1
|
Oestreich WK, Benoit-Bird KJ, Abrahms B, Margolina T, Joseph JE, Zhang Y, Rueda CA, Ryan JP. Evidence for seasonal migration by a cryptic top predator of the deep sea. MOVEMENT ECOLOGY 2024; 12:65. [PMID: 39313840 PMCID: PMC11421108 DOI: 10.1186/s40462-024-00500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND In ecosystems influenced by strong seasonal variation in insolation, the fitness of diverse taxa depends on seasonal movements to track resources along latitudinal or elevational gradients. Deep pelagic ecosystems, where sunlight is extremely limited, represent Earth's largest habitable space and yet ecosystem phenology and effective animal movement strategies in these systems are little understood. Sperm whales (Physeter macrocephalus) provide a valuable acoustic window into this world: the echolocation clicks they produce while foraging in the deep sea are the loudest known biological sounds on Earth and convey detailed information about their behavior. METHODS We analyze seven years of continuous passive acoustic observations from the Central California Current System, using automated methods to identify both presence and demographic information from sperm whale echolocation clicks. By integrating empirical results with individual-level movement simulations, we test hypotheses about the movement strategies underlying sperm whales' long-distance movements in the Northeast Pacific. RESULTS We detect foraging sperm whales of all demographic groups year-round in the Central California Current System, but also identify significant seasonality in frequency of presence. Among several previously hypothesized movement strategies for this population, empirical acoustic observations most closely match simulated results from a population undertaking a "seasonal resource-tracking migration", in which individuals move to track moderate seasonal-latitudinal variation in resource availability. DISCUSSION Our findings provide evidence for seasonal movements in this cryptic top predator of the deep sea. We posit that these seasonal movements are likely driven by tracking of deep-sea resources, based on several lines of evidence: (1) seasonal-latitudinal patterns in foraging sperm whale detection across the Northeast Pacific; (2) lack of demographic variation in seasonality of presence; and (3) the match between simulations of seasonal resource-tracking migration and empirical results. We show that sperm whales likely track oceanographic seasonality in a manner similar to many surface ocean predators, but with dampened seasonal-latitudinal movement patterns. These findings shed light on the drivers of sperm whales' long-distance movements and the shrouded phenology of the deep-sea ecosystems in which they forage.
Collapse
Affiliation(s)
| | | | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA
| | | | | | - Yanwu Zhang
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Carlos A Rueda
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - John P Ryan
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
2
|
Eckmann CA, Bachy C, Wittmers F, Strauss J, Blanco-Bercial L, Vergin KL, Parsons RJ, Kudela RM, Johnson R, Bolaños LM, Giovannoni SJ, Carlson CA, Worden AZ. Recurring seasonality exposes dominant species and niche partitioning strategies of open ocean picoeukaryotic algae. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:266. [PMID: 38779128 PMCID: PMC11106004 DOI: 10.1038/s43247-024-01395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Ocean spring phytoplankton blooms are dynamic periods important to global primary production. We document vertical patterns of a diverse suite of eukaryotic algae, the prasinophytes, in the North Atlantic Subtropical Gyre with monthly sampling over four years at the Bermuda Atlantic Time-series Study site. Water column structure was used to delineate seasonal stability periods more ecologically relevant than seasons defined by calendar dates. During winter mixing, tiny prasinophytes dominated by Class II comprise 46 ± 24% of eukaryotic algal (plastid-derived) 16S rRNA V1-V2 amplicons, specifically Ostreococcus Clade OII, Micromonas commoda, and Bathycoccus calidus. In contrast, Class VII are rare and Classes I and VI peak during warm stratified periods when surface eukaryotic phytoplankton abundances are low. Seasonality underpins a reservoir of genetic diversity from multiple prasinophyte classes during warm periods that harbor ephemeral taxa. Persistent Class II sub-species dominating the winter/spring bloom period retreat to the deep chlorophyll maximum in summer, poised to seed the mixed layer upon winter convection, exposing a mechanism for initiating high abundances at bloom onset. Comparisons to tropical oceans reveal broad distributions of the dominant sub-species herein. This unparalleled window into temporal and spatial niche partitioning of picoeukaryotic primary producers demonstrates how key prasinophytes prevail in warm oceans.
Collapse
Affiliation(s)
- Charlotte A. Eckmann
- Marine Biological Laboratory, Woods Hole, MA 02543 USA
- Ocean Sciences Department, University of California, Santa Cruz, CA 95064 USA
| | - Charles Bachy
- Ocean EcoSystems Biology Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148 Germany
- Station Biologique de Roscoff, Sorbonne Université, CNRS, FR2424, Roscoff, 29680 France
| | - Fabian Wittmers
- Marine Biological Laboratory, Woods Hole, MA 02543 USA
- Ocean EcoSystems Biology Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148 Germany
| | - Jan Strauss
- Ocean EcoSystems Biology Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148 Germany
| | | | | | - Rachel J. Parsons
- Bermuda Institute of Ocean Sciences—Arizona State University, St. George’s, GE 01 Bermuda
| | - Raphael M. Kudela
- Ocean Sciences Department, University of California, Santa Cruz, CA 95064 USA
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences—Arizona State University, St. George’s, GE 01 Bermuda
| | - Luis M. Bolaños
- Department of Microbiology, Oregon State University, Corvallis, OR 97331 USA
| | | | - Craig A. Carlson
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 USA
| | - Alexandra Z. Worden
- Marine Biological Laboratory, Woods Hole, MA 02543 USA
- Ocean Sciences Department, University of California, Santa Cruz, CA 95064 USA
- Ocean EcoSystems Biology Research Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148 Germany
| |
Collapse
|
3
|
Freilich MA, Poirier C, Dever M, Alou-Font E, Allen J, Cabornero A, Sudek L, Choi CJ, Ruiz S, Pascual A, Farrar JT, Johnston TMS, D’Asaro EA, Worden AZ, Mahadevan A. 3D intrusions transport active surface microbial assemblages to the dark ocean. Proc Natl Acad Sci U S A 2024; 121:e2319937121. [PMID: 38696469 PMCID: PMC11087786 DOI: 10.1073/pnas.2319937121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.
