1
|
Hua F, Bonzerato CG, Keller KR, Guo D, Luo J, Wojcikiewicz RJH. The erlin1/erlin2 complex binds to and stabilizes phosphatidylinositol 3-phosphate and regulates autophagy. Biochem Biophys Res Commun 2024; 731:150397. [PMID: 39018973 DOI: 10.1016/j.bbrc.2024.150397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
The erlin1/erlin2 (E1/E2) complex is an endoplasmic reticulum membrane-located assemblage of the proteins erlin1 and erlin2. Here, we demonstrate direct and selective binding of phosphatidylinositol 3-phosphate (PI(3)P) to recombinant erlins and that disruption or deletion of the E1/E2 complex reduces HeLa cell PI(3)P levels by ∼50 %. This reduction correlated with a decrease in autophagic flux, with no effect on the endocytic pathway, and was not due to reduced VPS34 kinase activity, which is critical for maintaining steady-state PI(3)P levels. Pharmacological inhibition of VPS34 and suppression of PI(3)P levels caused a similar reduction in autophagic flux. Overall, these data indicate that by binding to PI(3)P, the E1/E2 complex plays an important role in maintaining the steady-state levels of PI(3)P and, thus, sustains some key PI(3)P-dependent processes, e.g., autophagy.
Collapse
Affiliation(s)
- Fanghui Hua
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dandan Guo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Juntao Luo
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | |
Collapse
|
2
|
Xu W, Ma M, Zhao S, Yuan Y, Tian Z. Case of Congenital Hemolytic Anemia with ATP11C and ANK1 Variants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1600. [PMID: 37892263 PMCID: PMC10605443 DOI: 10.3390/children10101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023]
Abstract
A male infant of Han descent, with a G1P1 mother and gestational age of 40+4 weeks, was born via cesarean section owing to his mother having pregnancy complications, including premature rupture of membranes, chorioamnionitis, and gestational diabetes. On the first day after birth, routine blood examination showed that his total red blood cells count was 2.32 × 1012/L, hemoglobin count was 77 g/L, and C-reactive protein count was 48.99 mg/L. After receiving an anti-infection treatment for 10 days and two blood transfusions (100 mL in total), he was discharged from a neonatal intensive care unit (NICU). Accessory examinations showed that reticulocytes in the peripheral blood were significantly increased, the morphology of red blood cells was normal, and all hemolysis-related examinations were normal; bone marrow examinations showed that the proliferation of the red blood cell system was low and serum ferritin and vitamin B12 levels were elevated. Because of the unexplained hemolysis, a whole-exome sequencing examination was performed. The results showed a hemizygous variant of the ATP11C gene (c.3136a>t/p ile 1046phe) and a frame-shift variant of the ANK1 gene (c.937del/pala313 leufs*19). After a six-month follow-up, the serum ferritin and vitamin B12 levels had gradually decreased to normal levels, and hemoglobin and reticulocyte values were 97 g/L and 7.17%, respectively, in the peripheral blood. No splenomegaly was found in physical examination.
Collapse
Affiliation(s)
- Wei Xu
- The Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, No 1 Huanghe Road, Huaiyin District, Huaian 223300, China; (W.X.); (Z.T.)
| | - Mengmeng Ma
- The Department of Neonatology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, No 1 Huanghe Road, Huaiyin District, Huaian 223300, China; (M.M.); (S.Z.)
| | - Sai Zhao
- The Department of Neonatology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, No 1 Huanghe Road, Huaiyin District, Huaian 223300, China; (M.M.); (S.Z.)
| | - Yufang Yuan
- The Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, No 1 Huanghe Road, Huaiyin District, Huaian 223300, China; (W.X.); (Z.T.)
| | - Zhaofang Tian
- The Department of Pediatrics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, No 1 Huanghe Road, Huaiyin District, Huaian 223300, China; (W.X.); (Z.T.)
- The Department of Neonatology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, No 1 Huanghe Road, Huaiyin District, Huaian 223300, China; (M.M.); (S.Z.)
| |
Collapse
|
3
|
Bulat F, Hesse F, Attili B, Solanki C, Mendichovszky IA, Aigbirhio F, Leeper FJ, Brindle KM, Neves AA. Preclinical PET Imaging of Tumor Cell Death following Therapy Using Gallium-68-Labeled C2Am. Cancers (Basel) 2023; 15:1564. [PMID: 36900353 PMCID: PMC10001225 DOI: 10.3390/cancers15051564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
There is an unmet clinical need for imaging agents capable of detecting early evidence of tumor cell death, since the timing, extent, and distribution of cell death in tumors following treatment can give an indication of treatment outcome. We describe here 68Ga-labeled C2Am, which is a phosphatidylserine-binding protein, for imaging tumor cell death in vivo using positron emission tomography (PET). A one-pot synthesis of 68Ga-C2Am (20 min, 25 °C, >95% radiochemical purity) has been developed, using a NODAGA-maleimide chelator. The binding of 68Ga-C2Am to apoptotic and necrotic tumor cells was assessed in vitro using human breast and colorectal cancer cell lines, and in vivo, using dynamic PET measurements in mice implanted subcutaneously with the colorectal tumor cells and treated with a TRAIL-R2 agonist. 68Ga-C2Am showed predominantly renal clearance and low retention in the liver, spleen, small intestine, and bone and generated a tumor-to-muscle (T/m) ratio of 2.3 ± 0.4, at 2 h post probe administration and at 24 h following treatment. 68Ga-C2Am has the potential to be used in the clinic as a PET tracer for assessing early treatment response in tumors.
