1
|
Chang JW, Tang CH. The role of macrophage polarization in rheumatoid arthritis and osteoarthritis: Pathogenesis and therapeutic strategies. Int Immunopharmacol 2024; 142:113056. [PMID: 39217882 DOI: 10.1016/j.intimp.2024.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are common and debilitating joint disorders affecting millions of individuals worldwide. Despite their distinct pathological features, both conditions share a crucial role of macrophages in disease progression. Macrophages exhibit remarkable plasticity, polarizing into pro-inflammatory M1 or anti-inflammatory M2 phenotypes in response to environmental cues. An imbalance in macrophage polarization, particularly a shift towards the M1 phenotype, contributes to chronic inflammation and joint damage in RA and OA. This review explores the complex interplay between macrophages and various cell types, including T cells, B cells, synovial fibroblasts, osteoclasts, chondrocytes, and adipocytes, in the pathogenesis of these diseases. We discuss the current understanding of macrophage polarization in RA and OA, highlighting the molecular mechanisms involved. Furthermore, we provide an overview of potential therapeutic strategies targeting macrophage polarization, such as disease-modifying anti-rheumatic drugs, traditional Chinese medicine, nanomedicines, proteins, chemical compounds, and physical therapies. By elucidating the precise mechanisms governing macrophage polarization and its interactions with other cells in the joint microenvironment, researchers can identify novel therapeutic targets and develop targeted interventions to alleviate disease progression and improve patient outcomes in RA and OA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
2
|
He X, Liu P, Luo Y, Fu X, Yang T. STATs, promising targets for the treatment of autoimmune and inflammatory diseases. Eur J Med Chem 2024; 277:116783. [PMID: 39180944 DOI: 10.1016/j.ejmech.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Cytokines play a crucial role in the pathophysiology of autoimmune and inflammatory diseases, with over 50 cytokines undergoing signal transduction through the Signal Transducers and Activators of Transcription (STAT) signaling pathway. Recent studies have solidly confirmed the pivotal role of STATs in autoimmune and inflammatory diseases. Therefore, this review provides a detailed summary of the immunological functions of STATs, focusing on exploring their mechanisms in various autoimmune and inflammatory diseases. Additionally, with the rapid advancement of structural biology in the field of drug discovery, many STAT inhibitors have been identified using structure-based drug design strategies. In this review, we also examine the structures of STAT proteins and compile the latest research on STAT inhibitors currently being tested in animal models and clinical trials for the treatment of immunological diseases, which emphasizes the feasibility of STATs as promising therapeutic targets and provides insights into the design of the next generation of STAT inhibitors.
Collapse
Affiliation(s)
- Xinlian He
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Li Y, Ji L, Liu C, Li J, Wen D, Li Z, Yu L, Guo M, Zhang S, Duan W, Yi L, Bi Y, Bu H, Li C, Liu Y. TBK1 is involved in M-CSF-induced macrophage polarization through mediating the IRF5/IRF4 axis. FEBS J 2024. [PMID: 39434428 DOI: 10.1111/febs.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
TANK binding kinase 1 (TBK1) is an important kinase that is involved in innate immunity and tumor development. Macrophage colony-stimulating factor (M-CSF) regulates the differentiation and function of macrophages towards the immunosuppressive M2 phenotype in the glioblastoma multiforme microenvironment. The role of TBK1 in macrophages, especially in regulating macrophage polarization in response to M-CSF stimulation, remains unclear. Here, we found high TBK1 expression in human glioma-infiltrating myeloid cells and that phosphorylated TBK1 was highly expressed in M-CSF-stimulated macrophages but not in granulocyte-macrophage CSF-induced macrophages (granulocyte-macrophage-CSF is involved in the polarization of M1 macrophages). Conditional deletion of TBK1 in myeloid cells induced M-CSF-stimulated bone marrow-derived macrophages to exhibit a proinflammatory M1-like phenotype with increased protein expression of CD86, interleukin-1β and tumor necrosis factor-α, as well as decreased expression of arginase 1. Mechanistically, TBK1 deletion or inhibition by amlexanox or GSK8612 reduced the expression of the transcription factor interferon-regulatory factor (IRF)4 and increased the level of IRF5 activation in macrophages stimulated with M-CSF, leading to an M1-like profile with highly proinflammatory factors. IRF5 deletion reversed the effect of TBK1 inhibition on M-CSF-mediated macrophage polarization. Our findings suggest that TBK1 contributes to the regulation of macrophage polarization in response to M-CSF stimulation partly through the IRF5/IRF4 axis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Ji
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Juanjuan Li
- Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Lishuang Yu
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Shaoran Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| |
Collapse
|
4
|
Owen MC, Kopecky BJ. Targeting Macrophages in Organ Transplantation: A Step Toward Personalized Medicine. Transplantation 2024; 108:2045-2056. [PMID: 38467591 PMCID: PMC11390981 DOI: 10.1097/tp.0000000000004978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organ transplantation remains the most optimal strategy for patients with end-stage organ failure. However, prevailing methods of immunosuppression are marred by adverse side effects, and allograft rejection remains common. It is imperative to identify and comprehensively characterize the cell types involved in allograft rejection, and develop therapies with greater specificity. There is increasing recognition that processes mediating allograft rejection are the result of interactions between innate and adaptive immune cells. Macrophages are heterogeneous innate immune cells with diverse functions that contribute to ischemia-reperfusion injury, acute rejection, and chronic rejection. Macrophages are inflammatory cells capable of innate allorecognition that strengthen their responses to secondary exposures over time via "trained immunity." However, macrophages also adopt immunoregulatory phenotypes and may promote allograft tolerance. In this review, we discuss the roles of macrophages in rejection and tolerance, and detail how macrophage plasticity and polarization influence transplantation outcomes. A comprehensive understanding of macrophages in transplant will guide future personalized approaches to therapies aimed at facilitating tolerance or mitigating the rejection process.
Collapse
Affiliation(s)
- Macee C Owen
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
López-Briceño IA, Ramírez-Bello J, Montúfar-Robles I, Barbosa-Cobos RE, Ángulo-Ramírez AV, Valencia-Pacheco G. IRF5 Variants Are Risk Factors for Systemic Lupus Erythematosus in Two Mexican Populations. J Clin Rheumatol 2024; 30:283-290. [PMID: 39271190 DOI: 10.1097/rhu.0000000000002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Interferon regulatory factor 5 ( IRF5 ) is one of the pivotal genes implicated in systemic lupus erythematosus (SLE) among diverse ethnic groups, including Europeans, Asians, Hispanics, and Africans. Notably, its significance appears particularly pronounced among Hispanic populations. Previous studies have identified several single-nucleotide variants within IRF5 , such as rs2004640G/T, rs2070197T/C, and rs10954213G/A, as associated with susceptibility to SLE among patients from Mexico City. However, the population of Yucatan, located in the Southeast of Mexico and characterized by a greater Amerindian genetic component, remains largely unexplored in this regard. OBJECTIVES Our study aimed to replicate the observed association between IRF5 variants and susceptibility to SLE among patients from Central Mexico and Yucatan. Furthermore, we investigated the impact of IRF5 rs59110799G/T, a variant that has not been previously studied in SLE individuals. METHOD Our study included 204 SLE patients and 160 controls from Central Mexico, as well as 184 SLE patients and 184 controls from Yucatan. All participants were females 18 years and older. We employed a TaqMan assay to detect the presence of the following single-nucleotide variants: rs2004640G/T, rs2070197T/C, rs10954213G/A, and rs59110799G/T. Furthermore, we utilized 2 distinct web tools and databases to predict the potential functional implications of IRF5 variants. RESULTS In SLE patients from Central Mexico, several IRF5 alleles showed significant associations with the disease following adjustment by the Bonferroni test: the rs2070197C allele (odds ratio [OR], 2.08), the rs10954213A allele (OR, 1.59), and the rs59110799G allele (OR, 1.71). Conversely, among patients from Yucatan, the following alleles showed associations: rs2004640T (OR, 1.51), rs2070197C (OR, 1.62), rs10954213A (OR, 1.67), and rs59110799G (OR, 1.44). CONCLUSION Our findings highlight genetic variations between Mexican populations and emphasize the role of IRF5 as a risk factor in SLE patients from both Central Mexico and Yucatan.
