1
|
Stone CA, Spiller BW, Smith SA. Engineering therapeutic monoclonal antibodies. J Allergy Clin Immunol 2024; 153:539-548. [PMID: 37995859 PMCID: PMC11437839 DOI: 10.1016/j.jaci.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The use of human antibodies as biologic therapeutics has revolutionized patient care throughout fields of medicine. As our understanding of the many roles antibodies play within our natural immune responses continues to advance, so will the number of therapeutic indications for which an mAb will be developed. The great breadth of function, long half-life, and modular structure allow for nearly limitless therapeutic possibilities. Human antibodies can be rationally engineered to enhance their desired immune functions and eliminate those that may result in unwanted effects. Antibody therapeutics now often start with fully human variable regions, either acquired from genetically engineered humanized mice or from the actual human B cells. These variable genes can be further engineered by widely used methods for optimization of their specificity through affinity maturation, random mutagenesis, targeted mutagenesis, and use of in silico approaches. Antibody isotype selection and deliberate mutations are also used to improve efficacy and tolerability by purposeful fine-tuning of their immune effector functions. Finally, improvements directed at binding to the neonatal Fc receptor can endow therapeutic antibodies with unbelievable extensions in their circulating half-life. The future of engineered antibody therapeutics is bright, with the global mAb market projected to exhibit compound annual growth, forecasted to reach a revenue of nearly half a trillion dollars in 2030.
Collapse
Affiliation(s)
- Cosby A Stone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Benjamin W Spiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tenn; Department of Pharmacology, Vanderbilt University, Nashville, Tenn
| | - Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
2
|
Zhang L, Chen Z, Wang L, Luo X. Bullous pemphigoid: The role of type 2 inflammation in its pathogenesis and the prospect of targeted therapy. Front Immunol 2023; 14:1115083. [PMID: 36875098 PMCID: PMC9978795 DOI: 10.3389/fimmu.2023.1115083] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune disease that mainly occurs in the elderly, severely affecting their health and life quality. Traditional therapy for BP is mainly based on the systemic use of corticosteroids, but long-term use of corticosteroids results in a series of side effects. Type 2 inflammation is an immune response largely mediated by group 2 innate lymphoid cells, type 2 T helper cells, eosinophils, and inflammatory cytokines, such as interleukin (IL)-4, IL-5 and IL-13. Among patients with BP, the levels of immunoglobulin E and eosinophils are significantly increased in the peripheral blood and skin lesions, suggesting that the pathogenesis is tightly related to type 2 inflammation. To date, various targeted drugs have been developed to treat type 2 inflammatory diseases. In this review, we summarize the general process of type 2 inflammation, its role in the pathogenesis of BP and potential therapeutic targets and medications related to type 2 inflammation. The content of this review may contribute to the development of more effective drugs with fewer side effects for the treatment of BP.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zihua Chen
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lanting Wang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoqun Luo
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Patrick GJ, Liu H, Alphonse MP, Dikeman DA, Youn C, Otterson JC, Wang Y, Ravipati A, Mazhar M, Denny G, Ortines RV, Zhang E, Miller RJ, Dillen CA, Liu Q, Nolan SJ, Nguyen K, Marcello L, Do DC, Wier EM, Zhang Y, Caviness G, Klimowicz AC, Mierz DV, Fine JS, Sun G, Goldbach-Mansky R, Marusina AI, Merleev AA, Maverakis E, Garza LA, Milner JD, Gao P, Ramanujam M, Raymond EL, Archer NK, Miller LS. Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE production and ensuing allergic disease. J Clin Invest 2021; 131:143334. [PMID: 33645549 DOI: 10.1172/jci143334] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