Collapse
Affiliation(s)
- Mara A. Freilich
- Massachusetts Institute of Technology-Wood Hole Oceanographic Institution Joint Program in Oceanography, Woods Hole, MA02543
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI02912
- Division of Applied Mathematics, Brown University, Providence, RI02912
| | - Camille Poirier
- GEOMAR—Helmholtz Centre for Ocean Research, Kiel24105, Germany
| | - Mathieu Dever
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - Eva Alou-Font
- Sistema de Observación y Predicción Costero de las Illes Balears (SOCIB), Palma de Mallorca 07121, Spain
| | - John Allen
- Sistema de Observación y Predicción Costero de las Illes Balears (SOCIB), Palma de Mallorca 07121, Spain
| | - Andrea Cabornero
- Sistema de Observación y Predicción Costero de las Illes Balears (SOCIB), Palma de Mallorca 07121, Spain
| | - Lisa Sudek
- Physical & Biological Sciences Division, University of California, Santa Cruz, CA95064
| | - Chang Jae Choi
- GEOMAR—Helmholtz Centre for Ocean Research, Kiel24105, Germany
| | - Simón Ruiz
- Instituto Mediterraneo de Estudios Avanzados (IMEDEA), Esporles07190, Spain
| | - Ananda Pascual
- Instituto Mediterraneo de Estudios Avanzados (IMEDEA), Esporles07190, Spain
| | - J. Thomas Farrar
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | - T. M. Shaun Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Eric A. D’Asaro
- Applied Physics Lab, University of Washington, Seattle, WA98105
| | - Alexandra Z. Worden
- GEOMAR—Helmholtz Centre for Ocean Research, Kiel24105, Germany
- Physical & Biological Sciences Division, University of California, Santa Cruz, CA95064
- Marine Biological Laboratory, Woods Hole, MA02543
| | - Amala Mahadevan
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| |
Collapse
|
4
|
Burd AB. Modeling the Vertical Flux of Organic Carbon in the Global Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:135-161. [PMID: 37418834 DOI: 10.1146/annurev-marine-022123-102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The oceans play a fundamental role in the global carbon cycle, providing a sink for atmospheric carbon. Key to this role is the vertical transport of organic carbon from the surface to the deep ocean. This transport is a product of a diverse range of physical and biogeochemical processes that determine the formation and fate of this material, and in particular how much carbon is sequestered in the deep ocean. Models can be used to both diagnose biogeochemical processes and predict how the various processes will change in the future. Global biogeochemical models use simplified representations of food webs and processes but are converging on values for the export of organic carbon from the surface ocean. Other models concentrate on understanding specific processes and can be used to develop parameterizations for global models. Model development is continuing by adding representations and parameterizations of higher trophic levels and mesopelagic processes, and these are expected to improve model performance.
Collapse
Affiliation(s)
- Adrian B Burd
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
5
|
Smith WO, Trimborn S. Phaeocystis: A Global Enigma. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:417-441. [PMID: 37647611 DOI: 10.1146/annurev-marine-022223-025031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The genus Phaeocystis is globally distributed, with blooms commonly occurring on continental shelves. This unusual phytoplankter has two major morphologies: solitary cells and cells embedded in a gelatinous matrix. Only colonies form blooms. Their large size (commonly 2 mm but up to 3 cm) and mucilaginous envelope allow the colonies to escape predation, but data are inconsistent as to whether colonies are grazed. Cultured Phaeocystis can also inhibit the growth of co-occurring phytoplankton or the feeding of potential grazers. Colonies and solitary cells use nitrate as a nitrogen source, although solitary cells can also grow on ammonium. Phaeocystis colonies might be a major contributor to carbon flux to depth, but in most cases, colonies are rapidly remineralized in the upper 300 m. The occurrence of large Phaeocystis blooms is often associated with environments with low and highly variable light and high nitrate levels, with Phaeocystis antarctica blooms being linked additionally to high iron availability. Emerging results indicate that different clones of Phaeocystis have substantial genetic plasticity, which may explain its appearance in a variety of environments. Given the evidence of Phaeocystis appearing in new systems, this trend will likely continue in the near future.
Collapse
Affiliation(s)
- Walker O Smith
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA;
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Scarlett Trimborn
- Division of Biosciences, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany;
| |
Collapse
|
6
|
Bercovici SK, Wiemers M, Dittmar T, Niggemann J. Disentangling Biological Transformations and Photodegradation Processes from Marine Dissolved Organic Matter Composition in the Global Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21145-21155. [PMID: 38065573 PMCID: PMC10734261 DOI: 10.1021/acs.est.3c05929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023]
Abstract
Dissolved organic matter (DOM) holds the largest amount of organic carbon in the ocean, with most of it residing in the deep for millennia. Specific mechanisms and environmental conditions responsible for its longevity are still unknown. Microbial transformations and photochemical degradation of DOM in the surface layers are two processes that shape its molecular composition. We used molecular data (via Fourier transform ion cyclotron resonance mass spectrometry) from two laboratory experiments that focused on (1) microbial processing of fresh DOM and (2) photodegradation of deep-sea DOM to derive independent process-related molecular indices for biological formation and transformation (Ibio) and photodegradation (Iphoto). Both indices were applied to a global ocean data set of DOM composition. The distributions of Iphoto and Ibio were consistent with increased photodegradation and biological reworking of DOM in sunlit surface waters, and traces of these surface processes were evident at depth. Increased Ibio values in the deep Southern Ocean and South Atlantic implied export of microbially reworked DOM. Photodegraded DOM (increased Iphoto) in the deep subtropical gyres of Atlantic and Pacific oceans suggested advective transport in warm-core eddies. The simultaneous application of Iphoto and Ibio disentangled and assessed two processes that left unique molecular signatures in the global ocean.
