1
|
Li CH, Lim SH, Jeong YI, Ryu HH, Jung S. Synergistic Effects of Radiotherapy With JNK Inhibitor-Incorporated Nanoparticle in an Intracranial Lewis Lung Carcinoma Mouse Models. IEEE Trans Nanobioscience 2023; 22:845-854. [PMID: 37022021 DOI: 10.1109/tnb.2023.3238687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Radiosurgery has been recognized as a reasonable treatment for metastatic brain tumors. Increasing the radiosensitivity and synergistic effects are possible ways to improve the therapeutic efficacy of specific regions of tumors. c-Jun-N-terminal kinase (JNK) signaling regulates H2AX phosphorylation to repair radiation-induced DNA breakage. We previously showed that blocking JNK signaling influenced radiosensitivity in vitro and in an in vivo mouse tumor model. Drugs can be incorporated into nanoparticles to produce a slow-release effect. This study assessed JNK radiosensitivity following the slow release of the JNK inhibitor SP600125 from a poly (DL-lactide-co-glycolide) (LGEsese) block copolymer in a brain tumor model. MATERIALS AND METHODS A LGEsese block copolymer was synthesized to fabricate SP600125-incorporated nanoparticles by nanoprecipitation and dialysis methods. The chemical structure of the LGEsese block copolymer was confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy. The physicochemical and morphological properties were observed by transmission electron microscopy (TEM) imaging and measured with particle size analyzer. The blood-brain barrier (BBB) permeability to the JNK inhibitor was estimated by BBBflammaTM 440-dye-labeled SP600125. The effects of the JNK inhibitor were investigated using SP600125-incorporated nanoparticles and by optical bioluminescence, magnetic resonance imaging (MRI), and a survival assay in a mouse brain tumor model for Lewis lung cancer (LLC)-Fluc cells. DNA damage was estimated by histone γ H2AX expression and apoptosis was assessed by the immunohistochemical examination of cleaved caspase 3. RESULTS The SP600125-incorporated nanoparticles of the LGEsese block copolymer were spherical and released SP600125 continuously for 24h. The use of BBBflammaTM 440-dye-labeled SP600125 demonstrated the ability of SP600125 to cross the BBB. The blockade of JNK signaling with SP600125-incorporated nanoparticles significantly delayed mouse brain tumor growth and prolonged mouse survival after radiotherapy. γ H2AX, which mediates DNA repair protein, was reduced and the apoptotic protein cleaved-caspase 3 was increased by the combination of radiation and SP600125-incorporated nanoparticles.
Collapse
|
2
|
SoRelle ED, Reinoso-Vizcaino NM, Dai J, Barry AP, Chan C, Luftig MA. Epstein-Barr virus evades restrictive host chromatin closure by subverting B cell activation and germinal center regulatory loci. Cell Rep 2023; 42:112958. [PMID: 37561629 PMCID: PMC10559315 DOI: 10.1016/j.celrep.2023.112958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV+ cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction. Proliferative EBV+ cells develop expression-linked architectures and motif accessibility profiles resembling in vivo germinal center (GC) phenotypes. Remarkably, EBV elicits dark zone (DZ), light zone (LZ), and post-GC B cell chromatin features despite BCL6 downregulation. Integration of single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data enables genome-wide cis-regulatory predictions implicating EBV nuclear antigens (EBNAs) in phenotype-specific control of GC B cell activation, survival, and immune evasion. Knockouts validate bioinformatically identified regulators (MEF2C and NFE2L2) of EBV-induced GC phenotypes and EBNA-associated loci that regulate gene expression (CD274/PD-L1). These data and methods can inform high-resolution investigations of EBV-host interactions, B cell fates, and virus-mediated lymphomagenesis.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Gao S, Zhou XQ, Wu Q, Chen XD, Li P, Qin YM. Effects of Holliday Junction-Recognition Protein-Mediated C-Jun N-Terminal Kinase/ Signal Transducer and Activator of Transcription 3 Signaling Pathway on Cell Proliferation, Cell Cycle and Cell Apoptosis in Bladder Urothelial Carcinoma. TOHOKU J EXP MED 2023; 259:209-219. [PMID: 36543245 DOI: 10.1620/tjem.2022.j113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Holliday Junction-Recognition Protein (HJURP) was upregulated in several tumors, which was associated with poor outcome. This study investigated the effects of the HJURP-mediated c-Jun N-terminal kinase (JNK)/ signal transducer and activator of transcription 3 (STAT3) pathway on bladder urothelial carcinoma (BLUC). Online databases were used to analyze HJURP expression in BLUC and the correlation of HJURP to JNK1 [mitogen-activated protein kinase 8 (MAPK8)], JNK2 (MAPK9), STAT3, marker of proliferation Ki-67 (MKI67), proliferating cell nuclear antigen (PCNA), cyclin dependent kinase 2 (CDK2), CDK4 and CDK6. HJURP expression was detected in BLUC cells and human normal primary bladder epithelial cells (BdECs). BLUC cells were treated with HJURP lentivirus activation /shRNA lentivirus particles or JNK inhibitor SP600125. HJURP was upregulated in BLUC tissues and correlated with poor prognosis of patients (all P < 0.05). HJURP in tumor positively correlated with MAPK8 (R = 0.30), MAPK9 (R = 0.30), STAT3 (R = 0.15), MKI67 (R = 0.60), PCNA (R = 0.46), CDK2 (R = 0.39), CDK4 (R = 0.24) and CDK6 (R = 0.21). The JNK inhibitor SP600125 decreased p-JNK/JNK and p-STAT3/STAT3 in BLUC cells, which was reversed by HJURP overexpression (P < 0.05). The HJURP-mediated JNK/STAT3 pathway promoted BLUC cell proliferation and inhibited cell apoptosis (P < 0.05). HJURP reversed the arrested G0/G1 phase of BLUC cells by SP600125. HJURP acted as an oncogene to regulate BLUC cell proliferation, apoptosis and the cell cycle by mediating the JNK/STAT3 pathway. Therefore, HJURP targeting might be an attractive novel therapeutic target for early diagnosis and treatment in BLUC.
Collapse
Affiliation(s)
- Song Gao
- Department of Urology, Lishui People's Hospital
| | | | - Qi Wu
- Department of Urology, Lishui People's Hospital
| | | | - Peng Li
- Department of Urology, Lishui People's Hospital
| | - Ye-Min Qin
- Department of Urology, Lishui People's Hospital
| |
Collapse
|
4
|
Perbellini O, Cavallini C, Chignola R, Galasso M, Scupoli MT. Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines. Cells 2022; 11:cells11132072. [PMID: 35805156 PMCID: PMC9266179 DOI: 10.3390/cells11132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70, Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation statuses of signaling proteins were measured in the basal condition or under modulation with H2O2, PMA, CXCL12 or IL7. Signaling profiles are characterized by a high variability across the analyzed T-ALL cell lines. Hierarchical clustering analysis documents that higher intrinsic phosphorylation of Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation induced by H2O2, identifies Jurkat cells. In contrast, CEM are characterized by higher intrinsic phosphorylation of JNK and Rb and higher responsiveness of Akt to external stimuli. MOLT4 cells are characterized by higher basal STAT3 phosphorylation. These data document that phospho-specific flow cytometry reveals a high variability in intrinsic as well as modulated signaling networks across different T-ALL cell lines. Characterizing signaling network profiles across individual leukemia could provide the basis to identify molecular targets for personalized T-ALL therapy.
Collapse
Affiliation(s)
- Omar Perbellini
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Viale Ferdinando Rodolfi, 37, 36100 Vicenza, Italy;
| | - Chiara Cavallini
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
| | - Maria T. Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-045-8128-425
| |
Collapse
|
5
|
Verma S, Singh A, Yadav G, Kushwaha R, Ali W, Verma SP, Singh U. Serum Tumor Necrosis Factor-Alpha Levels in Acute Leukemia and Its Prognostic Significance. Cureus 2022; 14:e24835. [PMID: 35547942 PMCID: PMC9090230 DOI: 10.7759/cureus.24835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Tumor necrosis factor-alpha (TNF-α) is a pleiotropic cytokine that facilitates malignant cells in immune evasion, survival, and treatment resistance by generating a favorable milieu for them. It is shown to be ectopically produced by malignant/leukemic and immune cells in the tumor microenvironment, providing a tumor-supportive environment and playing an important part in the establishment and progression of malignant cells. It is linked to hyperleukocytosis, high blast count, and poor clinical outcomes in acute leukemia (AL). Considering the varied role and different expression patterns of tumor necrosis factor-alpha in acute leukemia and its clinical relevance, the present study was planned to monitor the level of tumor necrosis factor-alpha in patients with acute leukemia and its correlation with disease outcome. The aim of this study was to monitor the level of tumor necrosis factor-alpha in patients with acute leukemia at the time of diagnosis and after induction chemotherapy. Material and methods The study included cases classified as acute leukemia based on morphological examination, bone marrow analysis, and flow cytometry. In all patients with acute leukemia (n = 90) and controls (n = 10), the serum tumor necrosis factor-alpha level was measured using a Diaclone Human ELISA kit (Diaclone, Besancon, France) (solid phase sandwich ELISA) at diagnosis and after induction chemotherapy. Results Tumor necrosis factor-alpha levels were substantially higher in T-acute lymphoblastic leukemia (T-ALL) cases, followed by acute myeloid leukemia (AML) and B-acute lymphoblastic leukemia (B-ALL), at the time of diagnosis, compared to the control. A significant reduction in serum tumor necrosis factor-alpha level was seen in patients with acute leukemia after induction phase chemotherapy (P < 0.05). Tumor necrosis factor-alpha levels were considerably reduced (P < 0.001) in the majority of acute leukemia cases after the induction phase, while high tumor necrosis factor-alpha levels were positively correlated with incomplete remission status in the remaining cases. Conclusion Tumor necrosis factor-alpha is involved in the progression of acute leukemia and its relapse. High levels of tumor necrosis factor-alpha are linked to leukocytosis, high blast counts, and worse survival in patients with acute leukemia. Monitoring of tumor necrosis factor-alpha may be helpful in patients with acute leukemia in view of available antitumor necrosis factor-alpha therapy.