IgE induced by type 2 immune responses in atopic dermatitis is implicated in the progression of atopic dermatitis to other allergic diseases, including food allergies, allergic rhinitis, and asthma. However, the keratinocyte-derived signals that promote IgE and ensuing allergic diseases remain unclear. Herein, in a mouse model of atopic dermatitis-like skin inflammation induced by epicutaneous Staphylococcus aureus exposure, keratinocyte release of IL‑36α along with IL-4 triggered B cell IgE class-switching, plasma cell differentiation, and increased serum IgE levels-all of which were abrogated in IL-36R-deficient mice or anti-IL‑36R-blocking antibody-treated mice. Moreover, skin allergen sensitization during S. aureus epicutaneous exposure-induced IL-36 responses was required for the development of allergen-specific lung inflammation. In translating these findings, elevated IL‑36 cytokines in human atopic dermatitis skin and in IL‑36 receptor antagonist-deficiency patients coincided with increased serum IgE levels. Collectively, keratinocyte-initiated IL‑36 responses represent a key mechanism and potential therapeutic target against allergic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Wang
- Department of Dermatology and
| | | | | | | | | | | | | | | | - Qi Liu
- Department of Dermatology and
| | | | | | | | - Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary Caviness
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Alexander C Klimowicz
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Diane V Mierz
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Jay S Fine
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Guangping Sun
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Alina I Marusina
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Alexander A Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | | | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meera Ramanujam
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | - Ernest L Raymond
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, USA
| | | | | |
Collapse
|
4
|
Michelet M, Balbino B, Guilleminault L, Reber LL. IgE in the pathophysiology and therapy of food allergy. Eur J Immunol 2021; 51:531-543. [PMID: 33527384 DOI: 10.1002/eji.202048833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Food allergy is becoming a major public health issue, with no regulatory approved therapy to date. Food allergy symptoms range from skin rash and gastrointestinal symptoms to anaphylaxis, a potentially fatal systemic allergic shock reaction. IgE antibodies are thought to contribute importantly to key features of food allergy and anaphylaxis, and measurement of allergen-specific IgE is fundamental in diagnosing food allergy. This review will discuss recent advances in the regulation of IgE production and IgE repertoires in food allergy. We will describe the current understanding of the role of IgE and its high-affinity receptor FcεRI in food allergy and anaphylaxis, by reviewing insights gained from analyses of mouse models. Finally, we will review data derived from clinical studies of the effect of anti-IgE therapeutic monoclonal antibodies (mAbs) in food allergy, and recent insight on the efficiency and mechanisms through which these mAbs block IgE effector functions.
Collapse
Affiliation(s)
- Marine Michelet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Pediatric Pneumo-allergology Department, Children's Hospital, University Hospital Centre of Toulouse, Toulouse, France
| | - Bianca Balbino
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| | - Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Department of Respiratory Medicine and Allergic Diseases, University Hospital Centre of Toulouse, Toulouse, France
| | - Laurent L Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France.,Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 INSERM, Paris, France
| |
Collapse
|
5
|
Hoh RA, Joshi SA, Lee JY, Martin BA, Varma S, Kwok S, Nielsen SCA, Nejad P, Haraguchi E, Dixit PS, Shutthanandan SV, Roskin KM, Zhang W, Tupa D, Bunning BJ, Manohar M, Tibshirani R, Fernandez-Becker NQ, Kambham N, West RB, Hamilton RG, Tsai M, Galli SJ, Chinthrajah RS, Nadeau KC, Boyd SD. Origins and clonal convergence of gastrointestinal IgE + B cells in human peanut allergy. Sci Immunol 2020; 5:5/45/eaay4209. [PMID: 32139586 DOI: 10.1126/sciimmunol.aay4209] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
B cells in human food allergy have been studied predominantly in the blood. Little is known about IgE+ B cells or plasma cells in tissues exposed to dietary antigens. We characterized IgE+ clones in blood, stomach, duodenum, and esophagus of 19 peanut-allergic patients, using high-throughput DNA sequencing. IgE+ cells in allergic patients are enriched in stomach and duodenum, and have a plasma cell phenotype. Clonally related IgE+ and non-IgE-expressing cell frequencies in tissues suggest local isotype switching, including transitions between IgA and IgE isotypes. Highly similar antibody sequences specific for peanut allergen Ara h 2 are shared between patients, indicating that common immunoglobulin genetic rearrangements may contribute to pathogenesis. These data define the gastrointestinal tract as a reservoir of IgE+ B lineage cells in food allergy.