Collapse
Affiliation(s)
- Flaviu Bulat
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Bala Attili
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Chandra Solanki
- Addenbrooke’s Hospital Radiopharmacy, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Iosif A. Mendichovszky
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
- Department of Radiology, University of Cambridge, Cambridge CB2 1EW, UK
| | - Franklin Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Finian J. Leeper
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - André A. Neves
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
4
|
Lucci C, De Groef L. On the other end of the line: Extracellular vesicle-mediated communication in glaucoma. Front Neuroanat 2023; 17:1148956. [PMID: 37113676 PMCID: PMC10126352 DOI: 10.3389/fnana.2023.1148956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
In the last decade, extracellular vesicles (EVs) have emerged as a promising field of research due to their ability to participate in cell-to-cell communication via the transfer of their very diverse and complex cargo. The latter reflects the nature and physiological state of the cell of origin and, as such, EVs may not only play a pivotal role in the cellular events that culminate into disease, but also hold great potential as drug delivery vehicles and biomarkers. Yet, their role in glaucoma, the leading cause of irreversible blindness worldwide, has not been fully studied. Here, we provide an overview of the different EV subtypes along with their biogenesis and content. We elaborate on how EVs released by different cell types can exert a specific function in the context of glaucoma. Finally, we discuss how these EVs provide opportunities to be used as biomarkers for diagnosis and monitoring of disease.
Collapse
|
5
|
Radhakrishnan N, Kaul SC, Wadhwa R, Sundar D. Phosphatidylserine Exposed Lipid Bilayer Models for Understanding Cancer Cell Selectivity of Natural Compounds: A Molecular Dynamics Simulation Study. MEMBRANES 2022; 12:64. [PMID: 35054590 PMCID: PMC8780679 DOI: 10.3390/membranes12010064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Development of drugs that are selectively toxic to cancer cells and safe to normal cells is crucial in cancer treatment. Evaluation of membrane permeability is a key metric for successful drug development. In this study, we have used in silico molecular models of lipid bilayers to explore the effect of phosphatidylserine (PS) exposure in cancer cells on membrane permeation of natural compounds Withaferin A (Wi-A), Withanone (Wi-N), Caffeic Acid Phenethyl Ester (CAPE) and Artepillin C (ARC). Molecular dynamics simulations were performed to compute permeability coefficients. The results indicated that the exposure of PS in cancer cell membranes facilitated the permeation of Wi-A, Wi-N and CAPE through a cancer cell membrane when compared to a normal cell membrane. In the case of ARC, PS exposure did not have a notable influence on its permeability coefficient. The presented data demonstrated the potential of PS exposure-based models for studying cancer cell selectivity of drugs.
Collapse
Affiliation(s)
- Navaneethan Radhakrishnan
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India;
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan;
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India;
- School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Lee SA, Lee J, Kim K, Moon H, Min C, Moon B, Kim D, Yang S, Park H, Lee G, Park R, Park D. The Peroxisomal Localization of Hsd17b4 Is Regulated by Its Interaction with Phosphatidylserine. Mol Cells 2021; 44:214-222. [PMID: 33935042 PMCID: PMC8112170 DOI: 10.14348/molcells.2021.2217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid exclusively located in the inner leaflet of the plasma membrane, is involved in various cellular processes such as blood coagulation, myoblast fusion, mammalian fertilization, and clearance of apoptotic cells. Proteins that specifically interact with PS must be identified to comprehensively understand the cellular processes involving PS. However, only a limited number of proteins are known to associate with PS. To identify PS-associating proteins, we performed a pulldown assay using streptavidin-coated magnetic beads on which biotin-linked PS was immobilized. Using this approach, we identified Hsd17b4, a peroxisomal protein, as a PS-associating protein. Hsd17b4 strongly associated with PS, but not with phosphatidylcholine or sphingomyelin, and the Scp-2-like domain of Hsd17b4 was responsible for this association. The association was disrupted by PS in liposomes, but not by free PS or the components of PS. In addition, translocation of PS to the outer leaflet of the plasma membrane enriched Hsd17b4 in peroxisomes. Collectively, this study suggests an unexpected role of PS as a regulator of the subcellular localization of Hsd17b4.