Collapse
|
6
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
7
|
JNK signaling as a target for anticancer therapy. Pharmacol Rep 2021; 73:405-434. [PMID: 33710509 DOI: 10.1007/s43440-021-00238-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
The JNKs are members of mitogen-activated protein kinases (MAPK) which regulate many physiological processes including inflammatory responses, macrophages, cell proliferation, differentiation, survival, and death. It is increasingly clear that the continuous activation of JNKs has a role in cancer development and progression. Therefore, JNKs represent attractive oncogenic targets for cancer therapy using small molecule kinase inhibitors. Studies showed that the two major JNK proteins JNK1 and JNK2 have opposite functions in different types of cancers, which need more specification in the design of JNK inhibitors. Some of ATP- competitive and ATP non-competitive inhibitors have been developed and widely used in vitro, but this type of inhibitors lack selectivity and inhibits phosphorylation of all JNK substrates and may lead to cellular toxicity. In this review, we summarized and discussed the strategies of JNK binding inhibitors and the role of JNK signaling in the pathogenesis of different solid and hematological malignancies.
Collapse
|
8
|
Sinkala M, Nkhoma P, Mulder N, Martin DP. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Commun Biol 2021; 4:9. [PMID: 33398072 PMCID: PMC7782843 DOI: 10.1038/s42003-020-01552-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathways are crucial regulators of the cellular processes that fuel the malignant transformation of normal cells. The molecular aberrations which lead to cancer involve mutations in, and transcription variations of, various MAPK pathway genes. Here, we examine the genome sequences of 40,848 patient-derived tumours representing 101 distinct human cancers to identify cancer-associated mutations in MAPK signalling pathway genes. We show that patients with tumours that have mutations within genes of the ERK-1/2 pathway, the p38 pathways, or multiple MAPK pathway modules, tend to have worse disease outcomes than patients with tumours that have no mutations within the MAPK pathways genes. Furthermore, by integrating information extracted from various large-scale molecular datasets, we expose the relationship between the fitness of cancer cells after CRISPR mediated gene knockout of MAPK pathway genes, and their dose-responses to MAPK pathway inhibitors. Besides providing new insights into MAPK pathways, we unearth vulnerabilities in specific pathway genes that are reflected in the re sponses of cancer cells to MAPK targeting drugs: a revelation with great potential for guiding the development of innovative therapies.
Collapse
|
9
|
Hu L, Liang Y, Wu K, Wang C, Zhang T, Peng R, Zou F. Repressing PDCD4 activates JNK/ABCG2 pathway to induce chemoresistance to fluorouracil in colorectal cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:114. [PMID: 33569416 PMCID: PMC7867943 DOI: 10.21037/atm-20-4292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is the third major cause of cancer-related death worldwide, and fluorouracil (5-FU) is widely used in the treatment of CRC. However, acquired resistance to 5-FU has become an obstacle in the effective treatment of CRC. Adenosine triphosphate (ATP)-binding cassette sub-family G member 2 (ABCG2) has been found highly expressed in CRC patients with poor responsiveness to folinic acid/5-FU/irinotecan. However, the mechanisms of 5-FU resistance regulated by ABCG2 in CRC cells remain to be comprehensively understood. We aimed to explore the upstream mechanisms of ABCG2 involved in the regulation of chemoresistance in CRC cells. Methods We investigated the potential mechanisms of 5-FU resistance in HCT116, RKO, RKO microRNA-21 (miR-21) knockout, and acquired 5-FU-resistant HCT116 (HCT116/FUR) cells. The biochemical and biological analyses were conducted using semiquantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, transfections, and rescue experiments, along with cell proliferation, viability, and colony formation assays. In order to investigate the efficacy of inhibiting the c-Jun NH2 terminal kinase (JNK) pathway to overcome 5-FU resistance, HCT116 and 5-FU-resistant HCT116 cells were inoculated into BALB/c-nu/nu mice to establish the cell-derived xenograft model. Results The results showed that ABCG2 expression in HCT116/FUR cells was higher compared to HCT116 cells. Overexpression of ABCG2 decreased sensitivity to 5-FU in HCT116 cells, but knockdown of ABCG2 decreased the survival rate in HCT116/FUR cells. Additionally, repressing programmed cell death 4 (PDCD4) activated the JNK pathway in HCT116/FUR cells. Overexpression of PDCD4 inhibited phosphorylation of c-Jun and ABCG2 expression, and recovered sensitivity to 5-FU in HCT116/FUR cells. Moreover, treatment with the JNK pathway inhibitor SP600125 downregulated ABCG2 expression and rescued sensitivity to 5-FU in HCT116/FUR cells. We also found that miR-21 expression in HCT116/FUR cells was higher compared to HCT116 cells. Finally, 5-FU treatment in combination with SP600125 significantly decreased tumorigenicity compared to other treatments in vivo. Conclusions Our results demonstrated that 5-FU treatment upregulated miR-21, which directly repressed PDCD4, and subsequently activated the JNK pathway, leading to the upregulation of ABCG2 in CRC cells. Inhibition of the JNK pathway overcame acquired 5-FU resistance both in vivo and in vitro.
Collapse
Affiliation(s)
- Lanlin Hu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yutong Liang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Kelv Wu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Caixia Wang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Tao Zhang
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Peng
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Xiao X, Liu P, Li D, Xia Z, Wang P, Zhang X, Liu M, Liao L, Jiao B, Ren R. Combination therapy of BCR-ABL-positive B cell acute lymphoblastic leukemia by tyrosine kinase inhibitor dasatinib and c-JUN N-terminal kinase inhibition. J Hematol Oncol 2020; 13:80. [PMID: 32552902 PMCID: PMC7302132 DOI: 10.1186/s13045-020-00912-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/04/2020] [Indexed: 12/29/2022] Open
Abstract
Background The Philadelphia chromosome (Ph), which leads to the creation and expression of the fusion gene product BCR-ABL, underlines the pathogenesis of chronic myelogenous leukemia (CML) and a fraction of adult and pediatric acute B-lymphoblastic leukemia (B-ALL). The BCR-ABL tyrosine kinase inhibitors (TKIs) have shown a remarkable clinical activity in patients with CML, but their efficacy in treating Ph+ B-ALL is limited. Identifying additional therapeutic targets is important for the effective treatment of Ph+ B-ALL. Methods Activation of the JNK signaling pathway in human and mouse BCR-ABL+ B-ALL cells with or without dasatinib treatment was analyzed by Western blotting. JNK was inhibited either by RNA interference or chemical inhibitors, such as JNK-IN-8. The effect of JNK inhibition with or without BCR-ABL TKI dasatinib on BCR-ABL+ B-ALL cells was analyzed by the CellTiter-Glo® Luminescent Cell Viability Assay. The in vivo effects of JNK-IN-8 and dasatinib alone or in combination were tested using a BCR-ABL induced B-ALL mouse model. Results We found that the c-JUN N-terminal kinase (JNK) signaling pathway is abnormally activated in both human and mouse BCR-ABL+ B-ALL cells, but the BCR-ABL TKI does not inhibit JNK activation in these cells. Inhibition of JNK, either by RNAi-mediated downregulation or by JNK inhibitors, could significantly reduce viability of Ph+ B-ALL cells. JNK inhibition by RNAi-mediated downregulation or JNK inhibitors also showed a synergistic effect with the BCR-ABL TKI, dasatinib, in killing Ph+ B-ALL cells in vitro. Furthermore, a potent JNK inhibitor, JNK-IN-8, in combination with dasatinib markedly improved the survival of mice with BCR-ABL induced B-ALL, as compared to the treatment with dasatinib alone. Conclusions Our findings indicate that simultaneously targeting both BCR-ABL and JNK kinase might serve as a promising therapeutic strategy for Ph+ B-ALL.
Collapse
Affiliation(s)
- Xinhua Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghe Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhizhou Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihong Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuli Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhu Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Jiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Biology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
11
|
KLF4-mediated upregulation of CD9 and CD81 suppresses hepatocellular carcinoma development via JNK signaling. Cell Death Dis 2020; 11:299. [PMID: 32350244 PMCID: PMC7190708 DOI: 10.1038/s41419-020-2479-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Tetraspanins CD9 and CD81 frequently serve as the surface markers of exosomes, which are involved in intercellular communication during tumor progression. KLF4 is a well-known tumor suppressor in various cancers. This study aims to investigate the relationship between KLF4 and CD9/CD81 in hepatocellular carcinoma (HCC). The results showed that CD9 and CD81 were transcriptionally activated by KLF4 in HCC cell lines. Decreased expressions of CD9 and CD81 were found in most HCC tumor tissues and predicted advanced stages. Furthermore, KLF4 expression was positively associated with CD9 and CD81 expression in HCC specimens. Functionally, overexpression of CD9 and CD81 inhibited HCC cell proliferation in vitro and in vivo and silencing CD9 and CD81 displayed opposite phenotypes. Mechanistically, we found that JNK signaling pathway may be involved in the growth suppression mediated by CD9 and CD81. In addition, increased expression of KLF4, CD9 or CD81 had no obvious impact on exosome secretion from HCC cells. Collectively, we identified CD9 and CD81 as new transcriptional targets of KLF4 and the dysregulated KLF4-CD9/CD81-JNK signaling contributes to HCC development. Our findings will provide new promising targets against this disease.