Collapse
Affiliation(s)
- Sarah K. Bercovici
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
- National
Oceanography Centre, European Way, Southampton SO14 3ZH, Hampshire, United Kingdom
| | - Maren Wiemers
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
| | - Thorsten Dittmar
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
- Helmholtz
Institute for Functional Marine Biodiversity (HIFMB), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg 26129, Lower Saxony, Germany
| | - Jutta Niggemann
- Institute
for Chemistry and Biology of the Marine Environment (ICBM), School
of Mathematics and Science, Carl von Ossietzky
Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
| |
Collapse
|
7
|
Liu S, Hu R, Strong PJ, Saleem M, Zhou Z, Luo Z, Wu Y, He Z, Wang C. Vertical connectivity of microbiome and metabolome reveals depth-dependent variations across a deep cold-seep water column. ENVIRONMENTAL RESEARCH 2023; 239:117310. [PMID: 37805181 DOI: 10.1016/j.envres.2023.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Deciphering the vertical connectivity of oceanic microbiome and metabolome is crucial for understanding the carbon sequestration and achieving the carbon neutrality. However, we lack a systematic view of the interplay among particle transport, microbial community, and metabolic trait across depths. Through integrating the biogeochemical, microbial, and metabolic characteristics of a deep cold-seep water column (∼1989 m), we find the altered connectivity of microbial community and dissolved organic matter (DOM) across depths. Both the microbial communities (bacteria and protists) and DOM show a clear compositional connectivity from surface to the depth of 1000 m, highlighting the controls of sinking particle over microbial connectivity from the epipelagic to mesopelagic zone. However, due to the biological migration and ocean mixing, the fecal-associated bacteria and protistan consumers unexpectedly emerge and the degradation index of DOM substantially alters around 1000-1200 m. Collectively, we unveil the significance of multi-faceted particle dispersion, which supports the connectivity and variability of deep ocean microbial communities.
Collapse
Affiliation(s)
- Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongjie Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Wang WL, Fu W, Le Moigne FAC, Letscher RT, Liu Y, Tang JM, Primeau FW. Biological carbon pump estimate based on multidecadal hydrographic data. Nature 2023; 624:579-585. [PMID: 38057667 PMCID: PMC10733149 DOI: 10.1038/s41586-023-06772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year-1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone, τ, the globally integrated organic carbon production rate with τ > 3 months is 11.09 ± 1.02 Pg C year-1, dropping to 8.25 ± 0.30 Pg C year-1 for τ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP.
Collapse
Affiliation(s)
- Wei-Lei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Weiwei Fu
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
- Department of Atmospheric and Oceanic Science, Fudan University, Shanghai, China
| | | | - Robert T Letscher
- Earth Sciences and Ocean Process Analysis Laboratory, University of New Hampshire, Durham, NH, USA
| | - Yi Liu
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Jin-Ming Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - François W Primeau
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Diaz BP, Zelzion E, Halsey K, Gaube P, Behrenfeld M, Bidle KD. Marine phytoplankton downregulate core photosynthesis and carbon storage genes upon rapid mixed layer shallowing. THE ISME JOURNAL 2023:10.1038/s41396-023-01416-x. [PMID: 37156837 DOI: 10.1038/s41396-023-01416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Marine phytoplankton are a diverse group of photoautotrophic organisms and key mediators in the global carbon cycle. Phytoplankton physiology and biomass accumulation are closely tied to mixed layer depth, but the intracellular metabolic pathways activated in response to changes in mixed layer depth remain less explored. Here, metatranscriptomics was used to characterize the phytoplankton community response to a mixed layer shallowing (from 233 to 5 m) over the course of two days during the late spring in the Northwest Atlantic. Most phytoplankton genera downregulated core photosynthesis, carbon storage, and carbon fixation genes as the system transitioned from a deep to a shallow mixed layer and shifted towards catabolism of stored carbon supportive of rapid cell growth. In contrast, phytoplankton genera exhibited divergent transcriptional patterns for photosystem light harvesting complex genes during this transition. Active virus infection, taken as the ratio of virus to host transcripts, increased in the Bacillariophyta (diatom) phylum and decreased in the Chlorophyta (green algae) phylum upon mixed layer shallowing. A conceptual model is proposed to provide ecophysiological context for our findings, in which integrated light limitation and lower division rates during transient deep mixing are hypothesized to disrupt resource-driven, oscillating transcript levels related to photosynthesis, carbon fixation, and carbon storage. Our findings highlight shared and unique transcriptional response strategies within phytoplankton communities acclimating to the dynamic light environment associated with transient deep mixing and shallowing events during the annual North Atlantic bloom.
Collapse
Affiliation(s)
- Ben P Diaz
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, 08901, USA
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94550, USA
| | - Ehud Zelzion
- Office of Advanced Research Computing, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Peter Gaube
- Applied Physics Laboratory, University of Washington, Seattle, WA, 98105, USA
| | - Michael Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kay D Bidle
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
10
|
Lacour L, Llort J, Briggs N, Strutton PG, Boyd PW. Seasonality of downward carbon export in the Pacific Southern Ocean revealed by multi-year robotic observations. Nat Commun 2023; 14:1278. [PMID: 36890139 PMCID: PMC9995333 DOI: 10.1038/s41467-023-36954-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
At high latitudes, the biological carbon pump, which exports organic matter from the surface ocean to the interior, has been attributed to the gravitational sinking of particulate organic carbon. Conspicuous deficits in ocean carbon budgets challenge this as a sole particle export pathway. Recent model estimates revealed that particle injection pumps have a comparable downward flux of particulate organic carbon to the biological gravitational pump, but with different seasonality. To date, logistical constraints have prevented concomitant and extensive observations of these mechanisms. Here, using year-round robotic observations and recent advances in bio-optical signal analysis, we concurrently investigated the functioning of two particle injection pumps, the mixed layer and eddy subduction pumps, and the gravitational pump in Southern Ocean waters. By comparing three annual cycles in contrasting physical and biogeochemical environments, we show how physical forcing, phytoplankton phenology and particle characteristics influence the magnitude and seasonality of these export pathways, with implications for carbon sequestration efficiency over the annual cycle.