Collapse
Affiliation(s)
- Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Juyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Chanhyuk Min
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Byeongjin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Susumin Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Hyunjin Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, GIST, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| |
Collapse
|
7
|
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: new players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319:H1181-H1196. [PMID: 33035434 PMCID: PMC7792704 DOI: 10.1152/ajpheart.00579.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
8
|
Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183241. [DOI: 10.1016/j.bbamem.2020.183241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022]
|
9
|
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020; 57:678-696. [PMID: 32705178 PMCID: PMC7384845 DOI: 10.3892/ijo.2020.5099] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is currently ineffectively treated using therapeutic drugs, and is also able to resist drug action, resulting in increased side effects following drug treatment. A novel therapeutic strategy against cancer cells is the use of anticancer peptides (ACPs). The physicochemical properties, amino acid composition and the addition of chemical groups on the ACP sequence influences their conformation, net charge and orientation of the secondary structure, leading to an effect on targeting specificity and ACP-cell interaction, as well as peptide penetrating capability, stability and efficacy. ACPs have been developed from both naturally occurring and modified peptides by substituting neutral or anionic amino acid residues with cationic amino acid residues, or by adding a chemical group. The modified peptides lead to an increase in the effectiveness of cancer therapy. Due to this effectiveness, ACPs have recently been improved to form drugs and vaccines, which have sequentially been evaluated in various phases of clinical trials. The development of the ACPs remains focused on generating newly modified ACPs for clinical application in order to decrease the incidence of new cancer cases and decrease the mortality rate. The present review could further facilitate the design of ACPs and increase efficacious ACP therapy in the near future.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Jackson BS, Nunes Goncalves J, Pretorius E. Comparison of pathological clotting using haematological, functional and morphological investigations in HIV-positive and HIV-negative patients with deep vein thrombosis. Retrovirology 2020; 17:14. [PMID: 32571345 PMCID: PMC7310079 DOI: 10.1186/s12977-020-00523-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients infected with the human immunodeficiency virus (HIV) are more prone to systemic inflammation and pathological clotting, and many may develop deep vein thrombosis (DVT) as a result of this dysregulated inflammatory profile. Coagulation tests are not routinely performed unless there is a specific reason. METHODS We recruited ten healthy control subjects, 35 HIV negative patients with deep vein thrombosis (HIV negative-DVT), and 13 HIV patients with DVT (HIV positive-DVT) on the primary antiretroviral therapy (ARV) regimen-emtricitabine, tenofovir and efavirenz. Serum inflammatory markers, haematological results, viscoelastic properties using thromboelastography (TEG) and scanning electron microscopy (SEM) of whole blood (WB) were used to compare the groups. RESULTS The DVT patients (HIV positive and HIV negative) had raised inflammatory markers. The HIV positive-DVT group had anaemia in keeping with anaemia of chronic disorders. DVT patients had a hypercoagulable profile on the TEG but no significant difference between HIV negative-DVT and HIV positive-DVT groups. The TEG analysis compared well and supported our ultrastructural results. Scanning electron microscopy of DVT patient's red blood cells (RBCs) and platelets demonstrated inflammatory changes including abnormal cell shapes, irregular membranes and microparticle formation. All the ultrastructural changes were more prominent in the HIV positive-DVT patients. CONCLUSIONS Although there were trends that HIV-positive patients were more hypercoagulable on functional tests (viscoelastic profile) compared to HIV-negative patients, there were no significant differences between the 2 groups. The sample size was, however, small in number. Morphologically there were inflammatory changes in patients with DVT. These ultrastructural changes, specifically with regard to platelets, appear more pronounced in HIV-positive patients which may contribute to increased risk for hypercoagulability and deep vein thrombosis.
Collapse
Affiliation(s)
- Brandon S Jackson
- Department of Surgery, University of Pretoria, Pretoria, 0007, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa.
| |
Collapse
|
11
|
Catalano M, O'Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles 2019; 9:1703244. [PMID: 32002167 PMCID: PMC6968539 DOI: 10.1080/20013078.2019.1703244] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 11/14/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
It is now becoming well established that vesicles are released from a broad range of cell types and are involved in cell-to-cell communication, both in physiological and pathological conditions. Once outside the cell, these vesicles are termed extracellular vesicles (EVs). The cellular origin (cell type), subcellular origin (through the endosomal pathway or pinched from the cell membrane) and content (what proteins, glycoproteins, lipids, nucleic acids, metabolites) are transported by the EVs, and their size, all seem to be contributing factors to their overall heterogeneity. Efforts are being invested into attempting to block the release of subpopulations of EVs or, indeed, all EVs. Some such studies are focussed on investigating EV inhibitors as research tools; others are interested in the longerterm potential of using such inhibitors in pathological conditions such as cancer. This review, intended to be of relevance to both researchers already well established in the EV field and newcomers to this field, provides an outline of the compounds that have been most extensively studied for this purpose, their proposed mechanisms of actions and the findings of these studies.
Collapse
Affiliation(s)
- Mariadelva Catalano
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Than UTT, Leavesley DI, Parker TJ. Characteristics and roles of extracellular vesicles released by epidermal keratinocytes. J Eur Acad Dermatol Venereol 2019; 33:2264-2272. [PMID: 31403744 DOI: 10.1111/jdv.15859] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Abstract
Keratinocytes, which constitute 90% of the cells in the epidermis of the skin, have been demonstrated to communicate with other skin cells such as fibroblasts, melanocytes and immune cells through extracellular vesicles (EVs). This communication is facilitated by the enriched EV biomolecular cargo which regulates multiple biological processes within skin tissue, including cell proliferation, cell migration, anti-apoptosis, pigmentation transfer and extracellular matrix remodelling. This review will provide an overview of the current literature and advances in the field of keratinocyte-derived EV research with particular regard to the interactions and communication between keratinocytes and other skin cells, mediated by EVs and EV components. Importantly, this information may shed some light on the potential for keratinocyte-derived EVs in future biomedical studies.