Collapse
|
12
|
Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem Cell Self-Renewal and Differentiation. Int J Mol Sci 2020; 21:E2613. [PMID: 32283767 PMCID: PMC7177258 DOI: 10.3390/ijms21072613] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
C-JUN N-terminal kinases (JNKs), which belong to the mitogen-activated protein kinase (MAPK) family, are evolutionarily conserved kinases that mediate cell responses to various types of extracellular stress insults. They regulate physiological processes such as embryonic development and tissue regeneration, playing roles in cell proliferation and programmed cell death. JNK signaling is also involved in tumorigenesis and progression of several types of malignancies. Recent studies have shown that JNK signaling has crucial roles in regulating the traits of cancer stem cells (CSCs). Here we describe the functions of the JNK signaling pathway in self-renewal and differentiation, which are essential features of various types of stem cells, such as embryonic, induced pluripotent, and adult tissue-specific stem cells. We also review current knowledge of JNK signaling in CSCs and discuss its role in maintaining the CSC phenotype. A better understanding of JNK signaling as an essential regulator of stemness may provide a basis for the development of regenerative medicine and new therapeutic strategies against malignant tumors.
Collapse
Affiliation(s)
- Takashi Semba
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Sammons
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.S.); (K.N.D.)
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.S.); (X.W.); (X.X.)
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): A focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev 2018; 43:8-15. [PMID: 30181021 DOI: 10.1016/j.cytogfr.2018.08.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022]
Abstract
Cytokines exert profound effects on the progression of hematopoietic malignancies such as acute myeloid leukemia (AML). Critical roles of cytokines in the context of inflammation have gained special interest. While pro-inflammatory mediators such as IL-1β, TNF-α and IL-6 tend to increase AML aggressiveness, anti-inflammatory mediators such as TGF-β and IL-10 appear to impede AML progression. Dysregulation of the complex interactions between pro- and anti-inflammatory cytokines in AML may create a pro-tumorigenic microenvironment with effects on leukemic cell proliferation, survival and drug-resistance. This article summarizes current knowledge about the functions of pro- and anti-inflammatory cytokines in AML, their modes of action, and therapeutic interventions with potential to improve clinical outcomes for AML patients.
Collapse
Affiliation(s)
- Stephanie Binder
- University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, Salzburg, Austria
| | - Michela Luciano
- University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- University of Salzburg, Department of Biosciences, Hellbrunner Str. 34, Salzburg, Austria.
| |
Collapse
|
14
|
BCL2 inhibitor ABT-199 and JNK inhibitor SP600125 exhibit synergistic cytotoxicity against imatinib-resistant Ph+ ALL cells. Biochem Biophys Rep 2018; 15:69-75. [PMID: 30073206 PMCID: PMC6068087 DOI: 10.1016/j.bbrep.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023] Open
Abstract
Imatinib (IMT), a specific tyrosine kinase inhibitor (TKI), has drastically changed the treatment strategy for Ph+ ALL (Philadelphia chromosome-positive acute lymphoblastic leukemia). However, TKI resistance remains a serious problem for patient prognosis. Here, a Ph+ ALL cell line NphA2 and the IMT-resistant subline NphA2/STIR were analyzed to identify a potential novel treatment strategy. We also examined other Ph+ ALL cells, MR87 and its IMT-resistant subline, MR87/STIR. IMT induced apoptosis of NphA2 and MR87 but had no effect on resistant sublines. Increased phosphorylated ERK and BCL2, but not BCL-XL, were observed in NphA2/STIR compared with NphA2. NphA2/STIR but not NphA2 was moderately sensitive to U0126, an ERK inhibitor. Interestingly, SP600125, a JNK inhibitor, was potent in cell growth inhibition and apoptosis induction of both parental and IMT-resistant NphA2 and MR87 cells. Moreover, NphA2 and MR87 and their IMT-resistant sublines were sensitive to ABT-199, a specific BCL2 inhibitor. The combination of SP600125 and ABT-199 synergistically suppressed both parental and IMT-resistant cells, including one with T315I mutation, suggesting that Ph+ ALL exhibits high sensitivity to ABT-199 and SP600125 regardless of TKI resistance. This combination might be a possible therapeutic strategy for Ph+ ALL in the future. SP600125 JNK inhibitor is cytotoxic against imatinib-resistant Ph+ ALL cells. BCl2 inhibitor ABT 199 exhibits cytotoxicity against imatinib-resistant Ph+ ALL. SP600125 and ABT199 are synergistic in imatinib-resistant Ph+ ALL with T315I. Some leukemia cells are sensitive to MCL1 inhibitor maritoclax but not to ABT-199.
Collapse
|
15
|
Chen T, Zhang J, Zeng H, Zhang Y, Zhang Y, Zhou X, Zhao D, Feng Y, Zhou H. The impact of inflammation and cytokine expression of PM2.5 in AML. Oncol Lett 2018; 16:2732-2740. [PMID: 30013668 DOI: 10.3892/ol.2018.8965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
Environmental and health issues have become a major focus of research worldwide in recent years. Particulate matter with diameter ≤2.5 µm (PM2.5) is a common air pollutant that has been demonstrated to be associated with various diseases, including acute myeloid leukemia (AML). In the present study, the effects of PM2.5 on the proliferation and inflammation were assessed using three human acute myeloid cell lines (U937, HL-60 and KG-1a) in vitro. Additionally, the levels of several cytokines [interleukin (IL)-2, IL-10, IL-17A and tumor necrosis factor (TNF)α] in AML cells and Sprague Dawley rats were evaluated to investigate the effects of PM2.5 on cytokine expression in AML. The results revealed that PM2.5 was capable of enhancing inflammatory responses in AML cells, and increasing IL-2, IL-10, IL-17A and TNFα mRNA expression in AML cells to different degrees. Furthermore, PM2.5 increased IL-2 and IL-10 contents in rats following 12 weeks of exposure. These results suggested that PM2.5 may serve a role in promoting the occurrence and progression of leukemia by affecting cytokine expression, and that there may be various mechanisms active in different AML subtypes.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Juan Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Hui Zeng
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Yue Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Yong Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Xiaohuan Zhou
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Yingmei Feng
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Hebing Zhou
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| |
Collapse
|
16
|
de Valles-Ibáñez G, Esteve-Solé A, Piquer M, González-Navarro EA, Hernandez-Rodriguez J, Laayouni H, González-Roca E, Plaza-Martin AM, Deyà-Martínez Á, Martín-Nalda A, Martínez-Gallo M, García-Prat M, Del Pino-Molina L, Cuscó I, Codina-Solà M, Batlle-Masó L, Solís-Moruno M, Marquès-Bonet T, Bosch E, López-Granados E, Aróstegui JI, Soler-Palacín P, Colobran R, Yagüe J, Alsina L, Juan M, Casals F. Evaluating the Genetics of Common Variable Immunodeficiency: Monogenetic Model and Beyond. Front Immunol 2018; 9:636. [PMID: 29867916 PMCID: PMC5960686 DOI: 10.3389/fimmu.2018.00636] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15–24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy controls.
Collapse
Affiliation(s)
- Guillem de Valles-Ibáñez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Ana Esteve-Solé
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Mònica Piquer
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - E Azucena González-Navarro
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| | - Eva González-Roca
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Ana María Plaza-Martin
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Ángela Deyà-Martínez
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Lucía Del Pino-Molina
- Clinical Immunology Department, University Hospital La Paz and Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Ivón Cuscó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | - Marta Codina-Solà
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | - Laura Batlle-Masó
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Manuel Solís-Moruno
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz and Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Juan Ignacio Aróstegui
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Laia Alsina
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona, Spain.,Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain
| | - Manel Juan
- Functional Unit of Clinical Immunology Hospital Sant Joan de Déu-Hospital Clinic, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Ferran Casals
- Servei de Genòmica, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Zhang Y, Xu M, Zhang X, Chu F, Zhou T. MAPK/c-Jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded BARF1 in gastric carcinoma cells. Oncol Lett 2018; 15:7537-7544. [PMID: 29725459 PMCID: PMC5920478 DOI: 10.3892/ol.2018.8293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
BARF1, encoded by Epstein-Barr virus (EBV), has been hypothesized to function as an oncogene, which was expressed in gastric carcinoma cells. Additionally, it has been reported that the anti-apoptotic function is closely associated with the expression of the B-cell lymphoma-2 (Bcl-2) protein. In addition, the signaling pathway has been reported to be involved in numerous diseases, including the mitogen-activated protein kinase (MAPK) cascade. In order to study the specific mechanism of anti-apoptotic function, BARF1-stably-expressing immortalized normal human embryo gastric epithelial cell line GES1 (GES-BARF1), and well-, moderately- and poorly-differentiated gastric carcinoma cell lines, MKN28 (which has been reported to be contaminated with the moderately-differentiated MKN74 gastric carcinoma cell line), SGC7901 and BGC823 (MKN-BARF1, SGC-BARF1 and BGC-BARF1, respectively) (GCC-BARF1) were constructed, with transfection of cells with the empty vector pSG5 acting as controls. Western blot analysis was performed to analyze the protein expression and the phosphorylation levels. Compared with the controls, it was found that the protein expression levels of c-Jun, Bcl-2 and B-cell lymphoma-extra large (Bcl-xL), as well as the phosphorylation levels of c-Jun, c-Jun N-terminal kinase (JNK) 1/2/3, p38 and extracellular signal-regulated kinase (ERK) 1/2 proteins were upregulated in 3 GCC-BARF1 but not significantly changed in GES-BARF1. The expression levels of the c-Jun, Bcl-2 and Bcl-xL proteins, and levels of c-Jun protein phosphorylation were significantly decreased in SGC-BARF1 cells subsequent to treatment with SP600125, SB203580, and U0126, which were the specific inhibitors of JNK1/2/3, p38 and ERK1/2 respectively. In addition, there was a gradual increase in the protein expression and phosphorylation levels between normal gastric epithelial cells, and well-differentiated, moderately-differentiated and poorly-differentiated gastric carcinoma cells, but this was not statistically significant. Therefore, the present study hypothesized that JNK1/2/3-, p38- and ERK1/2-MAPK/c-Jun cascade signaling pathways may contribute to the upregulation of the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by BARF1 in gastric carcinoma cells. This mechanism may mainly work in the progressive phase of the development in EBV-associated gastric carcinoma.