Collapse
Affiliation(s)
- Isaac A López-Briceño
- From the Laboratorio de Hematología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Yucatan
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional de Cardiología Ignacio Chávez
| | | | | | | | - Guillermo Valencia-Pacheco
- From the Laboratorio de Hematología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Yucatan
| |
Collapse
|
6
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
7
|
Marrufo AM, Flores-Mireles AL. Macrophage fate: to kill or not to kill? Infect Immun 2024; 92:e0047623. [PMID: 38829045 PMCID: PMC11385966 DOI: 10.1128/iai.00476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Macrophages are dynamic innate immune cells that either reside in tissue, serving as sentinels, or recruited as monocytes from bone marrow into inflamed and infected tissue. In response to cues in the tissue microenvironment (TME), macrophages polarize on a continuum toward M1 or M2 with diverse roles in progression and resolution of disease. M1-like macrophages exhibit proinflammatory functions with antimicrobial and anti-tumorigenic activities, while M2-like macrophages have anti-inflammatory functions that generally resolve inflammatory responses and orchestrate a tissue healing process. Given these opposite phenotypes, proper spatiotemporal coordination of macrophage polarization in response to cues within the TME is critical to effectively resolve infectious disease and regulate wound healing. However, if this spatiotemporal coordination becomes disrupted due to persistent infection or dysregulated coagulation, macrophages' inappropriate response to these cues will result in the development of diseases with clinically unfavorable outcomes. Since plasticity and heterogeneity are hallmarks of macrophages, they are attractive targets for therapies to reprogram toward specific phenotypes that could resolve disease and favor clinical prognosis. In this review, we discuss how basic science studies have elucidated macrophage polarization mechanisms in TMEs during infections and inflammation, particularly coagulation. Therefore, understanding the dynamics of macrophage polarization within TMEs in diseases is important in further development of targeted therapies.
Collapse
Affiliation(s)
- Armando M Marrufo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | | |
Collapse
|
8
|
Lyu N, Dai Y, Wu J, Fan Y, Lyu Z, Gu J, Cheng J, Xu J. Multi-dataset identification of innovative feature genes and molecular mechanisms in keratoconus. J Cell Mol Med 2024; 28:e70079. [PMID: 39300613 PMCID: PMC11412914 DOI: 10.1111/jcmm.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
This study aimed to identify feature genes and explore the molecular mechanisms of keratoconus (KC). We downloaded data files from NCBI GEO public database. The Limma package was used for differential expression analysis of gene profiles. Lasso regression was used to identify the feature genes. The CIBERSORT algorithm was used to infer the proportion of immune-infiltrating cells and analyse the correlation between gene expression levels and immune cells. Related transcription factors and miRNAs of key genes were predicted using the Cistrome DB and Mircode databases. Analysis of expression differences in disease genes was based on the GeneCards database. The CMap was used to analyse targeted therapeutic drugs. IHC was performed to verify the expression levels of ATOH7 and MYRF in corneas. Exactly 593 upregulated and 473 downregulated genes were identified. Lasso regression analysis identified ATOH7, DBNDD1, RNF217-AS1, ARL11, MYRF and SNORA74B as feature genes for KC. All key genes were correlated with immune infiltration and the levels of activated memory CD4+ T cells and plasma cells were significantly increased. miRNA, IRF and STAT families were correlated to feature genes. The expression levels of key genes were significantly correlated to KC-related genes. Entinostat, ochratoxin-a, diphencyprone and GSK-3-inhibitor-II were predicted as potential KC medications. The expression of MYRF was significantly higher in the KC samples, contrary to the expression of ATOH7. KC is related to both immune infiltration and genetic factors. MYRF and ATOH7 were newly identified and verified feature genes of KC.
Collapse
Affiliation(s)
- Ning Lyu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Yiqin Dai
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jiawen Wu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Yidan Fan
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Zhaoyuan Lyu
- Graduate School of Transdisciplinary ArtsAkita UniversityAkitaJapan
| | - Jiayu Gu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jingyi Cheng
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jianjiang Xu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| |
Collapse
|
9
|
Clanchy FI, Borghese F, Bystrom J, Balog A, Penn H, Hull DN, Mageed RA, Taylor PC, Williams RO. Inflammatory disease status and response to TNF blockade are associated with mechanisms of endotoxin tolerance. J Autoimmun 2024; 148:103300. [PMID: 39116634 DOI: 10.1016/j.jaut.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.
Collapse
Affiliation(s)
- Felix Il Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom; Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Federica Borghese
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Jonas Bystrom
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Attila Balog
- Department of Rheumatology and Immunology, Szent-Györgyi Albert Clinical Centre, University of Szeged, Szeged, Hungary
| | - Henry Penn
- Northwick Park Hospital, Harrow, United Kingdom
| | - Dobrina N Hull
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Rizgar A Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Richard O Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
10
|
Qian Q, Wu Y, Cui N, Li Y, Zhou Y, Li Y, Lian M, Xiao X, Miao Q, You Z, Wang Q, Shi Y, Cordell HJ, Timilsina S, Gershwin ME, Li Z, Ma X, Ruqi Tang. Epidemiologic and genetic associations between primary biliary cholangitis and extrahepatic rheumatic diseases. J Autoimmun 2024; 148:103289. [PMID: 39059058 DOI: 10.1016/j.jaut.2024.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Patients with primary biliary cholangitis (PBC) commonly experience extrahepatic rheumatic diseases. However, the epidemiologic and genetic associations as well as causal relationship between PBC and these extrahepatic conditions remain undetermined. In this study, we first conducted systematic review and meta-analyses by analyzing 73 studies comprising 334,963 participants across 17 countries and found strong phenotypic associations between PBC and rheumatic diseases. Next, we utilized large-scale genome-wide association study summary data to define the shared genetic architecture between PBC and rheumatic diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and Sjögren's syndrome (SS). We observed significant genetic correlations between PBC and each of the four rheumatic diseases. Pleiotropy and heritability enrichment analysis suggested the involvement of humoral immunity and interferon-associated processes for the comorbidity. Of note, we identified four variants shared between PBC and RA (rs80200208), SLE (rs9843053), and SSc (rs27524, rs3873182) using cross-trait meta-analysis. Additionally, several pleotropic loci for PBC and rheumatic diseases were found to share causal variants with gut microbes possessing immunoregulatory functions. Finally, Mendelian randomization revealed consistent evidence for a causal effect of PBC on RA, SLE, SSc, and SS, but no or inconsistent evidence for a causal effect of extrahepatic rheumatic diseases on PBC. Our study reveals a profound genetic overlap and causal relationships between PBC and extrahepatic rheumatic diseases, thus providing insights into shared biological mechanisms and novel therapeutic interventions.
Collapse
Affiliation(s)
- Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yi Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yikang Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yujie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - You Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suraj Timilsina
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China; Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
11
|
Cai G, Ren L, Yu J, Jiang S, Liu G, Wu S, Cheng B, Li W, Xia J. A Microenvironment-Responsive, Controlled Release Hydrogel Delivering Embelin to Promote Bone Repair of Periodontitis via Anti-Infection and Osteo-Immune Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403786. [PMID: 38978324 PMCID: PMC11425865 DOI: 10.1002/advs.202403786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Indexed: 07/10/2024]
Abstract
Periodontitis, a prevalent chronic inflammatory disease, poses significant challenges for effective treatment due to its complex etiology involving specific bacteria and the inflammatory immune microenvironment. Here, this study presents a novel approach for the targeted treatment of periodontitis utilizing the immunomodulatory and antibacterial properties of Embelin, a plant-derived compound, within an injectable hydrogel system. The developed Carboxymethyl Chitosan-Oxidized Dextran (CMCS-OD) hydrogel formed via dynamic chemical bonds exhibited self-healing capabilities and pH-responsive behavior, thereby facilitating the controlled release of Embelin and enhancing its efficacy in a dynamic oral periodontitis microenvironment. This study demonstrates that this hydrogel system effectively prevents bacterial invasion and mitigates excessive immune response activation. Moreover, it precisely modulates macrophage M1/M2 phenotypes and suppresses inflammatory cytokine expression, thereby fostering a conducive environment for bone regeneration and addressing periodontitis-induced bone loss. These findings highlight the potential of the approach as a promising strategy for the clinical management of periodontitis-induced bone destruction.