Collapse
Affiliation(s)
- U T T Than
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec International Hospital, Ha Noi, Vietnam
| | - D I Leavesley
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia
| | - T J Parker
- School of Biomedical Science, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia.,Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| |
Collapse
|
13
|
Roma MG, Barosso IR, Miszczuk GS, Crocenzi FA, Pozzi EJS. Dynamic Localization of Hepatocellular Transporters: Role in Biliary Excretion and Impairment in Cholestasis. Curr Med Chem 2019; 26:1113-1154. [DOI: 10.2174/0929867325666171205153204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022]
Abstract
Bile flow generation is driven by the vectorial transfer of osmotically active compounds from sinusoidal blood into a confined space, the bile canaliculus. Hence, localization of hepatocellular transporters relevant to bile formation is crucial for bile secretion. Hepatocellular transporters are localized either in the plasma membrane or in recycling endosomes, from where they can be relocated to the plasma membrane on demand, or endocytosed when the demand decreases. The balance between endocytic internalization/ exocytic targeting to/from this recycling compartment is therefore the main determinant of the hepatic capability to generate bile, and to dispose endo- and xenobiotics. Furthermore, the exacerbated endocytic internalization is a common pathomechanisms in both experimental and human cholestasis; this results in bile secretory failure and, eventually, posttranslational transporter downregulation by increased degradation. This review summarizes the proposed structural mechanisms accounting for this pathological condition (e.g., alteration of function, localization or expression of F-actin or F-actin/transporter cross-linking proteins, and switch to membrane microdomains where they can be readily endocytosed), and the mediators implicated (e.g., triggering of “cholestatic” signaling transduction pathways). Lastly, we discussed the efficacy to counteract the cholestatic failure induced by transporter internalization of a number of therapeutic experimental approaches based upon the use of compounds that trigger exocytic targetting of canalicular transporters (e.g., cAMP, tauroursodeoxycholate). This therapeutics may complement treatments aimed to transcriptionally improve transporter expression, by affording proper localization and membrane stability to the de novo synthesized transporters.
Collapse
Affiliation(s)
- Marcelo G. Roma
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Ismael R. Barosso
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Gisel S. Miszczuk
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Fernando A. Crocenzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| | - Enrique J. Sánchez Pozzi
- Instituto de Fisiologia Experimental (IFISE) - Facultad de Ciencias Bioquimicas y Farmaceuticas (CONICET - U.N.R.), S2002LRL, Rosario, Argentina
| |
Collapse
|
14
|
Yamaguchi R, Sakamoto A, Yamaguchi R, Haraguchi M, Narahara S, Sugiuchi H, Katoh T, Yamaguchi Y. Di-(2-Ethylhexyl) Phthalate Promotes Release of Tissue Factor-Bearing Microparticles From Macrophages via the TGFβ1/Smad/PAI-1 Signaling Pathway. Am J Med Sci 2019; 357:492-506. [PMID: 30910165 DOI: 10.1016/j.amjms.2019.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/26/2019] [Accepted: 02/07/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor type 1 promotes formation of endothelial microparticles with procoagulant activity. However, it remains unclear whether di-(2-ethylhexyl) phthalate, a peroxisome proliferator-activated receptor α agonist, influences microparticle formation. MATERIALS AND METHODS The effect of di-(2-ethylhexyl) phthalate on release of tissue factor-bearing microparticles was investigated using human M1 macrophages. RESULTS Exposure of M1 macrophages to di-(2-ethylhexyl) phthalate significantly upregulated expression of plasminogen activator inhibitor type 1, whereas incubation of macrophages with small interfering RNA for peroxisome proliferator-activated receptor α attenuated it. Di-(2-ethylhexyl) phthalate significantly increased the tissue factor protein level in culture supernatants of M1 macrophages, but not M2 macrophages. After purification of proteins by centrifugal filtration, western blotting detected 2 high molecular weight bands of tissue factor-bearing microparticles in culture supernatants of M1 macrophages. The upper band showed binding to factor VIIa and tissue factor pathway inhibitor, unlike the lower band. This suggested heterogeneity of the procoagulant activity of tissue factor-bearing microparticles, presumably dependent upon encryption/decryption of tissue factor. Phosphatidylserine contributes to tissue factor decryption, and western blotting revealed that the density of phosphatidylserine was reduced in the upper tissue factor band compared with the lower band. Di-(2-ethylhexyl) phthalate also upregulated transforming growth factor-β1 protein production by M1 macrophages. Moreover, silencing of Smad2, Smad3 or Smad4 attenuated plasminogen activator inhibitor type 1 expression and tissue factor-release from macrophages after di-(2-ethylhexyl) phthalate stimulation. CONCLUSIONS Di-(2-ethylhexyl) phthalate promotes formation of tissue factor-bearing microparticles in human M1 macrophages via the transforming growth factor-β1/Smad/ plasminogen activator inhibitor type 1 signaling pathway.
Collapse
Affiliation(s)
- Rui Yamaguchi
- Department of Public Health, Faculty of Life Sciences, Kumamoto University School of Medicine, Kumamoto, Japan; Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Reona Yamaguchi
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Misa Haraguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Shinji Narahara
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Hiroyuki Sugiuchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - Takahiko Katoh
- Department of Public Health, Faculty of Life Sciences, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Yasuo Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan.