Collapse
Affiliation(s)
- Léo Lacour
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia. .,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.
| | - Joan Llort
- Barcelona Supercomputing Center, Earth Sciences Dept., Barcelona, Spain
| | | | - Peter G Strutton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.,Australian Research Council Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| |
Collapse
|
11
|
Abstract
Understanding the nature of organic matter flux in the ocean remains a major goal of oceanography because it impacts some of the most important processes in the ocean. Sinking particles are important for carbon dioxide removal from the atmosphere and its movement to the deep ocean. They also feed life below the ocean's productive surface and sustain life in the deep sea, in addition to depositing organic matter on the seafloor. However, the magnitude of all of these processes is dependent on the transformation of sinking particles during their journey through the water column. This review focuses on the movement of organic matter from the surface ocean to the deep sea via the biological carbon pump and examines the processes that prevent this downward movement-namely, attenuation via microbial colonization and zooplankton feeding. It also discusses how the depth-specific interactions among microbes, zooplankton, and aggregates determine carbon export as well as nutrient recycling, which in turn impact ocean production and Earth's climate.
Collapse
Affiliation(s)
- Morten H Iversen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany;
- Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany
| |
Collapse
|
12
|
Siegel DA, DeVries T, Cetinić I, Bisson KM. Quantifying the Ocean's Biological Pump and Its Carbon Cycle Impacts on Global Scales. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:329-356. [PMID: 36070554 DOI: 10.1146/annurev-marine-040722-115226] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The biological pump transports organic matter, created by phytoplankton productivity in the well-lit surface ocean, to the ocean's dark interior, where it is consumed by animals and heterotrophic microbes and remineralized back to inorganic forms. This downward transport of organic matter sequesters carbon dioxide from exchange with the atmosphere on timescales of months to millennia, depending on where in the water column the respiration occurs. There are three primary export pathways that link the upper ocean to the interior: the gravitational, migrant, and mixing pumps. These pathways are regulated by vastly different mechanisms, making it challenging to quantify the impacts of the biological pump on the global carbon cycle. In this review, we assess progress toward creating a global accounting of carbon export and sequestration via the biological pump and suggest a path toward achieving this goal.
Collapse
Affiliation(s)
- David A Siegel
- Earth Research Institute and Department of Geography, University of California, Santa Barbara, California, USA;
| | - Timothy DeVries
- Earth Research Institute and Department of Geography, University of California, Santa Barbara, California, USA;
| | - Ivona Cetinić
- Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, USA
- Goddard Earth Sciences Technology and Research (GESTAR) II, Morgan State University, Baltimore, Maryland, USA
| | - Kelsey M Bisson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
13
|
Morán XAG, García FC, Røstad A, Silva L, Al-Otaibi N, Irigoien X, Calleja ML. Diel dynamics of dissolved organic matter and heterotrophic prokaryotes reveal enhanced growth at the ocean's mesopelagic fish layer during daytime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150098. [PMID: 34508930 DOI: 10.1016/j.scitotenv.2021.150098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Contrary to epipelagic waters, where biogeochemical processes closely follow the light and dark periods, little is known about diel cycles in the ocean's mesopelagic realm. Here, we monitored the dynamics of dissolved organic matter (DOM) and planktonic heterotrophic prokaryotes every 2 h for one day at 0 and 550 m (a depth occupied by vertically migrating fishes during light hours) in oligotrophic waters of the central Red Sea. We additionally performed predator-free seawater incubations of samples collected from the same site both at midnight and at noon. Comparable in situ variability in microbial biomass and dissolved organic carbon concentration suggests a diel supply of fresh DOM in both layers. The presence of fishes in the mesopelagic zone during daytime likely promoted a sustained, longer growth of larger prokaryotic cells. The specific growth rates were consistently higher in the noon experiments from both depths (surface: 0.34 vs. 0.18 d-1, mesopelagic: 0.16 vs. 0.09 d-1). Heterotrophic prokaryotes in the mesopelagic layer were also more efficient at converting extant DOM into new biomass. These results suggest that the ocean's twilight zone receives a consistent diurnal supply of labile DOM from the diel vertical migration of fishes, enabling an unexpectedly active community of heterotrophic prokaryotes.
Collapse
Affiliation(s)
- Xosé Anxelu G Morán
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia.
| | - Francisca C García
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia; Environment and Sustainability Institute, University of Exeter, TR10 9FE Penryn, United Kingdom
| | - Anders Røstad
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia
| | - Luis Silva
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia
| | - Najwa Al-Otaibi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia; Department of Biology, College of Science, Taif University, Al-Hawiya 888, Saudi Arabia
| | | | - Maria Ll Calleja
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Biological and Environmental Science & Engineering Division, 23955-6900 Thuwal, Saudi Arabia; Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
14
|
Correction of Biogeochemical-Argo Radiometry for Sensor Temperature-Dependence and Drift: Protocols for a Delayed-Mode Quality Control. SENSORS 2021; 21:s21186217. [PMID: 34577421 PMCID: PMC8473398 DOI: 10.3390/s21186217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Measuring the underwater light field is a key mission of the international Biogeochemical-Argo program. Since 2012, 0-250 dbar profiles of downwelling irradiance at 380, 412 and 490 nm besides photosynthetically available radiation (PAR) have been acquired across the globe every 1 to 10 days. The resulting unprecedented amount of radiometric data has been previously quality-controlled for real-time distribution and ocean optics applications, yet some issues affecting the accuracy of measurements at depth have been identified such as changes in sensor dark responsiveness to ambient temperature, with time and according to the material used to build the instrument components. Here, we propose a quality-control procedure to solve these sensor issues to make Argo radiometry data available for delayed-mode distribution, with associated error estimation. The presented protocol requires the acquisition of ancillary radiometric measurements at the 1000 dbar parking depth and night-time profiles. A test on >10,000 profiles from across the world revealed a quality-control success rate >90% for each band. The procedure shows similar performance in re-qualifying low radiometry values across diverse oceanic regions. We finally recommend, for future deployments, acquiring daily 1000 dbar measurements and one night profile per year, preferably during moonless nights and when the temperature range between the surface and 1000 dbar is the largest.