Collapse
Affiliation(s)
- Yuqiong Zhang
- Department of Clinical Laboratory and Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Department of Clinical Laboratory, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215168, P.R. China
| | - Meiqin Xu
- Department of Clinical Laboratory, Suzhou Psychiatric Hospital, Suzhou, Jiangsu 215137, P.R. China
| | - Xueyi Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Fuying Chu
- Department of Clinical Laboratory and Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tianji Zhou
- Department of Clinical Laboratory and Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
18
|
WITHDRAWN: Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
c-Jun N-terminal kinase 2 promotes enterocyte survival and goblet cell differentiation in the inflamed intestine. Mucosal Immunol 2017; 10:1211-1223. [PMID: 28098247 DOI: 10.1038/mi.2016.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
Abstract
c-Jun N-terminal kinases (JNKs) contribute to immune signaling but their functional role during intestinal mucosal inflammation has remained ill defined. Using genetic mouse models, we characterized the role of JNK1 and JNK2 during homeostasis and acute colitis. Epithelial apoptosis, regeneration, differentiation, and barrier function were analyzed in intestinal epithelium-specific (ΔIEC) or complete JNK1 and bone marrow chimeric or complete JNK2 deficient mice as well as double-knockout animals (JNK1ΔIECJNK2-/-) during homeostasis and acute dextran sulfate sodium (DSS)-induced colitis. Results were confirmed using human HT-29 cells and wild-type or JNK2-deficient mouse intestinal organoid cultures. We show that nonhematopoietic JNK2 but not JNK1 expression confers protection from DSS-induced intestinal inflammation reducing epithelial barrier dysfunction and enterocyte apoptosis. JNK2 additionally enhanced Atonal homolog 1 expression, goblet cell and enteroendocrine cell differentiation, and mucus production under inflammatory conditions. Our results identify a protective role of epithelial JNK2 signaling to maintain mucosal barrier function, epithelial cell integrity, and mucus layer production in the event of inflammatory tissue damage.
Collapse
|
20
|
Lei J, Chen S, Zhong S. Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017; 1:112-120. [PMID: 29276645 PMCID: PMC5739085 DOI: 10.1016/j.livres.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The levels of the products of RNA polymerase III-dependent genes (Pol III genes), including tRNAs and 5S rRNA, are elevated in transformed and tumor cells, which potentiate tumorigenesis. TFIIB-related factor 1 (Brf1) is a key transcription factor and specifically regulates the transcription of Pol III genes. In vivo and in vitro studies have demonstrated that a decrease in Brf1 reduces Pol III gene transcription and is sufficient for inhibiting cell transformation and tumor formation. Emerging evidence indicates that dysregulation of Brf1 and Pol III genes is linked to the development of hepatocellular carcinoma (HCC) in humans and animals. We have reported that Brf1 is overexpressed in human liver cancer patients and that those with high Brf1 levels have shorter survivals. This review summarizes the effects of dysregulation of these genes on HCC and their regulation by signaling pathways and epigenetics. These novel data should help us determine the molecular mechanisms of HCC from a different perspective and guide the development of therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Junxia Lei
- School of medicine, South china university of technology, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Corresponding author. Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. (S. Zhong)
| |
Collapse
|
21
|
Tumor necrosis factor α in the onset and progression of leukemia. Exp Hematol 2016; 45:17-26. [PMID: 27833035 DOI: 10.1016/j.exphem.2016.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α), originally described as an anti-neoplastic cytokine, has been found, in apparent contradiction to its name, to play an important role in promoting the development and progression of malignant disease. Targeting TNF-α with TNF antagonists has elicited an objective response in certain solid tumors in phase I and II clinical trials. This review focuses on the relationship of TNF-α expressed by leukemia cells and adverse clinical features of leukemia. TNF-α is involved in all steps of leukemogenesis, including cellular transformation, proliferation, angiogenesis, and extramedullary infiltration. TNF-α is also an important factor in the tumor microenvironment and assists leukemia cells in immune evasion, survival, and resistance to chemotherapy. TNF-α may be a potent target for leukemia therapy.
Collapse
|
22
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
23
|
Katari SK, Natarajan P, Swargam S, Kanipakam H, Pasala C, Umamaheswari A. Inhibitor design against JNK1 through e-pharmacophore modeling docking and molecular dynamics simulations. J Recept Signal Transduct Res 2016; 36:558-571. [PMID: 26906522 DOI: 10.3109/10799893.2016.1141955] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
c-Jun-NH2 terminal kinases (JNKs) come under a class of serine/threonine protein kinases and are encoded by three genes, namely JNK1, JNK2 and JNK3. Human JNK1 is a cytosolic kinase belonging to mitogen-activated protein kinase (MAPK) family, which plays a major role in intracrinal signal transduction cascade mechanism. Overexpressed human JNK1, a key kinase interacts with other kinases involved in the etiology of many cancers, such as skin cancer, liver cancer, breast cancer, brain tumors, leukemia, multiple myeloma and lymphoma. Thus, to unveil a novel human JNK1 antagonist, receptor-based pharmacophore modeling was performed with the available eighteen cocrystal structures of JNK1 in the protein data bank. Eighteen e-pharmacophores were generated from the 18 cocrystal structures. Four common e-pharmacophores were developed from the 18 e-pharmacophores, which were used as three-dimensional (3D) query for shape-based similarity screening against more than one million small molecules to generate a JNK1 ligand library. Rigid receptor docking (RRD) performed using GLIDE v6.3 for the 1683 compounds from in-house library and 18 cocrystal ligands with human JNK1 from lower stringency to higher stringency revealed 17 leads. Further to derive the best leads, dock complexes obtained from RRD were studied further with quantum-polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area (MM-GBSA). Four leads have showed lesser binding free energy and better binding affinity towards JNK1 compared to 18 cocrystal ligands. Additionally, JNK1-lead1 complex interaction stability was reasserted using 50 ns MD simulations run and also compared with the best resolute cocrystal structure using Desmond v3.8. Thus, the results obtained from RRD, QPLD, IFD and MD simulations indicated that lead1 might be used as a potent antagonist toward human JNK1 in cancer therapeutics.
Collapse
Affiliation(s)
- Sudheer Kumar Katari
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Pradeep Natarajan
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Sandeep Swargam
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Hema Kanipakam
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Chiranjeevi Pasala
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| | - Amineni Umamaheswari
- a Department of Bioinformatics, Bioinformatics Center , SVIMS University , Tirupati , Andhra Pradesh , India
| |
Collapse
|
24
|
Marusiak AA, Stephenson NL, Baik H, Trotter EW, Li Y, Blyth K, Mason S, Chapman P, Puto LA, Read JA, Brassington C, Pollard HK, Phillips C, Green I, Overman R, Collier M, Testoni E, Miller CJ, Hunter T, Sansom OJ, Brognard J. Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis. Cancer Res 2016; 76:724-35. [PMID: 26637668 PMCID: PMC4740929 DOI: 10.1158/0008-5472.can-15-0701-t] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022]
Abstract
MLK4 is a member of the mixed-lineage family of kinases that regulate the JNK, p38, and ERK kinase signaling pathways. MLK4 mutations have been identified in various human cancers, including frequently in colorectal cancer, where their function and pathobiological importance have been uncertain. In this study, we assessed the functional consequences of MLK4 mutations in colon tumorigenesis. Biochemical data indicated that a majority of MLK4 mutations are loss-of-function (LOF) mutations that can exert dominant-negative effects. In seeking to understand the abrogated activity of these mutants, we elucidated a new MLK4 catalytic domain structure. To determine whether MLK4 is required to maintain tumorigenic phenotypes, we reconstituted its signaling axis in colon cancer cells harboring MLK4-inactivating mutations. We found that restoring MLK4 activity reduced cell viability, proliferation, and colony formation in vitro and delayed tumor growth in vivo. Mechanistic investigations established that restoring the function of MLK4 selectively induced the JNK pathway and its downstream targets, cJUN, ATF3, and the cyclin-dependent kinase inhibitors CDKN1A and CDKN2B. Our work indicates that MLK4 is a novel tumor-suppressing kinase harboring frequent LOF mutations that lead to diminished signaling in the JNK pathway and enhanced proliferation in colon cancer.