| |
Collapse
|
15
|
Ortega-Anaya J, Jiménez-Flores R. Symposium review: The relevance of bovine milk phospholipids in human nutrition—Evidence of the effect on infant gut and brain development. J Dairy Sci 2019; 102:2738-2748. [DOI: 10.3168/jds.2018-15342] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022]
|
16
|
Lopes-de-Araújo J, Reis S, Nunes C. Topotecan effect on the structure of normal and cancer plasma membrane lipid models: A multi-model approach. Eur J Pharm Sci 2018; 123:515-523. [DOI: 10.1016/j.ejps.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
|
17
|
Evaluation of lipid peroxidation and the level of some elements in rat erythrocytes during separate and combined vanadium and magnesium administration. Chem Biol Interact 2018; 293:1-10. [PMID: 30028963 DOI: 10.1016/j.cbi.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Abstract
The impact of vanadium (V) and magnesium (Mg) as sodium metavanadate (SMV, 0.125 mg V/ml) and magnesium sulfate (MS, 0.06 mg Mg/ml) on lipid peroxidation (LPO) and selected elements in the rat erythrocytes (RBCs) was investigated. Relationships between some indices determined in RBC were also studied. SMV alone (Group II) elevated the malondialdehyde level (MDARBC) (by 95% and 60%), compared with the control (Group I) and MS-supplemented rats (Group III), respectively, reduced the concentration of CuRBC (by 23.5%), in comparison with Group I, but did not change the levels of NaRBC, KRBC, and CaRBC, whereas MS alone (Group III) only reduced the CuRBC concentration (by 22%), compared with Group I. The SMV + MS combination (Group IV) reduced and elevated the CuRBC (by 24%) and CaRBC (by 111%) concentrations, respectively, in comparison with Groups I and III, and these changes were induced by the V-Mg antagonistic and synergistic interaction, respectively. The combined SMV + MS effect also enhanced the MDARBC level, compared with Groups I (by 79%) and III (by 47%) and slightly limited its concentration, compared with Group II, which, in turn, resulted from the distinct trend toward the V-Mg antagonistic interaction. We can conclude that V (as SMV) is able to stimulate LPO in rat RBCs and that V-Mg interactive effects are involved in changes in CuRBC, CaRBC, and MDARBC. Further studies are needed to elucidate the exact mechanisms of the V-Mg antagonistic/synergistic interactions and to provide insight into the biochemical mechanisms of changes in rats suffering from anemia [1], characterized by a disrupted antioxidant barrier in RBCs [2] and an intensified free radical process in these cells.
Collapse
|
18
|
Xiang C, Yang K, Liang Z, Wan Y, Cheng Y, Ma D, Zhang H, Hou W, Fu P. Sphingosine-1-phosphate mediates the therapeutic effects of bone marrow mesenchymal stem cell-derived microvesicles on articular cartilage defect. Transl Res 2018; 193:42-53. [PMID: 29324234 DOI: 10.1016/j.trsl.2017.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/07/2017] [Accepted: 12/10/2017] [Indexed: 01/22/2023]
Abstract
Microvesicles (MVs) are emerging as a new mechanism of intercellular communication by transferring cellular components to target cells, yet their function in disease is just being explored. However, the therapeutic effects of MVs in cartilage injury and degeneration remain unknown. We found MVs contained high levels of sphingosine-1-phosphate (S1P) compared with the original bone marrow mesenchymal stem cells (MSCs). The enrichment of S1P in MVs was mediated by sphingosine kinase 1 (SphK1), but not by sphingosine kinase 2 (SphK2). Co-culture of human chondrocytes with MVs resulted in increased proliferation of chondrocytes in vitro, which was mediated by activation of S1P receptor 1 (S1PR1) expressed on chondrocytes. Meanwhile, MVs inhibited interleukin 1 beta-induced human chondrocytes apoptosis in a dose dependent manner. Furthermore, uptake of MVs by primary cultures of human chondrocytes was mediated by CD44 expressed by MVs. Anti-CD44 antibody significantly reduced the uptake of fluorescent protein-labeled MVs by chondrocytes. Further, blocking S1P by its neutralizing antibody significantly inhibited the therapeutic effects of MVs in vivo. Taken together, MVs showed therapeutic potential for treatment of clinical cartilage injury. This therapeutic potential is due to CD44-mediated uptake of MVs by chondrocytes and the S1P/S1PR1 axis-mediated proliferative effects of MVs on chondrocytes.
Collapse
Affiliation(s)
- Chuan Xiang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Kun Yang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiyong Liang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yulong Wan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanwei Cheng
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dong Ma
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Heng Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiyu Hou
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Panfeng Fu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Effect of high fat diet on phenotype, brain transcriptome and lipidome in Alzheimer's model mice. Sci Rep 2017; 7:4307. [PMID: 28655926 PMCID: PMC5487356 DOI: 10.1038/s41598-017-04412-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023] Open
Abstract
We examined the effect of chronic high fat diet (HFD) on amyloid deposition and cognition of 12-months old APP23 mice, and correlated the phenotype to brain transcriptome and lipidome. HFD significantly increased amyloid plaques and worsened cognitive performance compared to mice on normal diet (ND). RNA-seq results revealed that in HFD mice there was an increased expression of genes related to immune response, such as Trem2 and Tyrobp. We found a significant increase of TREM2 immunoreactivity in the cortex in response to HFD, most pronounced in female mice that correlated to the amyloid pathology. Down-regulated by HFD were genes related to neuron projections and synaptic transmission in agreement to the significantly deteriorated neurite morphology and cognition in these mice. To examine the effect of the diet on the brain lipidome, we performed Shotgun Lipidomics. While there was no difference in the total amounts of phospholipids of each class, we revealed that the levels of 24 lipid sub-species in the brain were significantly modulated by HFD. Network visualization of correlated lipids demonstrated overall imbalance with most prominent effect on cardiolipin molecular sub-species. This integrative approach demonstrates that HFD elicits a complex response at molecular, cellular and system levels in the CNS.