Collapse
Affiliation(s)
- Guanming Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Jiali Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Siqi Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| |
Collapse
|
12
|
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J, Zheng M, Liu Z, Yang J, Song J, Song S, Cai Z. Single-Cell RNA Sequencing Deconstructs the Distribution of Immune Cells Within Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1986-2003. [PMID: 39051127 DOI: 10.1161/atvbaha.124.321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Single-Cell Analysis
- Disease Models, Animal
- Mice, Inbred C57BL
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/immunology
- Mice
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Male
- Transcriptome
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Profiling/methods
- Pancreatic Elastase
- Cell Communication
Collapse
Affiliation(s)
- Zhen Yuan
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Li Shu
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jiantao Fu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Peipei Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Yidong Wang
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jie Sun
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Zheng
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Vascular Surgery (Z.L.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Zhejun Cai
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| |
Collapse
|
13
|
Lan M, Lin C, Zeng L, Hu S, Shi Y, Zhao Y, Liu X, Sun J, Liang G, Huang M. Linderanine C regulates macrophage polarization by inhibiting the MAPK signaling pathway against ulcerative colitis. Biomed Pharmacother 2024; 178:117239. [PMID: 39098180 DOI: 10.1016/j.biopha.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory disease involving the mucosa and submucosa of the rectum and colon. Lindera aggregate (Sims) Kosterm is a traditional Chinese herb used for thousands of years in the treatment of gastrointestinal diseases. Previously, we have demonstrated that the extracts of Lindera aggregate have good anti-UC effects, but their pharmacodynamic active components have not been fully clarified. Therefore, we explored the therapeutic effect of Linderanine C (LDC), a characteristic component of Lindera aggregata, on UC and its mechanism in this study. Firstly, we found that LDC could significantly reduce the disease activity index of UC and improve shortened colon and pathological changes in vivo. Colon tissue transcriptomics suggested that the anti-UC effect of LDC might be related to its anti-inflammatory activity. Cellular experiments revealed that LDC could inhibit the expression of the M1 cell marker CD86 in RAW264.7 cells, reduce the production of inflammatory mediators such as IL-6 and TNF-α, and have good anti-inflammatory activity in vitro. Cellular transcriptomics reveal the potential involvement of the MAPK signaling pathway in the anti-inflammatory effect of LDC. The co-culture assay confirmed that LDC could significantly reduce inflammation-mediated intestinal epithelial cell injury. In conclusion, LDC was able to inhibit macrophage M1 polarization and reduce inflammatory mediator production by inhibiting the MAPK signaling pathway, effectively improving UC.
Collapse
Affiliation(s)
- Mengyao Lan
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Cailu Lin
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Lulu Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Shijie Hu
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yuan Shi
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yan Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xin Liu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jinfeng Sun
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Mincong Huang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
14
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
15
|
Zhang F, Cui Y, Zhang T, Yin W. Epigenetic regulation of macrophage activation in chronic obstructive pulmonary disease. Front Immunol 2024; 15:1445372. [PMID: 39206196 PMCID: PMC11349576 DOI: 10.3389/fimmu.2024.1445372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Tiejun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Deng H, Guan Y, Dong Q, An R, Wang J. Chitosan-based biomaterials promote bone regeneration by regulating macrophage fate. J Mater Chem B 2024; 12:7480-7496. [PMID: 39016095 DOI: 10.1039/d3tb02563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of various osteogenic biomaterials has not only promoted the development of bone tissue engineering but also provided more possibilities for bone defect repair. However, most previous studies have focused on the interaction of biomaterials on endogenous or exogenous stem cells involved in the bone regeneration process while neglecting the effect of changes in the immune microenvironment of bone defect sites on bone regeneration after biomaterial implantation into the host. With the development of bone immunology, the role of various immune cells, especially macrophages, in bone regeneration has gradually attracted the attention of researchers. An increasing number of studies have begun to target macrophages to better promote bone regeneration by modulating the fate of macrophages in a spatiotemporally ordered manner to mimic the changes in the immune microenvironment of bone defect sites during the natural repair process of bone tissue. Chitosan is one of the most abundant natural polysaccharides in the world. In recent years, various chitosan-based biomaterials have been widely used in macrophage fate modulation and bone regeneration. In this review, we review the interaction between macrophages and scaffold materials, general information about chitosan, the modulation of macrophage fate by chitosan-based biomaterials, and their application in bone regeneration.
Collapse
Affiliation(s)
- Huiling Deng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Yuanyuan Guan
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Quping Dong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.
| |
Collapse
|
17
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024:e13725. [PMID: 39087342 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Geriatrics, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Jiangsu, China
| | - Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yifeng Jin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ziyue Wu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Mercnik MH, Wadsack C, Schliefsteiner C. Unlocking the secrets of Hofbauer cells in placental (patho-) physiology: Isolation and quality assessment in human term placenta. Placenta 2024:S0143-4004(24)00299-6. [PMID: 39004544 DOI: 10.1016/j.placenta.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Hofbauer cells (HBCs) are macrophages of fetal origin that reside in the villous tissue. They are the only immune cells within healthy villi. While HBCs perform innate immune functions such as phagocytosis and antigen presentation, they are increasingly recognized for their diverse roles in placental physiology e.g. vascular functionality, tissue homeostasis, tolerance. Consequently, HBCs are of utmost interest in a variety of non-physiological placental conditions. ISOLATION Villous tissue is collected freshly after delivery and finely minced. The resulting tissue is digested in a two-step process, using Trypsin/DNase to separate cytotrophoblasts and collagenase/DNase to penetrate deeper into the villous stroma, containing HBCs, and obtain a single cell suspension. After a density gradient centrifugation, the corresponding cell layer is collected and subjected to negative immune selection of HBCs, yielding unaffected cells that have not been activated during the isolation process. QUALITY CONTROL In addition to a classical immunocytochemistry (ICC) approach including macrophage markers, and markers for potentially contaminating cell types (e.g. fibroblasts, muscle, mesenchymal cells), we have developed a multi-color flow cytometry (FC) panel. This panel assesses Hofbauer cell purity and polarization states more accurately and comprehensively than qualitative ICC, using percentage analysis of parent cells to estimate the expression levels of specific markers. DISCUSSION The presented protocol allows us to isolate HBCs in significant numbers and high purity, even from placentae compromised by preeclampsia (PE) with limited placental volume. We have successfully developed and implemented this protocol to study healthy, diabetic and PE macrophages, aiding a better understanding of the underlying placental pathophysiology at the cellular level.
Collapse
Affiliation(s)
- Monika Horvat Mercnik
- Medical University of Graz, Austria. Department of Obstetrics and Gynecology, Research Unit, Austria
| | - Christian Wadsack
- Medical University of Graz, Austria. Department of Obstetrics and Gynecology, Research Unit, Austria; BioTechMed-Graz, Graz, Austria.
| | - Carolin Schliefsteiner
- Medical University of Graz, Austria. Department of Obstetrics and Gynecology, Research Unit, Austria
| |
Collapse
|
20
|
Roberts BK, Li DI, Somerville C, Matta B, Jha V, Steinke A, Brune Z, Blanc L, Soffer SZ, Barnes BJ. IRF5 suppresses metastasis through the regulation of tumor-derived extracellular vesicles and pre-metastatic niche formation. Sci Rep 2024; 14:15557. [PMID: 38969706 PMCID: PMC11226449 DOI: 10.1038/s41598-024-66168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Dan Iris Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Carter Somerville
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Vaishali Jha
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | | - Zarina Brune
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Lionel Blanc
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Samuel Z Soffer
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Department of Pediatric Surgery, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
21
|
He N, Huang H, Wu S, Ji W, Tai Y, Gao R, Liu Y, Liu Y, Chen L, Zhu D, Zheng X, Jiang J. Microwave ablation combined with PD-L1 blockade synergistically promotes Cxcl9-mediated antitumor immunity. Cancer Sci 2024; 115:2196-2208. [PMID: 38655660 PMCID: PMC11247550 DOI: 10.1111/cas.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Although microwave ablation (MWA) is an important curative therapy in colorectal cancer liver metastasis, recurrence still occurs clinically. Our previous studies have shown that the expression of programmed cell death 1 ligand 1 (PD-L1) is upregulated following MWA, suggesting that MWA combined with anti-PD-L1 treatment can serve as a promising clinical therapeutic strategy against cancer. Using MWA-treated preclinical mice models, MWA combined with αPD-L1 treatment decreased tumor growth and prolonged overall survival (OS). Furthermore, through flow cytometry and single-cell RNA sequencing analysis, we determined that the MWA plus αPD-L1 therapy significantly suppressed CD8+ T cell exhaustion and enhanced their effector function. A significant increase in γ-interferon (IFN-γ) stimulated transcription factors, specifically Irf8, was observed. This enhancement facilitated the polarization of tumor-associated macrophages (TAM1s and TAM2s) through the nuclear factor-κB/JAK-STAT1 signaling pathway. Furthermore, the combination therapy stimulated the production of CXC motif chemokine ligand (CXCL9) by TAM1s and tumor cells, potentially increasing the chemotaxis of CD8 T cells and Th1 cells. Knocking out Cxcl9 in MC38 tumor cells or using CXCL9 blockade enhanced tumor growth of untreated tumors and shortened OS. Taken together, our study showed that blocking the IFN-γ-Cxcl9-CD8+ T axis promoted tumor progression and discovered a potential involvement of IRF8-regulated TAMs in preventing T cell exhaustion. Collectively, we identified that the combination of MWA with anti-PD-L1 treatment holds promise as a therapeutic strategy to rejuvenate the immune response against tumors. This merits further exploration in clinical studies.
