Hon Yin Chung
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics and Adolescent Medicine LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Diane Myles Reid
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ronni Teitelbaum
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lynne E Nield
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Megan Thompson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Fetal Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California, USA
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17:276-295. [PMID: 33627836 DOI: 10.1038/s41574-021-00471-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.
Collapse
Affiliation(s)
- Pauline Morigny
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France.
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
44
|
Jang Y, Park YK, Lee JE, Wan D, Tran N, Gavrilova O, Ge K. MED1 is a lipogenesis coactivator required for postnatal adipose expansion. Genes Dev 2021; 35:713-728. [PMID: 33888555 PMCID: PMC8091974 DOI: 10.1101/gad.347583.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
In this study, Jang et al. investigated the role of MED1 in adipose development and expansion in vivo, and they show that MED1 is not generally required for transcription during adipogenesisin culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. Their findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion. MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro, but its role in adipose development and expansion in vivo has not been reported. Here, we show that MED1 is not generally required for transcription during adipogenesis in culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of lipogenesis genes by facilitating lipogenic TF ChREBP- and SREBP1a-dependent recruitment of Mediator to active enhancers. Together, our findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.
Collapse
Affiliation(s)
- Younghoon Jang
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea
| | - Young-Kwon Park
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Danyang Wan
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nhien Tran
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Hughes AE, Hattersley AT, Flanagan SE, Freathy RM. Two decades since the fetal insulin hypothesis: what have we learned from genetics? Diabetologia 2021; 64:717-726. [PMID: 33569631 PMCID: PMC7940336 DOI: 10.1007/s00125-021-05386-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022]
Abstract
In 1998 the fetal insulin hypothesis proposed that lower birthweight and adult-onset type 2 diabetes are two phenotypes of the same genotype. Since then, advances in research investigating the role of genetics affecting insulin secretion and action have furthered knowledge of fetal insulin-mediated growth and the biology of type 2 diabetes. In this review, we discuss the historical research context from which the fetal insulin hypothesis originated and consider the position of the hypothesis in light of recent evidence. In summary, there is now ample evidence to support the idea that variants of certain genes which result in impaired pancreatic beta cell function and reduced insulin secretion contribute to both lower birthweight and higher type 2 diabetes risk in later life when inherited by the fetus. There is also evidence to support genetic links between type 2 diabetes secondary to reduced insulin action and lower birthweight but this applies only to loci implicated in body fat distribution and not those influencing insulin resistance via obesity or lipid metabolism by the liver. Finally, we also consider how advances in genetics are being used to explore alternative hypotheses, namely the role of the maternal intrauterine environment, in the relationship between lower birthweight and adult cardiometabolic disease.
Collapse
Affiliation(s)
- Alice E Hughes
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
46
|
Araújo de Melo Campos JT, Dantas de Medeiros JL, Cardoso de Melo ME, Alvares da Silva M, Oliveira de Sena M, Sales Craveiro Sarmento A, Fassarella Agnez Lima L, de Freitas Fregonezi GA, Gomes Lima J. Endoplasmic reticulum stress and muscle dysfunction in congenital lipodystrophies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166120. [PMID: 33713793 DOI: 10.1016/j.bbadis.2021.166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Lipodystrophy syndromes are a group of rare diseases related to the pathological impairment of adipose tissue and metabolic comorbidities, including dyslipidemia, diabetes, insulin resistance, hypoleptinemia, and hypoadiponectinemia. They can be categorized as partial or generalized according to the degree of fat loss, and inherited or acquired disorders, if they are associated with genetic mutations or are related to autoimmunity, respectively. Some types of lipodystrophies have been associated with changes in both redox and endoplasmic reticulum (ER) homeostasis as well as muscle dysfunction (MD). Although ER stress (ERS) has been related to muscle dysfunction (MD) in many diseases, there is no data concerning its role in lipodystrophies' muscle physiopathology. Here we focused on congenital lipodystrophies associated with ERS and MD. We also described recent advances in our understanding of the relationships among ERS, MD, and genetic lipodystrophies, highlighting the adiponectin-protective roles.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Jorge Luiz Dantas de Medeiros
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Maria Eduarda Cardoso de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Monique Alvares da Silva
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Oliveira de Sena
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Aquiles Sales Craveiro Sarmento
- Unidade de Laboratório de Análises Clínicas e Anatomia Patológica, Hospital Universitário de Lagarto (HUL)/UFS, Lagarto, SE, Brazil
| | - Lucymara Fassarella Agnez Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Guilherme Augusto de Freitas Fregonezi
- PneumoCardioVascular Lab/HUOL, Hospital Universitário Onofre Lopes, Empresa Brasileira de Serviços Hospitalares and Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Laboratório de Inovação Tecnológica em Reabilitação, Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes (HUOL)/UFRN, Natal, RN, Brazil
| |
Collapse
|
47
|
Pollin TI, Taylor SI. YIPF5 mutations cause neonatal diabetes and microcephaly: progress for precision medicine and mechanistic understanding. J Clin Invest 2021; 130:6228-6231. [PMID: 33164987 DOI: 10.1172/jci142364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Identifying genes that result in monogenic diabetes can provide insights that can build a scientific foundation for precision medicine. At present, nearly 20% of neonatal diabetes cases have unknown causes. In this issue of the JCI, De Franco and Lytrivi et al. sequenced the genome of two probands with a rare neonatal diabetes subtype that also associated with microcephaly and epilepsy. The authors revealed mutations in the YIPF5 gene. YIPF5 resides in the Golgi apparatus and is thought to play a critical role in vesicular trafficking. Notably, disrupting YIPF5 in β cell-based models induced ER stress signaling and resulted in the accumulation of intracellular proinsulin. We believe that utilizing registries and biobanks to reveal other monogenic atypical forms of diabetes is an important approach to gaining insight and suggest that an insulin sensitizer may alleviate ER stress associated with YIPF5 disruption by decreasing the demand for insulin secretion.