Collapse
Affiliation(s)
- Ramona A Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shilpa A Joshi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brock A Martin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirley Kwok
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandra C A Nielsen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Parastu Nejad
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily Haraguchi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Priya S Dixit
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Swetha V Shutthanandan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Krishna M Roskin
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dana Tupa
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan J Bunning
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert Tibshirani
- Department of Biomedical Data Sciences, Stanford University, Stanford, CA 94305, USA.,Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Nielsen Q Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Department of Medicine, and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca S Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary, Allergy and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Pulmonary, Allergy and Critical Care Medicine and Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman‐Yassky E, Kabashima K, Mitamura Y, Vian L, Wu J, Palomares O. Type 2 immunity in the skin and lungs. Allergy 2020; 75:1582-1605. [PMID: 32319104 DOI: 10.1111/all.14318] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
There has been extensive progress in understanding the cellular and molecular mechanisms of inflammation and immune regulation in allergic diseases of the skin and lungs during the last few years. Asthma and atopic dermatitis (AD) are typical diseases of type 2 immune responses. interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin are essential cytokines of epithelial cells that are activated by allergens, pollutants, viruses, bacteria, and toxins that derive type 2 responses. Th2 cells and innate lymphoid cells (ILC) produce and secrete type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13. IL-4 and IL-13 activate B cells to class-switch to IgE and also play a role in T-cell and eosinophil migration to allergic inflammatory tissues. IL-13 contributes to maturation, activation, nitric oxide production and differentiation of epithelia, production of mucus as well as smooth muscle contraction, and extracellular matrix generation. IL-4 and IL-13 open tight junction barrier and cause barrier leakiness in the skin and lungs. IL-5 acts on activation, recruitment, and survival of eosinophils. IL-9 contributes to general allergic phenotype by enhancing all of the aspects, such as IgE and eosinophilia. Type 2 ILC contribute to inflammation in AD and asthma by enhancing the activity of Th2 cells, eosinophils, and their cytokines. Currently, five biologics are licensed to suppress type 2 inflammation via IgE, IL-5 and its receptor, and IL-4 receptor alpha. Some patients with severe atopic disease have little evidence of type 2 hyperactivity and do not respond to biologics which target this pathway. Studies in responder and nonresponder patients demonstrate the complexity of these diseases. In addition, primary immune deficiency diseases related to T-cell maturation, regulatory T-cell development, and T-cell signaling, such as Omenn syndrome, severe combined immune deficiencies, immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and DOCK8, STAT3, and CARD11 deficiencies, help in our understanding of the importance and redundancy of various type 2 immune components. The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.
Collapse
Affiliation(s)
- Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| | - Peter D. Arkwright
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
| | - Marie-Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
- Department of Dermatology University Hospital Zurich Zurich Switzerland
- Faculty of Medicine University Zurich Zurich Switzerland
| | - William Busse
- Department of Medicine School of Medicine and Public Health University of Wisconsin Madison WI USA
| | - Massimo Gadina
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Emma Guttman‐Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Kenji Kabashima
- Department of Dermatology Kyoto University Graduate School of Medicine Kyoto Japan
- Agency for Science, Technology and Research (A*STAR) Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS) Singapore Singapore
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Laura Vian
- Translational Immunology Section Office of Science and Technology National Institute of Arthritis Musculoskeletal and Skin Disease NIH Bethesda MD USA
| | - Jianni Wu
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University of Madrid Madrid Spain
| |
Collapse
|
7
|
Hoh RA, Boyd SD. Gut Mucosal Antibody Responses and Implications for Food Allergy. Front Immunol 2018; 9:2221. [PMID: 30319658 PMCID: PMC6170638 DOI: 10.3389/fimmu.2018.02221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal mucosa is a critical environmental interface where plasma cells and B cells are exposed to orally-ingested antigens such as food allergen proteins. It is unclear how the development of B cells and plasma cells in the gastrointestinal mucosa differs between healthy humans and those with food allergy, and how B cells contribute to, or are affected by, the breakdown of oral tolerance. In particular, the antibody gene repertoires associated with symptomatic allergy have only begun to be characterized in full molecular detail. Here, we review literature concerning B cells and plasma cells in the gastrointestinal system in the context of food allergy, with a focus on human studies.
Collapse
Affiliation(s)
- Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Park HJ, Choi WS, Lee WY, Choi Y, Park C, Kim JH, Hong KH, Song H. A novel mouse model of atopic dermatitis that is T helper 2 (Th2)-polarized by an epicutaneous allergen. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:122-130. [PMID: 29329020 DOI: 10.1016/j.etap.2017.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The pathogenesis of atopic dermatitis (AD) involves T helper 2 (Th2) cells, and effective therapies remain elusive due to the paucity of animal models. We aimed to develop a mouse model of an immune system aberration caused by allergen. Experiments were conducted in two phases. In experiment 1, BALB/c mice were sensitized with one of four chemical allergens - toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI), trimellitic anhydride (TMA), or 2,4-dinitrochlorobenzene (DNCB) - for 3 weeks. Based on results of experiment 1, immunological features were compared between TMA-sensitized BALB/c mice and NC/Nga mice, after exposure to mite extracts, harmful chemicals and detergents in experiment 2. Sensitization by allergen caused a large number of pathological changes in the skin, and an increase in mast cell number. TMA-sensitized BALB/c mice models showed higher sensitivity to an environmental allergen than NC/Nga mice did. Overall, the initial sensitization with TMA leads to disturbances in Th2-mediated immunity.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Won Young Lee
- Department of Beef and Dairy Science, Korea National College of Agricultures and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Youngsok Choi
- Department of Biomedical Sciences, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biology, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwon Ho Hong
- Department of Stem Cell and Regenerative Biology, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Oettgen HC. Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol 2017; 137:1631-1645. [PMID: 27263999 DOI: 10.1016/j.jaci.2016.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/15/2023]
Abstract
Fifty years ago, after a long search, IgE emerged as the circulating factor responsible for triggering allergic reactions. Its extremely low concentration in plasma created significant hurdles for scientists working to reveal its identity. We now know that IgE levels are invariably increased in patients affected by atopic conditions and that IgE provides the critical link between the antigen recognition role of the adaptive immune system and the effector functions of mast cells and basophils at mucosal and cutaneous sites of environmental exposure. This review discusses the established mechanisms of action of IgE in pathologic immediate hypersensitivity, as well as its multifaceted roles in protective immunity, control of mast cell homeostasis, and its more recently revealed immunomodulatory functions.