Collapse
Affiliation(s)
- Ningning He
- College of MedicineYangzhou UniversityYangzhouChina
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Hao Huang
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Shaoxian Wu
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Weipeng Ji
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Yicheng Tai
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Ruicheng Gao
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Yingting Liu
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Yungang Liu
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouChina
| | - Lujun Chen
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Dawei Zhu
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Xiao Zheng
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| | - Jingting Jiang
- College of MedicineYangzhou UniversityYangzhouChina
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
- Institute of Cell TherapyThe First People's Hospital of ChangzhouChangzhouChina
| |
Collapse
|
22
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
23
|
Ammarah U, Pereira‐Nunes A, Delfini M, Mazzone M. From monocyte-derived macrophages to resident macrophages-how metabolism leads their way in cancer. Mol Oncol 2024; 18:1739-1758. [PMID: 38411356 PMCID: PMC11223613 DOI: 10.1002/1878-0261.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Macrophages are innate immune cells that play key roles during both homeostasis and disease. Depending on the microenvironmental cues sensed in different tissues, macrophages are known to acquire specific phenotypes and exhibit unique features that, ultimately, orchestrate tissue homeostasis, defense, and repair. Within the tumor microenvironment, macrophages are referred to as tumor-associated macrophages (TAMs) and constitute a heterogeneous population. Like their tissue resident counterpart, TAMs are plastic and can switch function and phenotype according to the niche-derived stimuli sensed. While changes in TAM phenotype are known to be accompanied by adaptive alterations in their cell metabolism, it is reported that metabolic reprogramming of macrophages can dictate their activation state and function. In line with these observations, recent research efforts have been focused on defining the metabolic traits of TAM subsets in different tumor malignancies and understanding their role in cancer progression and metastasis formation. This knowledge will pave the way to novel therapeutic strategies tailored to cancer subtype-specific metabolic landscapes. This review outlines the metabolic characteristics of distinct TAM subsets and their implications in tumorigenesis across multiple cancer types.
Collapse
Affiliation(s)
- Ummi Ammarah
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CentreUniversity of TorinoItaly
| | - Andreia Pereira‐Nunes
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Marcello Delfini
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer BiologyKU LeuvenBelgium
| |
Collapse
|
24
|
Montorsi M, Pucci C, De Pasquale D, Marino A, Ceccarelli MC, Mazzuferi M, Bartolucci M, Petretto A, Prato M, Debellis D, De Simoni G, Pugliese G, Labardi M, Ciofani G. Ultrasound-Activated Piezoelectric Nanoparticles Trigger Microglia Activity Against Glioblastoma Cells. Adv Healthc Mater 2024; 13:e2304331. [PMID: 38509761 DOI: 10.1002/adhm.202304331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain cancer, characterized by a rapid and drug-resistant progression. GBM "builds" around its primary core a genetically heterogeneous tumor-microenvironment (TME), recruiting surrounding healthy brain cells by releasing various intercellular signals. Glioma-associated microglia (GAM) represent the largest population of collaborating cells, which, in the TME, usually exhibit the anti-inflammatory M2 phenotype, thus promoting an immunosuppressing environment that helps tumor growth. Conversely, "classically activated" M1 microglia could provide proinflammatory and antitumorigenic activity, expected to exert a beneficial effect in defeating glioblastoma. In this work, an immunotherapy approach based on proinflammatory modulation of the GAM phenotype is proposed, through a controlled and localized electrical stimulation. The developed strategy relies on the wireless ultrasonic excitation of polymeric piezoelectric nanoparticles coated with GBM cell membrane extracts, to exploit homotypic targeting in antiglioma applications. Such camouflaged nanotransducers locally generate electrical cues on GAM membranes, activating their M1 phenotype and ultimately triggering a promising anticancer activity. Collected findings open new perspectives in the modulation of immune cell activities through "smart" nanomaterials and, more specifically, provide an innovative auspicious tool in glioma immunotherapy.
Collapse
Affiliation(s)
- Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Martina Mazzuferi
- Politecnico di Torino, DIMEAS, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Mirko Prato
- Istituto Italiano di Tecnologia, Materials Characterization Facility, Via Morego 30, Genova, 16163, Italy
| | - Doriana Debellis
- Istituto Italiano di Tecnologia, Electron Microscopy Facility, Via Morego 30, Genova, 16163, Italy
| | - Giorgio De Simoni
- CNR, Nanoscience Institute, NEST Laboratory, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Giammarino Pugliese
- Istituto Italiano di Tecnologia, Chemistry Facility, Via Morego 30, Genova, 16163, Italy
| | | | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
25
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
26
|
Burgess MO, Janas P, Berry K, Mayr H, Mack M, Jenkins SJ, Bain CC, McSorley HJ, Schwarze J. Helminth induced monocytosis conveys protection from respiratory syncytial virus infection in mice. Allergy 2024. [PMID: 38924546 DOI: 10.1111/all.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection in infants is a major cause of viral bronchiolitis and hospitalisation. We have previously shown in a murine model that ongoing infection with the gut helminth Heligmosomoides polygyrus protects against RSV infection through type I interferon (IFN-I) dependent reduction of viral load. Yet, the cellular basis for this protection has remained elusive. Given that recruitment of mononuclear phagocytes to the lung is critical for early RSV infection control, we assessed their role in this coinfection model. METHODS Mice were infected by oral gavage with H. polygyrus. Myeloid immune cell populations were assessed by flow cytometry in lung, blood and bone marrow throughout infection and after secondary infection with RSV. Monocyte numbers were depleted by anti-CCR2 antibody or increased by intravenous transfer of enriched monocytes. RESULTS H. polygyrus infection induces bone marrow monopoiesis, increasing circulatory monocytes and lung mononuclear phagocytes in a IFN-I signalling dependent manner. This expansion causes enhanced lung mononuclear phagocyte counts early in RSV infection that may contribute to the reduction of RSV load. Depletion or supplementation of circulatory monocytes prior to RSV infection confirms that these are both necessary and sufficient for helminth induced antiviral protection. CONCLUSIONS H. polygyrus infection induces systemic monocytosis contributing to elevated mononuclear phagocyte numbers in the lung. These cells are central to an anti-viral effect that reduces the peak viral load in RSV infection. Treatments to promote or modulate these cells may provide novel paths to control RSV infection in high risk individuals.