Collapse
|
15
|
Baetge N, Behrenfeld MJ, Fox J, Halsey KH, Mojica KDA, Novoa A, Stephens BM, Carlson CA. The Seasonal Flux and Fate of Dissolved Organic Carbon Through Bacterioplankton in the Western North Atlantic. Front Microbiol 2021; 12:669883. [PMID: 34220753 PMCID: PMC8249739 DOI: 10.3389/fmicb.2021.669883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The oceans teem with heterotrophic bacterioplankton that play an appreciable role in the uptake of dissolved organic carbon (DOC) derived from phytoplankton net primary production (NPP). As such, bacterioplankton carbon demand (BCD), or gross heterotrophic production, represents a major carbon pathway that influences the seasonal accumulation of DOC in the surface ocean and, subsequently, the potential vertical or horizontal export of seasonally accumulated DOC. Here, we examine the contributions of bacterioplankton and DOM to ecological and biogeochemical carbon flow pathways, including those of the microbial loop and the biological carbon pump, in the Western North Atlantic Ocean (∼39-54°N along ∼40°W) over a composite annual phytoplankton bloom cycle. Combining field observations with data collected from corresponding DOC remineralization experiments, we estimate the efficiency at which bacterioplankton utilize DOC, demonstrate seasonality in the fraction of NPP that supports BCD, and provide evidence for shifts in the bioavailability and persistence of the seasonally accumulated DOC. Our results indicate that while the portion of DOC flux through bacterioplankton relative to NPP increased as seasons transitioned from high to low productivity, there was a fraction of the DOM production that accumulated and persisted. This persistent DOM is potentially an important pool of organic carbon available for export to the deep ocean via convective mixing, thus representing an important export term of the biological carbon pump.
Collapse
Affiliation(s)
- Nicholas Baetge
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael J. Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - James Fox
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Kimberly H. Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Kristina D. A. Mojica
- Division of Marine Science, School of Ocean Science and Engineering, The University of Southern Mississippi, John C. Stennis Space Center, Hattiesburg, MS, United States
| | - Anai Novoa
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Brandon M. Stephens
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Craig A. Carlson
- Department of Ecology, Evolution and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
16
|
Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, Royo-Llonch M, Paoli L, Sunagawa S, Hingamp P, Ogata H, Lima-Mendez G, Roux S, González JM, Arrieta JM, Alam IS, Kamau A, Bowler C, Raes J, Pesant S, Bork P, Agustí S, Gojobori T, Vaqué D, Sullivan MB, Pedrós-Alió C, Massana R, Duarte CM, Gasol JM. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun Biol 2021; 4:604. [PMID: 34021239 PMCID: PMC8139981 DOI: 10.1038/s42003-021-02112-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/16/2021] [Indexed: 02/04/2023] Open
Abstract
The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.
Collapse
Affiliation(s)
- Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain.
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Guillem Salazar
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Francisco M Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Department of Ocean Sciences, University of California, Santa Cruz, CA, USA
| | - Marta Sebastián
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Pascal Hingamp
- Aix Marseille Univ., Université de Toulon, CNRS, Marseille, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Japan
| | - Gipsi Lima-Mendez
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute for Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - Simon Roux
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Jesús M Arrieta
- Spanish Institute of Oceanography (IEO), Oceanographic Center of The Canary Islands, Dársena Pesquera, Santa Cruz de Tenerife, Spain
| | - Intikhab S Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Allan Kamau
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Susana Agustí
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Matthew B Sullivan
- Department of Microbiology and Civil Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Centre for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
17
|
Penta WB, Fox J, Halsey KH. Rapid photoacclimation during episodic deep mixing augments the biological carbon pump. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:1850-1866. [PMID: 34248203 PMCID: PMC8252461 DOI: 10.1002/lno.11728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Episodic deep mixing events are one component of the biological carbon pump that physically transports organic carbon into the mesopelagic. Episodic deep mixing also disrupts summertime thermal stratification thereby changing the light field and nutrient concentrations available for phytoplankton growth. Phytoplankton survival and growth below the mixed layer following restratification depends on how rapidly cells can employ a variety of photoacclimation processes in response to the environmental changes. To compare the relative timescales of summertime episodic deep mixing events with the timescales of phytoplankton photoacclimation processes, we first analyzed autonomous float data to survey the frequency and magnitude of deep mixing events in the western North Atlantic Ocean. Next, we simulated a sustained deep mixing event in the laboratory and measured rates of acclimation processes ranging from light harvesting to growth in a model diatom and green alga. In both algae increases in chlorophyll (Chl) were coupled to growth, but growth of the green alga lagged the diatom by about a day. In float profiles, significant increases in Chl and phytoplankton carbon (C phyto) were detected below the mixed layer following episodic deep mixing events. These events pose a previously unrecognized source of new production below the mixed layer that can significantly boost the amount of carbon available for export to the deep ocean.
Collapse
Affiliation(s)
- W Bryce Penta
- Department of Microbiology Oregon State University Corvallis Oregon USA
| | - James Fox
- Department of Microbiology Oregon State University Corvallis Oregon USA
| | - Kimberly H Halsey
- Department of Microbiology Oregon State University Corvallis Oregon USA
| |
Collapse
|
18
|
Lian J, Zheng X, Zhuo X, Chen YL, He C, Zheng Q, Lin TH, Sun J, Guo W, Shi Q, Jiao N, Cai R. Microbial transformation of distinct exogenous substrates into analogous composition of recalcitrant dissolved organic matter. Environ Microbiol 2021; 23:2389-2403. [PMID: 33559211 DOI: 10.1111/1462-2920.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023]
Abstract
Oceanic dissolved organic matter (DOM) comprises a complex molecular mixture which is typically refractory and homogenous in the deep layers of the ocean. Though the refractory nature of deep-sea DOM is increasingly attributed to microbial metabolism, it remains unexplored whether ubiquitous microbial metabolism of distinct carbon substrates could lead to similar molecular composition of refractory DOM. Here, we conducted microbial incubation experiments using four typically bioavailable substrates (L-alanine, trehalose, sediment DOM extract, and diatom lysate) to investigate how exogenous substrates are transformed by a natural microbial assemblage. The results showed that although each-substrate-amendment induced different changes in the initial microbial assemblage and the amended substrates were almost depleted after 90 days of dark incubation, the bacterial community compositions became similar in all incubations on day 90. Correspondingly, revealed by ultra-high resolution mass spectrometry, molecular composition of DOM in all incubations became compositionally consistent with recalcitrant DOM and similar toward that of DOM from the deep-sea. These results indicate that while the composition of natural microbial communities can shift with substrate exposures, long-term microbial transformation of distinct substrates can ultimately lead to a similar refractory DOM composition. These findings provide an explanation for the homogeneous and refractory features of deep-sea DOM.