Collapse
Affiliation(s)
- Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
10
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
11
|
Bachert C, Pawankar R, Zhang L, Bunnag C, Fokkens WJ, Hamilos DL, Jirapongsananuruk O, Kern R, Meltzer EO, Mullol J, Naclerio R, Pilan R, Rhee CS, Suzaki H, Voegels R, Blaiss M. ICON: chronic rhinosinusitis. World Allergy Organ J 2014; 7:25. [PMID: 25379119 PMCID: PMC4213581 DOI: 10.1186/1939-4551-7-25] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a public health problem that has a significant socio-economic impact. Moreover, the complexity of this disease due to its heterogeneous nature based on the underlying pathophysiology - leading to different disease variants - further complicates our understanding and directions for the most appropriate targeted treatment strategies. Several International/national guidelines/position papers and/or consensus documents are available that present the current knowledge and treatment strategies for CRS. Yet there are many challenges to the management of CRS especially in the case of the more severe and refractory forms of disease. Therefore, the International Collaboration in Asthma, Allergy and Immunology (iCAALL), a collaboration between EAACI, AAAAI, ACAAI, and WAO, has decided to propose an International Consensus (ICON) on Chronic Rhinosinusitis. The purpose of this ICON on CRS is to highlight the key common messages from the existing guidelines, the differences in recommendations as well as the gaps in our current knowledge of CRS, thus providing a concise reference. In this document we discuss the definition of the disease, its relevance, pharmacoeconomics, pathophysiology, phenotypes and endotypes, genetics and risk factors, natural history and co-morbidities as well as clinical manifestations and treatment options in both adults and children comprising pharmacotherapy, surgical interventions and more recent biological approaches. Finally, we have also highlighted the unmet needs that wait to be addressed through future research.
Collapse
Affiliation(s)
- Claus Bachert
- Upper Airways Research Laboratory (URL), University Hospital Ghent, Kragujevac, Belgium
| | - Ruby Pawankar
- Div. of Allergy, Dept. of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Luo Zhang
- Beijing Key Laboratory of Nasal diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Chaweewan Bunnag
- Faculty of Medicine, Siriraj Hospital Mahidol University, Bangkok, Thailand
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Daniel L Hamilos
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, MA USA
| | | | - Robert Kern
- Department of Otolaryngology Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Eli O Meltzer
- Allergy & Asthma Medical Group & Research Center, San Diego, California USA
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, Hospital Clínic - IDIBAPS, Barcelona, Catalonia Spain
| | - Robert Naclerio
- Section of Otolaryngology Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, Illinois USA
| | - Renata Pilan
- Department of Otorhinolaryngology, Clinics Hospital/University of Sao Paulo Medical School, Kragujevac, Brazil
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Seoul National University College of Medicine, Seoul, Korea
| | - Harumi Suzaki
- Dept. of Otorhinolaryngology, Showa University, Tokyo, Japan
| | - Richard Voegels
- Department of Rhinology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Michael Blaiss
- University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|
13
|
Importins and exportins regulating allergic immune responses. Mediators Inflamm 2014; 2014:476357. [PMID: 24733961 PMCID: PMC3964845 DOI: 10.1155/2014/476357] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.