Collapse
Affiliation(s)
- Matthew O Burgess
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Piotr Janas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Karla Berry
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Hannah Mayr
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Stephen J Jenkins
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Henry J McSorley
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jurgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Zhang J, Pei J, Yu C, Luo J, Hong Y, Hua Y, Wei G. CCR7 and CD48 as Predicted Targets in Acute Rejection Related to M1 Macrophage after Pediatric Kidney Transplantation. J Immunol Res 2024; 2024:6908968. [PMID: 38957433 PMCID: PMC11217580 DOI: 10.1155/2024/6908968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Background Kidney transplantation (KT) is the best treatment for end-stage renal disease. Although long and short-term survival rates for the graft have improved significantly with the development of immunosuppressants, acute rejection (AR) remains a major risk factor attacking the graft and patients. The innate immune response plays an important role in rejection. Therefore, our objective is to determine the biomarkers of congenital immunity associated with AR after KT and provide support for future research. Materials and Methods A differential expression genes (DEGs) analysis was performed based on the dataset GSE174020 from the NCBI gene Expression Synthesis Database (GEO) and then combined with the GSE5099 M1 macrophage-related gene identified in the Molecular Signatures Database. We then identified genes in DEGs associated with M1 macrophages defined as DEM1Gs and performed gene ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) enrichment analysis. Cibersort was used to analyze the immune cell infiltration during AR. At the same time, we used the protein-protein interaction (PPI) network and Cytoscape software to determine the key genes. Dataset, GSE14328 derived from pediatric patients, GSE138043 and GSE9493 derived from adult patients, were used to verify Hub genes. Additional verification was the rat KT model, which was used to perform HE staining, immunohistochemical staining, and Western Blot. Hub genes were searched in the HPA database to confirm their expression. Finally, we construct the interaction network of transcription factor (TF)-Hub genes and miRNA-Hub genes. Results Compared to the normal group, 366 genes were upregulated, and 423 genes were downregulated in the AR group. Then, 106 genes related to M1 macrophages were found among these genes. GO and KEGG enrichment analysis showed that these genes are mainly involved in cytokine binding, antigen binding, NK cell-mediated cytotoxicity, activation of immune receptors and immune response, and activation of the inflammatory NF-κB signaling pathway. Two Hub genes, namely CCR7 and CD48, were identified by PPI and Cytoscape analysis. They have been verified in external validation sets, originated from both pediatric patients and adult patients, and animal experiments. In the HPA database, CCR7 and CD48 are mainly expressed in T cells, B cells, macrophages, and tissues where these immune cells are distributed. In addition to immunoinfiltration, CD4+T, CD8+T, NK cells, NKT cells, and monocytes increased significantly in the AR group, which was highly consistent with the results of Hub gene screening. Finally, we predicted that 19 TFs and 32 miRNAs might interact with the Hub gene. Conclusions Through a comprehensive bioinformatic analysis, our findings may provide predictive and therapeutic targets for AR after KT.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Urology Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Jun Pei
- Department of Urology Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Chengjun Yu
- Department of Urology Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Jin Luo
- Department of Urology Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Yifan Hong
- Department of Urology Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Yi Hua
- Department of Urology Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Guanghui Wei
- Department of Urology Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| |
Collapse
|
28
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
29
|
Jiang F, Xu C, Fan X, Yang S, Fan W, Li M, Song J, Wei W, Chen H, Zhong D, Li G. MyD88 Inhibition Attenuates Cerebral Ischemia-reperfusion Injury by Regulating the Inflammatory Response and Reducing Blood-brain Barrier Damage. Neuroscience 2024; 549:121-137. [PMID: 38754722 DOI: 10.1016/j.neuroscience.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Myeloid differentiation primary response gene 88 (MyD88), a downstream molecule directly linked to Toll-like receptor (TLRs) and IL1 receptor, has been implicated in ischemia-reperfusion injury across various organs. However, its role in cerebral ischemia-reperfusion injury (CIRI) remains unclear. Five transient middle cerebral artery occlusion (tMCAO) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We screened these datasets for differentially expressed genes (DEGs) using the GSE35338 and GSE58720 datasets and performed weighted gene co-expression network analysis (WGCNA) using the GSE30655, GSE28731, and GSE32529 datasets to identify the core module related to tMCAO. A protein-protein interaction (PPI) network was constructed using the intersecting DEGs and genes in the core module. Finally, we identified Myd88 was the core gene. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) validated that TNFα, IL17, and MyD88 signaling pathways were significantly enriched in tMCAO. Subsequently, we investigated the mechanistic role of MyD88 in the tMCAO model using male C57BL/6 mice. MyD88 expression increased significantly 24 h after reperfusion. After intraperitoneal administration of TJ-M2010-5, a MyD88-specific inhibitor, during reperfusion, the infarction volumes in the mice were ameliorated. TJ-M2010-5 inhibits the activation of microglia and astrocytes. Moreover, it attenuates the upregulation of inflammatory cytokines TNFα, IL17, and MMP9 while preserving the expression level of ZO1 after tMCAO, thereby safeguarding against blood-brain barrier (BBB) disruption. Finally, our findings suggest that MyD88 regulates the IRAK4/IRF5 signaling pathway associated with microglial activation. MyD88 participates in CIRI by regulating the inflammatory response and BBB damage following tMCAO.
Collapse
Affiliation(s)
- Fangchao Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jihe Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wan Wei
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
30
|
Chen Y, Luo Z, Meng W, Liu K, Chen Q, Cai Y, Ding Z, Huang C, Zhou Z, Jiang M, Zhou L. Decoding the "Fingerprint" of Implant Materials: Insights into the Foreign Body Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310325. [PMID: 38191783 DOI: 10.1002/smll.202310325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Foreign body reaction (FBR) is a prevalent yet often overlooked pathological phenomenon, particularly within the field of biomedical implantation. The presence of FBR poses a heavy burden on both the medical and socioeconomic systems. This review seeks to elucidate the protein "fingerprint" of implant materials, which is generated by the physiochemical properties of the implant materials themselves. In this review, the activity of macrophages, the formation of foreign body giant cells (FBGCs), and the development of fibrosis capsules in the context of FBR are introduced. Additionally, the relationship between various implant materials and FBR is elucidated in detail, as is an overview of the existing approaches and technologies employed to alleviate FBR. Finally, the significance of implant components (metallic materials and non-metallic materials), surface CHEMISTRY (charge and wettability), and physical characteristics (topography, roughness, and stiffness) in establishing the protein "fingerprint" of implant materials is also well documented. In conclusion, this review aims to emphasize the importance of FBR on implant materials and provides the current perspectives and approaches in developing implant materials with anti-FBR properties.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyu Luo
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weikun Meng
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiqing Chen
- Department of Ultrasound, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Yongrui Cai
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zichuan Ding
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Huang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Jiang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liqiang Zhou
- MOE Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
31
|
Ji L, Zhan Y, Cheng Y. New findings and new methods on macrophages in primary immune thrombocytopenia. Br J Haematol 2024; 204:2157-2158. [PMID: 38699807 DOI: 10.1111/bjh.19513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease with multiple immune cells take part in the pathogenesis. Macrophages play multiple roles in both innate and adaptive immune system. The report by Jiani Mo and colleagues identified new biomarkers and explore the role of mitophagy and ferroptosis in ITP pathogenesis. Commentary on: Mo et al. Comprehensive analysis and prediction model of mitophagy and ferroptosis in primary immune thrombocytopenia. Br J Haematol 2024;204:2429-2442.
Collapse
Affiliation(s)
- Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
33
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
34
|
Zheng Y, Wei K, Jiang P, Zhao J, Shan Y, Shi Y, Zhao F, Chang C, Li Y, Zhou M, Lv X, Guo S, He D. Macrophage polarization in rheumatoid arthritis: signaling pathways, metabolic reprogramming, and crosstalk with synovial fibroblasts. Front Immunol 2024; 15:1394108. [PMID: 38799455 PMCID: PMC11116671 DOI: 10.3389/fimmu.2024.1394108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and progressive joint destruction. Macrophages are key effector cells that play a central role in RA pathogenesis through their ability to polarize into distinct functional phenotypes. An imbalance favoring pro-inflammatory M1 macrophages over anti-inflammatory M2 macrophages disrupts immune homeostasis and exacerbates joint inflammation. Multiple signaling pathways, including Notch, JAK/STAT, NF-κb, and MAPK, regulate macrophage polarization towards the M1 phenotype in RA. Metabolic reprogramming also contributes to this process, with M1 macrophages prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation. Redressing this imbalance by modulating macrophage polarization and metabolic state represents a promising therapeutic strategy. Furthermore, complex bidirectional interactions exist between synovial macrophages and fibroblast-like synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-derived factors promote aggressive phenotypes in FLS, while FLS-secreted mediators contribute to aberrant macrophage activation. Elucidating the signaling networks governing macrophage polarization, metabolic adaptations, and crosstalk with FLS is crucial to developing targeted therapies that can restore immune homeostasis and mitigate joint pathology in RA.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinliang Lv
- Department of Rheumatology, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Kajimura Y, Taguchi A, Nagao Y, Yamamoto K, Masuda K, Shibata K, Asaoka Y, Furutani-Seiki M, Tanizawa Y, Ohta Y. E4BP4 in macrophages induces an anti-inflammatory phenotype that ameliorates the severity of colitis. Commun Biol 2024; 7:527. [PMID: 38714733 PMCID: PMC11076557 DOI: 10.1038/s42003-024-06099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/22/2024] [Indexed: 05/10/2024] Open
Abstract
Macrophages are versatile cells of the innate immune system that work by altering their pro- or anti-inflammatory features. Their dysregulation leads to inflammatory disorders such as inflammatory bowel disease. We show that macrophage-specific upregulation of the clock output gene and transcription factor E4BP4 reduces the severity of colitis in mice. RNA-sequencing and single-cell analyses of macrophages revealed that increased expression of E4BP4 leads to an overall increase in expression of anti-inflammatory genes including Il4ra with a concomitant reduction in pro-inflammatory gene expression. In contrast, knockout of E4BP4 in macrophages leads to increased proinflammatory gene expression and decreased expression of anti-inflammatory genes. ChIP-seq and ATAC-seq analyses further identified Il4ra as a target of E4BP4, which drives anti-inflammatory polarization in macrophages. Together, these results reveal a critical role for E4BP4 in regulating macrophage inflammatory phenotypes and resolving inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yasuko Kajimura
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Akihiko Taguchi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan.
| | - Yuko Nagao
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Kaoru Yamamoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Konosuke Masuda
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Kensuke Shibata
- Department of Microbiology and Immunology, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoichi Asaoka
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Makoto Furutani-Seiki
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Yukio Tanizawa
- Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8511, Japan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
36
|
Choi JY, Byeon HW, Park SO, Uyangaa E, Kim K, Eo SK. Inhibition of NADPH oxidase 2 enhances resistance to viral neuroinflammation by facilitating M1-polarization of macrophages at the extraneural tissues. J Neuroinflammation 2024; 21:115. [PMID: 38698374 PMCID: PMC11067137 DOI: 10.1186/s12974-024-03078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.