Collapse
|
20
|
Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res 2017; 66:30-41. [PMID: 28342835 DOI: 10.1016/j.plipres.2017.03.001] [Citation(s) in RCA: 677] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 12/29/2022]
Abstract
Lipids are essential components of exosomal membranes, and it is well-known that specific lipids are enriched in exosomes compared to their parent cells. In this review we discuss current knowledge about the lipid composition of exosomes. We compare published data for different lipid classes in exosomes, and what is known about their lipid species, i.e. lipid molecules with different fatty acyl groups. Moreover, we elaborate on the hypothesis about hand-shaking between the very-long-chain sphingolipids in the outer leaflet and PS 18:0/18:1 in the inner leaflet, and we propose this to be an important mechanism in membrane biology, not only for exosomes. The similarity between the lipid composition of exosomes, HIV particles, and detergent resistant membranes, used as lipid rafts models, is also discussed. Furthermore, we summarize knowledge about the role of specific lipids and lipid metabolizing enzymes on the formation and release of exosomes. Finally, the use of exosomal lipids as biomarkers and how the lipid composition of exosomes may be of importance for researchers aiming to use exosomes as drug delivery vehicles is discussed. In conclusion, we have summarized what is presently known about lipids in exosomes and identified issues that should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway; Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| |
Collapse
|
21
|
Maas SLN, Breakefield XO, Weaver AM. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol 2017; 27:172-188. [PMID: 27979573 PMCID: PMC5318253 DOI: 10.1016/j.tcb.2016.11.003] [Citation(s) in RCA: 980] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound carriers with complex cargoes including proteins, lipids, and nucleic acids. While the release of EVs was previously thought to be only a mechanism to discard nonfunctional cellular components, increasing evidence implicates EVs as key players in intercellular and even interorganismal communication. EVs confer stability and can direct their cargoes to specific cell types. EV cargoes also appear to act in a combinatorial manner to communicate directives to other cells. This review focuses on recent findings and knowledge gaps in the area of EV biogenesis, release, and uptake. In addition, we highlight examples whereby EV cargoes control basic cellular functions, including motility and polarization, immune responses, and development, and contribute to diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Sybren L N Maas
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA; Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, University Medical Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | - Alissa M Weaver
- Departments of Cancer Biology and Cell and Developmental Biology, Vanderbilt University School of Medicine and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
St. Clair JR, Wang Q, Li G, London E. Preparation and Physical Properties of Asymmetric Model Membrane Vesicles. SPRINGER SERIES IN BIOPHYSICS 2017. [DOI: 10.1007/978-981-10-6244-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Biophysics in cancer: The relevance of drug-membrane interaction studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2231-2244. [DOI: 10.1016/j.bbamem.2016.06.025] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 12/26/2022]
|
24
|
Erythrocytes and their role as health indicator: Using structure in a patient-orientated precision medicine approach. Blood Rev 2016; 30:263-74. [DOI: 10.1016/j.blre.2016.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022]
|
25
|
Quek DQY, Nguyen LN, Fan H, Silver DL. Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A. J Biol Chem 2016; 291:9383-94. [PMID: 26945070 DOI: 10.1074/jbc.m116.721035] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/22/2023] Open
Abstract
Major facilitator superfamily domain containing 2A (MFSD2A) was recently characterized as a sodium-dependent lysophosphatidylcholine transporter expressed at the blood-brain barrier endothelium. It is the primary route for importation of docosohexaenoic acid and other long-chain fatty acids into fetal and adult brain and is essential for mouse and human brain growth and function. Remarkably, MFSD2A is the first identified major facilitator superfamily member that uniquely transports lipids, implying that MFSD2A harbors unique structural features and transport mechanism. Here, we present three three-dimensional structural models of human MFSD2A derived by homology modeling using MelB- and LacY-based crystal structures and refined by biochemical analysis. All models revealed 12 transmembrane helices and connecting loops and represented the partially outward-open, outward-partially occluded, and inward-open states of the transport cycle. In addition to a conserved sodium-binding site, three unique structural features were identified as follows: a phosphate headgroup binding site, a hydrophobic cleft to accommodate a hydrophobic hydrocarbon tail, and three sets of ionic locks that stabilize the outward-open conformation. Ligand docking studies and biochemical assays identified Lys-436 as a key residue for transport. It is seen forming a salt bridge with the negative charge on the phosphate headgroup. Importantly, MFSD2A transported structurally related acylcarnitines but not a lysolipid without a negative charge, demonstrating the necessity of a negatively charged headgroup interaction with Lys-436 for transport. These findings support a novel transport mechanism by which lysophosphatidylcholines are "flipped" within the transporter cavity by pivoting about Lys-436 leading to net transport from the outer to the inner leaflet of the plasma membrane.
Collapse
Affiliation(s)
- Debra Q Y Quek
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857
| | - Long N Nguyen
- the Department of Biochemistry, Yong Loo Lin School of Medicine, and
| | - Hao Fan
- the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 138671 Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore 117545, and
| | - David L Silver
- From the Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore 169857,
| |
Collapse
|
26
|
The phospholipid code: a key component of dying cell recognition, tumor progression and host-microbe interactions. Cell Death Differ 2015; 22:1893-905. [PMID: 26450453 DOI: 10.1038/cdd.2015.122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023] Open
Abstract
A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the 'phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host-microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes.