Collapse
|
14
|
Casaca VI, Illi S, Klucker E, Ballenberger N, Schedel M, von Mutius E, Kabesch M, Schaub B. STAT6 polymorphisms are associated with neonatal regulatory T cells and cytokines and atopic diseases at 3 years. Allergy 2013; 68:1249-58. [PMID: 24053457 DOI: 10.1111/all.12220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND The transcription factor STAT6 is crucial for activation of the interleukin (IL)-4/IL-13 pathway and has been linked to regulatory T cells (Tregs). Associations of STAT6 polymorphisms with IgE levels were described; however, their impact on neonatal immune responses and early disease development is unknown. METHODS STAT6 polymorphisms were genotyped in cord blood mononuclear cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Gene expression was assessed by real-time polymerase chain reaction (PCR) and cytokines by Multiplex. At age 3 years, atopic diseases were assessed by questionnaires. RESULTS STAT6 rs324011 but not rs1059513 polymorphism was associated with significant or borderline significant decreased mRNA expression of Treg-associated genes (FOXP3, GITR, LAG3). Heterozygotes and minor allele homozygotes of rs324011 had low levels of tumor necrosis factor alpha (TNF-α) and increased interferon gamma (IFN-γ) (P ≤ 0.04), while heterozygotes and minor allele homozygotes of rs1059513 had increased TNF-α and Granulocyte-macrophage colony-stimulating factor (GM-CSF) (P ≤ 0.05). In minor allele homozygotes of rs324011, expression of Treg-associated genes was strongly inverse correlated with IFN-γ (unstimulated, r = -0.7, P = 0.111; LpA stimulation, r = -0.8, P = 0.011), but not in heterozygotes or major allele homozygotes. Heterozygotes and minor allele homozygotes of rs324011 presented a lower risk of atopic dermatitis and obstructive bronchitis until age 3 years. CONCLUSIONS Two STAT6 polymorphisms were associated with altered immune responses already at birth. STAT6 rs324011 was associated with lower neonatal Treg and increased Th1 response. Those neonates had a lower risk of atopic dermatitis and obstructive bronchitis until 3 years. Our data suggest a role for STAT6 polymorphisms in early immune regulation and implications on early atopic disease development.
Collapse
Affiliation(s)
- V. I. Casaca
- Department of Pulmonary & Allergy; University Children's Hospital Munich; LMU Munich; Munich; Germany
| | - S. Illi
- Department of Pulmonary & Allergy; University Children's Hospital Munich; LMU Munich; Munich; Germany
| | - E. Klucker
- Department of Pulmonary & Allergy; University Children's Hospital Munich; LMU Munich; Munich; Germany
| | - N. Ballenberger
- Department of Pulmonary & Allergy; University Children's Hospital Munich; LMU Munich; Munich; Germany
| | - M. Schedel
- Department of Pediatrics; National Jewish Health; Denver; CO; USA
| | - E. von Mutius
- Department of Pulmonary & Allergy; University Children's Hospital Munich; LMU Munich; Munich; Germany
| | - M. Kabesch
- Department of Pediatric Pneumology & Allergy; University Children's Hospital Eastern Bavaria (KUNO); University of Regensburg; Regensburg; Germany
| | - B. Schaub
- Department of Pulmonary & Allergy; University Children's Hospital Munich; LMU Munich; Munich; Germany
| |
Collapse
|
15
|
Zhao W, Shahzad K, Jiang M, Graugnard DE, Rodriguez-Zas SL, Luo J, Loor JJ, Hurley WL. Bioinformatics and Gene Network Analyses of the Swine Mammary Gland Transcriptome during Late Gestation. Bioinform Biol Insights 2013; 7:193-216. [PMID: 23908586 PMCID: PMC3728096 DOI: 10.4137/bbi.s12205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used the newly-developed Dynamic Impact Approach (DIA) and gene network analysis to study the sow mammary transcriptome at 80, 100, and 110 days of pregnancy. A swine oligoarray with 13,290 inserts was used for transcriptome profiling. An ANOVA with false discovery rate (FDR < 0.15) correction resulted in 1,409 genes with a significant time effect across time comparisons. The DIA uncovered that Fatty acid biosynthesis, Interleukin-4 receptor binding, Galactose metabolism, and mTOR signaling were among the most-impacted pathways. IL-4 receptor binding, ABC transporters, cytokine-cytokine receptor interaction, and Jak-STAT signaling were markedly activated at 110 days compared with 80 and 100 days. Epigenetic and transcription factor regulatory mechanisms appear important in coordinating the final stages of mammary development during pregnancy. Network analysis revealed a crucial role for TP53, ARNT2, E2F4, and PPARG. The bioinformatics analyses revealed a number of pathways and functions that perform an irreplaceable role during late gestation to farrowing.