Collapse
Affiliation(s)
- Jie Lian
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, WE, 6708, Netherlands
| | - Xiaoxuan Zheng
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing, 102249, China
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing, 102249, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| | - Weidong Guo
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing, 102249, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
19
|
Southern Ocean carbon export efficiency in relation to temperature and primary productivity. Sci Rep 2020; 10:13494. [PMID: 32778681 PMCID: PMC7417578 DOI: 10.1038/s41598-020-70417-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/29/2020] [Indexed: 11/29/2022] Open
Abstract
Satellite remote sensing and numerical models are widely used to estimate large-scale variations in ocean carbon export, but the relationship between export efficiency (e-ratio) of sinking organic carbon out of the surface ocean and its drivers remains poorly understood, especially in the Southern Ocean. Here, we assess the effects of temperature and primary productivity on e-ratio by combining particulate organic carbon export flux from in situ measurements during 1997–2013, environmental parameters from satellite products, and outputs from ocean biogeochemical models in the Southern Ocean. Results show that “High Productivity Low E-ratio” (HPLE) is a common phenomenon in the Subantarctic Zone and the Polar Frontal Zone, but not the Antarctic Zone. The e-ratio shows little dependence on temperature below 6 °C. Our results support the hypothesis that the HPLE phenomenon is due to the large contribution of non-sinking organic carbon. Both temperature and ballast minerals play less important roles in controlling e-ratio than ecosystem structure at low temperatures. These findings suggest that non-sinking organic carbon, ecosystem structure, and region-specific parameterizations of e-ratio are key factors to quantify the carbon export in the Southern Ocean.
Collapse
|
20
|
Claustre H, Johnson KS, Takeshita Y. Observing the Global Ocean with Biogeochemical-Argo. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:23-48. [PMID: 31433959 DOI: 10.1146/annurev-marine-010419-010956] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biogeochemical-Argo (BGC-Argo) is a network of profiling floats carrying sensors that enable observation of as many as six essential biogeochemical and bio-optical variables: oxygen, nitrate, pH, chlorophyll a, suspended particles, and downwelling irradiance. This sensor network represents today's most promising strategy for collecting temporally and vertically resolved observations of biogeochemical properties throughout the ocean. All data are freely available within 24 hours of transmission. These data fill large gaps in ocean-observing systems and support three ambitions: gaining a better understanding of biogeochemical processes (e.g., the biological carbon pump and air-sea CO2 exchanges) and evaluating ongoing changes resulting from increasing anthropogenic pressure (e.g., acidification and deoxygenation); managing the ocean (e.g., improving the global carbon budget and developing sustainable fisheries); and carrying out exploration for potential discoveries. The BGC-Argo network has already delivered extensive high-quality global data sets that have resulted in unique scientific outcomes from regional to global scales. With the proposed expansion of BGC-Argo in the near future, this network has the potential to become a pivotal observation system that links satellite and ship-based observations in a transformative manner.
Collapse
Affiliation(s)
- Hervé Claustre
- Laboratoire d'Océanographie de Villefranche, Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France;
| | - Kenneth S Johnson
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA; ,
| | - Yuichiro Takeshita
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA; ,
| |
Collapse
|
21
|
Groom S, Sathyendranath S, Ban Y, Bernard S, Brewin R, Brotas V, Brockmann C, Chauhan P, Choi JK, Chuprin A, Ciavatta S, Cipollini P, Donlon C, Franz B, He X, Hirata T, Jackson T, Kampel M, Krasemann H, Lavender S, Pardo-Martinez S, Mélin F, Platt T, Santoleri R, Skakala J, Schaeffer B, Smith M, Steinmetz F, Valente A, Wang M. Satellite Ocean Colour: Current Status and Future Perspective. FRONTIERS IN MARINE SCIENCE 2019; 6:1-30. [PMID: 36817748 PMCID: PMC9933503 DOI: 10.3389/fmars.2019.00485] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Spectrally resolved water-leaving radiances (ocean colour) and inferred chlorophyll concentration are key to studying phytoplankton dynamics at seasonal and interannual scales, for a better understanding of the role of phytoplankton in marine biogeochemistry; the global carbon cycle; and the response of marine ecosystems to climate variability, change and feedback processes. Ocean colour data also have a critical role in operational observation systems monitoring coastal eutrophication, harmful algal blooms, and sediment plumes. The contiguous ocean-colour record reached 21 years in 2018; however, it is comprised of a number of one-off missions such that creating a consistent time-series of ocean-colour data requires merging of the individual sensors (including MERIS, Aqua-MODIS, SeaWiFS, VIIRS, and OLCI) with differing sensor characteristics, without introducing artefacts. By contrast, the next decade will see consistent observations from operational ocean colour series with sensors of similar design and with a replacement strategy. Also, by 2029 the record will start to be of sufficient duration to discriminate climate change impacts from natural variability, at least in some regions. This paper describes the current status and future prospects in the field of ocean colour focusing on large to medium resolution observations of oceans and coastal seas. It reviews the user requirements in terms of products and uncertainty characteristics and then describes features of current and future satellite ocean-colour sensors, both operational and innovative. The key role of in situ validation and calibration is highlighted as are ground segments that process the data received from the ocean-colour sensors and deliver analysis-ready products to end-users. Example applications of the ocean-colour data are presented, focusing on the climate data record and operational applications including water quality and assimilation into numerical models. Current capacity building and training activities pertinent to ocean colour are described and finally a summary of future perspectives is provided.