Collapse
Affiliation(s)
- Anna A Marusiak
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Natalie L Stephenson
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Hayeon Baik
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Eleanor W Trotter
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Yaoyong Li
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Karen Blyth
- Colorectal Cancer and Wnt Signalling Group, The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Susan Mason
- Colorectal Cancer and Wnt Signalling Group, The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Phil Chapman
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Lorena A Puto
- Salk Institute for Biological Studies, La Jolla, California
| | - Jon A Read
- Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Chris Phillips
- Discovery Sciences, AstraZeneca, Cambridge, United Kingdom
| | - Isabelle Green
- Discovery Sciences, AstraZeneca, Cheshire, United Kingdom
| | - Ross Overman
- Discovery Sciences, AstraZeneca, Cheshire, United Kingdom
| | | | - Ewelina Testoni
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Crispin J Miller
- Computational Biology Support, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom. RNA Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Tony Hunter
- Salk Institute for Biological Studies, La Jolla, California
| | - Owen J Sansom
- Colorectal Cancer and Wnt Signalling Group, The Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - John Brognard
- Signalling Networks in Cancer Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
25
|
Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation. Proc Natl Acad Sci U S A 2015; 112:E7230-8. [PMID: 26668357 DOI: 10.1073/pnas.1507459112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.
Collapse
|
26
|
Protocatechuic Acid Prevents oxLDL-Induced Apoptosis by Activating JNK/Nrf2 Survival Signals in Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:351827. [PMID: 26180584 PMCID: PMC4477133 DOI: 10.1155/2015/351827] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
Protocatechuic acid (PCA), one of the main metabolites of complex polyphenols, exerts numerous biological activities including antiapoptotic, anti-inflammatory, and antiatherosclerotic effects. Oxidised LDL have atherogenic properties by damaging arterial wall cells and inducing p53-dependent apoptosis in macrophages. This study was aimed at defining the molecular mechanism responsible for the protective effects of PCA against oxidative and proapoptotic damage exerted by oxLDL in J774 A.1 macrophages. We found that the presence of PCA in cells treated with oxLDL completely inhibited the p53-dependent apoptosis induced by oxLDL. PCA decreased oxLDL-induced ROS overproduction and in particular prevented the early increase of ROS. This decrease seemed to be the main signal responsible for maintaining the intracellular redox homeostasis hindering the activation of p53 induced by ROS, p38MAPK, and PKCδ. Consequently the overexpression of the proapoptotic p53-target genes such as p66Shc protein did not occur. Finally, we demonstrated that PCA induced the activation of JNK, which, in turn, determined the increase of nuclear Nrf2, leading to inhibition of the early ROS overproduction. We concluded that the antiapoptotic mechanism of PCA was most likely related to the activation of the JNK-mediated survival signals that strengthen the cellular antioxidant defences rather than to the PCA antioxidant power.
Collapse
|
27
|
Tortorella SM, Hung A, Karagiannis TC. The implication of cancer progenitor cells and the role of epigenetics in the development of novel therapeutic strategies for chronic myeloid leukemia. Antioxid Redox Signal 2015; 22:1425-62. [PMID: 25366930 DOI: 10.1089/ars.2014.6096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Chronic myeloid leukemia (CML) involves the malignant transformation of hematopoietic stem cells, defined largely by the Philadelphia chromosome and expression of the breakpoint cluster region-Abelson (BCR-ABL) oncoprotein. Pharmacological tyrosine kinase inhibitors (TKIs), including imatinib mesylate, have overcome limitations in conventional treatment for the improved clinical management of CML. RECENT ADVANCES Accumulated evidence has led to the identification of a subpopulation of quiescent leukemia progenitor cells with stem-like self renewal properties that may initiate leukemogenesis, which are also shown to be present in residual disease due to their insensitivity to tyrosine kinase inhibition. CRITICAL ISSUES The characterization of quiescent leukemia progenitor cells as a unique cell population in CML pathogenesis has become critical with the complete elucidation of mechanisms involved in their survival independent of BCR-ABL that is important in the development of novel anticancer strategies. Understanding of these functional pathways in CML progenitor cells will allow for their selective therapeutic targeting. In addition, disease pathogenesis and drug responsiveness is also thought to be modulated by epigenetic regulatory mechanisms such as DNA methylation, histone acetylation, and microRNA expression, with a capacity to control CML-associated gene transcription. FUTURE DIRECTIONS A number of compounds in combination with TKIs are under preclinical and clinical investigation to assess their synergistic potential in targeting leukemic progenitor cells and/or the epigenome in CML. Despite the collective promise, further research is required in order to refine understanding, and, ultimately, advance antileukemic therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie M Tortorella
- 1 Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | |
Collapse
|
28
|
Liu X, Zhang J, Li J, Volk A, Breslin P, Zhang J, Zhang Z. The synergistic repressive effect of NF-κB and JNK inhibitor on the clonogenic capacity of Jurkat leukemia cells. PLoS One 2014; 9:e115490. [PMID: 25526629 PMCID: PMC4272284 DOI: 10.1371/journal.pone.0115490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022] Open
Abstract
Deregulation of Nuclear Transcription Factor-κB (NF-κB) and Jun N-terminal kinase (JNK) signaling is commonly detected in leukemia, suggesting an important role for these two signaling pathways in the pathogenesis of leukemia. In this study, using Jurkat cells, an acute T-lymphoblastic leukemia (T-ALL) cell line, we evaluated the effects of an NF-κB inhibitor and a JNK inhibitor individually and in combination on the proliferation, survival and clonogenic capacity of leukemic cells. We found that leukemic stem/progenitor cells (LSPCs) were more sensitive to NF-κB inhibitor treatment than were healthy hematopoietic stem/progenitor cells (HSPCs), as shown by a reduction in the clonogenic capacity of the former. Inactivation of NF-κB leads to the activation of JNK signaling in both leukemic cells and healthy HSPCs. Interestingly, JNK inhibitor treatment enhanced the repressive effects of NF-κB inhibitor on LSPCs but prevented such repression in HSPCs. Our data suggest that JNK signaling stimulates proliferation/survival in LSPCs but is a death signal in HSPCs. The combination of NF-κB inhibitor and JNK inhibitor might provide a better treatment for T-ALL leukemia by synergistically killing LSPCs while simultaneously preventing the death of normal HPCs.
Collapse
Affiliation(s)
- Xinli Liu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai, People's Republic of China
| | - Andrew Volk
- Oncology Institute, Cardinal Bernardin Cancer Center and Departments of Pathology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL 60153, United States of America
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Center and Departments of Pathology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL 60153, United States of America
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Center and Departments of Pathology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL 60153, United States of America
| | - Zhou Zhang
- College of Life Science and Biopharmacy, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
- * E-mail:
| |
Collapse
|
29
|
Bubici C, Papa S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br J Pharmacol 2014; 171:24-37. [PMID: 24117156 DOI: 10.1111/bph.12432] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 12/17/2022] Open
Abstract
The JNKs are master protein kinases that regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival and death. It is increasingly apparent that persistent activation of JNKs is involved in cancer development and progression. Therefore, JNKs represent attractive targets for therapeutic intervention with small molecule kinase inhibitors. However, evidence supportive of a tumour suppressor role for the JNK proteins has also been documented. Recent studies showed that the two major JNK proteins, JNK1 and JNK2, have distinct or even opposing functions in different types of cancer. As such, close consideration of which JNK proteins are beneficial targets and, more importantly, what effect small molecule inhibitors of JNKs have on physiological processes, are essential. A number of ATP-competitive and ATP-non-competitive JNK inhibitors have been developed, but have several limitations such as a lack of specificity and cellular toxicity. In this review, we summarize the accumulating evidence supporting a role for the JNK proteins in the pathogenesis of different solid and haematological malignancies, and discuss many challenges and scientific opportunities in the targeting of JNKs in cancer.
Collapse
Affiliation(s)
- Concetta Bubici
- Section of Inflammation and Signal Transduction, Department of Medicine, Imperial College, London, UK; Biosciences Division, School of Health Sciences and Social Care, Brunel University, London, UK
| | | |
Collapse
|
30
|
Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials 2014; 35:5749-59. [DOI: 10.1016/j.biomaterials.2014.03.058] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
|
31
|
Ebelt ND, Cantrell MA, Van Den Berg CL. c-Jun N-Terminal Kinases Mediate a Wide Range of Targets in the Metastatic Cascade. Genes Cancer 2014; 4:378-87. [PMID: 24349635 DOI: 10.1177/1947601913485413] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disseminated cancer cells rely on intricate interactions among diverse cell types in the tumor-associated stroma, vasculature, and immune system for survival and growth. Ubiquitous expression of c-Jun N-terminal kinase (jnk) genes in various cell types permits their control of metastasis. In early stages of metastasis, JNKs affect tumor-associated inflammation and angiogenesis as well as tumor cell migration and intravasation. Within the tumor stroma, JNKs are essential for the release of growth factors that promote epithelial-to-mesenchymal transition (EMT) in tumor cells. JNK3, the least ubiquitous isoform, facilitates angiogenesis by increasing endothelial cell migration. Importantly, JNK expression in tumor cells integrates stromal signals to promote tumor cell invasion. However, JNK isoforms differentially regulate migration toward the endothelial barrier. Once tumor cells enter the bloodstream, JNKs increase circulating tumor cell (CTC) survival and homing to tissues. By promoting fibrosis, JNKs improve CTC attachment to the endothelium. Once anchored, JNKs stimulate EMT to facilitate tumor cell extravasation and enhance the secretion of endothelial barrier disrupters. Tumor cells attract barrier-disrupting macrophages by JNK-dependent transcription of macrophage chemoattractant molecules. In the secondary tissue, JNKs are instrumental in the premetastatic niche and stimulate tumor cell proliferation. JNK expression in cancer cells stimulates tissue-remodeling macrophages to improve tumor colonization. However, in T-cells, JNKs alter cytokine production that increases tumor surveillance and inhibits the recruitment of tissue-remodeling macrophages. Therapeutically targeting JNKs for metastatic disease is attractive considering their promotion of metastasis; however, specific JNK tools are needed to determine their definitive actions within the context of the entire metastatic cascade.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Cantrell
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Carla L Van Den Berg
- Institute of Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, USA ; Division of Pharmacology & Toxicology, Dell Pediatric Research Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
32
|
Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, Schmidt R, Li X, Zhang Z, Kuo PC, Nand S, Zhang J, Chen J, Zhang J. Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML. ACTA ACUST UNITED AC 2014; 211:1093-108. [PMID: 24842373 PMCID: PMC4042653 DOI: 10.1084/jem.20130990] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leukemic stem cells (LSCs) isolated from acute myeloid leukemia (AML) patients are more sensitive to nuclear factor κB (NF-κB) inhibition-induced cell death when compared with hematopoietic stem and progenitor cells (HSPCs) in in vitro culture. However, inadequate anti-leukemic activity of NF-κB inhibition in vivo suggests the presence of additional survival/proliferative signals that can compensate for NF-κB inhibition. AML subtypes M3, M4, and M5 cells produce endogenous tumor necrosis factor α (TNF). Although stimulating HSPC with TNF promotes necroptosis and apoptosis, similar treatment with AML cells (leukemic cells, LCs) results in an increase in survival and proliferation. We determined that TNF stimulation drives the JNK-AP1 pathway in a manner parallel to NF-κB, leading to the up-regulation of anti-apoptotic genes in LC. We found that we can significantly sensitize LC to NF-κB inhibitor treatment by blocking the TNF-JNK-AP1 signaling pathway. Our data suggest that co-inhibition of both TNF-JNK-AP1 and NF-κB signals may provide a more comprehensive treatment paradigm for AML patients with TNF-expressing LC.