Collapse
Affiliation(s)
- Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
37
|
Yang P, Zhai Y, Liu Q, Cao G, Ma Y, Cao J, Zhu L, Liu Y. The ameliorative effect on chemotherapy-induced injury and tumor immunosuppressive microenvironment of the polysaccharide from the rhizome of Menispermum dauricum DC. Int J Biol Macromol 2024; 268:131828. [PMID: 38663694 DOI: 10.1016/j.ijbiomac.2024.131828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Combined medication has attracted increasing attention as an important treatment option for tumors due to the serious adverse effects of chemotherapy. In this study, as a new therapy strategy, a combination treatment of MDP (a polysaccharide from the rhizome of Menispermum dauricum DC.) with cyclophosphamide (CTX) was investigated. The results showed that combination treatment with MDP and CTX exerted a significantly synergistic anti-tumor effect in Lewis tumor-bearing mice, improved CTX-induced emaciation and hair loss, as well as increased the number of leukocytes, erythrocytes, hemoglobin, and platelets in the peripheral blood. In addition, compared with CTX alone, the thymus index and spleen index of the MDP + CTX group were increased, the number of CD3 + T cells, CD8 + T cells, white blood cells and B cells in spleen also increased significantly. MDP could also ameliorate the increase in liver and kidney index caused by CTX. In the Lewis lung cancer model, MDP showed a certain degree of anti-tumor effects, which may be related to its promotion of tumor-associated macrophages (TAMs) to M1 phenotype polarisation, enhancement of the number of T cells in tumor tissues and promotion of Th cells in tumor tissues to Th1 phenotype polarisation, thus alleviating the immunosuppressive microenvironment in tumor tissues. This study laid the foundation for the development of MDP as a polysaccharide drug for the treatment or adjuvant therapy of tumors and has important significance for the further clinical application of polysaccharides.
Collapse
Affiliation(s)
- Pei Yang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang Zhai
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Qian Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd., Jinan 250355, China
| | - Yan Ma
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiangying Cao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd., Sishui 273200, China
| | - Yuhong Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
38
|
Battaglini M, Marino A, Montorsi M, Carmignani A, Ceccarelli MC, Ciofani G. Nanomaterials as Microglia Modulators in the Treatment of Central Nervous System Disorders. Adv Healthc Mater 2024; 13:e2304180. [PMID: 38112345 DOI: 10.1002/adhm.202304180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Microglia play a pivotal role in the central nervous system (CNS) homeostasis, acting as housekeepers and defenders of the surrounding environment. These cells can elicit their functions by shifting into two main phenotypes: pro-inflammatory classical phenotype, M1, and anti-inflammatory alternative phenotype, M2. Despite their pivotal role in CNS homeostasis, microglia phenotypes can influence the development and progression of several CNS disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injuries, and even brain cancer. It is thus clear that the possibility of modulating microglia activation has gained attention as a therapeutic tool against many CNS pathologies. Nanomaterials are an unprecedented tool for manipulating microglia responses, in particular, to specifically target microglia and elicit an in situ immunomodulation activity. This review focuses the discussion on two main aspects: analyzing the possibility of using nanomaterials to stimulate a pro-inflammatory response of microglia against brain cancer and introducing nanostructures able to foster an anti-inflammatory response for treating neurodegenerative disorders. The final aim is to stimulate the analysis of the development of new microglia nano-immunomodulators, paving the way for innovative and effective therapeutic approaches for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Alessio Carmignani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Maria Cristina Ceccarelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
39
|
Yuan J, Liao YS, Zhang TC, Tang YQ, Yu P, Liu YN, Cai DJ, Yu SG, Zhao L. Integrating Bulk RNA and Single-Cell Sequencing Data Unveils Efferocytosis Patterns and ceRNA Network in Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01255-8. [PMID: 38678526 DOI: 10.1007/s12975-024-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Excessive inflammatory response following ischemic stroke (IS) injury is a key factor affecting the functional recovery of patients. The efferocytic clearance of apoptotic cells within ischemic brain tissue is a critical mechanism for mitigating inflammation, presenting a promising avenue for the treatment of ischemic stroke. However, the cellular and molecular mechanisms underlying efferocytosis in the brain after IS and its impact on brain injury and recovery are poorly understood. This study explored the roles of inflammation and efferocytosis in IS with bioinformatics. Three Gene Expression Omnibus Series (GSE) (GSE137482-3 m, GSE137482-18 m, and GSE30655) were obtained from NCBI (National Center for Biotechnology Information) and GEO (Gene Expression Omnibus). Differentially expressed genes (DEGs) were processed for GSEA (Gene Set Enrichment Analysis), GO (Gene Ontology Functional Enrichment Analysis), and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses. Efferocytosis-related genes were identified from the existing literature, following which the relationship between Differentially Expressed Genes (DEGs) and efferocytosis-related genes was examined. The single-cell dataset GSE174574 was employed to investigate the distinct expression profiles of efferocytosis-related genes. The identified hub genes were verified using the dataset of human brain and peripheral blood sample datasets GSE56267 and GSE122709. The dataset GSE215212 was used to predict competing endogenous RNA (ceRNA) network, and GSE231431 was applied to verify the expression of differential miRNAs. At last, the middle cerebral artery (MCAO) model was established to validate the efferocytosis process and the expression of hub genes. DEGs in two datasets were significantly enriched in pathways involved in inflammatory response and immunoregulation. Based on the least absolute shrinkage and selection operator (LASSO) analyses, we identified hub efferocytosis-related genes (Abca1, C1qc, Ptx3, Irf5, and Pros1) and key transcription factors (Stat5). The scRNA-seq analysis showed that these hub genes were mainly expressed in microglia and macrophages which are the main cells with efferocytosis function in the brain. We then identified miR-125b-5p as a therapeutic target of IS based on the ceRNA network. Finally, we validated the phagocytosis and clearance of dead cells by efferocytosis and the expression of hub gene Abca1 in MCAO mice models.
Collapse
Affiliation(s)
- Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Yu-Sha Liao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Tie-Chun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Yu-Qi Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Pei Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ya-Ning Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ding-Jun Cai
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Shu-Guang Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
40
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
41
|
Subramanian A, Nemat-Gorgani N, Ellis-Caleo TJ, van IJzendoorn DGP, Sears TJ, Somani A, Luca BA, Zhou MY, Bradic M, Torres IA, Oladipo E, New C, Kenney DE, Avedian RS, Steffner RJ, Binkley MS, Mohler DG, Tap WD, D'Angelo SP, van de Rijn M, Ganjoo KN, Bui NQ, Charville GW, Newman AM, Moding EJ. Sarcoma microenvironment cell states and ecosystems are associated with prognosis and predict response to immunotherapy. NATURE CANCER 2024; 5:642-658. [PMID: 38429415 PMCID: PMC11058033 DOI: 10.1038/s43018-024-00743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Characterization of the diverse malignant and stromal cell states that make up soft tissue sarcomas and their correlation with patient outcomes has proven difficult using fixed clinical specimens. Here, we employed EcoTyper, a machine-learning framework, to identify the fundamental cell states and cellular ecosystems that make up sarcomas on a large scale using bulk transcriptomes with clinical annotations. We identified and validated 23 sarcoma-specific, transcriptionally defined cell states, many of which were highly prognostic of patient outcomes across independent datasets. We discovered three conserved cellular communities or ecotypes associated with underlying genomic alterations and distinct clinical outcomes. We show that one ecotype defined by tumor-associated macrophages and epithelial-like malignant cells predicts response to immune-checkpoint inhibition but not chemotherapy and validate our findings in an independent cohort. Our results may enable identification of patients with soft tissue sarcomas who could benefit from immunotherapy and help develop new therapeutic strategies.
Collapse
Affiliation(s)
- Ajay Subramanian
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | | | - Timothy J Sears
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Anish Somani
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Bogdan A Luca
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Maggie Y Zhou
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Martina Bradic
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ileana A Torres
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eniola Oladipo
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Christin New
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Deborah E Kenney
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Raffi S Avedian
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Robert J Steffner
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - David G Mohler
- Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical Center, New York, NY, USA
| | | | - Kristen N Ganjoo
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nam Q Bui
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Hayashi Y. Signaling pathways regulating the immune function of cochlear supporting cells and their involvement in cochlear pathophysiology. Glia 2024; 72:665-676. [PMID: 37933494 DOI: 10.1002/glia.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.