Collapse
Affiliation(s)
- Steve Groom
- Plymouth Marine Laboratory, Plymouth, United Kingdom
- National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
- Correspondence: Steve Groom,
| | - Shubha Sathyendranath
- Plymouth Marine Laboratory, Plymouth, United Kingdom
- National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Yai Ban
- State Key Laboratory of Satellite Ocean, Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Stewart Bernard
- CSIR Earth Systems Earth Observation, CSIR – NRE, Cape Town, South Africa
| | - Robert Brewin
- Plymouth Marine Laboratory, Plymouth, United Kingdom
- National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Vanda Brotas
- MARE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Jong-kuk Choi
- KIOST-PML Science Lab, Korea Institute of Ocean Science and Technology, Plymouth, United Kingdom
| | | | - Stefano Ciavatta
- Plymouth Marine Laboratory, Plymouth, United Kingdom
- National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Paolo Cipollini
- Telespazio VEGA UK Ltd. for ESA Climate Office, European Centre for Space Applications and Telecommunications, European Space Agency, Didcot, United Kingdom
| | - Craig Donlon
- European Space Research and Technology Centre, European Space Agency, Noordwijk, Netherlands
| | - Bryan Franz
- Goddard Space Flight Center, NASA, Greenbelt, MD, United States
| | - Xianqiang He
- State Key Laboratory of Satellite Ocean, Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | | | - Tom Jackson
- Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Milton Kampel
- Instituto Nacional de Pesquisas Espaciais São Jose dos Campos, São Paulo, Brazil
| | - Hajo Krasemann
- Helmholtz-Zentrum Geesthacht – Zentrum für Materialund Küstenforschung GmbH, Geesthacht, Germany
| | | | | | - Frédéric Mélin
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Trevor Platt
- Plymouth Marine Laboratory, Plymouth, United Kingdom
| | | | - Jozef Skakala
- Plymouth Marine Laboratory, Plymouth, United Kingdom
- National Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Blake Schaeffer
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle, NC, United States
| | - Marie Smith
- CSIR Earth Systems Earth Observation, CSIR – NRE, Cape Town, South Africa
| | | | - Andre Valente
- MARE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Menghua Wang
- Marine Ecosystems and Climate Branch, NOAA NESDIS STAR, College Park, MD, United States
| |
Collapse
|
22
|
Henson S, Le Moigne F, Giering S. Drivers of Carbon Export Efficiency in the Global Ocean. GLOBAL BIOGEOCHEMICAL CYCLES 2019; 33:891-903. [PMID: 32063666 PMCID: PMC7006809 DOI: 10.1029/2018gb006158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 05/09/2023]
Abstract
The export of organic carbon from the surface ocean forms the basis of the biological carbon pump, an important planetary carbon flux. Typically, only a small fraction of primary productivity (PP) is exported (quantified as the export efficiency: export/PP). Here we assemble a global data synthesis to reveal that very high export efficiency occasionally occurs. These events drive an apparent inverse relationship between PP and export efficiency, which is opposite to that typically used in empirical or mechanistic models. At the global scale, we find that low PP, high export efficiency regimes tend to occur when macrozooplankton and bacterial abundance are low. This implies that a decoupling between PP and upper ocean remineralization processes can result in a large fraction of PP being exported, likely as intact cells or phytoplankton-based aggregates. As the proportion of PP being exported declines, macrozooplankton and bacterial abundances rise. High export efficiency, high PP regimes also occur infrequently, possibly associated with nonbiologically mediated export of particles. A similar analysis at a biome scale reveals that the factors affecting export efficiency may be different at regional and global scales. Our results imply that the whole ecosystem structure, rather than just the phytoplankton community, is important in setting export efficiency. Further, the existence of low PP, high export efficiency regimes imply that biogeochemical models that parameterize export efficiency as increasing with PP may underestimate export flux during decoupled periods, such as at the start of the spring bloom.
Collapse
Affiliation(s)
| | - Fred Le Moigne
- GEOMAR Helmholtz Center for Ocean Research KielKielGermany
- Now at Mediterranean Institute of Oceanography, UM 110, Aix Marseille Univ., Université de Toulon, CNRS, IRDMarseilleFrance
| | - Sarah Giering
- National Oceanography CenterEuropean WaySouthamptonUK
| |
Collapse
|
23
|
Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 2019; 568:327-335. [DOI: 10.1038/s41586-019-1098-2] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 02/01/2019] [Indexed: 02/08/2023]
|
24
|
Organelli E, Dall'Olmo G, Brewin RJW, Tarran GA, Boss E, Bricaud A. The open-ocean missing backscattering is in the structural complexity of particles. Nat Commun 2018; 9:5439. [PMID: 30575718 PMCID: PMC6303329 DOI: 10.1038/s41467-018-07814-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
Marine microscopic particles profoundly impact global biogeochemical cycles, but our understanding of their dynamics is hindered by lack of observations. To fill this gap, optical backscattering measured by satellite sensors and in-situ autonomous platforms can be exploited. Unfortunately, these observations remain critically limited by an incomplete mechanistic understanding of what particles generate the backscattering signal. To achieve this understanding, optical models are employed. The simplest of these models—the homogeneous sphere—severely underestimates the measured backscattering and the missing signal has been attributed to submicron particles. This issue is known as the missing backscattering enigma. Here we show that a slightly more complex optical model—the coated sphere—can predict the measured backscattering and suggests that most of the signal comes from particles >1 µm. These findings were confirmed by independent size-fractionation experiments. Our results demonstrate that the structural complexity of particles is critical to understand open-ocean backscattering and contribute to solving the enigma. Particulate optical backscattering is key to studying the oceanic carbon pump though it remains unclear what particles are detected. Here the authors show that complex particles larger than 1 µm help reproduce all the measured backscattering across the Atlantic Ocean and explain the majority of the signal.