Collapse
|
27
|
Defining the structural characteristics of annexin V binding to a mimetic apoptotic membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:697-708. [DOI: 10.1007/s00249-015-1068-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/16/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|
28
|
Ansari IUH, Longacre MJ, Paulusma CC, Stoker SW, Kendrick MA, MacDonald MJ. Characterization of P4 ATPase Phospholipid Translocases (Flippases) in Human and Rat Pancreatic Beta Cells: THEIR GENE SILENCING INHIBITS INSULIN SECRETION. J Biol Chem 2015; 290:23110-23. [PMID: 26240149 DOI: 10.1074/jbc.m115.655027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/08/2023] Open
Abstract
The negative charge of phosphatidylserine in lipid bilayers of secretory vesicles and plasma membranes couples the domains of positively charged amino acids of secretory vesicle SNARE proteins with similar domains of plasma membrane SNARE proteins enhancing fusion of the two membranes to promote exocytosis of the vesicle contents of secretory cells. Our recent study of insulin secretory granules (ISG) (MacDonald, M. J., Ade, L., Ntambi, J. M., Ansari, I. H., and Stoker, S. W. (2015) Characterization of phospholipids in insulin secretory granules in pancreatic beta cells and their changes with glucose stimulation. J. Biol. Chem. 290, 11075-11092) suggested that phosphatidylserine and other phospholipids, such as phosphatidylethanolamine, in ISG could play important roles in docking and fusion of ISG to the plasma membrane in the pancreatic beta cell during insulin exocytosis. P4 ATPase flippases translocate primarily phosphatidylserine and, to a lesser extent, phosphatidylethanolamine across the lipid bilayers of intracellular vesicles and plasma membranes to the cytosolic leaflets of these membranes. CDC50A is a protein that forms a heterodimer with P4 ATPases to enhance their translocase catalytic activity. We found that the predominant P4 ATPases in pure pancreatic beta cells and human and rat pancreatic islets were ATP8B1, ATP8B2, and ATP9A. ATP8B1 and CDC50A were highly concentrated in ISG. ATP9A was concentrated in plasma membrane. Gene silencing of individual P4 ATPases and CDC50A inhibited glucose-stimulated insulin release in pure beta cells and in human pancreatic islets. This is the first characterization of P4 ATPases in beta cells. The results support roles for P4 ATPases in translocating phosphatidylserine to the cytosolic leaflets of ISG and the plasma membrane to facilitate the docking and fusion of ISG to the plasma membrane during insulin exocytosis.
Collapse
Affiliation(s)
- Israr-ul H Ansari
- From the Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Melissa J Longacre
- From the Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Coen C Paulusma
- the Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, 1105 BK Amsterdam, The Netherlands
| | - Scott W Stoker
- From the Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Mindy A Kendrick
- From the Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Michael J MacDonald
- From the Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
29
|
Hansen SB. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:620-8. [PMID: 25633344 PMCID: PMC4540326 DOI: 10.1016/j.bbalip.2015.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 01/08/2023]
Abstract
The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.
Collapse
Affiliation(s)
- Scott B Hansen
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458, USA.
| |
Collapse
|
30
|
MacDonald MJ, Ade L, Ntambi JM, Ansari IUH, Stoker SW. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation. J Biol Chem 2015; 290:11075-92. [PMID: 25762724 DOI: 10.1074/jbc.m114.628420] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 01/05/2023] Open
Abstract
The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis.
Collapse
Affiliation(s)
- Michael J MacDonald
- From the Children's Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | | | - James M Ntambi
- the Departments of Biochemistry and Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Israr-Ul H Ansari
- From the Children's Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Scott W Stoker
- From the Children's Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
31
|
Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, Brantner CA, Stempinski ES, Connelly PS, Ma HC, Jiang P, Wimmer E, Altan-Bonnet G, Altan-Bonnet N. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 2015; 160:619-630. [PMID: 25679758 PMCID: PMC6704014 DOI: 10.1016/j.cell.2015.01.032] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/13/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Abstract
A central paradigm within virology is that each viral particle largely behaves as an independent infectious unit. Here, we demonstrate that clusters of enteroviral particles are packaged within phosphatidylserine (PS) lipid-enriched vesicles that are non-lytically released from cells and provide greater infection efficiency than free single viral particles. We show that vesicular PS lipids are co-factors to the relevant enterovirus receptors in mediating subsequent infectivity and transmission, in particular to primary human macrophages. We demonstrate that clustered packaging of viral particles within vesicles enables multiple viral RNA genomes to be collectively transferred into single cells. This study reveals a novel mode of viral transmission, where enteroviral genomes are transmitted from cell-to-cell en bloc in membrane-bound PS vesicles instead of as single independent genomes. This has implications for facilitating genetic cooperativity among viral quasispecies as well as enhancing viral replication.
Collapse
Affiliation(s)
- Ying-Han Chen
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA; Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - WenLi Du
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marne C Hagemeijer
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Takvorian
- Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Cyrilla Pau
- Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Ann Cali
- Federated Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christine A Brantner
- Electron Microscopy Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Erin S Stempinski
- Electron Microscopy Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Patricia S Connelly
- Electron Microscopy Core Facility, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Hsin-Chieh Ma
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ping Jiang
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Grégoire Altan-Bonnet
- Program in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Hong H. Role of Lipids in Folding, Misfolding and Function of Integral Membrane Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:1-31. [DOI: 10.1007/978-3-319-17344-3_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Mignard V, Lalier L, Paris F, Vallette FM. Bioactive lipids and the control of Bax pro-apoptotic activity. Cell Death Dis 2014; 5:e1266. [PMID: 24874738 PMCID: PMC4047880 DOI: 10.1038/cddis.2014.226] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Lipids are key regulators of cell physiology through the control of many aspects of cellular life and survival. In particular, lipids have been implicated at different levels and through many different mechanisms in the cell death program called apoptosis. Here, we discuss the action of lipids in the regulation of the activation and the integration of Bax into the mitochondrial outer membrane, a key pro-apoptotic member of the BCL-2 family. We describe how, during apoptosis, lipids can act simultaneously or in parallel as receptors or ligands for Bax to stimulate or inhibit its pro-death activity.