Collapse
Affiliation(s)
- Yushi Hayashi
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
43
|
Kobayashi AJ, Sesillo FB, Do E, Alperin M. Effect of nonsteroidal anti-inflammatory drugs on pelvic floor muscle regeneration in a preclinical birth injury rat model. Am J Obstet Gynecol 2024; 230:432.e1-432.e14. [PMID: 38065378 PMCID: PMC10990831 DOI: 10.1016/j.ajog.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Pelvic floor muscle injury is a common consequence of vaginal childbirth. Nonsteroidal anti-inflammatory drugs are widely used postpartum analgesics. Multiple studies have reported negative effects of these drugs on limb muscle regeneration, but their impact on pelvic floor muscle recovery following birth injury has not been explored. OBJECTIVE Using a validated rat model, we assessed the effects of nonsteroidal anti-inflammatory drug on acute and longer-term pelvic floor muscle recovery following simulated birth injury. STUDY DESIGN Three-month old Sprague Dawley rats were randomly assigned to the following groups: (1) controls, (2) simulated birth injury, (3) simulated birth injury+nonsteroidal anti-inflammatory drug, or (4) nonsteroidal anti-inflammatory drug. Simulated birth injury was induced using a well-established vaginal balloon distension protocol. Ibuprofen was administered in drinking water (0.2 mg/mL), which was consumed by the animals ad libitum. Animals were euthanized at 1, 3, 5, 7, 10, and 28 days after birth injury/ibuprofen administration. The pubocaudalis portion of the rat levator ani, which, like the human pubococcygeus, undergoes greater parturition-associated strains, was harvested (N=3-9/time point/group). The cross-sectional areas of regenerating (embryonic myosin heavy chain+) and mature myofibers were assessed at the acute and 28-day time points, respectively. The intramuscular collagen content was assessed at the 28-day time point. Myogenesis was evaluated using anti-Pax7 and anti-myogenin antibodies to identify activated and differentiated muscle stem cells, respectively. The overall immune infiltrate was assessed using anti-CD45 antibody. Expression of genes coding for pro- and anti-inflammatory cytokines was assessed by quantitative reverse transcriptase polymerase chain reaction at 3, 5, and 10 days after injury. RESULTS The pubocaudalis fiber size was significantly smaller in the simulated birth injury+nonsteroidal anti-inflammatory drug compared with the simulated birth injury group at 28 days after injury (P<.0001). The median size of embryonic myosin heavy chain+ fibers was also significantly reduced, with the fiber area distribution enriched with smaller fibers in the simulated birth injury+nonsteroidal anti-inflammatory drug group relative to the simulated birth injury group at 3 days after injury (P<.0001), suggesting a delay in the onset of regeneration in the presence of nonsteroidal anti-inflammatory drugs. By 10 days after injury, the median embryonic myosin heavy chain+ fiber size in the simulated birth injury group decreased from 7 days after injury (P<.0001) with a tight cross-sectional area distribution, indicating nearing completion of this state of regeneration. However, in the simulated birth injury+nonsteroidal anti-inflammatory drug group, the size of embryonic myosin heavy chain+ fibers continued to increase (P<.0001) with expansion of the cross-sectional area distribution, signifying a delay in regeneration in these animals. Nonsteroidal anti-inflammatory drugs decreased the muscle stem cell pool at 7 days after injury (P<.0001) and delayed muscle stem cell differentiation, as indicated by persistently elevated number of myogenin+ cells 7 days after injury (P<.05). In contrast, a proportion of myogenin+ cells returned to baseline by 5 days after injury in the simulated birth injury group. The analysis of expression of genes coding for pro- and anti-inflammatory cytokines demonstrated only transient elevation of Tgfb1 in the simulated birth injury+nonsteroidal anti-inflammatory drug group at 5 but not at 10 days after injury. Consistently with previous studies, nonsteroidal anti-inflammatory drug administration following simulated birth injury resulted in increased deposition of intramuscular collagen relative to uninjured animals. There were no significant differences in any outcomes of interest between the nonsteroidal anti-inflammatory drug group and the unperturbed controls. CONCLUSION Nonsteroidal anti-inflammatory drugs negatively impacted pelvic floor muscle regeneration in a preclinical simulated birth injury model. This appears to be driven by the negative impact of these drugs on pelvic muscle stem cell function, resulting in delayed temporal progression of pelvic floor muscle regeneration following birth injury. These findings provide impetus to investigate the impact of postpartum nonsteroidal anti-inflammatory drug administration on muscle regeneration in women at high risk for pelvic floor muscle injury.
Collapse
Affiliation(s)
- Alyssa J Kobayashi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Francesca Boscolo Sesillo
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, San Diego, CA
| | - Emmy Do
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Marianna Alperin
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, San Diego, CA; Sanford Consortium for Regenerative Medicine, La Jolla, CA.
| |
Collapse
|
44
|
Chikkamenahalli LL, Jessen E, Bernard CE, Ip WE, Breen-Lyles M, Cipriani G, Pullapantula SR, Li Y, AlAsfoor S, Wilson L, Koch KL, Kuo B, Shulman RJ, Chumpitazi BP, McKenzie TJ, Kellogg TA, Tonascia J, Hamilton FA, Sarosiek I, McCallum R, Parkman HP, Pasricha PJ, Abell TL, Farrugia G, Dasari S, Grover M. Single cell atlas of human gastric muscle immune cells and macrophage-driven changes in idiopathic gastroparesis. iScience 2024; 27:108991. [PMID: 38384852 PMCID: PMC10879712 DOI: 10.1016/j.isci.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Gastrointestinal immune cells, particularly muscularis macrophages (MM) interact with the enteric nervous system and influence gastrointestinal motility. Here we determine the human gastric muscle immunome and its changes in patients with idiopathic gastroparesis (IG). Single cell sequencing was performed on 26,000 CD45+ cells obtained from the gastric tissue of 20 subjects. We demonstrate 11 immune cell clusters with T cells being most abundant followed by myeloid cells. The proportions of cells belonging to the 11 clusters were similar between IG and controls. However, 9/11 clusters showed 578-11,429 differentially expressed genes. In IG, MM had decreased expression of tissue-protective and microglial genes and increased the expression of monocyte trafficking and stromal activating genes. Furthermore, in IG, IL12 mediated JAK-STAT signaling involved in the activation of tissue-resident macrophages and Eph-ephrin signaling involved in monocyte chemotaxis were upregulated. Patients with IG had a greater abundance of monocyte-like cells. These data further link immune dysregulation to the pathophysiology of gastroparesis.
Collapse
Affiliation(s)
| | - Erik Jessen
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Cheryl E. Bernard
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - W.K. Eddie Ip
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Margaret Breen-Lyles
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Suraj R. Pullapantula
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Ying Li
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Shefaa AlAsfoor
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Laura Wilson
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Braden Kuo
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Frank A. Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Irene Sarosiek
- Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | | | | | | | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
| | - the NIDDK Gastroparesis Clinical Research Consortium (GpCRC)
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program, Mayo Clinic, Rochester, MN, USA
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wake Forest University, Winston-Salem, NC, USA
- Massachusetts General Hospital, Boston, MA, USA
- Baylor College of Medicine, Houston, TX, USA
- Duke University, Durham, NC, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Texas Tech University Health Sciences Center, El Paso, TX, USA
- Temple University, Philadelphia, PA, USA
- Mayo Clinic, Scottsdale, AZ, USA
- University of Louisville, Louisville, KY, USA
| |
Collapse
|
45
|
Xu J, Peng WR, Zhang D, Sun HX, Li L, Sun F, Gu ZC, Lin HW. Marine sponge-derived alkaloid ameliorates DSS-induced IBD via inhibiting IL-6 expression through modulating JAK2-STAT3-SOCS3 pathway. Int Immunopharmacol 2024; 129:111576. [PMID: 38350353 DOI: 10.1016/j.intimp.2024.111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
Cyanogramide (AC14), a novel alkaloid, isolated from the fermentation broth of the marine-derived Actinoalloteichus cyanogriseus. However, the exact role of AC14 in inflammatory bowel disease (IBD) is poorly understood. Our results demonstrated that AC14 exhibited significant inhibition of IL-6 release in THP-1 cells and a "Caco-2/THP-1" coculture system after stimulation with LPS for 24 h. However, no significant effect on TNF-α production was observed. Furthermore, in 2.5 % DSS-induced colitis mice, AC14 treatment led to improvement in body weight, colon length, and intestine mucosal barrier integrity. AC14 also suppressed serum IL-6 production and modulated dysregulated microbiota in the mice. Mechanistically, AC14 was found to inhibit the phosphorylation of Janus kinase (JAK) 2 and signal transducers and activators of transcription (STAT) 3, while simultaneously elevating the expression of suppressor of cytokine signaling (SOCS) 3, both in vivo and in vitro. These findings suggest that AC14 exerts its suppressive effects on IL-6 production in DSS-induced IBD mice through the JAK2-STAT3-SOCS3 signaling pathway. Our study highlights the potential of AC14 as a therapeutic agent for the treatment of IBD.