Collapse
|
48
|
Zammouri J, Vatier C, Capel E, Auclair M, Storey-London C, Bismuth E, Mosbah H, Donadille B, Janmaat S, Fève B, Jéru I, Vigouroux C. Molecular and Cellular Bases of Lipodystrophy Syndromes. Front Endocrinol (Lausanne) 2021; 12:803189. [PMID: 35046902 PMCID: PMC8763341 DOI: 10.3389/fendo.2021.803189] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophy syndromes are rare diseases originating from a generalized or partial loss of adipose tissue. Adipose tissue dysfunction results from heterogeneous genetic or acquired causes, but leads to similar metabolic complications with insulin resistance, diabetes, hypertriglyceridemia, nonalcoholic fatty liver disease, dysfunctions of the gonadotropic axis and endocrine defects of adipose tissue with leptin and adiponectin deficiency. Diagnosis, based on clinical and metabolic investigations, and on genetic analyses, is of major importance to adapt medical care and genetic counseling. Molecular and cellular bases of these syndromes involve, among others, altered adipocyte differentiation, structure and/or regulation of the adipocyte lipid droplet, and/or premature cellular senescence. Lipodystrophy syndromes frequently present as systemic diseases with multi-tissue involvement. After an update on the main molecular bases and clinical forms of lipodystrophy, we will focus on topics that have recently emerged in the field. We will discuss the links between lipodystrophy and premature ageing and/or immuno-inflammatory aggressions of adipose tissue, as well as the relationships between lipomatosis and lipodystrophy. Finally, the indications of substitutive therapy with metreleptin, an analog of leptin, which is approved in Europe and USA, will be discussed.
Collapse
Affiliation(s)
- Jamila Zammouri
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Camille Vatier
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Emilie Capel
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Martine Auclair
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Caroline Storey-London
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Elise Bismuth
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Pediatric Endocrinology Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Héléna Mosbah
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Donadille
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Sonja Janmaat
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Bruno Fève
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - Isabelle Jéru
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| | - Corinne Vigouroux
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
- Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
- Genetics Department, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
49
|
Lim K, Haider A, Adams C, Sleigh A, Savage DB. Lipodistrophy: a paradigm for understanding the consequences of "overloading" adipose tissue. Physiol Rev 2020; 101:907-993. [PMID: 33356916 DOI: 10.1152/physrev.00032.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.
Collapse
Affiliation(s)
- Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claire Adams
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Alison Sleigh
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Knebel B, Müller-Wieland D, Kotzka J. Lipodystrophies-Disorders of the Fatty Tissue. Int J Mol Sci 2020; 21:ijms21228778. [PMID: 33233602 PMCID: PMC7699751 DOI: 10.3390/ijms21228778] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Lipodystrophies are a heterogeneous group of physiological changes characterized by a selective loss of fatty tissue. Here, no fat cells are present, either through lack of differentiation, loss of function or premature apoptosis. As a consequence, lipids can only be stored ectopically in non-adipocytes with the major health consequences as fatty liver and insulin resistance. This is a crucial difference to being slim where the fat cells are present and store lipids if needed. A simple clinical classification of lipodystrophies is based on congenital vs. acquired and generalized vs. partial disturbance of fat distribution. Complications in patients with lipodystrophy depend on the clinical manifestations. For example, in diabetes mellitus microangiopathic complications such as nephropathy, retinopathy and neuropathy may develop. In addition, due to ectopic lipid accumulation in the liver, fatty liver hepatitis may also develop, possibly with cirrhosis. The consequences of extreme hypertriglyceridemia are typically acute pancreatitis or eruptive xanthomas. The combination of severe hyperglycemia with dyslipidemia and signs of insulin resistance can lead to premature atherosclerosis with its associated complications of coronary heart disease, peripheral vascular disease and cerebrovascular changes. Overall, lipodystrophy is rare with an estimated incidence for congenital (<1/1.000.000) and acquired (1-9/100.000) forms. Due to the rarity of the syndrome and the phenotypic range of metabolic complications, only studies with limited patient numbers can be considered. Experimental animal models are therefore useful to understand the molecular mechanisms in lipodystrophy and to identify possible therapeutic approaches.
Collapse
Affiliation(s)
- Birgit Knebel
- German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute for Clinical Biochemistry and Pathobiochemistry, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Dirk Müller-Wieland
- Clinical Research Center, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Jorg Kotzka
- German Diabetes-Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany;
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- Correspondence: ; Tel.: +49-221-3382537
| |
Collapse
|