Collapse
Affiliation(s)
- Wangsheng Zhao
- College of Animal Science and Technology, Northwest Agricultural and Forestry University, YangLing, Shaanxi, China. ; Department of Animal Sciences, University of Illinois Urbana-Champaign, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol 2013; 132:361-70. [PMID: 23777851 DOI: 10.1016/j.jaci.2013.04.046] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is classified as extrinsic and intrinsic, representing approximately 80% and 20% of patients with the disease, respectively. Although sharing a similar clinical phenotype, only extrinsic AD is characterized by high serum IgE levels. Because most patients with AD exhibit high IgE levels, an "allergic"/IgE-mediated disease pathogenesis was hypothesized. However, current models associate AD with T-cell activation, particularly TH2/TH22 polarization, and epidermal barrier defects. OBJECTIVE We sought to define whether both variants share a common pathogenesis. METHODS We stratified 51 patients with severe AD into extrinsic AD (n = 42) and intrinsic AD (n = 9) groups (with similar mean disease activity/SCORAD scores) and analyzed the molecular and cellular skin pathology of lesional and nonlesional intrinsic AD and extrinsic AD by using gene expression (real-time PCR) and immunohistochemistry. RESULTS A significant correlation between IgE levels and SCORAD scores (r = 0.76, P < 10(-5)) was found only in patients with extrinsic AD. Marked infiltrates of T cells and dendritic cells and corresponding epidermal alterations (keratin 16, Mki67, and S100A7/A8/A9) defined lesional skin of patients with both variants. However, higher activation of all inflammatory axes (including TH2) was detected in patients with intrinsic AD, particularly TH17 and TH22 cytokines. Positive correlations between TH17-related molecules and SCORAD scores were only found in patients with intrinsic AD, whereas only patients with extrinsic AD showed positive correlations between SCORAD scores and TH2 cytokine (IL-4 and IL-5) levels and negative correlations with differentiation products (loricrin and periplakin). CONCLUSIONS Although differences in TH17 and TH22 activation exist between patients with intrinsic AD and those with extrinsic AD, we identified common disease-defining features of T-cell activation, production of polarized cytokines, and keratinocyte responses to immune products. Our data indicate that a TH2 bias is not the sole cause of high IgE levels in patients with extrinsic AD, with important implications for similar therapeutic interventions.
Collapse
|
17
|
Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2013; 131:1479-90. [PMID: 23587334 DOI: 10.1016/j.jaci.2013.02.036] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
Abstract
Chronic rhinosinusitis (CRS) is a complex disease consisting of several disease variants with different underlying pathophysiologies. Limited knowledge of the mechanisms of these disease subgroups is possibly the greatest obstacle in understanding the causes of CRS and improving treatment. It is generally agreed that there are clinically relevant CRS phenotypes defined by an observable characteristic or trait, such as the presence or absence of nasal polyps. Defining the phenotype of the patient is useful in making therapeutic decisions. However, clinical phenotypes do not provide full insight into all underlying cellular and molecular pathophysiologic mechanisms of CRS. Recognition of the heterogeneity of CRS has promoted the concept that CRS consists of multiple groups of biological subtypes, or "endotypes," which are defined by distinct pathophysiologic mechanisms that might be identified by corresponding biomarkers. Different CRS endotypes can be characterized by differences in responsiveness to different treatments, including topical intranasal corticosteroids and biological agents, such as anti-IL-5 and anti-IgE mAb, and can be based on different biomarkers that are linked to underlying mechanisms. CRS has been regarded as a single disease entity in clinical and genetic studies in the past, which can explain the failure to identify consistent genetic and environmental correlations. In addition, better identification of endotypes might permit individualization of therapy that can be targeted against the pathophysiologic processes of a patient's endotype, with potential for more effective treatment and better patient outcomes.
Collapse
|
18
|
Sackesen C, van de Veen W, Akdis M, Soyer O, Zumkehr J, Ruckert B, Stanic B, Kalaycı O, Alkan SS, Gursel I, Akdis CA. Suppression of B-cell activation and IgE, IgA, IgG1 and IgG4 production by mammalian telomeric oligonucleotides. Allergy 2013; 68:593-603. [PMID: 23480796 DOI: 10.1111/all.12133] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND The fine balance of immunoglobulins (Ig) E, IgG1, IgG4 and IgA in healthy production is maintained by the interaction of B cells with adaptive and innate immune response. The regulation of toll-like receptors (TLRs)-driven innate and adaptive immune effector B-cell response and the role of mammalian telomeric TTAGGG repeat elements represent an important research area. METHODS Human PBMC and purified naive and memory B cells were stimulated with specific ligands for TLR2, TLR3, TLR4, TLR5, TLR7, TLR8 and TLR9 in the presence or absence of telomeric oligonucleotides. B-cell proliferation, differentiation and antibody production were determined. RESULTS TLR9 ligand directly activates naive and memory B cells, whereas TLR7 can stimulate them in the presence of plasmacytoid dendritic cells. Human B cells proliferate and turn into antibody-secreting cells in response to TLR3, TLR7 and TLR9, but not to TLR2, TLR4, TLR5 and TLR8 ligands. Stimulation of B cells with intracellular TLR3, TLR7 and TLR9 induced an activation cascade leading to memory B-cell generation and particularly IgG1, but also IgA, IgG4 and very low levels of IgE production. Mammalian telomeric oligodeoxynucleotide (ODN) significantly inhibited all features of TLR ligand-induced events in B cells including B-cell proliferation, IgE, IgG1, IgG4, IgA production, class switch recombination, plasma cell differentiation induced by TLR3, TLR7 and TLR9 ligands. CONCLUSION B cells require specific TLR stimulation, T-cell and plasmacytoid dendritic cell help for distinct activation and Ig production profiles. Host-derived telomeric ODN suppress B-cell activation and antibody production demonstrating a natural mechanism for the control of overexuberant B-cell activation, antibody production and generation of memory.