Collapse
Affiliation(s)
- Jing Xu
- School of Medicine, Tongji University, Shanghai 200092, People's Republic of China; Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wen-Rui Peng
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Die Zhang
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Hong-Xin Sun
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Lei Li
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Fan Sun
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Zhi-Chun Gu
- Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| | - Hou-Wen Lin
- School of Medicine, Tongji University, Shanghai 200092, People's Republic of China; Research Center for Marine Drugs, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.
| |
Collapse
|
46
|
Zheng P, He J, Fu Y, Yang Y, Li S, Duan B, Yang Y, Hu Y, Yang Z, Wang M, Liu Q, Zheng X, Hua L, Li W, Li D, Ding Y, Yang X, Bai H, Long Q, Huang W, Ma Y. Engineered Bacterial Biomimetic Vesicles Reprogram Tumor-Associated Macrophages and Remodel Tumor Microenvironment to Promote Innate and Adaptive Antitumor Immune Responses. ACS NANO 2024; 18:6863-6886. [PMID: 38386537 DOI: 10.1021/acsnano.3c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant infiltrating leukocytes in the tumor microenvironment (TME). Reprogramming TAMs from protumor M2 to antitumor M1 phenotype is a promising strategy for remodeling the TME and promoting antitumor immunity; however, the development of an efficient strategy remains challenging. Here, a genetically modified bacterial biomimetic vesicle (BBV) with IFN-γ exposed on the surface in a nanoassembling membrane pore structure was constructed. The engineered IFN-γ BBV featured a nanoscale structure of protein and lipid vesicle, the existence of rich pattern-associated molecular patterns (PAMPs), and the costimulation of introduced IFN-γ molecules. In vitro, IFN-γ BBV reprogrammed M2 macrophages to M1, possibly through NF-κB and JAK-STAT signaling pathways, releasing nitric oxide (NO) and inflammatory cytokines IL-1β, IL-6, and TNF-α and increasing the expression of IL-12 and iNOS. In tumor-bearing mice, IFN-γ BBV demonstrated a targeted enrichment in tumors and successfully reprogrammed TAMs into the M1 phenotype; notably, the response of antigen-specific cytotoxic T lymphocyte (CTL) in TME was promoted while the immunosuppressive myeloid-derived suppressor cell (MDSC) was suppressed. The tumor growth was found to be significantly inhibited in both a TC-1 tumor and a CT26 tumor. It was indicated that the antitumor effects of IFN-γ BBV were macrophage-dependent. Further, the modulation of TME by IFN-γ BBV produced synergistic effects against tumor growth and metastasis with an immune checkpoint inhibitor in an orthotopic 4T1 breast cancer model which was insensitive to anti-PD-1 mAb alone. In conclusion, IFN-γ-modified BBV demonstrated a strong capability of efficiently targeting tumor and tuning a cold tumor hot through reprogramming TAMs, providing a potent approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Shuqin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Kunming Medical University, Kunming 650500, People's Republic of China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 530112, People's Republic of China
| | - Yiting Ding
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, People's Republic of China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, People's Republic of China
| |
Collapse
|
47
|
Huang W, Wang L, Huang Z, Sun Z, Zheng B. Peroxiredoxin 3 has a crucial role in the macrophage polarization by regulating mitochondrial homeostasis. Respir Res 2024; 25:110. [PMID: 38431661 PMCID: PMC10909251 DOI: 10.1186/s12931-024-02739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Acute lung injury (ALI) is one of the life-threatening complications of sepsis, and macrophage polarization plays a crucial role in the sepsis-associated ALI. However, the regulatory mechanisms of macrophage polarization in ALI and in the development of inflammation are largely unknown. In this study, we demonstrated that macrophage polarization occurs in sepsis-associated ALI and is accompanied by mitochondrial dysfunction and inflammation, and a decrease of PRDX3 promotes the initiation of macrophage polarization and mitochondrial dysfunction. Mechanistically, PRDX3 overexpression promotes M1 macrophages to differentiate into M2 macrophages, and enhances mitochondrial functional recovery after injury by reducing the level of glycolysis and increasing TCA cycle activity. In conclusion, we identified PRDX3 as a critical hub integrating oxidative stress, inflammation, and metabolic reprogramming in macrophage polarization. The findings illustrate an adaptive mechanism underlying the link between macrophage polarization and sepsis-associated ALI.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Respiratory and Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lianfang Wang
- Department of Respiratory and Critical Care Medicine, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Guangxi, China
| | - Zhipeng Huang
- Dongguan Hospital of Integrated Chinese and Western Medicine, Dongguan, China
| | - Zhichao Sun
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Bojun Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
48
|
Rodon J, Sachse M, Te N, Segalés J, Bensaid A, Risco C, Vergara-Alert J. Middle East respiratory coronavirus (MERS-CoV) internalized by llama alveolar macrophages does not result in virus replication or induction of pro-inflammatory cytokines. Microbes Infect 2024; 26:105252. [PMID: 37981029 DOI: 10.1016/j.micinf.2023.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/06/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Severe Middle East respiratory syndrome (MERS) is characterized by massive infiltration of immune cells in lungs. MERS-coronavirus (MERS-CoV) replicates in vitro in human macrophages, inducing high pro-inflammatory responses. In contrast, camelids, the main reservoir for MERS-CoV, are asymptomatic carriers. Although limited infiltration of leukocytes has been observed in the lower respiratory tract of camelids, their role during infection remains unknown. Here we studied whether llama alveolar macrophages (LAMs) are susceptible to MERS-CoV infection and can elicit pro-inflammatory responses. MERS-CoV did not replicate in LAMs; however, they effectively capture and degrade viral particles. Moreover, transcriptomic analyses showed that LAMs do not induce pro-inflammatory cytokines upon MERS-CoV sensing.
Collapse
Affiliation(s)
- Jordi Rodon
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| | - Martin Sachse
- Centro Nacional de Biotecnología (CNB), CSIC, Campus de la UAM, 28049 Madrid, Spain.
| | - Nigeer Te
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra, 08193, Catalonia, Spain.
| | - Albert Bensaid
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| | - Cristina Risco
- Centro Nacional de Biotecnología (CNB), CSIC, Campus de la UAM, 28049 Madrid, Spain.
| | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
49
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
50
|
Gong ZT, Xiong YY, Ning Y, Tang RJ, Xu JY, Jiang WY, Li XS, Zhang LL, Chen C, Pan Q, Hu MJ, Xu J, Yang YJ. Nicorandil-Pretreated Mesenchymal Stem Cell-Derived Exosomes Facilitate Cardiac Repair After Myocardial Infarction via Promoting Macrophage M2 Polarization by Targeting miR-125a-5p/TRAF6/IRF5 Signaling Pathway. Int J Nanomedicine 2024; 19:2005-2024. [PMID: 38469055 PMCID: PMC10926597 DOI: 10.2147/ijn.s441307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/18/2024] [Indexed: 03/13/2024] Open
Abstract
Background Exosomes derived from bone marrow mesenchymal stem cells (MSC-exo) have been considered as a promising cell-free therapeutic strategy for ischemic heart disease. Cardioprotective drug pretreatment could be an effective approach to improve the efficacy of MSC-exo. Nicorandil has long been used in clinical practice for cardioprotection. This study aimed to investigate whether the effects of exosomes derived from nicorandil pretreated MSC (MSCNIC-exo) could be enhanced in facilitating cardiac repair after acute myocardial infarction (AMI). Methods MSCNIC-exo and MSC-exo were collected and injected into the border zone of infarcted hearts 30 minutes after coronary ligation in rats. Macrophage polarization was detected 3 days post-infarction, cardiac function as well as histological pathology were measured on the 28th day after AMI. Macrophages were separated from the bone marrow of rats for in vitro model. Exosomal miRNA sequencing was conducted to identify differentially expressed miRNAs between MSCNIC-exo and MSC-exo. MiRNA mimics and inhibitors were transfected to MSCs or macrophages to explore the specific mechanism. Results Compared to MSC-exo, MSCNIC-exo showed superior therapeutic effects on cardiac functional and structural recovery after AMI and markedly elevated the ratio of CD68+ CD206+/ CD68+cells in infarcted hearts 3 days post-infarction. The notable ability of MSCNIC-exo to promote macrophage M2 polarization was also confirmed in vitro. Exosomal miRNA sequencing and both in vivo and in vitro experiments identified and verified that miR-125a-5p was an effector of the roles of MSCNIC-exo in vivo and in vitro. Furthermore, we found miR-125a-5p promoted macrophage M2 polarization by inhibiting TRAF6/IRF5 signaling pathway. Conclusion This study suggested that MSCNIC-exo could markedly facilitate cardiac repair post-infarction by promoting macrophage M2 polarization by upregulating miR-125a-5p targeting TRAF6/IRF5 signaling pathway, which has great potential for clinical translation.
Collapse
Affiliation(s)
- Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Jun-Yan Xu
- Department of Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China
| | - Wen-Yang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Xiao-Song Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Meng-Jin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| |
Collapse
|