Collapse
Affiliation(s)
- Andrew Volk
- Molecular Biology Program, Department of Biology, Loyola University Chicago, Chicago, IL 60660
| | - Jing Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Junping Xin
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Dewen You
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Jun Zhang
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Xinli Liu
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Yechen Xiao
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Peter Breslin
- Molecular Biology Program, Department of Biology, Loyola University Chicago, Chicago, IL 60660 Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Wei Wei
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Rachel Schmidt
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Xingyu Li
- Department of Biology, College of Life and Environment Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Zhou Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Paul C Kuo
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Sucha Nand
- Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| | - Jianke Zhang
- Thomas Jefferson University, Jefferson Medical College, Department of Microbiology and Immunology, Philadelphia, PA 19107
| | - Jianjun Chen
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jiwang Zhang
- Molecular Biology Program, Department of Biology, Loyola University Chicago, Chicago, IL 60660 Oncology Institute, Cardinal Bernardin Cancer Center, Department of Pathology; Department of Molecular and Cellular Physiology; and Department of Medicine, Loyola University Medical Center, Maywood, IL 60153
| |
Collapse
|
33
|
Song W, Ma Y, Wang J, Brantley-Sieders D, Chen J. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer. Cancer Res 2014; 74:2444-54. [PMID: 24607842 DOI: 10.1158/0008-5472.can-13-2136] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here, we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a c-JUN-NH2-kinase (JNK) inhibitor, recapitulated defects in EPHA2-deficient tumor cells, whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells (CSC). RNA interference-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH(+) cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH(+) populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung CSCs. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in CSC function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. Cancer Res; 74(9); 2444-54. ©2014 AACR.
Collapse
Affiliation(s)
- Wenqiang Song
- Authors' Affiliations: Veterans Affairs Medical Center, Tennessee Valley Healthcare System; Division of Rheumatology and Immunology, Department of Medicine; Departments of Neurological Surgery, Cancer Biology, and Cell and Developmental Biology; and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
34
|
c-JUN N-terminal kinase (JNK) is activated and contributes to tumor cell proliferation in classical Hodgkin lymphoma. Hum Pathol 2014; 45:565-72. [PMID: 24457077 DOI: 10.1016/j.humpath.2013.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 02/03/2023]
Abstract
c-JUN N-terminal Kinase (JNK) is activated/phosphorylated by upstream MAPK kinases (MKK), and, in turn, phosphorylates and activates its major substrate c-JUN, a member of the activator protein-1 (AP-1) transcription factors. c-JUN is overexpressed and activated in Hodgkin and Reed Sternberg cells (HRS) of classical Hodgkin lymphoma (cHL), however, the mechanism of its activation remains unknown. JNK activation was immunohistochemically assessed in 60 cases of HL and in a control group of 151 B-cell non-Hodgkin lymphomas. The biologic effects of JNK activation in cultured HRS cells were investigated using colony formation, cell growth and viability assays and cell cycle analysis by flow cytometry. Western blotting was used to assess protein levels. p-JNK was expressed in 90% of HL, 83% of Burkitt lymphomas, 28% of mantle cell lymphomas, 23% of diffuse large B-cell lymphomas, 19% of follicular lymphomas, and 18% of extranodal marginal zone lymphomas of MALT type. None of the 48 cases of chronic lymphocytic leukemia/small lymphocytic lymphoma and 18 cases of plasma cell myeloma showed JNK phosphorylation (P < 001, Kruskall-Wallis test). Pharmacological inhibition of JNK activity in cultured HRS cells resulted in a significant decrease of cell growth, which was associated with cell cycle arrest at the G2/M phase. The cell cycle effects were linked to deactivation of c-JUN and upregulation of its known target, the cyclin-dependent kinase inhibitor p21. JNK is highly activated in HRS cells, and may contribute to uncontrolled cell cycle progression and proliferation of tumor cells in cHL.
Collapse
|
35
|
Yao K, Chen H, Lee MH, Li H, Ma W, Peng C, Song NR, Lee KW, Bode AM, Dong Z, Dong Z. Licochalcone A, a natural inhibitor of c-Jun N-terminal kinase 1. Cancer Prev Res (Phila) 2013; 7:139-49. [PMID: 24253317 DOI: 10.1158/1940-6207.capr-13-0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-Jun N-terminal kinases (JNK) play an important role in many physiologic processes induced by numerous stress signals. Each JNK protein appears to have a distinct function in cancer, diabetes, or Parkinson's disease. Herein, we found that licochalcone A, a major phenolic constituent isolated from licorice root, suppressed JNK1 activity but had little effect on JNK2 in vitro activity. Although licochalcone A binds with JIP1 competitively with either JNK1 or JNK2, a computer simulation model showed that after licochalcone A binding, the ATP-binding cleft of JNK1 was distorted more substantially than that of JNK2. This could reduce the affinity of JNK1 more than JNK2 for ATP binding. Furthermore, licochalcone A inhibited JNK1-mediated, but not JNK2-mediated, c-Jun phosphorylation in both ex vivo and in vitro systems. We also observed that in colon and pancreatic cancer cell lines, JNK1 is highly expressed compared with normal cell lines. In cancer cell lines, treatment with licochalcone A or knocking down JNK1 expression suppressed colon and pancreatic cancer cell proliferation and colony formation. The inhibition resulted in G1 phase arrest and apoptosis. Moreover, an in vivo xenograft mouse study showed that licochalcone A treatment effectively suppressed the growth of HCT116 xenografts, without affecting the body weight of mice. These results show that licochalcone A is a selective JNK1 inhibitor. Therefore, we suggest that because of the critical role of JNK1 in colon cancer and pancreatic carcinogenesis, licochalcone A might have preventive or therapeutic potential against these devastating diseases.
Collapse
Affiliation(s)
- Ke Yao
- The Hormel Institute University of Minnesota, 801 16 Ave NE, Austin, MN 55912.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wnt5a enhances the response of CML cells to Imatinib Mesylate through JNK activation and γ-catenin inhibition. Leuk Res 2013; 37:1532-7. [DOI: 10.1016/j.leukres.2013.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 11/20/2022]
|
37
|
Lin Y, Zhang B, Liang H, Lu Y, Ai X, Zhang B, Chen X. JNK inhibitor SP600125 enhances TGF-β-induced apoptosis of RBE human cholangiocarcinoma cells in a Smad-dependent manner. Mol Med Rep 2013; 8:1623-9. [PMID: 24100678 DOI: 10.3892/mmr.2013.1711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/25/2013] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling is pivotal for the progression of specific types of tumors at certain stages. However, the mechanism by which TGF-β is regulated by other factors remains unclear. In this study, the involvement of SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), in TGF-β-induced apoptosis of the RBE human cholangiocarcinoma cell line was investigated. Exogenous TGF-β1 activated Smad and non‑Smad signaling pathways, including the JNK pathway in RBE cells, and induced apoptosis, which was inhibited by knockdown of Smad4 expression. SP600125 increased the TGF-β1‑induced phosphorylation of Smad2 and Smad3, which enhanced the TGF-β1‑induced transcriptional response and apoptosis in RBE cells. The effect of SP600125 on the transcriptional response and apoptosis was reduced by knockdown of Smad4 expression. In addition, TGF-β1‑induced apoptosis was abrogated using the pan-caspase inhibitor Z‑VAD-fmk. SP600125 promoted the TGF-β1‑induced caspase cleavage, while knockdown of Smad4 expression counteracted this effect. These results indicate that SP600125 enhances TGF-β-induced apoptosis of RBE cells through a Smad‑dependent pathway that involves Smad‑dependent caspase activation. SP600125 is hypothesized to be an ideal therapeutic candidate for treating human cholangiocarcinoma.