Collapse
Affiliation(s)
| | - W. van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - M. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | | | - J. Zumkehr
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - B. Ruckert
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - B. Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | - O. Kalaycı
- Department of Pediatric Allergy and Asthma; Hacettepe University School of Medicine; Ankara; Turkey
| | | | - I. Gursel
- Department of Molecular Biology and Genetics; Bilkent University; Ankara; Turkey
| | - C. A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| |
Collapse
|
19
|
Kücüksezer UC, Palomares O, Rückert B, Jartti T, Puhakka T, Nandy A, Gemicioğlu B, Fahrner HB, Jung A, Deniz G, Akdis CA, Akdis M. Triggering of specific Toll-like receptors and proinflammatory cytokines breaks allergen-specific T-cell tolerance in human tonsils and peripheral blood. J Allergy Clin Immunol 2013; 131:875-85. [DOI: 10.1016/j.jaci.2012.10.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/20/2012] [Accepted: 10/25/2012] [Indexed: 12/31/2022]
|
20
|
Soyer OU, Akdis M, Ring J, Behrendt H, Crameri R, Lauener R, Akdis CA. Mechanisms of peripheral tolerance to allergens. Allergy 2013; 68:161-70. [PMID: 23253293 DOI: 10.1111/all.12085] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 12/24/2022]
Abstract
The immune system is regulated to protect the host from exaggerated stimulatory signals establishing a state of tolerance in healthy individuals. The disequilibrium in immune regulatory vs effector mechanisms results in allergic or autoimmune disorders in genetically predisposed subjects under certain environmental conditions. As demonstrated in allergen-specific immunotherapy and in the healthy immune response to high-dose allergen exposure models in humans, T regulatory cells are essential in the suppression of Th2-mediated inflammation, maintenance of immune tolerance, induction of the two suppressive cytokines interleukin-10 and transforming growth factor-β, inhibition of allergen-specific IgE, and enhancement of IgG4 and IgA. Also, suppression of dendritic cells, mast cells, and eosinophils contributes to the construction of peripheral tolerance to allergens. This review focuses on mechanisms of peripheral tolerance to allergens with special emphasis on recent developments in the area of immune regulation.
Collapse
Affiliation(s)
| | | | | | | | - R. Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos; Switzerland
| | | | | |
Collapse
|
21
|
Hwang JS, Kim JE, Kim HT, Yu YB, Im SH. Topical application of Taglisodog-eum inhibits the development of experimental atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:536-546. [PMID: 23211659 DOI: 10.1016/j.jep.2012.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/14/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
AIM OF STUDY Taglisodog-eum (Tuo Li Xiao Du Yin), a standardized herbal formula, has been widely used to modulate diverse carbuncles in oriental medicine. However, it is still unclear whether Taglisodog-eum (TSE) can exert a beneficial role in dermatological disease. In this study, we examined the effect of topical application of TSE on experimental atopic dermatitis (AD) and elucidated its action mechanism. MATERIALS AND METHODS To test the effect of TSE treatment on IgE production in vitro, U266B1 cells and primary CD19(+) B cells isolated from AD-induced mice were treated with TSE under LPS/IL-4 stimulation and then IgE level in the culture supernatant was measured by ELISA. To evaluate the effect of TSE treatment on the production of AD related pathogenic cytokines, CD4(+) T cells isolated from AD-induced mice were treated with TSE under PMA/ionomycin stimulation, then the level of cytokine expression was analyzed by quantitative RT-PCR and ELISA. The effects of TSE on the NFκB promoter activity in T cells and on the expression level of Aicda (activation-induced cytidine deaminase) in B cells were examined. To further examine the in vivo efficacy of TSE on AD progression, TSE was topically applied to ears of mice with atopic dermatitis induced by painting of DNCB and house dust mite extract. AD Progression was estimated by following criteria: (a) ear thickness, clinical score, (b) serum total IgE and mite specific IgE level by ELISA, (c) histological examination of ear tissue by H&E staining and (d) cytokine profile of total ear cells and draining lymph node CD4(+) T cells by quantitative real time PCR and ELISA. RESULTS Treatment of TSE to the U266B1 cell line and primary CD19(+) B cells isolated from AD-induced mice inhibited IgE production. Treatment of TSE down-regulated the expression of several cytokines (IL-4, IL-10, IL-13, IL-17, TNF-α and IFN-γ) in CD4(+) T cells isolated from AD-induced mice. Topical application of TSE on the ears of AD-induced mice decreased the severity and progression of disease by reducing ear thickness, clinical scores including dryness, edema. TSE treatment reduced the infiltration of lymphocytes to the inflamed site analyzed by histological evaluation. TSE treatment also decreased serum IgE level and expression of AD-associated pathogenic cytokines (IL-4, IL-5 and IL-13) in total ear cells and dLN CD4(+) T cells by inhibiting the translocation of NFκB into nucleus. CONCLUSIONS Our study indicates that protective effect of Taglisodog-eum (TSE) in experimental atopic dermatitis is mediated by inhibiting IgE production and the levels of Th2 type cytokines, suggesting the beneficial effect of TSE on modulating atopic dermatitis.