Collapse
Affiliation(s)
- V Mignard
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
| | - L Lalier
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Nantes, France
| | - F Paris
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Nantes, France
| | - F M Vallette
- Centre de Recherche en Cancérologie Nantes Angers, Nantes, France
- Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Nantes, France
| |
Collapse
|
34
|
Pang SHM, Carotta S, Nutt SL. Transcriptional control of pre-B cell development and leukemia prevention. Curr Top Microbiol Immunol 2014; 381:189-213. [PMID: 24831348 DOI: 10.1007/82_2014_377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The differentiation of early B cell progenitors is controlled by multiple transcriptional regulators and growth-factor receptors. The triad of DNA-binding proteins, E2A, EBF1, and PAX5 is critical for both the early specification and commitment of B cell progenitors, while a larger number of secondary determinants, such as members of the Ikaros, ETS, Runx, and IRF families have more direct roles in promoting stage-specific pre-B gene-expression program. Importantly, it is now apparent that mutations in many of these transcription factors are associated with the progression to acute lymphoblastic leukemia. In this review, we focus on recent studies that have shed light on the transcriptional hierarchy that controls efficient B cell commitment and differentiation as well as focus on the oncogenic consequences of the loss of many of the same factors.
Collapse
Affiliation(s)
- Swee Heng Milon Pang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | | | | |
Collapse
|
35
|
Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol 2013; 14:69-80. [PMID: 24378843 DOI: 10.1038/nri3570] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of B cells is dependent on the sequential DNA rearrangement of immunoglobulin loci that encode subunits of the B cell receptor. The pathway navigates a crucial checkpoint that ensures expression of a signalling-competent immunoglobulin heavy chain before commitment to rearrangement and expression of an immunoglobulin light chain. The checkpoint segregates proliferation of pre-B cells from immunoglobulin light chain recombination and their differentiation into B cells. Recent advances have revealed the molecular circuitry that controls two rival signalling systems, namely the interleukin-7 (IL-7) receptor and the pre-B cell receptor, to ensure that proliferation and immunoglobulin recombination are mutually exclusive, thereby maintaining genomic integrity during B cell development.
Collapse
|
36
|
Coates CJ, Whalley T, Wyman M, Nairn J. A putative link between phagocytosis-induced apoptosis and hemocyanin-derived phenoloxidase activation. Apoptosis 2013; 18:1319-1331. [DOI: 10.1007/s10495-013-0891-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Annexin-phospholipid interactions. Functional implications. Int J Mol Sci 2013; 14:2652-83. [PMID: 23358253 PMCID: PMC3588008 DOI: 10.3390/ijms14022652] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 02/03/2023] Open
Abstract
Annexins constitute an evolutionary conserved multigene protein superfamily characterized by their ability to interact with biological membranes in a calcium dependent manner. They are expressed by all living organisms with the exception of certain unicellular organisms. The vertebrate annexin core is composed of four (eight in annexin A6) homologous domains of around 70 amino acids, with the overall shape of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and phospholipid-binding sites are located on the convex side while the N-terminus links domains I and IV on the concave side. The N-terminus region shows great variability in length and amino acid sequence and it greatly influences protein stability and specific functions of annexins. These proteins interact mainly with acidic phospholipids, such as phosphatidylserine, but differences are found regarding their affinity for lipids and calcium requirements for the interaction. Annexins are involved in a wide range of intra- and extracellular biological processes in vitro, most of them directly related with the conserved ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton anchorage, ion channel activity and regulation, as well as antiinflammatory and anticoagulant activities. However, the in vivo physiological functions of annexins are just beginning to be established.
Collapse
|
38
|
Jaiswal R, Luk F, Gong J, Mathys JM, Grau GER, Bebawy M. Microparticle conferred microRNA profiles--implications in the transfer and dominance of cancer traits. Mol Cancer 2012; 11:37. [PMID: 22682234 PMCID: PMC3499176 DOI: 10.1186/1476-4598-11-37] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/17/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Microparticles (MPs) are membrane vesicles which are released from normal and malignant cells following a process of budding and detachment from donor cells. MPs contain surface antigens, proteins and genetic material and serve as vectors of intercellular communication. MPs comprise the major source of systemic RNA including microRNA (miRNA), the aberrant expression of which appears to be associated with stage, progression and spread of many cancers. Our previous study showed that MPs carry both transcripts and miRNAs associated with the acquisition of multidrug resistance in cancer. RESULTS Herein, we expand on our previous finding and demonstrate that MPs carry the transcripts of the membrane vesiculation machinery (floppase and scramblase) as well as nucleic acids encoding the enzymes essential for microRNA biogenesis (Drosha, Dicer and Argonaute). We also demonstrate using microarray miRNA profiling analysis, the selective packaging of miRNAs (miR-1228*, miR-1246, miR-1308, miR-149*, miR-455-3p, miR-638 and miR-923) within the MP cargo upon release from the donor cells. CONCLUSIONS These miRNAs are present in both haematological and non-haematological cancer cells and are involved in pathways implicated in cancer pathogenesis, membrane vesiculation and cascades regulated by ABC transporters. Our recent findings reinforce our earlier reports that MP transfer 're-templates' recipient cells so as to reflect donor cell traits. We now demonstrate that this process is likely to occur via a process of selective packaging of nucleic acid species, including regulatory nucleic acids upon MP vesiculation. These findings have significant implications in understanding the cellular basis governing the intercellular acquisition and dominance of deleterious traits in cancers.
Collapse
Affiliation(s)
- Ritu Jaiswal
- School of Pharmacy, Graduate School of Health Level 13, Building 1, University of Technology, Sydney, 123 Broadway, NSW, 2007, Australia
| | | | | | | | | | | |
Collapse
|