Collapse
Affiliation(s)
- Youzhi Lin
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | | | | | | | | | | | | |
Collapse
|
38
|
Roy A, Lahiry L, Banerjee D, Ghosh M, Banerjee S. Increased cytoplasmic localization of p27(kip1) and its modulation of RhoA activity during progression of chronic myeloid leukemia. PLoS One 2013; 8:e76527. [PMID: 24098519 PMCID: PMC3788125 DOI: 10.1371/journal.pone.0076527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/01/2013] [Indexed: 01/19/2023] Open
Abstract
The role of p27kip1 in Chronic Myeloid Leukemia (CML) has been well studied in relation to its function as a cell cycle inhibitor. However, its cytoplasmic function especially in CML remains to be seen. We studied the localization of p27kip1 and its function during the progression of CML from chronic to blast phase. Our investigations revealed an increased localization of p27kip1 in the cytoplasm of CD34+ cells in the blast phase compared to chronic phase. Cytoplasmic p27kip1 was found to modulate RhoA activity in CD34+ stem and progenitor cells. Further, RhoA activity was shown to be dependent on cytoplasmic p27kip1 which in turn was dependent on p210Bcr-Abl kinase activity. Interestingly, RhoA activity was observed to affect cell survival in the presence of imatinib through the SAPK/JNK pathway. Accordingly, inhibition of SAPK/JNK pathway using SP600125 increased apoptosis of K562 cells in presence of imatinib. Our results, for the first time, thus reveal a crucial link between cytoplasmic p27kip1, RhoA activity and SAPK/JNK signalling. To this effect we observed a correlation between increased cytoplasmic p27kip1, increased RhoA protein levels, decreased RhoA-GTP levels and increased SAPK/JNK phosphorylation in blast phase CD34+ cells compared to chronic phase CD34+ cells.
Collapse
MESH Headings
- Anthracenes/pharmacology
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blast Crisis/pathology
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cytoplasm/metabolism
- Cytoplasm/pathology
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Guanosine Triphosphate/metabolism
- Humans
- K562 Cells
- Leukemia, Myeloid, Chronic-Phase/genetics
- Leukemia, Myeloid, Chronic-Phase/metabolism
- Leukemia, Myeloid, Chronic-Phase/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- MAP Kinase Kinase 4/antagonists & inhibitors
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Phosphorylation/drug effects
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Anita Roy
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Lakshmishri Lahiry
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Debasis Banerjee
- Department of Haematology, Ramkrishna Mission Seva Pratisthan, Kolkata, West Bengal, India
| | - Malay Ghosh
- Department of Haematology, N R S Medical College and Hospital, Kolkata, West Bengal, India
| | - Subrata Banerjee
- Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
39
|
Ahmed W, Van Etten RA. Signal transduction in the chronic leukemias: implications for targeted therapies. Curr Hematol Malig Rep 2013; 8:71-80. [PMID: 23307472 DOI: 10.1007/s11899-012-0150-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways.
Collapse
Affiliation(s)
- Wesam Ahmed
- Molecular Oncology Research Institute and Division of Hematology/Oncology, Tufts Medical Center, 800 Washington Street, Box 5609, Boston, MA 02111, USA
| | | |
Collapse
|
40
|
Hirata Y, Sugie A, Matsuda A, Matsuda S, Koyasu S. TAK1-JNK axis mediates survival signal through Mcl1 stabilization in activated T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4621-6. [PMID: 23547112 DOI: 10.4049/jimmunol.1202809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TAK1, a member of MAPK kinase kinase (MAPKK-K) family, can activate JNK, p38 MAPK, and NF-κB signaling pathways. Although targeted gene disruption studies have demonstrated that TAK1 plays a critical role in T cell functions, precise functions of downstream mediators remain elusive. We used the chemical compound LL-Z1640-2, which preferentially suppressed MAPK activation but not NF-κB signal downstream of TAK1. LL-Z1640-2 blocked TCR-induced T cell proliferation and activation, confirming that a TAK1-mediated MAPK signal is essential for T cell activation. LL-Z1640-2 induced apoptosis of activated mouse splenic T cells in a caspase- and caspase-activated DNase-dependent manner. TAK1-JNK pathway, which is activated downstream of IL-2R, induced the phosphorylation of antiapoptotic protein Mcl1 in activated T cells, resulting in the stabilization of Mcl1 protein. Our data uncover that among signal transduction pathways downstream of TAK1, JNK mediates a survival program through Mcl1 stabilization downstream of IL-2R in activated T cells and that blockade of TAK1-JNK pathway can eliminate activated T cells by apoptosis.
Collapse
Affiliation(s)
- Yasuko Hirata
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
41
|
Benbernou N, Esnault S, Galibert F. Activation of SRE and AP1 by olfactory receptors via the MAPK and Rho dependent pathways. Cell Signal 2013; 25:1486-97. [PMID: 23524338 DOI: 10.1016/j.cellsig.2013.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Whereas the activation of MAPKs (mitogen activated kinases) and Rho dependant pathways by GPCR (G protein coupled receptors) has been the subject of many studies, its implication in the signalling of olfactory receptors, which constitute the largest GPCR family, has been far less analysed. Using an in vitro heterologous system, we showed that odorant activated ORs activate SRE containing promoters via the ERK pathway. We also demonstrated that RhoA and Rock kinases but not Rac were involved in ORs-induced SRE/SRF activation and that AP1 was activated, via JNK and p38 MAPKinase. Using real time PCR we found that mOR23, RnI7 and CfOR12A07 induced elevated levels of transcription factors ELK-4, srf, c-fos and c-jun mRNAs whereas mOREG induced an elevated transcription levels of c-fos and c-jun mRNA only. We showed also that odorant activated ORs stimulate the downstream MAPKs and Rho pathways in primary cultures of rat olfactory sensory neurons (OSNs). Similar results were also obtained with OE (olfactory epithelium) extracts prepared from rats exposed to odorants in vivo. Finally, we showed the important role of the AKT and MAPK signalling pathways in OSNs survival. Taken together, these data provide direct evidence that the binding of odorants onto their ORs activates the MAPK and Rho signalling pathways that are involved in OSNs survival events. This suggests that these pathways could be implicated in the regulation of OSNs homeostasis.
Collapse
|
42
|
Walczynski J, Lyons S, Jones N, Breitwieser W. Sensitisation of c-MYC-induced B-lymphoma cells to apoptosis by ATF2. Oncogene 2013; 33:1027-36. [DOI: 10.1038/onc.2013.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/08/2012] [Accepted: 12/30/2012] [Indexed: 12/17/2022]
|
43
|
Abstract
The Sox4 transcription factor mediates early B-cell differentiation. Compared with normal pre-B cells, SOX4 promoter regions in Ph(+) ALL cells are significantly hypomethylated. Loss and gain-of-function experiments identified Sox4 as a critical activator of PI3K/AKT and MAPK signaling in ALL cells. ChIP experiments confirmed that SOX4 binds to and transcriptionally activates promoters of multiple components within the PI3K/AKT and MAPK signaling pathways. Cre-mediated deletion of Sox4 had little effect on normal pre-B cells but compromised proliferation and viability of leukemia cells, which was rescued by BCL2L1 and constitutively active AKT and p110 PI3K. Consistent with these findings, high levels of SOX4 expression in ALL cells at the time of diagnosis predicted poor outcome in a pediatric clinical trial (COG P9906). Collectively, these studies identify SOX4 as a central mediator of oncogenic PI3K/AKT and MAPK signaling in ALL.
Collapse
|
44
|
Zhu MM, Tong JL, Xu Q, Nie F, Xu XT, Xiao SD, Ran ZH. Increased JNK1 signaling pathway is responsible for ABCG2-mediated multidrug resistance in human colon cancer. PLoS One 2012; 7:e41763. [PMID: 22870247 PMCID: PMC3411563 DOI: 10.1371/journal.pone.0041763] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/28/2012] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance remains a major obstacle to effective chemotherapy of colon cancer. ABCG2, as a half-transporter of the G subfamily of ATP-binding cassette transporter genes (ABC transporters), is known to play a crucial role in multidrug resistance. However, the molecular mechanism of controlling ABCG2 expression in drug resistance of colon cancer is unclear and scarcely reported. In the present study, we systematically investigate the potential role of the c-Jun NH2-terminal kinase (JNK) signal pathway in ABCG2-induced multidrug resistance in colon cancer. In the hydroxycamptothecin (HCPT) resistant cell line SW1116/HCPT from human colon cancer cell line SW1116, ABCG2 is the major factor for multidrug resistance, other than well-studied ABCB1 or ABCC1. Our findings indicate that blocking the JNK pathway by pathway inhibitor SP600125 reduces the expression level and transport function of ABCG2 in drug-resistant cells SW116/HCPT. Notably, the experiments of small interfering RNA directed against JNK1 and JNK2 show that only silence of JNK1 gene has the equal effect as SP600125 on dephosphorylation of transcription factor c-Jun and the expression of ABCG2 protein, while the corresponding phenomena were not observed after silence of JNK2 gene. Meanwhile, SP600125 induces the apoptosis of SW116/HCPT cells by promoting the cleavage of PARP and suppressing the anti-apoptotic protein survivin and bcl-2, and increases the sensitivity of SW1116/HCPT to HCPT. Taken together, our work demonstrated that JNK1/c-jun signaling pathway was involved in ABCG2-mediated multidrug resistance in colon cancer cells. Definitely, inhibition of the JNK1/c-jun pathway is useful for reversing ABCG2-mediated drug resistance in HCPT-resistant colon cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Anthracenes/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Mitogen-Activated Protein Kinase 8/genetics
- Mitogen-Activated Protein Kinase 8/metabolism
- Mitogen-Activated Protein Kinase 9/genetics
- Mitogen-Activated Protein Kinase 9/metabolism
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-jun/genetics
- Proto-Oncogene Proteins c-jun/metabolism
- Signal Transduction
- Survivin
Collapse
Affiliation(s)
- Ming Ming Zhu
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
| | - Jin Lu Tong
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
| | - Qi Xu
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
| | - Fang Nie
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
| | - Xi Tao Xu
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
| | - Shu Dong Xiao
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
| | - Zhi Hua Ran
- Division of Gastroenterology and Hepatology, Shanghai Jiao-Tong University School of Medicine, Renji Hospital, Shanghai Institute of Digestive Disease; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health (Shanghai Jiao-Tong University), Shanghai, China
- * E-mail:
| |
Collapse
|
45
|
JNK and PTEN cooperatively control the development of invasive adenocarcinoma of the prostate. Proc Natl Acad Sci U S A 2012; 109:12046-51. [PMID: 22753496 DOI: 10.1073/pnas.1209660109] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway is implicated in cancer, but the role of JNK in tumorigenesis is poorly understood. Here, we demonstrate that the JNK signaling pathway reduces the development of invasive adenocarcinoma in the phosphatase and tensin homolog (Pten) conditional deletion model of prostate cancer. Mice with JNK deficiency in the prostate epithelium (ΔJnk ΔPten mice) develop androgen-independent metastatic prostate cancer more rapidly than control (ΔPten) mice. Similarly, prevention of JNK activation in the prostate epithelium (ΔMkk4 ΔMkk7 ΔPten mice) causes rapid development of invasive adenocarcinoma. We found that JNK signaling defects cause an androgen-independent expansion of the immature progenitor cell population in the primary tumor. The JNK-deficient progenitor cells display increased proliferation and tumorigenic potential compared with progenitor cells from control prostate tumors. These data demonstrate that the JNK and PTEN signaling pathways can cooperate to regulate the progression of prostate neoplasia to invasive adenocarcinoma.