Collapse
Affiliation(s)
- Ji Sun Hwang
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | |
Collapse
|
22
|
Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA. TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol 2013; 129:1438-49; quiz1450-1. [PMID: 22657405 DOI: 10.1016/j.jaci.2012.05.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 12/30/2022]
Abstract
Substantial progress in understanding mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumors, organ transplantation, chronic infections, and pregnancy is in an exciting developmental phase that might lead to a variety of targeted therapeutic approaches. Recent progress in the interaction between immune/inflammatory cell subsets through cytokines, particularly the extension of the knowledge on reciprocal regulation and counterbalance between subsets of T(H)1, T(H)2, T(H)9, T(H)17, T(H)22, T follicular helper cells and different subsets of regulatory T cells, as well as corresponding and co-orchestrating B-cell, natural killer cell, dendritic cell, and innate lymphoid cell subsets, offers new possibilities for immune intervention. Studies on new subsets confirm the important role of T cells in the instruction of tissue cells and also demonstrate the important role of feedback regulation for the polarization toward distinct T-cell subsets. T(H)17 and T(H)22 cells are 2 emerging T(H) cell subsets that link the immune response to tissue inflammation; IL-17A and IL-17F and IL-22 are their respective prototype cytokines. Although both cytokines play roles in immune defense to extracellular bacteria, IL-17 augments inflammation, whereas IL-22 plays a tissue-protective role. This review focuses on current knowledge on T(H)17 and T(H)22 cells and their role in inflammation, with special focus on the mechanisms of their generation and driving and effector cytokines, as well as their role in host defense, autoimmunity, and allergic diseases.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Weinberger EE, Himly M, Myschik J, Hauser M, Altmann F, Isakovic A, Scheiblhofer S, Thalhamer J, Weiss R. Generation of hypoallergenic neoglycoconjugates for dendritic cell targeted vaccination: a novel tool for specific immunotherapy. J Control Release 2012; 165:101-9. [PMID: 23147517 PMCID: PMC3550522 DOI: 10.1016/j.jconrel.2012.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022]
Abstract
The incidence of allergic disorders and asthma continuously increased over the past decades, consuming a considerable proportion of the health care budget. Allergen-specific subcutaneous immunotherapy represents the only intervention treating the underlying causes of type I allergies, but still suffers from unwanted side effects and low compliance. There is an urgent need for novel approaches improving safety and efficacy of this therapy. In the present study we investigated carbohydrate-mediated targeting of allergens to dermal antigen-presenting cells and its influence on immunogenicity and allergenicity. Mannan, high (40 kDa) and low (6 kDa) molecular weight dextran, and maltodextrin were covalently attached to ovalbumin and papain via mild carbohydrate oxidation resulting in neoglycocomplexes of various sizes. In particular, mannan-conjugates were efficiently taken up by dendritic cells in vivo leading to elevated humoral immune responses against the protein moiety and a shift from IgE to IgG. Beyond providing an adjuvant effect, papain glycocomplexes also proved to mask B-cell epitopes, thus rendering the allergen derivative hypoallergenic. The present data demonstrate that carbohydrate-modified allergens combine targeting of antigen presenting cells with hypoallergenicity, offering the potential for low dose allergen-specific immunotherapy while concomitantly reducing the risk of side effects.
Collapse
Affiliation(s)
| | - Martin Himly
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Julia Myschik
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Michael Hauser
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Friedrich Altmann
- Department of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Almedina Isakovic
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Sandra Scheiblhofer
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
- Corresponding author. Tel.: + 43 662 8044 5737; fax: + 43 662 8044 5751.
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|