Collapse
Affiliation(s)
- Emanuele Organelli
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK. .,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France.
| | - Giorgio Dall'Olmo
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK.,National Centre for Earth Observation, Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK
| | - Robert J W Brewin
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK.,National Centre for Earth Observation, Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK
| | - Glen A Tarran
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Annick Bricaud
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, France
| |
Collapse
|
25
|
Bol R, Henson SA, Rumyantseva A, Briggs N. High-Frequency Variability of Small-Particle Carbon Export Flux in the Northeast Atlantic. GLOBAL BIOGEOCHEMICAL CYCLES 2018; 32:1803-1814. [PMID: 31007380 PMCID: PMC6472636 DOI: 10.1029/2018gb005963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 05/24/2023]
Abstract
The biological carbon pump exports carbon fixed by photosynthesis out of the surface ocean and transfers it to the deep, mostly in the form of sinking particles. Despite the importance of the pump in regulating the air-sea CO2 balance, the magnitude of global carbon export remains unclear, as do its controlling mechanisms. A possible sinking flux of carbon to the mesopelagic zone may be via the mixed-layer pump: a seasonal net detrainment of particulate organic carbon (POC)-rich surface waters, caused by sequential deepening and shoaling of the mixed layer. In this study, we present a full year of daily small-particle POC concentrations derived from glider optical backscatter data, to study export variability at the Porcupine Abyssal Plain (PAP) sustained observatory in the Northeast Atlantic. We observe a strong seasonality in small-particle transfer efficiency, with a maximum in winter and early spring. By calculating daily POC export driven by mixed-layer variations, we find that the mixed-layer pump supplies an annual flux of at least 3.0 ± 0.9 g POC·m-2·year-1 to the mesopelagic zone, contributing between 5% and 25% of the total annual export flux and likely contributing to closing a gap in the mesopelagic carbon budget found by other studies. These are, to our best knowledge, the first high-frequency observations of export variability over the course of a full year. Our results support the deployment of bio-optical sensors on gliders to improve our understanding of the ocean carbon cycle on temporal scales from daily to annual.
Collapse
Affiliation(s)
- Roséanne Bol
- School of Ocean and Earth SciencesUniversity of SouthamptonSouthamptonUK
- Now at NIOZ Royal Netherlands Institute for Sea ResearchTexelThe Netherlands
- Now at Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
| | | | - Anna Rumyantseva
- School of Ocean and Earth SciencesUniversity of SouthamptonSouthamptonUK
| | | |
Collapse
|
26
|
Jiao N, Cai R, Zheng Q, Tang K, Liu J, Jiao F, Wallace D, Chen F, Li C, Amann R, Benner R, Azam F. Unveiling the enigma of refractory carbon in the ocean. Natl Sci Rev 2018. [DOI: 10.1093/nsr/nwy020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and Institute of Marine Microbes and Ecospheres, Xiamen University, China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science and Institute of Marine Microbes and Ecospheres, Xiamen University, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science and Institute of Marine Microbes and Ecospheres, Xiamen University, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science and Institute of Marine Microbes and Ecospheres, Xiamen University, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, China
- Oceanography Department, Dalhousie University, Canada
| | - Fanglue Jiao
- Oceanography Department, Dalhousie University, Canada
| | | | - Feng Chen
- Institute of Marine Science and Technology, Shandong University, China
- Environmental Research Center, University of Maryland at Baltimore, USA
| | - Chao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Germany
| | - Ronald Benner
- Department of Biological Sciences and Marine Science Program, University of South Carolina, USA
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California, USA
| |
Collapse
|
27
|
Dittmar T, Stubbins A, Ito T, Jones DC. Comment on "Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory". Science 2017; 356:813. [PMID: 28546181 DOI: 10.1126/science.aam6039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/07/2017] [Indexed: 01/25/2023]
Abstract
Ksionzek et al (Reports, 28 October 2016, p. 456) provide important data describing the distribution of dissolved organic sulfur (DOS) in the Atlantic Ocean. Here, we show that mixing between water masses is sufficient to explain the observed distribution of DOS, concluding that the turnover time of refractory DOS that Ksionzek et al present cannot be deduced from their data.
Collapse
Affiliation(s)
- Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany.
| | - Aron Stubbins
- Skidaway Institute of Oceanography, Department of Marine Sciences, University of Georgia, Savannah, GA 31411, USA
| | - Takamitsu Ito
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0340, USA
| | - Daniel C Jones
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
28
|
Casal P, González-Gaya B, Zhang Y, Reardon AJF, Martin JW, Jiménez B, Dachs J. Accumulation of Perfluoroalkylated Substances in Oceanic Plankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2766-2775. [PMID: 28192988 DOI: 10.1021/acs.est.6b05821] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The bioaccumulation of perfluoroalkylated substances (PFASs) in plankton has previously been evaluated only in freshwater and regional seas, but not for the large oligotrophic global oceans. Plankton samples from the tropical and subtropical Pacific, Atlantic and Indian Oceans were collected during the Malaspina 2010 circumnavigation expedition, and analyzed for 14 ionizable PFASs, including perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and their respective linear and branched isomers. PFOA and PFOS concentrations in plankton ranged from 0.1 to 43 ng gdw-1 and from 0.5 to 6.7 ng gdw-1, respectively. The relative abundance of branched PFOA in the northern hemisphere was correlated with distance to North America, consistent with the historical production and coherent with previously reported patterns in seawater. The plankton samples showing the highest PFOS concentrations also presented the largest relative abundances of branched PFOS, suggesting a selective cycling/fractionation of branched PFOS in the surface ocean mediated by plankton. Bioaccumulation factors (BAFs) for plankton were calculated for six PFASs, including short chain PFASs. PFASs Log BAFs (wet weight) ranged from 2.6 ± 0.8 for perfluorohexanesulfonic acid (PFHxS), to 4.4 ± 0.6 for perfluoroheptanoic acid (PFHpA). The vertical transport of PFASs due to the settling of organic matter bound PFAS (biological pump) was estimated from an organic matter settling fluxes climatology and the PFAS concentrations in plankton. The global average sinking fluxes were 0.8 ± 1.3 ng m-2d-1 for PFOA, and 1.1 ± 2.1 ng m-2d-1 for PFOS. The residence times of PFAS in the surface ocean, assuming the biological pump as the unique sink, showed a wide range of variability, from few years to millennia, depending on the sampling site and individual compound. Further process-based studies are needed to constrain the oceanic sink of PFAS.
Collapse
Affiliation(s)
- Paulo Casal
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Belén González-Gaya
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC) , Juan de la Cierva 3, 28006 Madrid, Spain
| | - Yifeng Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta Canada
| | - Anthony J F Reardon
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta , Edmonton, Alberta Canada
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC) , Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC) , Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|