Collapse
|
46
|
Abstract
Overwhelming are a set of key stress-responsive kinases that mediate cell apoptosis, which is an important process for tumor suppression. However, JNKs have also been implicated in the malignant transformation and tumorigenesis of cells. This review attempts to reconcile these 2 contradictory functions of JNKs with recent discoveries on the role of JNKs in compensatory growth of neighboring cells and stem cells, which may provide new mechanistic understanding about the role of JNKs in the regulation of cancer stem cells and the pathogenesis of cancers.
Collapse
Affiliation(s)
- Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
47
|
Ribas VT, Gonçalves BS, Linden R, Chiarini LB. Activation of c-Jun N-terminal kinase (JNK) during mitosis in retinal progenitor cells. PLoS One 2012; 7:e34483. [PMID: 22496813 PMCID: PMC3319587 DOI: 10.1371/journal.pone.0034483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 03/05/2012] [Indexed: 01/19/2023] Open
Abstract
Most studies of c-Jun N-terminal Kinase (JNK) activation in retinal tissue were done in the context of neurodegeneration. In this study, we investigated the behavior of JNK during mitosis of progenitor cells in the retina of newborn rats. Retinal explants from newborn rats were kept in vitro for 3 hours and under distinct treatments. Sections of retinal explants or freshly fixed retinal tissue were used to detect JNK phosphorylation by immunohistochemistry, and were examined through both fluorescence and confocal microscopy. Mitotic cells were identified by chromatin morphology, histone-H3 phosphorylation, and location in the retinal tissue. The subcellular localization of proteins was analyzed by double staining with both a DNA marker and an antibody to each protein. Phosphorylation of JNK was also examined by western blot. The results showed that in the retina of newborn rats (P1), JNK is phosphorylated during mitosis of progenitor cells, mainly during the early stages of mitosis. JNK1 and/or JNK2 were preferentially phosphorylated in mitotic cells. Inhibition of JNK induced cell cycle arrest, specifically in mitosis. Treatment with the JNK inhibitor decreased the number of cells in anaphase, but did not alter the number of cells in either prophase/prometaphase or metaphase. Moreover, cells with aberrant chromatin morphology were found after treatment with the JNK inhibitor. The data show, for the first time, that JNK is activated in mitotic progenitor cells of developing retinal tissue, suggesting a new role of JNK in the control of progenitor cell proliferation in the retina.
Collapse
Affiliation(s)
| | | | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brasil
| | | |
Collapse
|
48
|
Che N, Li X, Zhou S, Liu R, Shi D, Lu L, Sun L. Umbilical cord mesenchymal stem cells suppress B-cell proliferation and differentiation. Cell Immunol 2012; 274:46-53. [PMID: 22414555 DOI: 10.1016/j.cellimm.2012.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/14/2012] [Accepted: 02/07/2012] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) may be obtained from umbilical cord as an abundant and noninvasive source. However, the immunomodulatory properties of umbilical cord-MSCs (UC-MSCs) were poorly studied. In this study, we aimed to investigate the effects of UC-MSCs on B-cell proliferation and differentiation. UC-MSCs were found to suppress the proliferation of B cells isolated from murine spleen. Moreover, UC-MSCs markedly suppressed B-cell differentiation as shown by the decreased number of CD138+cells and reduced levels of IgM and IgG production in coculture. As revealed by transwell experiments, soluble factors produced by UC-MSCs might be involved in mediating B-cell suppression. The Blimp-1 mRNA expression was suppressed whereas the PAX-5 mRNA expression was induced in coculture. Finally, UC-MSCs modified the phosphorylation pattern of Akt and p38 pathways, which were involved in B-cell proliferation and differentiation. These results may further support the potential therapeutic use of UC-MSCs in treating autoimmune disorders.
Collapse
Affiliation(s)
- Nan Che
- Department of Immunology and Rheumatology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Shanmugam R, Gade P, Wilson-Weekes A, Sayar H, Suvannasankha A, Goswami C, Li L, Gupta S, Cardoso AA, Baghdadi TA, Sargent KJ, Cripe LD, Kalvakolanu DV, Boswell HS. A noncanonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia. Clin Cancer Res 2011; 18:360-369. [PMID: 22096027 DOI: 10.1158/1078-0432.ccr-10-3022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Death-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis. EXPERIMENTAL DESIGN Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. RESULTS AMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB. CONCLUSIONS Flt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML.
Collapse
Affiliation(s)
- Rajasubramaniam Shanmugam
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Padmaja Gade
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - Annique Wilson-Weekes
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Hamid Sayar
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Attaya Suvannasankha
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| | - Chirayu Goswami
- Biostatistics and Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Lang Li
- Biostatistics and Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sushil Gupta
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Angelo A Cardoso
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Tareq Al Baghdadi
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Larry D Cripe
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - H Scott Boswell
- Indiana University Melvin and Bren Simon Cancer Center, Departments of Medicine (Hematology/Oncology Division), Indiana University School of Medicine, Indianapolis, IN 46202.,Veterans Affairs Medical Center, Indianapolis, IN 46202
| |
Collapse
|
50
|
Nasrazadani A, Van Den Berg CL. c-Jun N-terminal Kinase 2 Regulates Multiple Receptor Tyrosine Kinase Pathways in Mouse Mammary Tumor Growth and Metastasis. Genes Cancer 2011; 2:31-45. [PMID: 21779479 DOI: 10.1177/1947601911400901] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/10/2011] [Accepted: 01/22/2011] [Indexed: 12/17/2022] Open
Abstract
c-Jun N-terminal kinase 2 (JNK2) isoforms are transcribed from the jnk2 gene and are highly homologous with jnk1 and jnk3 transcriptional products. JNK proteins mediate cell proliferation, stress response, and migration when activated by a variety of stimuli, including receptor tyrosine kinases (RTKs), but their ability to influence tumor metastasis is ill defined. To evaluate JNK2 in this manner, we used the highly metastatic 4T1.2 mammary tumor cells. Short hairpin RNA expression directed toward JNK2 (shJNK2) decreases tumor cell invasion. In vivo, shJNK2 expression slows tumor growth and inhibits lung metastasis. Subsequent analysis of tumors showed that shJNK2 tumors express lower GRB2-associated binding protein 2 (GAB2). In vitro, knockdown of JNK2 or GAB2 inhibits Akt activation by hepatocyte growth factor (HGF), insulin, and heregulin-1, while phosphorylation of ERK is constitutive and Src dependent. Knockdown of GAB2 phenocopies knockdown of JNK2 in vivo by reducing tumor growth and metastasis, supporting that JNK2 mediates tumor progression by regulating GAB2. The influence of jnk2 in the host or microenvironment was also evaluated using syngeneic jnk2-/- and jnk2+/+ mice. Jnk2-/- mice experience longer survival and less bone and lung metastasis compared to jnk2+/+ mice after intracardiac injection of 4T1.2 cells. GAB2 has previously been shown to mediate osteoclast differentiation, and osteoclasts are critical mediators of tumor-related osteolysis. Thus, studies focusing on the role of JNK2 on osteoclast differentiation were undertaken. ShJNK2 expression impairs osteoclast differentiation, independently of GAB2. Further, shJNK2 4T1.2 cells express less RANKL, a stimulant of osteoclast differentiation. Together, our data support that JNK2 conveys Src/phosphotidylinositol 3-kinase (PI3K) signals important for tumor growth and metastasis by enhancing GAB2 expression. In osteoclast progenitor cells, JNK2 promotes differentiation, which may contribute to the progression of bone metastasis. These studies identify JNK2 as a tumor and host target to inhibit breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Azadeh Nasrazadani
- Division of Pharmacology/Toxicology, Center for Molecular and Cellular Toxicology, and Drug Dynamics Institute, College of Pharmacy, and Dell Pediatric Research Institute, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|